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1 Introduction

The S-matrix bootstrap allows us to explore the space of consistent Quantum Field Theories
(QFTs). In practice, the imposed consistency conditions are unitarity, analyticity and crossing
symmetry of the 2 → 2 scattering amplitude. When establishing bounds in parameters,
like couplings or Wilson coefficients, one often finds a much larger allowed space than the
one covered by known theories [1–34]. This might mean there are other fully consistent
theories we did not know before or that we must go beyond the 2 → 2 set of constraints
in order to discard unphysical theories.

In this work we focus on gapped QFTs with O(N) internal symmetry in d = 2 spacetime
dimensions. The space of allowed S-matrices carved out by the 2 → 2 set of constraints
was first studied in [4, 5, 12] and shows a number of interesting features. In the absence of
O(N) symmetry the boundary of the allowed space can be spanned by continuous families of
integrable S-matrices [1, 3, 27, 35]. On the other hand, in the O(N) case the Yang-Baxter
(YB) relations become non-trivial and for N > 2 integrability is only achieved at isolated
boundary points. For example, the O(N) non-linear sigma model (NLSM) is found at a kink.

The space of O(N) S-matrices — the O(N) monolith — exhibits a variety of other
interesting and still mysterious features, as highlighted in figure 1. Namely, the ‘constant’
amplitudes on which the extremal S-matrices are inelastic (a rare observation of non-unitarity
saturation at the boundary), or the ‘pre-vertices’ where the periodic-Yang-Baxter (pYB)
S-matrices are found. The latter satisfy the Yang-Baxter relations but a corresponding
physical model or Lagrangian formulation is still unknown. The pYB amplitudes — and
generically the extremal amplitudes at the boundary — show a rich analytic structure with
infinitely many resonances arranging themselves in a periodic manner, which raises questions
about the UV nature of these putative QFTs.1 Are these structures unphysical? Is the NLSM
the only non-trivial physical theory at the boundary?

These questions call for an enlargement of the subset of constraints and observables.
One option would be to include multi-particle constraints. However, these are plagued with
fundamental and technical difficulties such as the presence of anomalous thresholds [38–40]. A
recent viable alternative, which allows to probe the UV nature of these theories, is to include
local operators such as the stress-energy tensor [10]. In this extended framework, form factors
and spectral densities join the S-matrix in a more powerful bootstrap setup [10, 31, 33, 41].

In particular, if the local operators are chosen to be the stress tensor and the conserved
O(N) currents, information about the conformal field theory (CFT) at the UV fixed point can
be included via the so-called sum rules. These relate CFT properties — the central charges
c and k,2 respectively — to the spectral density of these operators in the QFT [41]. These
CFT quantities can now be targeted by the QFT bootstrap, and be used to probe the O(N)
monolith. By minimizing c and k across the O(N) monolith we can constrain the possible
CFTs from which these S-matrices in the infrared (IR) could flow from.

1Similar periodicities are also observed in the S-matrices coming from T T̄ deformations, which are known
to be incompatible with conventional local UV-complete QFTs [36, 37].

2We define c and k as coefficients in the two point function of the stress-energy tensor and the O(N)
conserved currents in the CFT, respectively. If the currents define an affine Lie algebra, the current central
charge k defines the ‘level’ of the algebra.
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Figure 1. Two-dimensional slice of the O(N) monolith for N = 7 taken from [12]. The shaded blue
region are the allowed values for the amplitudes at the crossing symmetric point, the axes given by
σ1,2 = σ1,2(s = 2m2). The highlighted points are different exact S-matrices as explained in the main
text. The lines connecting them are the sections used in 3.1.

In simple terms, this framework let us see explicitly how conditions in the IR trickle
up along the flow onto the UV, allowing us to constrain the UV CFTs via the S-matrix
principles. So, we may also ask concretely, what is the allowed space of central charges
c and k that is compatible with the unitarity, crossing symmetry and analyticity of the
S-matrix? Where do Wess-Zumino-Witten (WZW) models — for which c and k are related
by the Sugawara construction — sit inside this space? What differentiates the amplitudes
leading to finite/infinite central charges?

The goal of this work is to implement this framework and address these questions. The
organization of this paper is as follows. In section 2 we briefly overview the O(N) monolith
space of S-matrices and review how form factors and spectral densities can be included into
the O(N) bootstrap setup. In section 3 we show our numerical results for the bounds on the
central charges c and k. In section 4 we use analytical form factor bootstrap methods to
argue for a relation between the behaviour of the amplitudes in physical kinematics and the
finiteness of the central charges. We then discuss our results in section 5. Our conventions,
derivations of dual optimization problems, numerical implementation and various analytical
results are collected in appendices A, B, C, D and E.

2 Review of O(N) monolith and Form Factor Bootstrap setup

In this work we will be dealing with three different types of observables: 2 → 2 scattering
amplitudes of identical massive particles S(s), two particles form factors of the trace of
the stress-energy tensor FΘ(s) and of the O(N) conserved currents FJ(s) and their spectral
densities, ρΘ(s) and ρJ(s).

– 2 –
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In the first part of this section we review some properties and known bootstrap results
for amplitudes of particles transforming in the vector representation of O(N). In the second
part we explain how to include the stress tensor and O(N) currents and set up the bootstrap
problem of minimizing the associated central charges.

2.1 Pure S-matrix bootstrap and O(N) monolith

The particles we are scattering are states transforming in the vector representation of O(N)
and carry a label i = 1, 2, . . . , N . The scattering amplitude is defined as

out
kl ⟨p1, p2|k1, k2⟩in

ij ≡ (2π)2δ(2)(p1 + p2 − k1 − k2)N2(s)Skl
ij (s) , (2.1)

where N2(s) ≡ 2
√
s
√
s− 4m2 and s is the center of mass energy squared s = −(p1 + p2)2.

Following group theoretic considerations, the scattering amplitude is decomposed into the
singlet (•), antisymmetric (A) and symmetric (S) irreducible representations as follows3

Skl
ij (s) = S•(s)T •

ij,kl + SA(s)TA
ij,kl + SS(s)TS

ij,kl . (2.2)

The three different channel amplitudes Sa(s) (a = •, A, S) obey the usual unitarity
constraint |Sa(s)| ≤ 1, for s ≥ 4m2, but get mixed under crossing:

Sa(4m2 − s) = CabSb(s) , Cab =


1
N −N

2 + 1
2

N
2 + 1

2 − 1
N

− 1
N

1
2

1
2 + 1

N
1
N

1
2

1
2 − 1

N

 , (2.3)

where Cab is the crossing matrix. There is an alternative basis Skl
ij (s) = σ1(s) δijδkl +

σ2(s) δikδjl + σ3(s) δilδjk , in which crossing symmetry is more straightforward: σ1(s) =
σ3(4m2 − s) and σ2(s) = σ2(4m2 − s). The map between the bases is

S•(s) = σ2(s) + σ3(s) +Nσ1(s) , SA(s) = σ2(s)− σ3(s) , SS(s) = σ2(s) + σ3(s) . (2.4)

As for the analytic properties, we will focus on theories without bound states, so that
each amplitude Sa(s) is an analytic function of s away from the multi-particle thresholds
starting at s = 4m2 and s = 0 (from crossing).

The space of amplitudes satisfying the above requirements was studied in [12]. We review
next some of the findings there. Using functionals of the form F = ∑

a naSa(s∗) one can
get slices of this infinite dimensional space of allowed amplitudes Sa(s). Figure 1 shows
a two-dimensional slice of this space we call the monolith, constructed by putting bounds
on the value of the amplitude at the crossing symmetric points σ1,2(s∗ = 2m2), which one
can see as effective quartic couplings. A simple feature of these bounds is that they are
symmetric under the simultaneous change of sign for all channels Sa → −Sa.4 As usual in

3The projectors are given by

T •
ij,kl ≡

1
N

δijδkl, T A
ij,kl ≡

δikδjl − δilδjk

2 , T S
ij,kl ≡

δikδjl + δilδjk

2 − 1
N

δijδkl.

4This goes back to the fact that we are considering theories without bound states poles, whose residue
should be positive in unitary theories.
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these optimization problems, one has a unique solution when the bounds are saturated, so
that one can read off the amplitudes at the boundary of the monolith.

The picture for N > 2 is the following, there are several special amplitudes sitting at
special points of the boundary (the explicit expressions can be found in appendix A):

• The free boson theory where Sa(s) = 1 (+Free in figure 1);

• The free fermion theory where Sa(s) = −1 (−Free);

• The integrable O(N) non-linear sigma model (+NLSM);

• The ‘negative’ NLSM S-matrix, in which one changes sign on all NLSM amplitudes
(-NLSM);

• The periodic Yang-Baxter S-matrices (±pYB) which are periodic in rapidity SpYB
a (θ) =

SpYB
a (θ + τpYB);5

• The constant S-matrices (±const), inelastic in the symmetric channel given by S•,A,S =
±
(
1, −1, −N−2

N+2

)
.

For the S-matrices of the last three points it is currently not known if a UV completion
exists or if they correspond to any physical model. Nonetheless, except for the constant
inelastic S-matrices, all of the listed S-matrices are integrable, i.e. they satisfy the Yang-
Baxter relations.6

Generically, the S-matrices on the boundary (even if not at a kink) enjoy several common
features. The first one is that they saturate unitarity |S(s)| = 1, even if they are not
integrable (except for the constant S-matrices on the last point). We expect however that
these amplitudes are good approximations to the physical ones — at least at low energies — in
which some particle production is present (see e.g. discussion section in [5]). The second one
is that they exhibit a very rich structure of infinite resonances (seen as zeros in the physical
sheet) arranging themselves in periodic fashion. That is, a generic point at the boundary in
figure 1 will obey Sbdy(θ) = Sbdy(θ+ τ) for a given period τ that changes along the boundary
(see figure 8 in [12]). The last point is quite puzzling since it gives us an observable which is
periodic in a given parametrization of energy θ ∼ ln s. In fact, one of the motivations for this
work is to understand if such S-matrices can be compatible with a unitary UV completion.

2.2 Adding currents: sum rules and central charge minimization

In order to extract more information about the UV behaviour of the theories found with
the S-matrix bootstrap, we will now include into the setup the existence of operators such
as the stress tensor and O(N) currents. As we explain in the following, the inclusion of
these operators will give us access to the central charges of the ultraviolet conformal theories.
For clarity we discuss first the setup for theories without global symmetry and a generic
operator O(x) and later generalize to the O(N) case.

5The relation between the center of mass energy s and the rapidity is s = 4m2 cosh2 (θ/2).
6For explicit solutions of Yang-Baxter’s equations in theories with O(N) symmetry see [42].
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s/m2 s/m2−2 0 2 4 6 −2 0 2 4 6

S(s) F (s)s s

Figure 2. Analytic structure of the scattering amplitude S(s) and two-particle form factor F (s). The
light gray crosses are possible simple poles due to bound states, set to zero in the rest of this paper,
and red dots are branch points with the cuts along the real axis, coming from multi-particle thresholds.

As proposed in the pioneering work [10], the main ingredient is the matrix of inner
products of three different type of states: the first two are the two-particle in and out
states (as in the previous section) and the third one is the state given by the operator
O(x) acting on the vacuum

|ψ1⟩ = ω |p1, p2⟩in , |ψ2⟩ = ω |p1, p2⟩out , |ψ3⟩ =
∫
d2x eip·x O(x) |0⟩ , (2.5)

where p = p1 + p2, s = −p2 and ω =
(
2
√
s
√
s− 4

)−1/2.7 Unitarity translates to the positive
semi-definiteness of the matrix of inner products B

⟨ψi|ψj⟩=Bij(2π)2δ2(p−p′) , B=

 1 S∗(s) ωF ∗(s)
S 1 ωF (s)

ωF (s) ωF ∗(s) 2πρ(s)

⪰ 0 , s≥ 4m2 . (2.6)

The overlap between the in and out states gives the usual two-particle amplitude S(s). If we
take the inner product of two-particle in or out state with the state created by the operator
we get the two-particle form factor

F (s) = ⟨0|O(0)|p1, p2⟩in . (2.7)

As a function of the complex variable s, the two particle form factor F (s) is an analytic function
except for the right hand cut at s ≥ 4m2 and possible bound state poles as depicted in figure 2.

Lastly the overlap ⟨ψ3|ψ3⟩ gives the Fourier transform of Wightman two point function
of the operator, known as the spectral density of the operator O

2π ρ(s) =
∫
d2x e−ip·x ⟨0| O(x)O(0) |0⟩ , (2.8)

which is a real positive function.
The generalization to our O(N) setup is straightforward. Now, because unitarity con-

strains each channel separately, we need to consider three different matrices B•,A,S , one for
each representation. The size of these matrices depend on which operator(s) we want to
include. One of the operators we study is the trace of the stress tensor Θ(x) = Tµ

µ (x) which
is a singlet of O(N) and hence appears in B•. The second operator we consider is the O(N)

7The latter kinematic factor ω(s) is included in order to absorb the N2(s) = ω(s)−2 appearing in the
normalization (2.1).
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global current Jµ(x) which transforms in the adjoint of the group and therefore appears in
the antisymmetric channel BA. The explicit states we use are (for more details see B.1):

|ψ1⟩a = ω |p1, p2⟩in
a , |ψ2⟩a = ω |p1, p2⟩out

a ,

|ψ3⟩• =
∫
d2x eip·x Θ(x) |0⟩ , |ψ3⟩A =

∫
d2x eip·x qµJ

µ(x)
q2 |0⟩ , |ψ3⟩S = 0,

where again a labels the representation and q ≡ p1 − p2. As before, unitarity becomes the
positive semi-definiteness of the following matrices

B• =

 1 S∗
• ωF ∗

Θ
S• 1 ωFΘ
ωFΘ ωF ∗

Θ 2πρΘ

 ⪰ 0, BA =

 1 S∗
A iωF ∗

J

SA 1 iωFJ

−iωFJ −iωF ∗
J

2πs
s−4m2 ρJ

 ⪰ 0, BS =
(

1 S∗
S

SS 1

)
⪰ 0,

(2.9)
where all functions are evaluated at physical values of the energy s ≥ 4m2. Details on the
derivation of the different elements in the matrices are given in appendix B.1.

The stress tensor and O(N) currents are natural operators to consider since we are
studying QFTs with global O(N) symmetry. Moreover, the fact that they are conserved
currents gives rise to sum rules that allow us to probe the central charges c and k of the
conformal theory in the ultraviolet, defined as the coefficients appearing in the CFT two
point functions8

⟨T (z)T (0)⟩CFT = c/2
z4 , ⟨J(z)J(0)⟩CFT = k

z2 . (2.10)

Conservation of the stress energy tensor gives Zamolodchikov’s famous c-theorem [43]
which we can express as a sum rule integral for the spectral density of Θ(x) = Tµ

µ (x)

c = 12π
∫ ∞

0
ds
ρΘ(s)
s2 . (2.11)

In the left hand side of the equation above we have only the UV central charge c = cUV and not
the difference between UV and IR since we are dealing with gapped theories for which cIR = 0.

Similarly, there exists a k-theorem for the central charge of the global symmetry currents
Jµ(x) [44]. As reviewed in appendix B.2, conservation of the currents implies the following
sum rule

k = π

2

∫ ∞

0
ds ρJ(s) . (2.12)

The above sum rules allow us to extract the central charges c and k from the spectral
densities in the QFT. Since these central charges characterize the conformal theory in the
ultraviolet, they are a natural target for bootstrap bounds. Moreover, for a fixed finite
number of flavors N , we expect that typical physical theories have finite central charges.
With these considerations in mind, the bootstrap problem we will solve is the following:

Minimize c, k subject to Ba ⪰ 0 , (2.13)
8We have used the complex coordinates in Euclidean signature z = x + iy and T ≡ Tzz, and J ≡ Jz. If the

holomorphic J and antiholomorphic J̄ ≡ Jz̄ currents are separately conserved, the current central charge k is
the level of the associated affine Lie algebra.
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where the amplitude, form factor and spectral density entering Ba have analyticity and
crossing built in (see appendix D for explicit ansätze). The bounds we find when performing
the above minimizations are meaningful since the normalization of the operators we are
considering is not arbitrary. Indeed, the normalization of the stress tensor and O(N) currents
is fixed by the fact that there are conserved charges with canonical normalization associated
to them. We show how to fix their normalization in appendix B.3.

Numerics. To solve the optimization problem (2.13) we resort to numerical methods.
There are two different complimentary approaches we use. One is the primal method in which
one explores the space of functions consistent with all our assumptions and was put forward
in [1, 3]. In practice one writes ansätze for Sa(s), FO(s) and ρO(s) that are compatible
with the required analyticity and crossing, and then one solves unitarity (2.9) numerically
using SDPB [45, 46]. We explain the numerical implementation in appendix D.1. In the
dual approach we introduce dual variables which play the role of Lagrange multipliers for
the constraints and solve an optimization problem for these [12, 15, 24, 25]. In appendix C
we show how to construct the dual optimization problems and in D.2 how to implement
them numerically. The dual method has the important advantage of giving rigorous bounds,
whereas we have found easier to understand analytic properties of the optimal functions
using the primal approach.

Saturation of unitarity constraints. Before we present our results in the next section,
let us mention a generic feature of the optimal solutions. The inequalities coming from the
unitarity constraints Ba ⪰ 0 in (2.9) are usually saturated. The implication is that the spectral
densities and central charges we find are given exactly by their two-particle contributions.
To see this, recall that the positive semi-definiteness of Ba is equivalent through Sylvester’s
criterion to the positivity of all principal minors. In particular the 2x2 upper left minor yields

|Sa| ≤ 1 . (2.14)

When above inequality is saturated we have the usual unitarity saturation for the two-particle
amplitude Sa found in pure S-matrix bootstrap calculations. The full 3x3 determinant gives

ω2S∗
•FΘ

2 + ω2S•F
∗
Θ

2 − 2ω2|FΘ|2 + 2πρΘ(1− |S•|2) ≥ 0 ,

ω2S∗
AFJ

2 + ω2SAF
∗
J

2 − 2ω2|FJ |2 +
s

s− 4m2 2πρJ(1− |SA|2) ≥ 0 ,
(2.15)

which reduces to Watson’s equation F (s) = S(s)F ∗(s) [47] when unitarity is saturated. The
latter equation allows one to construct the form factor from the S-matrix as explained in
section 4. The positivity of the 2x2 lower right minor implies

2πρΘ ≥ ω2|FΘ|2,
s

s− 4m2 2πρJ ≥ ω2|FJ |2 , (2.16)

which follows from inserting a complete set of states in (2.8), so that the spectral density
is given by the sum of all n-particle form factors. Schematically we have ρO“ = ”|FO|2 +∑

n>2 |F
(n)
O |2 = ρ

(2)
O +∑

n>2 ρ
(n)
O where F (n)

O is the n-particle form factor and the inequal-
ity (2.16) arises when truncating the right hand side to the two-particle form factors. Therefore
when we are solving our optimization problem and (2.16) is saturated we are really finding

– 7 –
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the two particle contribution to the spectral density only ρopt
O = ρ

(2)
O .9 Similarly the central

charges can be decomposed into their n-particle contributions c = c(2) +∑
n>2 c

(n). The
bounds we find are again given by the two-particle contribution only copt = c(2), which is
of course a valid bound since c(n) ≥ 0. All this traces back to the fact that we are only
considering two-particle in and out states in our setup.

The bounds found by solving the optimization problem (2.13) shed light on the conformal
theories that can flow to the gapped O(N) QFTs described in the previous section. It should
be noted that the c-minimization problem was already considered in [10] for two lines in
the monolith of figure 1. As shown in the next section, in this work we optimize both c

and k for each point inside the monolith, which allow us to have a more fine-grained picture
of the QFTs and associated UV fixed points.

3 Bounds on stress tensor and current central charges

In this section we discuss the different minimization problems we solve. First, in section 3.1,
we focus on the N = 7 monolith shown on figure 1 and minimize the central charges c and k
at each point. We find that for some of the points at the boundary the minimum central
charges diverge. Then in 3.2 we find the global minima for c and k as a function of the
number of flavors N . Finally in 3.3 we do a mixed bootstrap in which we fix one of the
central charges, c, and minimize the other one, k.

3.1 Minimum c and k on the O(N) monolith

Our first application is to study the lower bound on the central charges c and k for the space of
gapped, O(N) symmetric QFTs with no bound states described in the previous section. When
N = 7, the numerical primal and dual minimization procedures yield the global minima:

cprimal
min = 2.916110 . . . , cdual

min = 2.756025 . . . , (3.1)
kprimal

min = 0.971155 . . . , kdual
min = 0.904049 . . . . (3.2)

We then generalize this minimization procedure to every point covering the monolith of
figure 1, parametrized by the value of the amplitudes at the crossing symmetric point σ1(2m2)
and σ2(2m2). The results are shown on the temperature plots of figures 3 and 4. In each
plot we mention the values of Nmax and Ngrid, giving respectively the size of the numerical
ansatz and the number of points where we evaluate the unitarity constraints.

A notable feature of the obtained bounds for c is the rapid growth of the minimum
central charges near the boundary. Most importantly, we find no lower bound for the dashed
regions on figure 3, lying on the boundary of the monolith between NLSM and Free theories.
This suggests that no unitary CFT with finite central charge c can flow to a gapped phase
described by those S-matrices, which in particular include pYB. As we argue in section 4,
amplitudes which give rise to infinite central charges exhibit a particular decrease of the
phase shift at large energies.

9Whereas the equation |S(2)(s)| = 1 for all physical energies can be consistent in integrable theories which
have factorized scattering, the condition ρO(s) = ρ

(2)
O (s) is only true in free theories. That is, the n-particle

form factors are in general non trivial in interacting theories, even in integrable ones.
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Figure 3. Temperature plot for minimum central charge c on the N = 7 monolith. The dashed
lines at the boundary are the amplitudes for which c diverges, they include the periodic Yang-Baxter
solutions. The blue cross indicates the position of the global minimum. Results obtained from dual
numerics with parameters Nmax = 50 and Ngrid = 100.

Figure 4. Temperature plot for minimum current central charge k on the N = 7 monolith. The two
diamonds indicate the points where k diverges (free boson and -constant solution). The pink cross
marks the position of the global minimum. Results obtained from dual numerics with parameters
Nmax = 50 and Ngrid = 100.
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As for k, the only places where there is no lower bound are free boson and one of the
constant solutions (−const). The fact that both models give the same result is obvious from
the equality of the amplitudes in the antisymmetric channel SA = 1. One can understand the
divergence in k near these points in different ways. One is with a direct computation from
the free boson Lagrangian as in E.2. Another way is to recall that the UV fixed point we
are dealing with describes N free non-compact bosons ϕ which are not proper primary fields
since their two-point functions are logarithmic. The O(N) current is J ∝ ϕ∂ϕ so its two-point
function has also logarithmic divergences. On the other hand, the finiteness of c can be traced
to the fact that the stress tensor is proportional to T ∝ ∂ϕ∂ϕ and ∂ϕ is a well defined primary.

In figures 5 and 6 we show various sections of the temperature plots connecting special
points on the boundary of the monolith, namely: Free, NLSM, pYB and constant solutions.
They are the same sections depicted by dashed lines in figure 1, with the same color coding.

In the plots we show the bounds obtained by primal (dashed lines) and dual numerics
(solid). By construction the dual (rigorous) bounds are below the primal ones, so that the
optimal one lies between the two.10 For most sections we find that the convergence of the
bounds close to the boundary is challenging. This is particularly evident for the primal
bounds, which might even stop converging before reaching the actual boundary.11 In many
cases one can trace back this difficulty to the rapid growth of the minimum central charges
as one gets close to the boundary from a radial direction. However, a clear understanding of
which parameters in the numerical ansäzte are most important for good numerical convergence
eludes us at this point. In this sense we see the clear advantage of using both primal and
dual numerics to bracket the optimal bound.

The endpoints of these sections can be computed from the analytic S-matrices as explained
in appendix A (see table 1 for explicit values). Note for instance that the endpoints of the
free and constant sections are related since S±Free

• = S±const
• and S±Free

A = −S±const
A (see

appendix A.1 for all the endpoint amplitudes).

3.2 Minimum c and k as a function of N

Now we consider the problem of finding the global minimal central charges c and k as we vary
the number of flavors N (i.e. without fixing Sa(s = 2m2)). The results of our optimization
procedures are shown on figure 7. At large N , the bound for the central charge c becomes
linear.12 The slope is

cprimal
min (N) ∼ 0.3221N , cdual

min (N) ∼ 0.2925N , (3.3)

which is compatible from the previous primal results of [10]. Instead for k the bounds are
saturated by a constant

kprimal
min (N) ∼ 1.0250 , kdual

min (N) ∼ 0.9513 . (3.4)

10As we increase the numerical precision by considering larger ansätze (parametrized by Nmax) the gap
between dual and primal bounds closes, as exemplified later in figure 8.

11This is what happens in the constant section of figure 5(d), where the dual endpoint seems to be above
the primal result, but the primal bound is actually infinity at that point.

12It is expected in general that the central charge c scales with N since we have states in an N -dimensional
representation, with each component contributing to the stress tensor. In d = 2 it can also be argued from
Cardy’s formula [48].
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(a) (b)

(c) (d)

Figure 5. Minimum UV central charge c for different sections of the monolith connecting known
amplitudes at the boundary, namely: (a) ± Free, (b) ± NLSM, (c) ± pYB and (d) ± constant (cf.
figure 1). The solid (dashed) lines are the lower bounds obtained with the dual (primal) methods, both
with Nmax = 50 and Ngrid = 300. The shaded regions are the allowed values for c. The endpoints are
the two particle contribution to the central charge computed with the analytic form factor bootstrap
from the known S-matrices as explained in A.
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(a) (b)

(c) (d)

Figure 6. Minimum UV current central charge k for different sections of the monolith: (a) ± Free,
(b) ± NLSM, (c) ± pYB and (d) ± constant (see figure 1). The solid (dashed) lines are the lower
bounds obtained with the dual (primal) methods, both with Nmax = 50 and Ngrid = 300. The shaded
regions are the allowed values for k. The endpoints are the analytic values computed in A.

The optimal bound for k at large N is compatible with 1, which is the value taken by
the free fermion. The rigorous dual bound sits slightly below 1, but since the numerics only
consider 2 particles contributions, we expect that this bound will increase when including
n > 3 contributions (see the discussion below (2.16)). Therefore we believe that the true
lower bound should be saturated by the free fermion.

3.3 Bounds on the (c, k) plane

Our last application is to consider the lower bound on the current central charge k for fixed
central charge c. Analyzing both the stress tensor and O(N) currents at the same time gives us
a more detailed idea of which CFTs can flow to the gapped theories described by the monolith.
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(a) (b)

Figure 7. Global minima for central charges c and k as a function of the number of flavors N . The
dual (primal) bounds are given by the solid (dashed) lines. The allowed values for the central charges
appear in the shaded regions. In (a) we see the linear dependence with N as in (3.3). In (b) the
current central charge k remains constant at large N and close to the free fermion value k = 1. Both
primal and dual numerics were done with Nmax = 50 and Ngrid = 300.

In figure 8 we show these bounds for N = 7. In 8(a) we see the numerical primal and
dual bounds for different size of the ansätze Nmax along with a Nmax → ∞ extrapolation.
In 8(b) we show the path followed by the lower bound curve inside the monolith.

Let us discuss known unitary conformal theories which might live in the allowed region
in figure 8. The purple dashed line is given by the following equation

cSuga(k) =
kN(N − 1)/2
k +N − 2 . (3.5)

This relation between c and k follows from the Sugawara construction which we briefly review
next. Recall that the conservation equation for the current of a global symmetry group g

reads ∂zJ̄ + ∂z̄J = 0. If the conformal theory is compact (i.e. with discrete spectrum) it
is expected that the holomorphic and antiholomorphic currents are separately conserved
∂zJ̄ = ∂z̄J = 0. In this case the OPE of the currents defines an affine Kac-Moody algebra
whose level is given by k

Ja(z)Jb(w) ∼ kδab

(z − w)2 + ifabc

z − w
Jc(w) , (3.6)

with the group indices a taking values a = 1, . . . , dimg and fabc are the structure constants
of the algebra. Importantly, one can construct the stress-energy tensor of the theory from
the normal ordered product of these currents

T (z) = 1
k + h∨

∑
a

: Ja(z)Ja(z) : , (3.7)

where the prefactor is fixed by symmetry and h∨ is the dual Coxeter number of the group.
The above construction is known as Sugawara construction and it gives a relation between
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(a)

(b)

Figure 8. (a) Allowed values for c and k central charges for N = 7. The red (blue) points are obtained
using dual (primal) numerics for different Nmax. The black line is a simple linear extrapolation in
1/Nmax and the purple dashed line are the values obtained with the Sugawara construction. The
curve starts at the global c minimum (blue cross outside plot) and ends at the global k minimum
(pink cross). We expect that compact unitary CFTs lie to the right of this Sugawara line. (b) The
path followed by the curve in (a) inside the monolith.
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the central charge c and the level k of the algebra

cSuga(ĝk) =
k dim g

k + h∨
, (3.8)

which reduces to (3.5) for g = so(N). Notably this affine algebra structure can be realized by
the Wess-Zumino-Witten (WZW) models, whose Lagrangian is defined by a nonlinear sigma
model and a topological term. These models have also free field representations in terms of
free fermions or free bosons and ghosts. For instance, for so(N) at level one we have N real
free fermions giving c = N/2. This is indeed the point (c, k) = (7/2, 1) being approached
from different directions by our primal and dual bounds in figure 8.13

So far we have looked at possible models lying exactly at the Sugawara line in figure 8.
Starting from this line one can populate the right hand side of the plot by taking the direct
sum of WZW models and CFTs whose content is given by O(N) singlets. In this way one
increases the value of the central charge c without modifying k. Note that a priori there is
no reason to assume our gapped theory should arise from a compact CFT. As such, the
allowed region of figure 8 could include non compact CFTs, in particular the region to the
left of Sugawara line. In fact, the simplest amplitude we can write Sa = 1 for free boson
leads to a CFT lying in this left region for N > 3 since (c, k) = (N,∞).

Finally there is also a small region below the Sugawara line with k < 1. As explained
before, we believe that once we include multi-particle contributions into the bootstrap this
region will no longer be allowed, so that the true minimum for k coincides with the free
fermion value.14

4 Infinite central charge S-matrices

Given that some regions on the monolith have infinite central charges, a natural question
to ask is what characterizes the amplitudes which lead to divergent sum rules? In this
section we use analytic bootstrap methods to derive conditions on the 2 → 2 amplitudes
giving rise to infinite central charges.

Let us define the dangerous and safe points as the positions s0 in the physical region
s ≥ 4m2 where the amplitude obeys

dangerous: s0 such that S(s0) = −1 and Im S′(s0) > 0 , (4.1)
safe: s0 such that S(s0) = −1 and Im S′(s0) < 0 . (4.2)

Denoting by da (sa) the number of dangerous (safe) points in the representation a, the
conditions leading to infinite c or k central charges read

d• − s• > 1 =⇒ c→ ∞ , (4.3)
dA − sA > 0 =⇒ k → ∞ . (4.4)

13Of course we see as well the amplitude, form factor and spectral density approaching those of the
free fermion.

14We expect this to be true for N ≥ 3 since for N = 2 the minimum k sits at the boundary of the monolith
and corresponds to one of the γ → ∞ sine-Gordon amplitudes.
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(a) (b)

Figure 9. Periodic Yang-Baxter amplitude in the (a) singlet and (b) antisymmetric channels for
physical kinematics in the rapidity variable θ (related to s as s = 4m2 cosh(θ/2)). We have set
N = 2000 which gives a period in θ of τpYB ≈ 2.6. In (a) we see the singlet channel having infinite
dangerous points highlighted by the vertical red lines leading to c→ ∞. Instead, for the antisymmetric
amplitude in (b) we have only safe points marked with blue vertical lines and k finite.

These conditions offer a very simple explanation for why the dashed regions at boundary of
the monolith in figure 3 have infinite c but finite k. As illustrated in figure 9 for periodic
Yang-Baxter, the singlet channel has infinite dangerous points whereas the antisymmetric
amplitude has infinite safe points.

In the rest of this section we first review in 4.1 how to construct the form factors and
spectral densities starting from a known S-matrix, and then in 4.2 we present an argument for
the conditions in (4.3) and (4.4). In 4.3 we show how dual and primal numerics behave close
to a point on the monolith with infinite central charge and how these extremal S-matrices
with large but finite central charges smartly evade these criteria.

4.1 Review of analytic Form Factor Bootstrap

There is a well-known procedure to compute n-particles form factors in integrable theories
known as Form Factor Bootstrap (see for instance [49] or [50]). Here we will restrict to
the two-particle form factor and its contribution to the spectral density and follow this
procedure also for non-integrable amplitudes. The main ingredient is Watson’s equation
F (s) = S(s)F ∗(s) which gives a direct relation between the two particle form factor and
amplitude for energies where there is no particle production (for pedagogical purposes we
ignore the representation indices). As reviewed earlier, the optimization problem we are
considering leads to functions saturating the inequality constraints, so that we have unitarity
saturation and Watson’s equation for all energies. Therefore, even for non integrable theories,
we can perform the optimization (2.13) analytically if we know the amplitude.

We start by writing the two particle form factor as

F (s) = B(s) eα(s)−α(0) , (4.5)

where B(s) is a real analytic function and α(s) takes care of the discontinuity at s ∈ [4m2,∞).
We have chosen the difference α(s)−α(0) in the exponent so that the normalization of the form
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factor as in (B.40) and (B.47) is fixed by B(0). Given a unitarity saturating amplitude, we
can write it as a pure phase S(s) = eiφ(s) for physical energies s ∈ [4m2,∞). Using Watson’s
equation, we see that the imaginary part of α(s) is proportional to the argument of S(s):

F (s) = S(s)F ∗(s) =⇒ Imα(s) = φ(s)/2 = −i logS(s)/2 , s ∈ [4m2,∞) . (4.6)

Now α(s) should not grow as s→ ∞ otherwise F (s) in equation (4.5) would have an essential
singularity. We therefore assume α(s) to obey a once-subtracted dispersion relation,

α(s)− α(0) = s

π

∞∫
4m2

ds′
Imα(s′)
s′(s′ − s) , (4.7)

which via equation (4.6) ‘solves’ the form factor in terms of the amplitude up to the freedom
in the function B(s) which drops out of Watson’s equation (4.6).15

We may then insert into the sum rules for c and k equations (2.11) and (2.12), making
use of the relation (2.16) between ρ(s) and F (s) when unitarity is saturated in

c = 3
∫ ∞

4m2
ds

|FΘ(s)|2

s2√s
√
s− 4m2

, k = 1
8

∫ ∞

4m2
ds

√
s− 4m2

s
√
s

|FJ(s)|2. (4.8)

Free theory examples. To illustrate how to fix F (s), let us show how to compute the
free fermion and boson form factors for both c and k (for direct computation from the
free Lagrangians see appendices E.1, E.2). Starting from free boson (+) we have (in all
representations) S+(s) = 1 =⇒ φ = 0, which sets α+ = 0, so all we have left to fix is B+(s).
In principle this could be any polynomial with fixed normalization B(0) = F (0). However,
as we will now see, the degree of this polynomial is bounded from above in order for the
central charge sum rules to converge. Take for instance c in (2.11)

c+ = 12π
∞∫

4m2

ds
ρ+

Θ(s)
s2 = 3

∞∫
4m2

ds
B+

•
2(s)

√
s
√
s− 4m2 s2

. (4.9)

In order for the integral to converge at infinity the degree of such polynomial should be
zero. Hence B+

• (s) = B+
• (0) = −2

√
Nm2 which leads to the expected central charge c+ = N

and matches the result from E.2.
From (2.12) for k we have instead

k+ = π

2

∞∫
4m2

ds ρ+
J (s) =

1
8

∞∫
4m2

ds

√
s− 4m2

s3/2 B+
A

2(s) . (4.10)

Note that if B+
A (s) is a constant (B+

A (s) = B+
A (0) = 2) we get a divergence since the

integral does not decay fast enough at infinity. Moreover, considering BA(s) a higher degree
15This is a similar trick to the one often used in integrable models, where one finds an integral representation

in the rapidity θ for the S-matrix first S(θ) =
∞∫
0

dt
t

f(t) sinh
(

tθ
iπ

)
and then writes the “minimum” two-particle

form factor as Fmin(θ) = N
∞∫
0

dt
t

f(t) csch t sin2 ( tθ
2π

)
(see also appendix A). In our notation the latter is the

exponential factor in (4.5) Fmin(θ) = eα(θ)−α(0).
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polynomial would only make the divergence worse. Therefore we have k+ = ∞ in accordance
to direct computation from the Lagrangian in E.2

Now let us discuss the free fermion case. For S− = eiφ− = −1 we have φ− = π (we choose
the usual principal branch φ ∈ (−π, π]). This leads to eα− = (1−s/4m2)−1/2. For the central
charge c to be finite we must have B−

• (s) =
√
N(4m2−s)/2 so that |F−

• (s)|2 = m2N(s−4m2)
and we find the expected result,

c− = 3
∞∫

4m2

ds
m2N(s− 4m2)
√
s
√
s− 4m2 s2

= N

2 . (4.11)

For the current central charge k instead we have B−
A (s) = −2 and we find

k− = 1
8

∞∫
4m2

ds
16m2

s3/2
√
s− 4m2

= 1 , (4.12)

which matches the computation in appendix E.1.

4.2 Derivation of conditions on S(s)

Now that we have understood how to fix the two-particle form factor starting from the
amplitude in some simple examples, let us try to derive the conditions (4.3) and (4.4).

Recall that in order to solve Watson’s equation we have Imα(s) = − i
2 logS(s) as in (4.5).

We take the usual convention in which the logarithm has the branch cut along the negative
real axis so that whenever S(s0) = −1 we go on top of the branch cut. Close to this
point we can expand16

S(s ∼ s0) = −1 + i(s− s0) ImS′(s0) + . . . (4.13)

Depending on the sign of ImS′(s0), we either cross the branch cut from below or above. If
ImS′(s0) > 0 the branch cut is crossed from below, which we denote as a dangerous point

s0 dangerous point: LogS(s+
0 ) = LogS(s−0 )− 2πi , (4.14)

if instead ImS′(s0) < 0 the branch cut is crossed from above and we have

s0 safe point: LogS(s+
0 ) = LogS(s−0 ) + 2πi, (4.15)

where the ‘Log ’ is the principal branch logarithm whose imaginary part is restricted to
(−π, π]. Hence, as we take s → ∞, and we go over s safe points and d dangerous points,
we must have LogS(s) → LogS(s) − 2πi(d − s) or

Imα(s) = Imα0(s)− π(d − s), s→ ∞ , (4.16)

where Imα0(s) ∈ [−π/2, π/2) is on the principal branch of the logarithm.
Plugging into the dispersion relation (4.7) we then have

α(s) = α0(s) + (d − s) log(−s) + constant, s→ ∞. (4.17)
16Smoothness of ImS(s) for s > 4m2 is guaranteed due to elastic unitarity.
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Similarly for α0(s) given the upper bound Imα0(s) ≤ π
2 we observe the lower bound17

Reα0(s) ≳ −1
2 log(s), s→ ∞. (4.20)

Finally, since B(s) is a polynomial, we find the following lower bound on the growth of
the form factor F (s) = B(s) eα(s)−α(0),

|F (s)| ≳ sd−s− 1
2 , s→ ∞. (4.21)

Plugging the above behaviour into the sum rules for c and k in equation (4.8) and demanding
that the integrand falls off faster than 1/s as s→ ∞ leads to the conditions (4.3) and (4.4).

In figure 10 we illustrate these dangerous/safe points in an example. The conditions (4.3)
and (4.4) make up for a quick test as to why the dashed regions on the monolith of figure 3
have infinite c and suggest why they have finite k. Counting the number of dangerous
versus safe points provides a practical bookkeeping tool to understand which amplitudes
lead to infinite central charges. However, it is important to note that the conditions (4.3)
and (4.4) are only sufficient and that some limiting cases may have infinite central charges
without having enough dangerous points. One clear example is the free boson for which
k = ∞ and has dA − sA = 0.

Let us derive a more general criteria for the divergence of the central charges which also
includes the free boson. Suppose the amplitude is such that Imα(s) → Imα∞ as s → ∞.
Repeating the same steps as before we now have

α(s) → − Imα∞
π

log(−s) , s→ ∞ , (4.22)

and therefore |F (s)| → B(s) s− Im α∞/π.
Requiring that the integrand in the sum rules (4.8) falls off faster than 1/s puts again

bounds on Imα∞. These read

Imα∞ ≤ −π =⇒ c→ ∞ , (4.23)
Imα∞ ≤ 0 =⇒ k → ∞ . (4.24)

17This bound can be shown to apply in the case without flavour symmetry where Imα0(s) is smooth at
infinity and admits a Taylor series (see appendix A of [31]). In this case we have

Imα0(s) =
∞∑

n=0

an

sn
, s → ∞, (4.18)

and also

Imα0(s) ≤
π

2 =⇒ a0 ≤ π

2 . (4.19)

Plugging into the dispersion relation (4.7) we find

α0(s) = −a0

π
log(−s), s → ∞

Taking the real part and making use of (4.19) yields the bound on the real part in equation (4.20). See
e.g. [51–53] for similar arguments. With O(N) symmetry the behavior (4.18) is not necessarily true. For
example for pYB we have Imα0(s) → − arccosh(N/2)

2π
log(s), but we still observe that the bound (4.20) applies.

It would be interesting to extend this proof for generic O(N) amplitudes.
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(a)

(b)

Figure 10. (a) Example of dangerous and safe points for an elastic amplitude in physical kinematics.
Whenever S(s0) = −1 we have a dangerous (red) or safe (blue) point according to (4.2). (b) At
each of these points, the imaginary part of α(s) crosses π/2 (mod π). As explained in the main
text, depending on the limiting value Imα∞, the form factor either grows or decays with s. As a
consequence, the sum rules for k and c diverge if Imα∞ ≤ 0 and Imα∞ ≤ π, respectively. The solid
brown line is Imα(s) corresponding to the amplitude in (a). We also show curves for free boson (black
solid) with k → ∞ and c finite, free fermion (black dashed) with both k and c finite, and periodic
Yang-Baxter in the singlet channel with c→ ∞.
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The above rules now explain the free boson case where Imα∞ = 0 =⇒ k → ∞. They are of
course compatible with the previous conditions (4.3) and (4.4), which imply Imα∞ ≤ −3π/2
for the first and Imα∞ ≤ −π/2 for the latter. In figure 10(b) we show the different regions
in Imα leading to divergent central charges along with various examples.

To finish this section, note that if there are bound states in the theory they would show
up as poles in the form factor below s < 4m2. These are therefore included into B(s) that
can now decay as B(s) ≳ s−nB , where nB is the number of bound states. So the condition
for diverging central charge (4.3) changes to

d• − s• − nB > 1 =⇒ c→ ∞, (4.25)
dA − sA − nB > 0 =⇒ k → ∞ (4.26)

where for c it is understood that nB is the number of bound states in the singlet channel
while for k, nB is the number of bound states in the antisymmetric channel.

Interestingly, we appear to observe that (see also discussion at the end) that in the
absence of O(N) symmetry where the CDD solution for the S-matrix holds exactly, the
above conditions are never satisfied, as CDD zeros only give rise to safe points, whereas
CDD poles only give rise to dangerous points whose effect is canceled out by the fact that
a bound state pole behaves as a safe point in the conditions above. This seems to explain
why diverging central charges were not observed e.g. in the work [31] which only dealt with
flavourless scattering.

4.3 An example from numerics

It is interesting to understand the mechanisms used by the dual and primal numerics to
produce large but finite central charges without contradicting the conditions (4.3) and (4.4)
derived above. For instance, in the vicinity of the regions on the monolith in which c diverges
(dashed lines in figure 3) there is a tension between having finite central charge, i.e. not too
many dangerous points, and S-matrices close to those at the boundary with an infinite number
of them. As we will see explicitly in an example, this tension gets resolved by the emergence
of new safe points in physical kinematics, related to resonances in the complex s or θ plane.

First, a word of caution about numerics. As it is very often the case in S-matrix bootstrap
problems, the optimization objectives (c and k in our case) are not very sensitive to changes
in the large energy behaviour of the observables. In particular, the integral sum rule for
c (2.11) has a s−2 damping factor which makes it very difficult to extract reliable information
about the optimal functions at large energies. This is usually not too worrisome since the
objective rapidly converges when increasing Nmax. Moreover, when working with both primal
and dual approaches we can get a good idea to how far we are from the true optimal bound.
As for the observables like amplitudes, at small enough energies we see saturation of unitarity
for the primal observables, so that primal and dual functions agree and describe the true
optimal function in this range of energies.

For concreteness we focus on c-minimization for a point close to close to pYB in the
σ2 = 0 section. We choose a large number of flavors N = 2000 so that we have various
dangerous points at low enough energies and fix σ1 = 0.02227.18 In figures 11 and 12 we

18Recall that the pYB period in rapidity is τpYB = 2π2/arccosh(N/2).
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Figure 11. Dual numerical amplitudes close to periodic Yang-Baxter point for physical values of
the rapidity θ and N = 2000. In (a) we see an amplitude similar to pYB which however has a finite
central charge c ≈ 5.38N due to new — as compared to pYB — safe points. In (b) we zoom into the
first safe point in the singlet channel around θ = 3.18, marked with a vertical blue line. Numerics
done with Ngrid = 400 and Nmax = 240.

Figure 12. Primal numerical amplitudes close to periodic Yang-Baxter point for physical values of
the rapidity θ and N = 2000. The central charge minimization gives a large but finite value c ≈ 7.06N .
In (a) we see an amplitude similar to pYB with an extra ‘jump’ in the singlet channel around θ = 3.18.
In (b) we zoom in around this point for which the amplitude exhibits some inelasticity that gets
localized as we increase Nmax. Numerics done with Ngrid = 400 and Nmax = 240 for (a) and the
different specified values in (b).

show the amplitudes obtained from the dual and primal numerics, respectively. The left
panels show an amplitude very similar to pYB (cf. figure 9), except for some new structure
in the singlet channel close to θ = 3.18. The minimization gives a finite central charge of
c ≈ 10, 753 ≈ 5.38N for the dual and c ≈ 13, 043 ≈ 6.52N for the primal.

As evident in figures 11 and 12, the dual and primal numerics evade conditions (4.3)
with different mechanisms. Namely, the former clearly shows the existence of new safe
points whereas the latter does not saturate unitarity at all energies and therefore is in no
contradiction with (4.3). Nonetheless, both mechanisms point at the same physics.
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Figure 13. Dual numerical amplitude in the complex rapidity plane featuring a resonance close to
the real line. This resonance is responsible for the safe point of figure 11.

In the dual approach, the amplitudes are constructed from the dual variables assuming
unitarity saturation (see appendix C), so that the jump in the singlet amplitude close to
θ = 3.18 is a true safe point (see figure 11(b)). In the primal numerics what we see instead is
that at finite Nmax unitarity is not saturated at high energies so that the assumptions made
to derive (4.3) do not hold. In figure 12(a) we see a similar jump of the singlet amplitude
around θ = 3.18. However, the jump is not a clear safe point since unitarity is not saturated
around this value, as figure 12(b) shows. This inelasticity is a finite Nmax artifact. As we
increase the size of our ansatz the inelasticity is sharper and more localized around a given
point, which often signals the presence of a resonance close to the real line.

The resonance is apparent as we plot the dual amplitude in the complex rapidity θ

plane as in figure 13.19 There we see a definite zero sitting very close to the real line, which
explains the trouble of the primal numerics to correctly reproduce the resonance. At higher
energies where the numerics are less reliable we expect the periodic nature of the amplitude to
continue, with many new safe points and resonances countering the infinite dangerous points.

In this example we see how the existence of new safe points, necessary to achieve a finite
central charge, have a direct physical implication of including more resonances in the theory.

5 Discussion

In this work we studied gapped, O(N) symmetric QFTs using numerical and analytical
bootstrap approaches focused on 2 → 2 scattering amplitudes and two-particle form factors
of the trace of the stress tensor Θ(x) and of the O(N) conserved currents Jµ

A(x). We now
summarize our results and discuss some implications and future directions.

19In principle the dual amplitudes are only defined on the real line, but one can write a dispersion relation
from the imaginary part and the known subtraction constants.
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Minimum central charges and WZW models. In section 3.1 we found the minimum
of the central charges c and k of the UV CFT across the O(N) monolith space of S-matrices.
The results are shown in figures 3 and 4 for N = 7 (we expect similar plots for any integer
N > 2). In figures 5 and 6 we plot the minimum c and k across several sections connecting
special points of the O(N) monolith. We observe rapid growth of the central charges in
several directions towards the boundary of the O(N) monolith, with c becoming infinite over
the majority of the boundary. This severely constrains the CFTs from which these putative
QFTs can flow from (note that N is finite). See further discussion below.

In section 3.2 we studied how the global minimum for c and k change with N . As shown
in figure 7 we find that c grows linearly while k goes to a constant as N → ∞. Another
observation is that the global minimum central charges c and k for N > 2 are not on the
boundary but inside the bulk of the O(N) monolith. This means that the S-matrix which
minimizes the central charge is not the same S-matrix that extremizes some coupling in
S-matrix space.20 This is in sharp contrast with e.g. the single scalar exchange bootstrap
of [31] where the extremal S-matrices coincided (and allowed for an analytical derivation
of the minimum c).

In section 3.3 we studied the allowed space of central charges c and k given the bootstrap
constraints on the S-matrix, form factors and spectral densities. The result is shown in
figure 8. We find that the Sugawara construction realized by WZW models lies insides the
bounds, but cannot cover the full allowed space. As always, it is entirely possible that adding
more bootstrap constraints would rule out this extra space. However, it is important to note
that the Sugawara construction assumes conservation of not only the current but also the
individual holomorphic and antiholomorphic components. It would be interesting to see how
this constraint could be included in our bootstrap setup or to repeat the same exercise of
bounding c and k but via the numerical conformal bootstrap [54], which to our knowledge
has not been done yet. It would be interesting to compare these two approaches as it would
give us an understanding of how constraining really are the S-matrix principles in the UV,
especially with the extra assumptions taken here on the RG flow (in that we are restricting
ourselves to CFTs which admit O(N) preserving deformations).

Infinite central charges, dangerous points and resonances. As already mentioned,
we observe that the minimum central charge c diverges on most of the boundary of the O(N)
monolith (see figure 3). The corresponding extremal S-matrices share the following feature:
they exhibit the presence of dangerous points on the physical region where S(s0) = −1 and
ImS′(s0) > 0. In section 4 we argued that if the amplitudes have enough dangerous points,
then the associated central charges diverge. This criterion is satisfied by the pYB S-matrices,
which are located on this portion of the boundary. Curiously, the divergent central charge is
not a consequence of the periodicity in the amplitude, as amplitudes can be periodic and
lack dangerous points, but to how the phase shift decreases at large energies (see figure 10)
which is guaranteed by the existence of a sufficient number of dangerous points.

Moving away from pYB slightly into bulk of the O(N) monolith, where the central
charge c is large but finite, we observe that the extremal S-matrix deviates from pYB around

20At least none of the ‘quartic’ couplings that span the O(N) monolith.
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the second dangerous point (which is located at relatively high energies). The S-matrix
coming from primal optimization avoided the creation of dangerous points by generating some
inelasticity around that location, see figure 12. The S-matrix coming from dual optimization,
which is elastic by construction, instead creates a safe point (where ImS′(s0) has the opposite
sign), see figure 11. This has repercussions on the analytic structure, as seen in figure 13,
where a close-by resonance is observed. There seems to be a relation between the presence
of dangerous and safe points on physical kinematics and the existence of bound states and
resonances on the complex plane. In the case of scattering without flavour, where the CDD
solution is exact, we see that CDD zeros (i.e. resonances) only lead to safe points, and that
bound states are needed in order to have dangerous points.21 This suggests that the necessary
condition (4.3) for infinite central charges is never met in the case of scattering without
internal symmetry, which is consistent with the findings in [31]. In the O(N) case, on the
other hand, dangerous points can be present without a corresponding bound state, which
leads to the observed diverging central charges. Moreover, regardless of the existence of safe
points, for the O(N) S-matrices an infinite amount of resonances across the infinitely many
sheets is generically present due to crossing and unitarity [5, 12]. It thus remains to be seen if
a sharp connection between resonances/bound states and safe/dangerous points can be made.

Inserting more of the UV and targeting specific deformations. In this work we did
not target a specific theory whose UV CFT is known. On the contrary, we constrained the
class of CFTs from which a generic gapped theory in the IR with O(N) symmetry would flow
from. Possible theories which could be targeted are deformation of WZW models.22 In this
case c and k would be known from the Sugawara construction in equation (3.8) and could be
fixed in the bootstrap setup. Then, the space of couplings of the S-matrix and form factors
in the IR could be carved out, similarly to how Ising Field Theory was targeted in [31].

A still open problem is of course how to include more information about the UV CFT,
for example the dimensions of the deforming operators that give rise to the RG flow. Could
we put a bound on these dimensions using the S-matrix bootstrap? The practical aspect
of the central charges is that they obey sum rules, which are integral relations directly
on the spectral density. There exist sum rules for the scaling dimension of operators [56],
but they involve their vacuum expectation value appearing as a new parameter. A recent
development [33] targeting gauge theories, have used so-called QCD sum rules, which relates
the very high energy behavior of the two point function at some large s0 to an integral over
the spectral density.23 This provides a new way to introduce information about the CFT
and the deforming operator(s) using form factor perturbation theory.

Non-unitarity CFTs, loop models and N < 2. There are various hints that the space
of theories spanned by the S-matrix bootstrap should go outside the usual UV complete
paradigm, where we have a unitary CFT in the UV. The first hint we already encountered is
the free boson case, where the central charge k diverges due to the logarithmic nature of free

21This was tested with up to six CDD zeros arbitrarily located in the complex plane.
22For instance, it would be interesting to understand the connection to the integrable deformation known as

lambda model and the RG flows studied in [55].
23There is however a slight inconvenience in that the choice of s0 is somewhat arbitrary and it seems hard

to estimate the error (see e.g. [57]).
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massless non-compact bosons. A more interesting example comes from the well studied O(N)
loop model, which gives rise to a family of conformal theories in the window −2 ≤ N ≤ 2. For
N = 1 we recover the critical Ising model and N = 2 is the Kosterlitz-Thouless fixed point.
For generic non-integer N the conformal theories are logarithmic (see [58] and references
therein).24 By perturbing with the energy density operator one triggers an RG flow leading
to a gapped integrable QFT. The associated S-matrix given in [60] sits at the boundary
of the |N | ≤ 2 monolith, in what becomes (-)pYB for N > 2. In [61, 62] it was argued
that as we continue in N the fixed point above becomes complex. Moreover in [58] it was
shown that — at least for N ≳ 2 — the pYB solution reproduces the expected RG walking
behaviour close to the complex fixed point.

Another indication comes from integrability. The expectation is that most integrable
amplitudes one can write down are incompatible with UV completeness, in a similar manner
to T T̄ deformed theories [36, 63]. More precisely, what happens is that the finite size ground
state energy computed from the exact S-matrix develops a square root singularity at a size
R∗ below which the energy becomes complex. This obstacle for UV completeness was shown
explicitly for when the S-matrix is a product of two or more CDD zeros [37, 64]. Intriguingly,
this exotic UV behavior goes undetected by the central charge minimization bootstrap in [31],
where the space of optimal scalar amplitudes minimizing central charges is spanned with
amplitudes of up to three CDD factors.

We believe the above points highlight the fact that the probes we are using are not fully
sensitive to potential non-trivial UV behaviours. After all, we are only imposing positivity
of the spectral functions for the stress tensor and O(N) currents, so that we might be
restricting to unitary sub-sectors of a more complicated theory. In this light, it would be
very interesting to understand which modifications to our bootstrap approach would allow us
to test logarithmic/complex CFTs, either to include them as a more general class of theories
we should study or to definitely exclude them from our bounds.
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A Results for exact amplitudes

A.1 Exact amplitudes on N > 2 monolith

We first write the exact amplitudes appearing at the boundary of the N > 2 monolith. We use
the following notation for the different channels Sa = (S•, SA, SS) and the rapidity variable
θ, related to the Mandelstam invariant s through s = 4m2 cosh(θ/2).

free: Sa = ± (1, 1, 1) , (A.1)

NLSM: Sa(θ) = ∓
(
1, θ − iπ

θ + iπ
,
θ − iπ

θ + iπ

θ − iλN

θ + iλN

)
Fπ+λN

(θ)F2π(θ) , (A.2)

pYB: Sa(θ) = ±

sinh
[
ν
(
1− iθ

π

)]
sinh

[
ν
(
1 + iθ

π

)] , −1, 1

 ∞∏
n=−∞

F
π+ inπ2

ν

(−θ) , (A.3)

constant: Sa = ±
(
1, −1, −N − 2

N + 2

)
, (A.4)

where λN = 2π
(N−2) , ν = arccosh(N

2 ) and

Fa(θ) ≡
Γ
(

a+iθ
2π

)
Γ
(

a−iθ+π
2π

)
Γ
(

a−iθ
2π

)
Γ
(

a+iθ+π
2π

) = 2F1

(
−1
2 ,
iθ

π
,
a+ iθ

2π , 1
)
. (A.5)

Except for the constant solution (A.4), all other amplitudes are integrable and saturate
unitarity.

A.2 Integrable Form Factor Bootstrap

In the following we review some of the conventions used in the integrability literature
regarding integral representations of S-matrices and the computation of form factors. Here
we restrict to the two-particle form factors, for a detailed review containing higher particle
form factors see e.g. [49, 65]. Here we deal with amplitudes saturating unitarity. Using
the map s = 4m2 cosh(θ/2), the two particle cuts in the s complex plane get opened so
that all different Riemann sheets in s are mapped to strips nπ ≤ Imθ < (n + 1)π of the
rapidity plane. Therefore the only non-analyticities of the amplitude are poles (and zeros
from their unitarity image). One can exploit this fact and write a compact, often simpler,
integral representation for the amplitude

S(θ) = exp


∞∫

0

dt

t
f(t) sinh tθ

iπ

 . (A.6)

This type of representation can be easily derived when writing the poles and zeros of the
amplitude in the following form

ln
(1 + iα/β

1− iα/β

)
= 2i

∞∫
0

dt

t
eβt sin (αt) . (A.7)
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The same function f(t) appearing in (A.6) can then be used to compute the “minimum”
two-particle form factor

Fmin(θ) = N exp


∞∫

0

dt

t

f(t)
sinh t sin2

[
t(iπ − θ)

2π

] , (A.8)

which solves Watson’s equation and is analogous to the factor eα(s) ⊂ F (s) appearing in (4.5).
The full two-particle form factor will be given by F2(θ) = Q(θ)/D(θ) × Fmin(θ), where Q
and D are polynomials in cosh θ. The polynomial in the denominator D is fixed by the
possible poles of the S-matrix, whereas Q depends on the operator we are considering. They
play the role of our function B(s) in (4.5).

Some examples for the functions f(t) are [66]25

S+ =1 , f+ =0 ,
S− =−1 , f− =2 ,

SshG(θ)= sinhθ−isin(πλ)
sinhθ+isin(πλ) , f shG(t)= 2

(
1−

cosh
(

1
2

(
1− 2λ

π

)
t
)

cosh
(

t
2

) )
,

SNLSM(θ)= (A.2) fNLSM(t)= 2
(

e
− 2

N−2 t+1+et+e−t

1+et
,

e
− 2

N−2 t−1
1+et

,
1−e

− 2
N−2 t

1+e−t

)
.

(A.9)
Knowing these functions f(t) for a given model, the analytic structure of the minimum form
factor can be extracted from the identity

ln
(
1 + α2

β2

)
= 4

∞∫
0

dt

t
e−βt sin2 αt

2 . (A.10)

In practice, one writes a series expansion for the ratio f(t)/ sinh t appearing in (A.8) and
uses (A.10) iteratively to find:

f(t)
sinh t = 4

∑
n

ane
−βnt =⇒ Fmin(θ) =

∏
n

[
1 + (iπ − θ)2/π2

β2
n

]an

. (A.11)

A.3 Examples minimum Form Factors

Particularly simple examples include free fermion and the non-linear sigma model for N = 3

F−
min(θ) = −i sinh θ2 , (A.12)

FNLSM, N=3
a,min (θ) =

(
−π2

θ(θ − 2πi) sinh
2 θ

2 ,
π2(θ − iπ)
2θ(θ − 2πi) tanh θ2 ,

θ − iπ

2 tanh θ2

)
. (A.13)

Note that if we have Fmin for a given amplitude S and we want to compute the form factor
for −S it is enough to multiply by (A.12).

25A useful result for the building block Fa(θ) in (A.5) is its integral representation

Fa(θ) =
Γ
(

a+iθ
2π

)
Γ
(

a−iθ+π
2π

)
Γ
(

a−iθ
2π

)
Γ
(

a+iθ+π
2π

) , fa(t) = 2 e−at/π

1 + e−t
.
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Periodic Yang-Baxter. To evaluate the integral representation of periodic Yang-Baxter’s
S-matrix (A.3) we will use the following identity

∑
k∈Z

e−ikt = 2π
∞∑

p=0

δ(t− 2πp)
1 + δp,0

, t ∈ (0,∞) . (A.14)

Let us start with the prefactor in the singlet channel of (A.3)

sinh ν
π (π − iθ)

sinh ν
π (π + iθ) =⇒ f(t) = 2e−t

∑
k∈Z

eiktπ/ν = 4νe−t
∞∑

p=0

δ(t− 2πp)
1 + δp,0

. (A.15)

It is a simple exercise to plug in the infinite sum over Dirac deltas in (A.6) and recover
the prefactor.

For the overall factor we have instead
∞∏

n=−∞
F

π+ inπ2
ν

(−θ) =⇒ f(t) = −2
1 + et

∑
k∈Z

eiktπ/ν = −4ν
1 + et

∞∑
p=0

δ(t− 2πp)
1 + δp,0

. (A.16)

The delta functions make it easy to perform the integration (A.6) and recover the
amplitudes in an alternative representation. For the singlet channel amplitude we have

fpYB
• (t) = 4ν e−t

1 + et

∞∑
p=0

δ(t− 2νp)
1 + δp,0

=⇒ SpYB
• (θ) = exp

− iθν
π

−
∞∑

p=1
−
2ie−2νp sin

(
2θνp

π

)
p (e2νp + 1)

 ,

(A.17)
where the last terms in the exponential are negligible for physical kinematics θ ∈ R. Similar
reasoning leads to the kernel fA(t) for antisymmetric amplitude

fpYB
A (t) = 2− 4ν

1 + et

∞∑
p=0

δ(t− 2νp)
1 + δp,0

=⇒ SpYB
• (θ) = −exp

 iθνπ −
∞∑

p=1

2i sin
(

2θνp
π

)
p (e2νp + 1)

 .

(A.18)
For the minimum form factors we find

Fmin,•(θ) = exp

−(π + iθ)2ν

4π2 +
∞∑

p=1

2e−2νpcsch(2νp) sin2
(

(−θ+iπ)νp
π

)
p (e2νp + 1)

 , (A.19)

Fmin,A(θ) = i sinh
(
θ

2

)
exp

(π + iθ)2ν

4π2 −
∞∑

p=1

2csch(2νp) sin2
(

(−θ+iπ)νp
π

)
p (e2νp + 1)

 . (A.20)

A.4 Computing c2 and k2

Having the exact S-matrix and the corresponding function f(t) for a given theory, we can
compute the two-particle form factors and their contribution the central charges coming from
the sum rules (2.11) and (2.12). As explained below (A.8), there is a polynomial freedom in
constructing the full two-particle form factor F2(θ) = Q(θ)/D(θ)× Fmin(θ). The polynomial
can be fixed by requiring that: 1) the form factor is analytic except for the s-channel two-
particle cut, and 2) the sum rule integral converges. For most of the amplitudes treated
in this section it is enough to consider the redundancy

[
4m2 sinh2(θ/2)

]±1
or equivalently
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c2 k2
+free N ∞
−free N/2 1
+const N 1
−const N/2 ∞
+NLSM 5.2124 (N=7) 15.6380 (N=7)
−NLSM 3.9137 (N=7) 1.1380 (N=7)
+pYB ∞ 2.1043 (N=7)
−pYB ∞ 1.6090 (N=7)
(N = 2) +pYB/−NLSM 1.5649 1.4889
(N = 2) −pYB/+NLSM 0.9875 1.6852

Table 1. Selected values of c2 and k2 for models with exact amplitudes. Numerical values are
approximate since the integrations are performed numerically with a cutoff.

(s− 4)±1, where the only potential dangerous points happen at threshold and the maximum
degree of the polynomial in s is set to 1 for convergence of the sum rule (see section 4).
We can also trace back this polynomial form to the 2πn redundancy in the argument of
the S-matrix. For the c sum rule of periodic Yang-Baxter however, it is not possible to use
this freedom to get a convergent integral, since the minimum form factor (A.19) grows as
Fmin,•(θ) ∼ eθ2 . Except for simple cases like free theories and N = 3 NLSM showed above,
one needs to compute the integrals for the form factor (A.8) and sum rules numerically. This
is what we did to find the endpoints of the minimum c and k sections in figures 5 and 6. The
values we find for the two particle contribution to the central charge are given in the table 1.

In figures 14 we show the central charges for ±NLSM and ±pYB for different values of N .
As a last example we show how to get the two-particle contributions to c and k for the

sine-Gordon model in the regime where the spectrum contains only kinks γ ≥ 8π. As shown in
appendix E of [12], the kinks/antikinks amplitudes cover the boundary of the N = 2 monolith,
more precisely the two-dimensional section spanned by σi(s = 2m2). Using the kernels [66]

f(t)sG
• = −

2
(
sinh

(
t
2
)
− sinh

((
3
2 − γ

8π

)
t
))

sinh
(

t
2 − γt

8π

)
− sinh

(
γt
8π + t

2

) , (A.21)

f(t)sG
A =

2
(
−2 sinh

(
1
8
(
4− γ

π

)
t
)
+ sinh

(
(γ+4π)t

8π

)
+ sinh

(
3t
2

))
sinh

(
t
2 − γ t

8π

)
− sinh

(
γ t
8π + t

2

) , (A.22)

we can get the central charges for the boundary in the upper quadrant of the monolith σ1,2 > 0
as shown in figure 15. We see the interpolation from the N = 2 limits of +pYB and -NLSM
corresponding to σ2 = 0 and γ → ∞ and free bosons with σ2 = 1 and γ = 8π (cf. table 1).
The rest of the sections at the boundary can be computed from the mappings described in [12].

B Notation and useful formulae

B.1 Conventions and derivation of inner products

Our conventions for particle states follow from [10]. In particular one particle states are
defined as unitary irreducible representations of the 2 dimensional Poincaré group ISO(1, 1)
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(a) (b)

(c)

Figure 14. Contribution of the two-particle form factors to the central charges as a function of the
number of flavors N . (a) Central charge c2 for +NLSM (solid) and -NLSM (dashed). (b) Central
charge k2 for +NLSM (solid) and -NLSM (dashed). (c) Central charge k2 for +pYB (solid) and -pYB
(dashed). In the limit N → 2 the amplitudes ±NLSM and ∓pYB coincide, so that the corresponding
values k2(N = 2) agree.

with discrete eigenvalues of P 2, and are normalized as

a⟨p1|p2⟩b = 2p0
1δab2πδ(p1 − p2), (B.1)

where a = 1, . . . , N is a color index in the vector representation of O(N) and p = (p0,p).
Two particle states are decomposed into singlet, antisymmetric and traceless symmetric
irreducible representations of O(N) as

|p1p2⟩ab =
δab√
N

|p1, p2⟩• + |p1, p2⟩A
[a,b] + |p1, p2⟩S

(a,b) (B.2)

where

|p1, p2⟩• ≡
1√
N

|p1p2⟩a,a , (B.3)
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(a) (b)

Figure 15. Central charges c2 and k2 for the sine-Gordon model with γ ≥ 8π. The horizontal
axis is the position σ2 along the N = 2 monolith as we vary the coupling γ from 8π (σ2 = 1) to
infinity (σ2 = 0).

|p1, p2⟩A
[a,b] ≡

1
2(|p1, p2⟩a,b − |p1, p2⟩b,a), (B.4)

|p1, p2⟩S
(a,b) ≡

1
2(|p1, p2⟩a,b + |p1, p2⟩b,a)−

1√
N

|p1p2⟩a,b . (B.5)

The two particle form factor of the trace of the stress energy tensor Θ ≡ Tµ
µ is

FΘ(s) ≡ out⟨0|Θ(0)|p1, p2⟩in
• (B.6)

and its spectral density is

ρΘ(s) ≡
∫
d2xe−ip·x⟨0|Θ(x)Θ(0)|0⟩. (B.7)

The 2 particles form factors of conserved currents, being in the adjoint, only take non
vanishing values with states in the antisymmetric representation and are defined as

Fµ
ab,cd(p1, p2) ≡out ⟨0| Jµ

[ab](0) |p1, p2⟩A
[cd],in = iTA

ab,cd(p
µ
1 − pµ

2 )FJ(s), (B.8)

where the second equality follows from Lorentz and O(N) symmetry and conservation of
the currents,26 and we used TA

ab,cd ≡ 1
2(δacδbd − δadδbc). Similarly the spectral density of

those currents reads

2πρµν
J ;ab,cd ≡

∫
d2xe−ipx ⟨0| Jµ

[ab](x)J
ν
[cd](0) |0⟩ = TA

ab,cd2πρJ(s)(pµpν − ηµνp2). (B.9)

We want to compute it in terms of the form factors. Inserting a complete set of states
between the currents, focusing on the two particles contribution sector, translating the
operators and changing variables with

1
2

dp

2p0(2π)
dq

2q0(2π) = 1
N2

d2(p+ q)
(2π)2 (B.10)

26The second Lorentz vector that could appear would be pµ
1 + pµ

2 , but the conservation equation ∂µJµ = 0
implies (p1 + p2)µF µ

ab,cd = 0, which follows from differentiating out ⟨0| Jµ
[ab](x) |p1, p2⟩A

[cd],in = ei(p1+p2)·xF µ
ab,cd.
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we get for s > 4m2

TA
ab,cd2πρJ(s)(pµpν − ηµνp2) = 1

N2
TA

ab,mnT
A
cd,mn(p

µ
1 − pµ

2 )(pν
1 − pν

2)|FJ(s)|2θ(s− 4m2) + . . . ,

(B.11)
where θ is the Heaviside step function and the dots indicate contributions from higher
particles form factors. We will denote ρ(2)

J (s) for the two particles contribution only. Using
TA

ab,mnT
A
cd,mn = TA

ab,cd, contracting both sides with qν ≡ (pν
1−pν

2) and collecting the components
of qµ we get

−2πρ(2)
J p2 = 1

N2
q2|FJ |2θ(s− 4m2). (B.12)

We can finally use p2 = −s and q2 = s − 4m2 to get

2πρ(2)
J = 1

N2

s− 4m2

s
|FJ(s)|2θ(s− 4m2) (B.13)

This is just the equivalent of Watson’s equation that can be derived by a similar procedure
for the stress tensor form factor and reads

2πρ(2)
Θ = 1

N2
|FΘ|2. (B.14)

We now have everything to derive the inner products for the components of the matrices
Ba in (2.9). The upper 2x2 blocks and the entries of the B• matrix were already computed
in section 3.1 in [10]. Here we focus on the remaining components of the BA matrix.

The entry (3,3) is

[ab] ⟨ψ3|ψ3⟩[cd] =
∫
d2xd2ye−ipx+ip′y qµq

′
ν

q4 ⟨0| Jµ
[ab](x)J

ν
[cd](y) |0⟩

= (2π)δ(2)(p− p′)TA
ab,cd

qµqν

q4 (2π)ρµν
J

= (2π)2δ(2)(p− p′)TA
ab,cd

(−p2)
q2 (2π)ρJ(s).

(B.15)

Note that

s = −(p1 + p2)2, q2 = (p1 − p2)2 = p2 − 4p1 · p2 = s− 4m2. (B.16)

We therefore have

[ab]⟨ψ3|ψ3⟩[cd] = (2π)2δ(2)(p− p′)TA
ab,cd

s

s− 4m2 (2π)ρJ(s) (B.17)

The off diagonal components (2,3) are

[ab] ⟨ψ2|ψ3⟩[cd] =
∫
d2xeipx ω

q2
out
[ab]
〈
p′1p

′
2
∣∣ qνJ

ν
[cd](x) |0⟩ =

∫
d2x

ω

q2 e
ix(p−p′)qνF

ν
ab,cd(p′1, p′2)

= (2π)2δ2(p− p′)iTA
ab,cdωFJ(s). (B.18)

Similarly we have for the entry (1,3)27

[ab] ⟨ψ1|ψ3⟩[cd] =
∫
d2xeipx ω

q2
in
[ab]
〈
p′1p

′
2
∣∣ qνJ

ν
[cd](x) |0⟩ =

∫
d2x

ω

q2 e
ix(p−p′)qν(F ν

ba,cd)∗(p′1, p′2)

= (2π)2δ2(p− p′)iTA
ab,cdωF

∗
J (s). (B.19)

27Note that the order of the particles is important for the antisymmetric channel, and since (|p1, p2⟩)† =
⟨p2, p1| we get an extra minus sign when permuting to get the same tensor structure.
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B.2 Sum rules

Using complex coordinates the conservation of the currents becomes

∂µJ
µ = 0 =⇒ ∂̄J + ∂J̄ = 0, (B.20)

where ∂ ≡ ∂z, ∂̄ ≡ ∂z̄, J ≡ Jz and J̄ ≡ Jz̄. By rotational invariance we can then write28

⟨J(z, z̄)J(0)⟩ = F (zz̄)
z2 , ⟨J̄(z, z̄)J(0)⟩ = π2G(zz̄)

zz̄
. (B.21)

At a conformal fixed point these functions become

FCFT = kCFT, GCFT = 0. (B.22)

The conservation equation implies

⟨∂̄J(z, z̄)J(0)⟩+ ⟨∂J̄(z, z̄)J(0)⟩ = 0 =⇒ F ′ + π2G′ = π2 G

z̄z
. (B.23)

Integrating both sides we obtain a sum rule for k

kUV − kIR = π2
∫ ∞

0
dr2G(r2)

r2 = π

∫
d2z ⟨J̄(z, z̄)J(0)⟩. (B.24)

We can relate the r.h.s. to the spectral density ρJ by considering the (Euclidean) Källén-
Lehmann spectral decomposition of a spin 1 field [41]

⟨Jµ(x)Jν(0)⟩ =
∫ ∞

0
ds ρJ(s) (δµνs− ∂µ∂ν)∆E(x; s), (B.25)

where the Euclidean scalar propagator is

∆E(x; s) ≡
∫

d2p

(2π)2
eip·x

p2 + s
. (B.26)

Evaluating the trace in complex coordinates we get

4⟨J̄(z, z̄)J(0)⟩ =
∫ ∞

0
ds ρJ(s) (2s−2)∆E(x; s). (B.27)

The sum-rule therefore becomes29

kUV − kIR = π

4

∫ ∞

0
ds ρJ(s)

∫
d2p

2s+ p2

p2 + s

∫
d2x

(2π)2 e
ip·x = π

2

∫ ∞

4m2
ds ρJ(s). (B.28)

As shown in more details in [31, 41] we can do the same for the stress tensor where con-
servation reads

∂̄T + π

2 ∂Θ = 0, (B.29)

28The factor of π2 extracted from G(z̄z) will make the resulting sum rule agree with the free fermion result
(and subsequently all other analytical results).

29Here we used that the spectral density has non vanishing support only from the two-particle threshold
s ≥ 4m2. In principle there is also a contribution from the stable particle at s = m2, but it is proportional
to the one particle form factor |F1|2 that here vanishes due to O(N) symmetry. This is also true for the c

sum rule.
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and rotational invariance gives

⟨T (z, z̄)T (0, 0)⟩ = F (zz̄)
z4 , ⟨T (z, z̄)Θ(0, 0)⟩ = G(zz̄)

z3z̄
, ⟨Θ(z, z̄)Θ(0, 0)⟩ = H(zz̄)

z2z̄2 .

(B.30)
Using the UV behaviour

FUV = c

2 , GUV = HUV = 0, (B.31)

similar steps lead to

c = 12π
∫ ∞

4m2
ds
ρΘ(s)
s2 , (B.32)

B.3 Normalization of form factors

The currents are related to conserved charges by

Q[ab] ≡
∫
dx J0

[ab](x, t). (B.33)

Those conserved charges generate O(N) transformations on the Hilbert space and therefore
act on one particle states as

Q[ab] |p⟩c = −iδbc |p⟩a + iδac |p⟩b . (B.34)

Different normalizations for this symmetry will lead to different normalizations for the form
factor. In particular let us consider the matrix element

M =
∑
a,b

∫
dx ⟨p1| J0

[ab](x, 0) |p2⟩b a . (B.35)

On the one hand M can be evaluated by using the conserved charge and its action on
one particle states as

M = b⟨p1|Q[ab]|p2⟩a =
∑
a,b

(−iδab b⟨p1|p2⟩a + iδaa b⟨p1|p2⟩b) (B.36)

= i(N2 −N)(2π)(2p0
1)δ(p1 − p2). (B.37)

On the other hand we can translate the current with J(x) = e−iP xJ(0)eiP x and use the
analytic continuation p2 → −p2 to get

M=
∫
dxeix(p1−p2)F 0

ab,ab(p1,−p2)= (2π)δ(p1−p2)i
N(N−1)

2 (p0
1+p0

2)FJ(4m2−s).
(B.38)

Comparing the two results we obtain

δ(p1 − p2)
(1
2FJ(4m2 − s)(p0

1 + p0
2)(N2 −N)− 2p0

1(N2 −N)
)
= 0 (B.39)

Evaluating this constraint in the center of mass frame, we therefore deduce

FJ(s = 0) = 2. (B.40)
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The case of the stress tensor is similar and derived by starting from

Pµ |p⟩ =
∫
dxT 0µ(x) |p⟩ = pµ |p⟩ . (B.41)

We then consider the matrix element

Mµ =
∑
a,b

∫
dx b⟨p1|T 0µ(x, 0)|p2⟩a (B.42)

We then have on one hand, using the charge Pµ,

Mµ = Nδ(p1 − p2)2p0
1p

µ
1 , (B.43)

and on the other hand, using the definition of form factors,

Mµ = 2π
√
Nδ(p1 − p2)FT µ0(p1,−p2). (B.44)

Then using that by Lorentz invariance

FT µν (s) = B(s)qµqν , FΘ(s) = (s− 4m2)B(s), (B.45)

where we used qµ = pµ
1 − pµ

2 , we get(√
NB(s− 4m2)(pµ

1 + pµ
2 )−Npµ

2

)
δ(p1 − p2) = 0, (B.46)

and therefore B(0) =
√
N/2 leading to

FΘ(0) = −2
√
Nm2. (B.47)

C Dual setup and optimization problems

C.1 General setup

Let us now discuss the dual implementation. We begin by analyticity and crossing. Defining
the dual function Wa to be crossing antisymmetric, Wa(4− s)Cab = −Wb(s), with a cut for
s ≥ 4 and a pole at s = 2 (and the crossing symmetrics of those singularities), and sufficiently
fast decay at infinity, we get the dispersion relation

0 =
∮ 1

2πiWaSa = −Sa(2)Res
s=2

Wa(s) +
2
π

∫ ∞

4
ds Im(WaSa). (C.1)

A similar argument for the form factor F ≡ FΘ/J gives

0 =
∮ 1

2πiWFF = −FΘ(0)Res
s=0

WF (s) +
1
π

∫ ∞

4
ds Im(WFF ), (C.2)

where WF is analytic except for a pole at s = 0 and a branch point at s = 4, with a cut
along the positive real axis. Note that the residues on the poles are fixed by blowing up
0 =

∮
Wads = −2πiRess=2Wa+2i(1+CT )

∫∞
4 ImWads, and 0 =

∮
WFds = −2πiRess=0WF +

2i
∫∞

4 ImWFds.
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Now we discuss unitarity for which the constraint Ba ⪰ 0 is written with Lagrange
multipliers packaged in matrices λa [15]∫ ∞

4
ds TrBa(s)Λa(s), (C.3)

where Λa are hermitian and negative semidefinite parametrized as

Λ• =

λ1,• λ4,• λ6,•
λ∗4,• λ2,• λ5,•
λ∗6,• λ

∗
5,• λ3,•

 , ΛA =

λ1,A λ4,A λ6,A

λ∗4,A λ2,A λ5,A

λ∗6,A λ∗5,A λ3,A

 , ΛS =
(
λ1,S µS

µ∗S λ2,S

)
. (C.4)

Some components can be eliminated by noticing that at the optimum we need to satisfy
TrΛB = 0 =⇒ ΛB = 0. Solving those equations for the 3x3 matrices gives

λ5,• = λ∗6,•, λ1,• = λ2,• ≡ λ•,

λ5,A = −λ∗6,A, λ1A = λ2,A ≡ λA,

2λ1,a|λ6,a|2 − λ3,aλ
2
1,a − 2Re(λ∗4,aλ

2
6,a) + λ3,a|λ4,a|2 = 0, a = •, A.

(C.5)

For the 2x2 matrices the equations fix

λS ≡ λ1,S = λ2,S = −|µS |. (C.6)

The unitarity constrain can then be expanded

TrΛ•B• = 2λ• + 2Reλ4,•S• + 4ωReλ6,•FΘ + 2πρΘλ3,•,

TrΛABA = 2λA + 2Reλ4,ASA + 4ω Imλ6,AFJ + 2π s

s− 4ρJλ3,A,

TrΛSBS = 2λS + 2ReµSSS .

(C.7)

The remaining equations coming from ΛB = 0 give the primal observables as function of
the optimal dual functions as

S•=
λ∗6,•λ•−λ6,•λ

∗
4,•

λ6,•λ•−λ∗6,•λ4,•
, ωFΘ = |λ4,•|2−λ2

•
λ6,•λ•−λ∗6,•λ4,•

, 2πρΘ = |ωFΘ|2,

SA =−
λ∗6,AλA+λ6,Aλ

∗
4,A

λ6,AλA+λ∗6,Aλ4,A
, iω(s−4)FJ = λ2

A−|λ4,A|2

λ6,AλA+λ∗6,Aλ4,A
, 2πρJ = s−4

s
|ωFJ |2,

SS =−µ
∗
S
λS
.

(C.8)

C.2 Minimization of the central charge c on the monolith

To minimize the central charge c on top of the monolith we start with the constrained problem

L = 12π
∫ ∞

4

ρΘ(s)
s2 − πFΘ(0)Res

s=0
WFΘ(s)−

π

2Sa(2)Res
s=2

Wa(s)

+
∫ ∞

4
ds (Im(WaSa +WFΘFΘ) + TrΛaBa) .

(C.9)
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The equations of motion coming from functional variations with respect to the primal
functions give

λ4,• =
i

2W•, λ6,• =
i

4ωWFΘ , λ3,• = − 6
s2 , (C.10)

µA = i

2WA, µS = i

2WS . (C.11)

In terms of the coordinates (σ1, σ2) on the monolith (at s = 2), the Lagrangian becomes

L = 2π
√
N Res

s=0
WFΘ − π

2 ((N + 1)σ1 + σ2)Res
s=2

W• −
π

2 (σ1 + σ2)Res
s=2

WS

− π

2 (σ2 − σ1)Res
s=2

WA +
∫ ∞

4
(2λ• + 2λA + 2λS).

(C.12)

This leads us to the dual problem ready to be implemented in SDPB:

Dual Problem (Minimization of the central charge c on top of the monolith):
Maximize

{λa,Wa,WFΘ}
L (C.13)

Constrained by λ•
i
2W•

i
4ωWFΘ

− i
2W

∗
• λ• − i

4ωW
∗
FΘ

− i
4ωW

∗
FΘ

i
4ωWFΘ − 6

s2

 ≼ 0,
(

λA
i
2WA

− i
2W

∗
A λA

)
≼ 0,

(
λS

i
2WS

− i
2W

∗
S λS

)
≼ 0.

(C.14)

C.3 Minimization of the current central charge k on the monolith

Analogously to the c case we start with

L = π

2

∫ ∞

4
ρJ(s)− πFJ(0)Res

s=0
WFJ

(s)− π

2Sa(2)Res
s=2

Wa(s)

+
∫ ∞

4
ds (Im(WaSa +WFJ

FJ) + TrΛaBa) ,
(C.15)

The equations of motion of the primal functions yield

λ4,A = i

2WA, λ6,A = − 1
4ωWFJ

, λ3,A = −s− 4
4s , (C.16)

µ• =
i

2W•, µS = i

2WS . (C.17)

The Lagrangian becomes

L = −2πRes
s=0

WFJ
− π

2 ((N + 1)σ∗1 + σ∗2)Res
s=2

W• −
π

2 (σ
∗
1 + σ∗2)Res

s=2
WS

− π

2 (σ
∗
2 − σ∗1)Res

s=2
WA +

∫ ∞

4
(2λ• + 2λA + 2λS),

(C.18)

and the dual problem is
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Dual Problem (Minimization of k on top of the monolith):
Maximize
{λa,Wa,WFJ

}
L (C.19)

Constrained by

(
λ•

i
2W•

− i
2W

∗
• λ•

)
≼ 0,

 λA
i
2WA − 1

4ωWFJ

− i
2W

∗
A λA

1
4ωW

∗
FJ

− 1
4ωW

∗
FJ

1
4ωWFJ

− s−4
4s

 ≼ 0,
(

λS
i
2WS

− i
2W

∗
S λS

)
≼ 0.

(C.20)

C.4 Minimization of k for fixed c

We start with

L = π

2

∫ ∞

4
ρJ(s)− πFJ(0)Res

s=0
WFJ

(s)− πFΘ(0)Res
s=0

WFΘ(s)

+
∫ ∞

4
ds (Im(WaSa +WFJ

FJ +WFΘFΘ) + TrΛaBa)

+ Cρ

(
cUV − 12π

∫ ∞

4

ρΘ(s)
s2

)
,

(C.21)

The equations of motion of the primal functions are

λ4,• =
i

2W•, λ6,• =
i

4ωWFΘ , λ3,• = −Cρ
6
s2 , (C.22)

λ4,A = i

2WA, λ6,A = − 1
4ωWFJ

, λ3,A = −s− 4
4s , (C.23)

µS = i

2WS . (C.24)

The Lagrangian becomes

L = 2π
√
N Res

s=0
WFΘ − 2πRes

s=0
WFJ

+ CρcUV

− π

2 ((N + 1)σ∗1 + σ∗2)Res
s=2

W• −
π

2 (σ
∗
1 + σ∗2)Res

s=2
WS

− π

2 (σ
∗
2 − σ∗1)Res

s=2
WA +

∫ ∞

4
(2λ• + 2λA + 2λS),

(C.25)

and the dual problem is

Dual Problem (Minimization of k with fixed c):
Maximize

{λa,Wa,WF ,Cρ}
L (C.26)

Constrained by λ•
i
2W•

i
4ωWFΘ

− i
2W

∗
• λ• − i

4ωW
∗
FΘ

− i
4ωW

∗
FΘ

i
4ωWFΘ −6Cρ

s2

 ≼ 0,

 λA
i
2WA − 1

4ωWFJ

− i
2W

∗
A λA

1
4ωW

∗
FJ

− 1
4ωW

∗
FJ

1
4ωWFJ

− s−4
4s

 ≼ 0, (C.27)

(
λS

i
2WS

− i
2W

∗
S λS

)
≼ 0. (C.28)
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D Numerical implementation

To implement this problem we need ansätze for the variables. We use the disc variable

ρ(s, s0) ≡
√
4− s0 −

√
4− s√

4− s0 +
√
4− s

. (D.1)

D.1 Primal

We follow the same conventions as [10], were we make the following ansätze for the S-matrix,
the two-particle form factor FΘ and the spectral density ρΘ:

Sa(s) = Sa(2) +
Nmax∑
n=1

(a(n)
a ρ(s, 2)n + Caba

(n)
b ρ(4− s, 2)n)

FΘ(s) = FNorm
Θ +

Nmax∑
n=1

b(n)ρ(s, 0)n

ρΘ(s) =
1∑

n=0
c(n) ρ(s)n + ρ(s)n,∗

2 +
Nmax∑
n=1

d(n) ρ(s)n − ρ(s)n,∗

2i . (D.2)

The condition (2.3) fixes Sa(2) in terms of two unknown values σ1,2 that characterize the
position in the monolith that we want to target. For obtaining the global minimal value of c
we can left them as an unfixed parameter.The values FNorm

Θ can be fixed by normalization
to be −2

√
N .

The optimization problem then can then be cast using (D.2) as an input in (2.11) as

cmin = 6πc(0) − 3
2π

2d(1) (D.3)

In the case of the anti-symmetric current we need to modify (D.2) to account for a different
normalization for the two-particle form factor FNorm

J = 2 and re-scale the spectral density by

ρJ = ρΘ(s)
s2 , (D.4)

to obtain a finite constrain for the sum-rule. Again to obtain the minimal value of (2.12)
we can write the minimization requirement as

kmin = π

4 c
(0) − π2

12d
(1) (D.5)

We can now also fix a value of c, using (D.3) to fix one of the two coefficients in the stress-enrgy
spectral density and again obtain the minimal value of k(c).

D.2 Dual

The crossing constraints on the dual functions are Wa(4 − s)Cab = −Wb(s). If we call ga

the residue at s = 2, those constraints give

ga = 1
2(ga + Cbagb) ⇔ g = 1 + CT

2 g, (D.6)
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in particular g is an eigenvector of CT with eigenvalue 1. A convenient basis of such
eigenvectors is

v1 =

−
1

N−1
1
0

 , v2 =


1

N−1
0
1

 =⇒ g =


gS−gA
N−1
gA

gS

 . (D.7)

Therefore we propose the ansätze30

Wa(s)= ga
2

(s−2)
√
s
√
4−s

+ 1
(s−2)

√
s
√
4−s

Nmax∑
n=1

(
a(n)

a ρn(s,2)+Cbaa
(n)
b ρn(4−s,2)

)
,

(D.8)

WFΘ,J
(s)= 1

s2√4−s

Nmax∑
n=1

b
(n)
•,Aρ

n(s,0), (D.9)

λa(s)=
1

s
√
s
√
s−4

( 1∑
n=0

c(n)
a (ρ(s)n+ρ(s)n,∗)+

Nmax∑
n=1

d(n)
a i(ρ(s,0)n−ρ(s,0)n,∗)

)
.

(D.10)

Therefore the optimization problems over the infinitely many parameters characterizing
the functions is truncated to a finite dimensional optimization problem over the variables
ga, a

(n)
a , b

(n)
a , c

(n)
a and d

(n)
a .

E Central charges for free boson and free fermion

E.1 Free Majorana fermion

This theory can be described by the Lagrangian

L = 2imψa
+ψ

a
− + ψa

+∂+ψ
a
+ + (∂−ψa

−)ψa
−, (E.1)

where ∂± = ∂0±∂1 and a = 1, . . . , N is the O(N) index in the vector representation There is a
O(N) symmetry under the simultaneous rotation of the two components ψ±. The components
of the Noether current are

J0
[ab] =

1
2T

mn
[ab] (ψm

+ψ
n
+ + ψn

−ψ
m
− ), J1

[ab] =
1
2T

mn
[ab] (ψm

+ψ
n
+ + ψm

−ψ
n
−), (E.2)

where Tmn
[ab] = (δamδbn − δanδbm) = 2TA

ab,mn are the generators of the adjoint representation.
We compute the form factor by expanding the Majorana fields in creation and annihilation
operators. The expansion comes from plane wave solutions of the Dirac equation31 and reads

ψa
±(x) =

∫
dp

2p0(2π)
(
aa

p
√
p−e

ip·x ± a†,ap
√
p+e

−ip·x
)
, (E.3)

30The large s behaviour compatible with the non linear constraints in (C.5) and (C.6).
31We work in a basis of γ matrices

γ0 =
(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
.
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where p± = p0 ± p. For the spatial component of the form factor we obtain

F 1
ab,cd = 1

4[T[ab]]mn
∫

dp

2p0(2π)
dq

2q0(2π)(
√
p−q− +√

p+q+) ⟨0| am
p a

n
q (a†,cp1 a

†,d
p2 − a†,dp1 a

†,c
p2 ) |0⟩ .

(E.4)

The matrix element is computed by using the anti-commutator relations

⟨0| am
p a

n
q a

†,c
p1 a

†,d
p2 |0⟩ = {am

p , a
†,d
p2 }{a

n
q , a

†,c
p1 } − {am

p , a
†,c
p1 }{a

n
q , a

†,d
p2 }, (E.5)

and

{aa
p, a

†,n
q } = i2π2p0δ(p − q)δab. (E.6)

It yields

F 1
ab,cd = −1

2[T[ab]]mn(δncδmd − δmcδnd)
(√

p+
1 p

+
2 +

√
p−1 p

−
2

)
. (E.7)

To proceed we evaluate the last parenthesis in the center of mass frame (COM). We get

F 1
ab,cd = −4mTA

ab,cd. (E.8)

This is to compare with the generic expression

F 1
ab,cd = iTA

ab,cd(p1 − p2)FJ(s) = 2iTA
ab,cdpFJ(s), (E.9)

where the second equality holds in the COM. The expressions match if

FJ(s) = 2im
p

= i
4m√
s− 4m2

. (E.10)

As there isn’t any non-vanishing n particles form factor for n > 2, it is then straightforward
to obtain the spectral density as

2πρJ = 1
N2

s− 4
s

|FJ(s)|2θ(s− 4m2) = 8m2

s
√
s
√
s− 4m2

θ(s− 4m2), (E.11)

and the corresponding value for k

k = π

2

∫ ∞

4m2
ds ρJ(s) = 1. (E.12)

For the trace of the stress energy tensor we get

Θ(x) = T 0
0 + T 1

1 = imψa
+ψ

a
−, (E.13)

which following identical steps as above yields

FΘ(p1, p2) =
√
Nm

(√
p1−p2+ −√

p2−p1+
)
= im

√
N
√
s− 4m2, (E.14)

where the last equality comes fromes evaluating the expression in the COM frame. Again
there is no n > 2 form factors, so this gives the spectral density

ρΘ(s) =
|FΘ|2

4π
√
s
√
s− 4m2

θ(s− 4m2) = Nm2√s− 4m2

4π
√
s

θ(s− 4m2). (E.15)
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We therefore deduce the central charge c

c =
∫ ∞

4m2
ds
ρΘ
s2 = N

2 . (E.16)

Let us comment about the large s behaviour. For a generic operator of conformal dimension
∆ we expect the high energy regime to be dictated by the CFT, for which we obtain [10]

lim
s→∞

ρO(s) = const × s∆−d/2, lim
s→∞

FO(s) ≲ s1+ ∆−d
2 . (E.17)

The spectral densities (E.11) and (E.15) seem to be in contradiction with this result. It is
because our operators Jµ and Θ are not generic operators. For J , it is a spin 1 conserved
current for which the “const” in the above equation, being proportional to ∆J−1, vanishes [41],
and indeed our result ρJ vanishes when s→ ∞.32 As for Θ, since it is the trace of the stress
energy tensor, its value is just zero in the CFT and the result (E.17) does not apply.

E.2 Free boson

The free boson theory is described by the Lagrangian

L = −1
2∂µϕ

a∂µϕa − 1
2ϕ

aϕa. (E.18)

The Noether currents are

Jµ
[ab] = [T[ab]]mn∂µϕmϕn. (E.19)

The mode expansion of the bosonic field reads

ϕa(x) =
∫

dp

2p0(2π)
(
aa

pe
ip·x + a†,ap e−ip·x

)
. (E.20)

Plugging it in the definition of the form factor we get

Fµ
ab,cd = [T[ab]]mn i

4

∫
dp

2p0(2π)
dq

(2π) ⟨0| a
m
p a

n
q (a†,cp1 a

†,d
p2 − a†,dp1 a

†,c
p2 ) |0⟩ (E.21)

The matrix element can be evaluated by using the commutator relations

⟨0| am
p a

n
q a

†,c
p1 a

†,d
p2 |0⟩ = [am

p , a
†,c
p1 ][a

n
q , a

†,d
p2 ] + [am

p , a
†,d
p2 ][a

n
q , a

†,c
p1 ], (E.22)

and

[aa
p, a

†,n
q ] = 2π2p0δ(p − q)δab. (E.23)

We get

Fµ
ab,cd = [T[ab]]mn i

2(δ
ndδmc − δncδmd)(pµ

1 − pµ
2 ) = 2iT ab,cd

A (pµ
1 − pµ

2 ). (E.24)

32As explained in [41], in general spectral densities of vector operators also have a spin 0 component, which
for us was set to zero due to the conservation of the currents. This is compatible with equation (4.10) in [41]
where “const” is proportional to ∆J − d + 1 which vanishes for conserved currents in d = 2.
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Comparing to the general decomposition for the form factor

Fµ
ab,cd = iTA

ab,cd(p
µ
1 − pµ

2 )FJ(s), (E.25)

we identify

FJ(s) = 2. (E.26)

We deduce the spectral density

ρJ(s) =
√
s− 4
πs

√
s
θ(s− 4m2). (E.27)

We get k by using the sum rule yielding

k = π

2

∫ ∞

4m2
ds ρJ = ∞, (E.28)

which can be understood by noticing that the free boson ϕ is not a primary and the current two
point function has a log(z)/z2 leading singularity. Moving to the stress energy tensor we get

Θ(x) = −m2ϕaϕa, (E.29)

leading to the form factor and spectral density

FΘ(p1, p2) = −2
√
Nm2, ρΘ(s) =

Nm4

π
√
s
√
s− 4m2

θ(s− 4m2). (E.30)

The central charge c is therefore

c = 12π
∫ ∞

4m2
ds
ρΘ
s2 = N. (E.31)
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