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A Predictive Model for Tactile Force Estimation using
Audio-Tactile Data
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Abstract—Robust in-hand manipulation of objects with mov-
able content requires estimation and prediction of the contents’
motion with enough anticipation to allow time to compensate for
resulting internal torques. The quick estimation of the objects’
dynamics can be challenging when the objects’ motion properties
(e.g., type, amount, dynamics) cannot be observed visually due to
robot occlusions or opacity of the container. This can be further
complicated by the computational requirements of onboard
hardware available for real-time processing and control for
robotics. In this work, we develop a simple learning framework
that uses echo state networks to predict the torques experienced
on the robotic hand with enough anticipation to allow for
adaptive controls and sufficient efficiency for real-time prediction
without GPU processing. We demonstrate the efficacy of this
formulation for tactile force prediction on the Allegro robotic
hand with a Tekscan tactile skin using both material-specific and
material-agnostic learned models. We show that while both are
effective, the material-specific models show an improvement in
accuracy due to the difference in inertial properties between the
different materials. We also develop a prediction model that uses
audio feedback to augment the tactile predictions. We show that
adding auditory feedback improves the prediction error, though
it significantly increases the computation cost of the model. We
validate this formulation for online prediction on the robotic
hand moving materials in real-time and adapting grip for slip
detection.

I. INTRODUCTION

Safe in-hand manipulation of objects requires the ability
to estimate and adapt to the forces experienced by the robot
hand from the objects’ inertial forces during motion. This is
particularly relevant when adaptation requires grip changes
that depends on sufficient time to execute. In these situations,
force prediction must occur on longer time horizons, allowing
for anticipation of slip into the future, as opposed to high-
speed reactive controls. This can be more challenging when
vision is impaired, due to occlusion by the robot or opacity of
the container, as objects have different inertial properties that
can lead to different force trajectories exerted on the hand
during motion. These additional inertial forces can make it
difficult for the robotic hand to maintain a stable grasp on
the container during manipulation. Most research in this area
primarily focuses on either utilizing vision for state estimation
and prediction, or short-term slip prediction and detection for
reactive torque controllers.
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Here, we focus on the problem of tactile prediction on a
longer time horizon without the aid of vision. We develop
a framework using echo state networks (ESNs) that enable
tactile force prediction for a longer-time horizon. We train
ESN models that predict the movement and amplitude of
forces exerted on the hand during motion . We show that
the learned models work over different materials and mo-
tion speeds for a given motion type. We demonstrate the
differences in tactile forces caused by different materials even
during the same motion, and validate the benefits of learning
material- and motion-specific models. Furthermore, we show
that utilizing auditory feedback in a multimodal prediction
model improves the performance of tactile prediction for all
materials. Importantly, the use of ESNs as a framework for the
proposed approach allows for lower computational require-
ments, enabling successful execution with low computation
resources (i.e., a laptop with only a CPU). Finally, we validate
the framework in a real-world experiment, demonstrating both
tactile prediction on-line and its use for slip-anticipation for
an adaptive grip control in real-time .

II. RELATED WORK

Tactile estimation and prediction research has been of great
interest in manipulation applications. Much of the research
focuses on slip detection and reactive adaptation, discussed in
detail in [1], [2]. Some methods use neural networks for slip
detection using tactile data or vision-based tactile sensors for
classifying contact or slippage [3]–[7]. Tactile and audio data
are sometimes used in neural networks for content estimation,
such as weight estimation or liquid height [8], [9]. Other
methods learn models of liquid flow of unknown materials
by using tactile or force data to estimate physical properties
of the contents, including mass, volume and viscosity [10],
[11]. These models are used to classify unknown liquids
and for content estimation, which could be used to predict
flow over time for manipulation. Here, we investigate the
use of low-dimensional model learning for general content
estimation, without imposing the structure of physical models
of liquid flow that the learning here relies upon. Other research
uses tactile force estimation and prediction for control and
manipulation, discussed in depth in [12]. Many methods use
estimation of contact point, force and curvature to drive control
for manipulation [6], [13], [14]. Other research methods use
neural networks to learn contact force estimation from tactile
data [7], [15]. Su et al. [7] uses a neural network to predict the
contact forces in the fingertips. The contact force estimation
focuses on static grasping (i.e. when the container contents
are not moving) to enable slip detection and slip prevention
during grasping. [16] also performs force estimation for Biotac

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3340614

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2023

Fig. 1: Description of Experimental Setup. It consists of a Kuka IIWA robot arm mounted with an Allegro hand and a
microphone fixed on the robotic hand close to the container. The hand is covered with a Tekscan tactile skin sensor. The hand
holds a bottle that is filled with unknown content. In the experiments, content may consist of water, a high-viscosity slurry, rice
or gummies. The robot rotates the bottle from left to right such that the content slides inside the bottle. Changes in distribution
of mass within the object is revealed through change in pressure exerted on the palm. From the Tekscan data, the position of
the center of pressure (cop) and the total force on each surface of the of the hand links is computed. As the content slides, it
also generates noise that can be picked up by the microphone. Tactile and audio data are captured and used to refine prediction
of tactile response.

sensors located in the fingertips. They use convolutional neural
networks to estimate forces during contact, which could be
used in a grasp controller. [17] and [18] use graph neural
networks and convolutional LSTMs respectively to predict
contact forces in the fingertips during grasping. Both use the
prediction models to assess grasp stability during lifting. Other
methods use deep learning or reinforcement learning to drive
touch-based manipulation through unsupervised learning [19],
[20]. These methods require large amounts of data (3000-5000
trajectories) and prediction is done on short time horizons
(15-18 time steps) due to the complexity of the prediction
model. The approach proposed in this paper however focuses
developing prediction models that have faster training times
and lower complexity for longer time horizon predictions
(up to 3 seconds into the future) to accommodate reactive
controllers that require grasp adaptation.

Echo state networks [21], [22] are a type of recurrent neural
network with a random dynamical resevoir (i.e., randomly
connected neurons within the reservoir). These networks have
been shown to be faster to train, requiring fewer parameters
to be optimized and not suffering from gradient issues found
in methods that use gradient-based optimization (i.e., backpro-
pogation). [23] uses echo state networks to predict the tactile
signature of an antenna from action. They use the ESN for the
1-dimensional tactile prediction to discriminate when contact
is occurring, rather than for grip control. Furthermore, their
work uses echo state networks to predict one time step into
the future, rather than for a longer time horizon (e.g., 300
steps into the future) as performed in this work. Furthermore,

the other work only use tactile sensors for prediction and
estimation. Here, we use auditory feedback to augment the
tactile prediction. While there has been research in using
auditory feedback for tactile applications [24]–[27], most work
focuses on using the multimodal perception for classification
and object property identification, rather than real-time tactile
prediction.

III. METHODS

We develop a framework for learning and predicting the
tactile pressure distribution experienced in a robotic hand.
Specifically, we use echo state networks (ESNs) [21] to learn
a predictive model of the magnitude and center of pressure
on the hand caused by the objects’ movement during manip-
ulation. We describe below the experimental setup and the
formulation for the model learning and tactile force prediction.

A. Experimental Setup

The experimental setup, shown in Figure 1, uses a Kuka
IIWA 7 with an attached Allegro hand for robotic manip-
ulation. A Tekscan tactile sensor consisting of 1050 tactile
pixels of 4.6 x 4.6 [mm] covering palm and fingers provides
pressure data across the Allegro hand and is sampled at a
rate of approximately 100 Hz. The tactile data values are
calibrated and normalized such that they range from 0 to 255
values (similar to values of 8-bits gray scale images) and then
converted to Newtons by multiplying the value by a factor
of 0.007. We represent the tactile sensors on the hand as
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(a) Tekscan tactile skin attached on the
Allegro hand

(b) Diagram of the flattened Tekscan sensor with each section
numbered. The sensor has sensing cells on the sides of the fingers
(marked with red crosses), which are not taken into consideration
as they do not come in contact with the container.

Fig. 2: Diagram of the Tekscan sensor showing the cells and
the numbered sections covering the hand.

13 sections covering the palm and the fingers, as shown in
Figure 2. From each section of the hand, we calculate the
center of pressure (CoP) and amplitude of the activated sensors
over the region. The motion of the CoP and its amplitude
over the different sections reflects the torques exerted on the
hand during the motions by the contents. We train our model
(discussed in detail below) to predict the CoP position and
amplitude in each section. An audio microphone is attached
to the Allegro hand (shown in Figure 1), capturing the sounds
inside the container during manipulation with a sampling rate
of 16 kHz.

B. Data Collection

To generate data, we develop a robot controller that rotates
the container a desired amount in a specified period. The

Parameter Lower bound Upper bound
Spectral radius 0.01 1
Input scaling 0.0001 10
Noise level 0.0 0.3
Time constants 0 1
Leakage 0 1

TABLE I: Particle Swarm Optimization Ranges for Hyper-
parameters for Echo State Network Models. The parameters
were chosen by performing particle swarm optimization over
the parameters to optimizing the average training error over
time.

rotation motion uses a position-based dynamical system (DS)
controller that combines a DS control to maintain the desired
position, while changing the orientation a specified range in
a sinusoidal pattern to generate the motion. Throughout the
motion, the Allegro hand maintains a envelop grasp on the
container with a base torque of 1.5 Nm.

We train prediction models for 4 classes of material contents
with different inertial properties: water, a high-viscosity slurry,
rice and gummies. The total weight of the content is 700
[g], 750 [g], 500 [g] and 450 [g] respectively. We collect
demonstrations of 4 trials of 10 rotations for each material
with orientation range of 120◦ over a period of 3 seconds.
Between each trial, the bottle is replaced in the hand and the
grasp is reset leading to variance in grasp between trials.

C. Model Learning

Echo state networks are used for tactile pressure prediction.
Echo state networks (ESNs) [21], [22] consist of a recurrent
neural network (RNN) with randomly assigned connectivity
and weights for the hidden layer. While RNNs are trained
with backpropagation, echo-state networks only optimize the
weights of the output neurons , enabling computationally
efficient model learning which effectively captures nonlinear
time series behavior. The implementation used in this work
follows the method introduced in [28], which introduces
additional parameters for improving performance (e.g., leak-
age, skipped connections). We optimize the parameters using
particle swarm optimization, within the bounds listed in Table
I. For testing, all ESN models were run on a computer with
an Intel Core i7-6700 CPU@3.40GHz and 16GB RAM, with
no GPU.1

1) Tactile Pressure Prediction: Tactile pressure prediction
consists of an echo state network model predicting the pressure
experienced over the hand throughout the motion. The echo
state network input and output consists of the CoP position
(x and y) and total force for each of the 13 sections over the
hand.

1We optimize the following parameters using particle swarm optimization
(PSO). The parameters are: spectral radius, scaling of the input, noise level
in neurons during training, time constants of neurons (all neurons are equally
split between a small number of time constant in order to reduce the degrees
of freedom of the optimization), leakage of neurons and connectivity of
the reservoir. The parameters are given sensible bounds (listed in Table I),
the initial swarm and inertia matrices are initialized by randomly sampling
particles and inertia from a bounded uniform distribution.
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Parameter Value ranges
Number of Audio Time Stamp Predictions 10
Mel Spectrogram: Window Length [0.1 - 0.9] * (1.5 [s])
Mel Spectrogram: Window Overlap 0.1 - 0.9
ESN Spectral Radius 0 - 1
4 Input Scalings (for groups of Mel bands:
1-8, 9-16, 17-24, 25-32) 0 - 1

ESN Leakage 0 - 1
Weights for weighted predictions
(30 ratio constants for 10 timestamps x 3dim) 0 - 1

TABLE II: Particle Swarm Optimization Ranges for Hyper-
parameters for Audio-Based Echo State Network Models.
The parameters were chosen by performing particle swarm
optimization over the parameters to optimizing the average
training error over time.

For each material, the data is split in training/testing sets
with a 50% − 50% ratio. Each set is then further split into
4000-4500 time windows of 150 samples, depending on the
length of the trial. The ESN is primed with 150 samples and
trained to predict the following 300 samples in open loop.

Accuracy of the network’s prediction is assessed using the
testing set, which is composed of an equal number of time
windows. In addition, the capacity of the ESN to predict posi-
tion on unseen material is assessed, as well as it’s capacity to
work with different movement speed by varying the movement
speed for a single material. We also assess the results of the
prediction while the robot is running in a real-time scenario,
described below in Section III-E.

D. Audio-Based Tactile Prediction

We also develop a learning model that takes in auditory
feedback to improve the tactile force predictions. We train an
ESN to predict the tactile data for 10 time steps in the future
based on 1.5 seconds of audio data. The audio data is broken
into smaller time windows of 0.1 seconds, from which Mel
spectrograms are generated. These spectrograms are fed into
the ESN sequentially and the next 10 time steps of tactile
data is predicted in one shot. To integrate this prediction with
the tactile prediction, we implement a weighted combination
of the predictions from the audio and tactile ESNs and feed
the result back into the tactile ESN through the open-loop
routine of the prediction. We use particle swarm optimization
to optimize the parameters of the audio-based ESN described
in Table II.

E. Robotics implementation

We validate the learned models in a robotic experiment on
the Kuka IIWA with the attached Allegro hand for real-time
prediction and control. We perform a slip prediction experi-
ment that utilizes the trained models to perform online tactile
prediction to anticipate when slip will occur as illustrated on
figure 3. We place the container on the robotic hand with the
hand in the open position. The hand performs a small rotation
in one direction (10 degrees) in which the bottle remains stable
on the hand followed by a wider rotation in the opposite
direction (45 degrees), during which the container will slip

out of the hand. For training, we collect data with the hand in
the open configuration and the bottle attached securely to the
palm to prevent the bottle from slipping out of the hand. We
collect 20 trials of data with a bottle filled with water using
a rotation motions of 5 seconds. For the experimental study,
as the hand executes the rotation motion, we use the tactile
predictions to anticipate when slip will occur, and accordingly
execute a close motion on the hand to grasp it. We define
the slip threshold as when the force amplitude is close to 0
(i.e under 1 N) or when the CoP measurements are close to
the side of the palm (i.e closer to 5 mm from the side of
the palm). We perform the experiment in both directions, five
times by starting the rotation towards the thumb and five times
by starting the rotation towards the ring finger. To evaluate
performance, we analyze the closing time of the hand over
the container. Early and on time closings are both considered
successful, while late closings are classified as failures. Early
closing is when the hand closes when the bottle doesn’t move
or is still stable (i.e, during the smaller first rotation thumb
side). On time closing refers to the hand closing when the
bottle is moving but has not yet slipped out of the hand during
the larger rotation. Late closing occurs when the hand begins
to close after the bottle has fallen.

IV. RESULTS

In this section, we discuss the results of the tactile and
audio-tactile model learning and the experimental studies
conducted. Figure 4 shows the data of the CoP and total
force data over a rotation for each material. While the overall
temporal patterns caused by the rotation of the contents on
the hand resemble each other, the inertial dynamics of each
material has a significant impact on both the CoP location and
total force exerted on the hand, highlighting the importance of
taking material content into account for force prediction.

Figure 5 shows the FFT decomposition of the signal for
different material. In this case, the robot noise induces some
similarity in the frequency decomposition for different ma-
terial. However, differences in shape and intensities are still
observed for different materials.

Figure 6 shows the results for open-loop tactile prediction
using the material-specific ESN of the CoP and force for water
for 300 timesteps (or one rotation). The motion of the center of
pressure caused by the contents moving back and forth over
the palm is accurately predicted for the full rotation by the
ESN. Figures 6a-6d shows the results for a single trial. 6e-6f
shows the average error over all the trials. Overall, the ESN is
able to accurately predict the center of pressure and amplitude
over time for all trials with water.

Table III compares the performances and complexity 2 of
different prediction models. The MLP model was implemented
by giving the full primer as input (0.1 [s] of signal) and pre-
dicting 3 [s] of signal which means that the minimal number of
weights it can have is 2101. The LSTM is implemented in the

2The time of prediction is not reported since the Matlab deep learning
library uses low level optimization that could not be implemented for ESNs.
This a relevant metric of the complexity of almost all algorithms. Only
the LSTM’s has non-linear activation functions bringing its computational
complexity above the other algorithms.
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(a) Initial position for the robotics
implementation test

(b) First, the hand rotates 10 degrees
on one side. While the bottle remains
stable, the hand does not need to close.

(c) The hand rotates 45 degrees in the
opposite direction. The hand should
close and catch the bottle to avoid it
falling.

Fig. 3: Example of Robotic Experiment for Slip Prediction and Recovery. Initially, the container is placed on the robotic palm
with the fingers open. As the hand rotates, the model predicts the tactile forces during the motion and anticipates when slip
will occur. Upon slip prediction, the robotic hand changes the grip in to a closed envelop grasp over the container to maintain
stability.

Fig. 4: Center of Pressure and Amplitude data over time for
each material (water, slurry, rice, gummies). Mean (line) and
variance (shading) is shown for all trials of each material. The
effect of different dynamics of each material on both CoP
location and amplitude can be seen over the rotation.

same sequential manner as the ESN. The result show that for
a long time horizon, a simple linear interpolation doesn’t yield
good result. MLP needs about 7 times more complexity than
the ESN to match its performance; however, vastly increasing
the complexity of the model can yield better results than the
ESN. The LSTM network can match ESN performances, and
even improve on it, but also requires a lot more complexity
to improve on the performances. In all those methods ESN’s
are showing better performance at the lowest complexity.

Fig. 5: FFT of the audio signal for different material. Across
materials it shows similarities in shape due to the noise of the
robot being similar across different material. Differences can
be seen in intensity and shape of the peaks

CoP
error [mm]

Amplitude
error [N]

Num. of
weights

Linear predictor
(10 [ms]) 2.23 ± 1.62 6.20 ± 2.42 2

Linear predictor
(3000 [ms]) 44. ± 4.01 17.7 ± 9.74 2

ESN
(30 hidden units
0.1 connectivity)

3.03±1.67 2.57 ± 1.29 333

MLP
(1 hidden unit) 3.89 ± 2.00 5.43 ± 2.83 2101

MLP
(30 hidden unit) 1.25 ± 0.73 1.87 ± 1.15 36930

LSTM
(30 lstm unit) 3.33 ± 2.19 5.23 ± 2.67 153

LSTM
(200 lstm unit) 1.14 ± 0.64 1.05 ± 0.76 333

TABLE III: Comparison of performances for different algo-
rithms
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Fig. 6: Prediction of center of pressure over palm for water using the material specific model. (a) and (b) shows the ground
truth (blue) and predicted trajectories (red) in the x-domain and y-domain respectively over time for a single trial. (c) shows
the ground truth data and predicted trajectories of the center of pressure over the palm in the x-y domain. (d) shows the ground
truth and predicted amplitude of pressure on the palm over time. (e) and (f) show the errors over time for the CoP position
and amplitude respectively for all trials. The mean (line) and variance (shading) are shown for all trials.

Figures 7 and 8 show the average CoP and force prediction
errors for 300 steps into the future respectively over all
trials for each material using the material-specific ESNs. The
material-specific models accurately predict the CoP position
for 300 timesteps into the future for all materials. For both
the slurry and gummies, the mean and variance in error is
higher, as the motion of the materials inside the container
varied depending on how the material stuck to the container
and moved during rotation. For both rice and water, which
were more predictable in the flow, the overall error during the
prediction was lower.

Figure 9 compares the results for generalized and specific
model learning. Figure 9 shows average prediction error for
CoP position and total force for each material for both the
generalized and material-specific models. Figure 9 shows
that material-specific models results in lower prediction error
compared to the generalized model; however, the generalized
model performed better for materials were more predictable
flow (i.e., water, slurry and rice) compared to those with more
stochastic flows. The generalized model performed compara-
bly well compared to the material-specific models for total
force prediction for all materials.

In addition, ESNs trained on only a subset of materials
generally result in better performances on the materials within
the training set (water and gummies). For unseen materials,
the model performs with similar performances as the material-
agnostic model but with generally higher variance.

Figure 10 shows that frequency-specific models result in
significantly better performance compared to the generalized
model, both in CoP and amplitude prediction. In addition,
the frequency-agnostic model trained on only 3 of the fre-
quencies show the same performances as one trained on all
5 frequencies, showing the model’s ability to generalize to
unseen frequencies in the vicinity of the ones it was trained
on.

Figure 11 compares the results of using the audio-tactile
ESN model compared with the tactile-only ESN. Figure 11a
shows that incorporating the audio data into the prediction
significantly improves the prediction of the CoP location
throughout the trajectory. On the other hand, Figure 11b shows
that the amplitude prediction is not significantly improved
with audio-data augmentation. This is possibly due to the
audio data does not correlating with amount of force the

Rotation start on thumb side rotation
Prediction length Early Closing On time Late closing

10 [ms] 0 1 4
30 [ms] 1 4 0
50 [ms] 5 0 0

Rotation start on pinky side rotation
10 [ms] 0 0 4
30 [ms] 0 4 1
50 [ms] 4 1 0

TABLE IV: Result of the hand rotation for 5 trials with
different prediction lengths for rotations starting either from
thumb or pinky side. As prediction horizon increases, the
number of late closings decrease and the robotic hand is
successfully able to prevent the container from slipping.

material was exerting on the hand. Figure 12 showed that
for all materials, the audio-tactile models resulted in better
performance. However, for slurry, the improvement was not
significant.

Tables IV shows the results of the experimental study
conducted using online tactile prediction and control for grip
closure. As described above in Section III-E, the container is
placed in the open palm, and online tactile prediction is used
to anticipate when slip will occur and enact the grip closure
command accordingly. As the prediction is done for a shorter
time frame, i.e. before the first time step for use of audio data,
audio is not used in this setting. For both directions of rotation,
as the prediction horizon increases, the number of failed (i.e.,
late closures) that occur decrease to 0. Importantly, the 10-
ms prediction time is insufficient to both recognize and enact
the grip closure command in time to prevent the container
slipping. For both the 30 and 50 ms prediction horizons,
the longer prediction horizons allow for greater anticipation,
enabling the robot to complete grip closure with additional
time (i.e., early closing). It is of note that by predicting
for shorter time frame the ESN has lower variance in the
result as can be seen in figure 7 making the experiment more
repeatable While this additional time may not be necessary for
this scenario, the necessity of long-time horizon predictions is
highlighted when reactive torque changes are not sufficient,
but grip changes need to occur for stable manipulation.
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Fig. 7: Average CoP error for training set (shown in blue) and test set (shown in red) during forward prediction of the tactile
data values during motion using the material-specific echo state network.

Fig. 8: Average total force error for training set (shown in blue) and test set (shown in red) during forward prediction of the
tactile data values during motion using the material-specific echo state network.

Fig. 9: Comparison of CoP and amplitude prediction errors us-
ing generalized and material-specific models as well as model
trained on only a subset of material to assess generalization
properties.

Fig. 10: Comparison of CoP and amplitude prediction errors
using generalized, frequency-specific ESN, as well as gener-
alized ESNs tested on frequencies unseen in training.

V. CONCLUSION

In this paper, we introduced a novel formulation for enabling
long-time horizon tactile pressure prediction. We show that
echo state networks are capable of accurately predicting tactile
pressure trajectory during motion within real-time time bounds
and on experimental data collected using the Allegro hand
mounted on a Kuka IIWA robot. We show that material-
specific echo state networks are effective for capturing and
predicting the tactile pressure flow and the additional benefits
of audio-data augmentation. We compare the ESN’s to other

(a)

(b)

Fig. 11: (a) CoP and (b) Amplitude prediction error over palm
over time in water trial using the tactile-only and audio-tactile
ESN models. The tactile-only baseline (in red) and audio-
tactile model (in blue) are shown with the mean and variance
over all trials. Times when the audio prediction is incorporated
into the prediction for the audio-tactile model are indicated
with the black vertical lines.
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Fig. 12: Comparison of average CoP and amplitude prediction
errors for each material using the tactile-only (unimodal) and
audio-tactile (multimodal) models. The multimodal models
resulted in performance improvement for all materials in both
yielded Improvement yielded by the audio prediction for each
material

machine learning models, and show that ESN’s have the
lowest computational complexity while being able to predict
tactile data with sufficient accuracy, making them the best
choice when looking to minimize the computational impact of
tactile prediction on any low capacity hardware. We validate
our results for different material contents and online in a
real-world experimental setup, where for models with lower
computational requirements are required . Finally, we highlight
the importance of long-time tactile prediction for manipulation
in tasks where grip changes need to occur. Future work seeks
to improve the model to accommodate a wider variety of
materials and motion types. Furthermore, we seek to use the
proposed framework with a more complex grasp planner that
would benefit from long-time horizon prediction.
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