
Robust mass lumping and outlier removal strategies in isogeometric

analysis

Yannis Voet ∗1, Espen Sande †1, and Annalisa Buffa ‡1
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Abstract

Mass lumping techniques are commonly employed in explicit time integration schemes for problems in struc-
tural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the
critical time step. In isogeometric analysis, the critical time step is constrained by so-called “outlier” frequencies,
representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies
is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and out-
lier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping
strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are
combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the
advantages of the method, especially for simulations covering large time spans where they may halve the number
of iterations with little or no effect on the numerical solution.
Keywords: Isogeometric analysis, Explicit dynamics, Mass lumping, Mass scaling, Outlier removal, Trimming

1 Introduction and background

Isogeometric analysis is a discretization technique for solving partial differential equations (PDEs) which relies on
spline functions such as B-splines and non-uniform rational B-splines (NURBS) both for parameterizing the geom-
etry and representing the solution [1, 2]. Spline functions used in isogeometric analysis offer distinctive advantages
over Lagrange polynomials used in classical finite element discretizations, including exact representation of common
geometries and superior approximation properties [3, 4, 5]. In structural dynamics, the advantages of isogeometric
analysis were already evidenced in [6, 7, 8] where maximally smooth spline approximations removed the so-called
“optical branches” from the discrete spectrum, a typical artifact of classical finite element discretizations. As a
matter of fact, nearly all discrete eigenvalues approximate the continuous eigenvalues with high accuracy except
for the largest ones. They form noticeable spikes in the upper part of the spectrum and were coined “outlier”
eigenvalues for this very reason [6]. These inaccurate eigenvalues grow with the mesh size and spline order [9]
thereby severely constraining the critical time step of explicit time integration schemes, often referred to as the
Courant–Friedrichs–Lewy (CFL) condition. For example, for undamped dynamical systems, the critical time step
of the central difference method is

∆tc =
2√
λn

(1.1)

where λn is the largest eigenvalue of the discrete system [10, 11].
Since the advent of isogeometric analysis, much effort has focused on removing the outliers from the discrete

spectrum. A nonlinear spline parametrization was first proposed in [6] by uniformly distributing control points by
changing the geometry parametrization but defeats the spirit of isogeometric analysis. The method also reportedly
undermines the accuracy of the low frequencies and modes [12]. A similar method was later proposed in [13] by
constructing “smoothed” knot vectors that are approximations to optimal knot vectors (related to some n-width
optimal spline spaces) but suffer from similar drawbacks. In [14] the authors proposed to instead use the n-width
optimal spline spaces in [15] to remove outliers, and these spaces were later proven to be outlier-free in [16] without
loss of accuracy in the low frequencies. These optimal spaces mimic the true eigenfunctions by imposing certain
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higher-order derivatives to be zero at the boundary. Bases for these spaces were constructed in [17, 15, 18, 16] by
using certain symmetry properties of B-splines. A similar strategy was numerically observed to be outlier-free in
[12] for the Laplacian, however, some outliers were still observed for the biharmonic problem with the spline spaces
proposed in [12]. By mimicking the properties of the n-width optimal spline spaces in [19] outliers for the biharmonic
problem were later completely removed in [20]. In both [12] and [20] bases for the considered spline spaces were
computed using a similar strategy as the MDB-spline extraction technique developed in [21]. A related strategy to
the above was devised in [22] where the authors weakly impose the constraints coming from the true eigenfunctions
by penalizing high order derivatives near the boundary. In the multipatch setting such a strategy was also used
in [23] by weakly enforcing Cp−1 continuity at patch interfaces to remove interior outliers. These penalization
techniques often take the form of mass scaling, which is also widely employed for classical finite element methods
[24, 25, 26]. Rather than completely removing outliers, they strongly mitigate them but also require heuristics or
dedicated algorithms for computing the generally unknown penalization parameters. We note that these approaches
could be combined to mitigate both boundary and interior outliers resulting from C0 continuity at patch interfaces.
Also in the context of classical finite element methods, an eigenvalue deflation technique was proposed in [27, 28] by
explicitly computing the largest eigenvalues and eigenmodes. However, the authors do not discuss the computational
overhead in their experiments and applying their method to the global assembled mass matrix is generally infeasible
due to the large number of inaccurate high frequencies in classical C0 finite element methods.

Outlier removal strategies are generally motivated for one-dimensional problems and then extended to higher
dimensions via a tensor product construction. This construction, however, inherently limits the applicability of
the methods to trivial single-patch geometries and separable coefficient functions. One issue in extending these
approaches to nontrivial problems lies in the definition of outliers. For nontrivial geometries, outliers are often
smoothened out and the spectrum generally does not feature any spikes, although changes in curvature are sometimes
noticeable. Outliers then lose the intrinsic property that characterized them and their identification becomes
ambiguous. Straightforwardly applying the constructions proposed in [12, 16, 22] to nontrivial geometries generally
does not yield satisfactory results, suggesting that the support of the outlier eigenfunctions might stretch into the
domain’s interior.

For applications in explicit dynamics, restrictive CFL conditions are not the only issue. Due to the inherent cost
of “exactly” solving linear systems with the mass matrix [29, 30], obtaining an easily invertible (preferably diagonal
or tridiagonal) mass matrix is paramount. Mass lumping has historically been used for approximating the consistent
mass matrix by a diagonal (lumped) mass matrix. Among the scores of methods proposed in the 1970s for classical
finite element methods, only a handful are applicable to isogeometric analysis due to the non-interpolatory nature of
the basis functions. Among them is the classical row-sum technique [31, 10]. Provably, the row-sum technique does
not worsen the CFL condition of the consistent mass [32]. However, for isogeometric analysis, the method performs
poorly in higher dimensions and strong numerical evidence suggests it reduces the converge rate to quadratic order,
independently of the spline order [6]; a property only proved for 1D problems and low spline orders [6]. Since then
much research effort has focused on devising more accurate and potentially high order mass lumping schemes for
isogeometric analysis. Cottrell et al. [2] first suggested constructing diagonal mass matrices by using dual basis
functions as test functions in a Petrov-Galerkin framework. However, computer implementations come with all sorts
of difficulties and initially the idea did not gain much momentum until it was taken up again in [33] with promising
results. Since then, there has been a surge of interest. In [34], high order convergence is achieved by combining
(approximate) dual basis functions with the row-sum technique. However, the implementation remains technical
and ongoing research is focusing on alleviating these issues, in particular related to the imposition of boundary
conditions [35]. In another line of research, families of banded and Kronecker product matrices were constructed in
[32] by increasing the bandwidth of the row-sum lumped mass matrix and were shown to significantly improve the
accuracy. Unfortunately, such improvements are only realized on trivial geometries and are tied to an improvement
of the constant instead of the convergence rate.

Mass lumping may sometimes dramatically impact the CFL condition. For trimmed geometries [36], Leidinger
[37] first showed that the CFL condition was not affected by small trimmed elements if the mass matrix was
lumped. This finding was further supported by the studies in [38, 39] but also raised concerns over the accuracy of
the smallest eigenvalues and modes. Devising accurate mass lumping/scaling techniques for trimmed geometries is
an ongoing challenge.

Fast solution methods in explicit dynamics usually combine outlier removal, mass scaling and mass lumping in
a sometimes ad hoc fashion. In this article, we propose such a strategy for nontrivial geometries and provide a
strong mathematical foundation for our method. The article is structured as follows: in Section 3, we first recall the
mass lumping techniques devised in [32] and then design new mass lumping techniques for nontrivial single-patch
and multipatch problems. Although these techniques provably do not worsen the CFL condition of the original
problem, they may not significantly improve it either. Thus, they are combined in Section 4 with outlier removal
techniques that deflate the spectrum from persistent outlier eigenvalues and generalize the method proposed in
[27, 28]. Contrary to classical C0 finite elements, isogeometric discretizations typically feature a small number
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of rapidly increasing eigenvalues towards the end of the spectrum, for which deflation techniques are well-suited.
Section 5 gathers some numerical experiments illustrating the theoretical findings and demonstrating the advantages
of the method. Finally, conclusions are drawn in Section 6.

2 Model problem and its discretization

In this article, we consider hyperbolic PDEs from structural dynamics. Their simplest instance is the classical
wave (or acoustic) equation, which we will select as model problem. Let Ω ⊂ Rd be an open connected domain in
d-dimensional space with Lipschitz boundary and let I = [0, T ] be the time domain with T > 0 denoting the final
time. We look for u : Ω× [0, T ] → R such that

ρ(x)∂ttu(x, t)− κ(x)∆u(x, t) = f(x, t) in Ω× (0, T ], (2.1)

u(x, t) = 0 on ∂Ω× (0, T ],

u(x, 0) = u0(x) in Ω,

∂tu(x, 0) = v0(x) in Ω,

where u0 and v0 are some initial displacement and velocity, respectively, ρ and κ are some positive valued coefficient
functions and we prescribe homogeneous Dirichlet boundary conditions for simplicity. In a standard Galerkin
discretization, we look for an approximation uh(., t) of u(., t) in a finite dimensional subspace Vh and test against
all functions in Vh, which leads to solving the semi-discrete problem (see for instance [10, 40])

M ü(t) +Ku(t) = f(t) for t ∈ [0, T ],

u(0) = u0,

u̇(0) = v0.

(2.2)

where K,M ∈ Rn×n are the stiffness and mass matrices, respectively. The time-dependent right-hand side vector
f(t) ∈ Rn accounts for the function f and potential non-homogeneous Neumann and Dirichlet boundary conditions.
Finally, u(t) ∈ Rn is the coefficient vector of the approximate solution uh(x, t) in a basis of Vh. Isogeometric analysis
consists in choosing spline functions from computer-aided-design (CAD) such as B-splines both for representing the
approximate solution and describing the geometry [1, 2]. Such functions follow a standardized construction in a
so-called parametric domain Ω̂ = (0, 1)d before being defined in the physical domain Ω. In dimension d = 1, the
B-spline basis {B̂i}ni=1 is constructed recursively from a knot vector Ξ := (ξ1, . . . , ξn+p+1), which is a sequence of
non-decreasing real values. The integers p and n denote the spline degree and spline space dimension, respectively.
A knot vector is called open if

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1.

Internal knots of multiplicity 1 ≤ m ≤ p give rise to Ck continuous spline spaces, denoted Sk
p,Ξ, where k = p−m. Our

work primarily focuses on (but is not restricted to) maximally smooth Cp−1 spaces obtained when the multiplicity
of each internal knot is 1; i.e. the so-called isogeometric k-method. In dimension d ≥ 2, the spline space is defined
as a tensor product of univariate spaces, which all follow a similar construction. The degree, space dimension
and continuity along each direction are collected in the vectors p = (p1, p2, . . . , pd), n = (n1, n2, . . . , nd) and
k = (k1, k2, . . . , kd), respectively, and we denote the resulting spline space Sk

p,Ξ (where the dependency on the
knot vectors Ξ1, . . . ,Ξd is specified by Ξ). In dimension d ≥ 2, it becomes convenient to label basis functions
with multi-indices i = (i1, i2, . . . , id) which are often identified with “linear” indices in the global numbering. This
identification permits a slight abuse of notation when writing

B̂i = B̂i = B̂1i1B̂2i2 . . . B̂did

where B̂lj denotes the jth function in the lth direction and 1 ≤ i ≤ n :=
∏d

l=1 nl is a global index which only depends
on i and n. In the isogeometric paradigm, these functions also describe the geometry via the spline parametrization
F : Ω̂ → Ω, which maps the parametric domain to the physical domain. Geometries described by such a map are
called single-patch. The basis functions over the physical domain are then defined as Bi = B̂i ◦ F−1 and the spline
spaces over the parametric and physical domains are

V̂h = span{B̂i : 1 ≤ i ≤ n} and Vh = span{Bi : 1 ≤ i ≤ n},
respectively, where 1 is the vector of all ones and vector inequalities are understood componentwise. For single-patch
geometries, the entries of the stiffness and mass matrices are

Kij =

∫
Ω̂

(∇B̂i(x̂))
TG(x̂)∇B̂j(x̂) and Mij =

∫
Ω̂

c(x̂)B̂i(x̂)B̂j(x̂) 1 ≤ i, j ≤ n (2.3)
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where G(x̂) := κ(F (x̂))|det(JF )|(JT
F JF )

−1, c(x̂) := ρ(F (x̂))|det(JF )| and JF = JF (x̂) denotes the Jacobian matrix
of F . As with any other standard Galerkin method, K and M are both symmetric and while M is positive definite,
K is generally only positive semidefinite (unless Dirichlet boundary conditions are prescribed on some portion of
the boundary). In isogeometric analysis, M is additionally nonnegative owing to the pointwise nonnegativity of the
B-spline basis functions.

NURBS functions enable the exact representation of a broader class of geometries (including conic sections)
and lead to similar expressions and properties for the system matrices. However, the range of geometries they may
describe is still far too limited for most industrial applications. For complex geometries, it may be necessary to
divide the physical domain into Np subdomains (or patches); i.e.

Ω =

Np⋃
r=1

Ωr

where each subdomain (or patch) Ωr is described by its own map Fr : Ω̂ → Ωr. Thus, a multipatch geometry is
just a collection of patches. The construction of spline spaces over multipatch geometries is rather straightforward,
though the notation becomes more cumbersome due to prolifying indices. Patches in isogeometric analysis are
analogous to elements in classical finite element discretizations. Therefore, the assembly of the stiffness and mass
matrices for isogeometric multipatch discretizations is analogously expressed as

K =

Np∑
r=1

RT
r KrRr and M =

Np∑
r=1

RT
r MrRr

where Kr and Mr are the local stiffness and mass matrices of the rth patch and Rr maps its local degrees of freedom
to global ones.

Despite the additional flexibility of multipatch geometries, they still fall short in describing the highly complex
shapes of industrial CAD models [41]. Such models commonly consist in multiple trimmed NURBS patches. Trim-
ming is a Boolean operation whereby parts of a geometry are joined, intersected or simply discarded. While these
operations change the visualization of the model, they do not change its mathematical description. The analysis
on trimmed geometries is particularly challenging for a variety of reasons, including integration on trimmed bound-
aries, imposition of essential boundary conditions, stability and conditioning issues [36, 42]. Trimming also alters
the structure of systems matrices, which heavily impacts the design of assembly algorithms and preconditioning
techniques. As a matter of fact, many developments in isogeometric analysis that rely on a tensor product structure
are not applicable to trimmed geometries.

For discretizing (2.2) in time, explicit methods are usually preferred for fast dynamic processes such as blasts
or impacts due to the physical restriction on the step size. Scores of methods have been proposed in the literature,
including the central difference, Wilson-θ and generalized α methods to name just a few. Most of them are
commonly included in textbooks [10, 11], which the reader may consult for details. The critical time step depends
on the method (see e.g. (1.1) for the central difference method in the undamped case) but in the undamped case
all explicit methods require solving a linear system with the mass matrix at least once in each iteration and is the
reason for mass lumping, which we describe in the next section.

3 Mass lumping

3.1 Row-sum mass lumping and its generalization

Despite the apparent downgrade in convergence rate, the row-sum technique remains very popular owing to its
simplicity and straightforward implementation. We define it through the application of a lumping operator [32].

Definition 3.1 (Lumping operator). Let B ∈ Rn×n. The lumping operator L : Rn×n → Rn×n is defined as

L(B) = diag(d1, . . . , dn)

where di =
∑n

j=1 |bij | for i = 1, . . . , n.

Since most mass lumping/scaling methods are defined algebraically as modifications to the consistent mass
matrix, it is convenient to introduce an order relation between symmetric matrices.

Definition 3.2 (Loewner partial order). For two symmetric matrices A,B ∈ Rn×n, we write A ⪰ B (respectively
A ≻ B) if A−B is positive semidefinite (respectively positive definite).

4



The Loewner partial order is a natural choice in our context since it is the matrix equivalent of bounding bilinear
forms. Indeed, if M and M̃ are some matrices stemming from the symmetric bilinear forms b, b̃ : Vh × Vh → R,
respectively, then

b̃(uh, uh) ≥ b(uh, uh) ∀uh ∈ Vh ⇐⇒ M̃ ⪰ M.

When the construction of M̃ is completely algebraic, we usually do not have an explicit representation of b̃(uh, uh),
but we might still bound it by understanding the relation between M̃ andM in the Loewner ordering. The argument
has already been used to good effect in [32] where it was shown that for two symmetric positive definite matrices
A,B ∈ Rn×n, the generalized eigenvalues of (A,L(B)) are always smaller or equal to those of (A,B), which is a
consequence of the fact that L(B) ⪰ B [32, Corollary 3.10]. The authors in [32] used eigenvalue bounds to prove
the result but there exist multiple short and elegant ways of reaching the same conclusion. For instance, if B is
nonnegative and one thinks of it as a weighted adjacency matrix, then L(B) is the degree matrix and L(B)−B is
its graph Laplacian, which plays a prominent role in spectral clustering techniques [43]. A direct computation then
shows that xT (L(B)− B)x = 1

2

∑n
i,j=1(xi − xj)

2bij ≥ 0 for any x ∈ Rn. This technique will be employed later in
our paper.

Unfortunately, in the context of isogeometric analysis, the row-sum technique performs poorly in higher dimen-
sions, even for moderate spline degrees. Therefore, in [32], the authors considered increasing the bandwidth in order
to improve the accuracy, while still underestimating the generalized eigenvalues of (A,B). It led to defining a finite
partially ordered sequence of banded matrices with increasing bandwidth

L(B) = P1 ⪰ P2 ⪰ · · · ⪰ Pn−1 ⪰ Pn = B

where P1 coincides with the usual row-sum lumped mass matrix, P2 is tridiagonal, P3 is pentadiagonal and so forth.
This strategy was then generalized to higher dimensions for Kronecker product matrices by lumping the factor
matrices defining the Kronecker product.

3.2 Block mass lumping

In general, for nontrivial geometries and coefficients, the mass matrix cannot be expressed as a Kronecker product
and the techniques described in [22, 16, 12] are not straightforwardly applicable. In [32], the authors suggested
computing the nearest Kronecker product approximation and substituting it to the consistent mass. However, the
loss of accuracy induced by the approximation depends on the singular value decay of a reordered matrix and is
independent of the discretization parameters. Not only may the approximation be rather crude but combining it
with mass lumping also does not give a theoretical guarantee of improving the CFL, although it was observed in
all practically relevant cases. Both issues will be addressed in this section. The key observation is that, although
the mass matrix generally cannot be expressed as a Kronecker product, it still inherits some favorable structure
from the tensor product basis functions which we will exploit for designing algebraic mass lumping techniques. We
will first describe this structure in detail for the single-patch case and then propose a block generalization of the
methods presented in [32]. From there, the multipatch case naturally follows.

Thanks to the local support property of the basis functions commonly used in isogeometric analysis (e.g. B-
splines and NURBS), maximally smooth discretizations of 1D problems lead to banded matrices, where the band-
width is the spline degree p [44]. For higher dimensional problems, the tensor product construction of the basis
functions leads to hierarchical banded matrices that were defined inductively in [44]. Without loss of generality, the
framework introduced in this section assumes a lexicographical type labeling of the degrees of freedom, which may
always be recovered after a suitable reordering of the system matrices.

Definition 3.3 (1-level banded matrix). A matrix B ∈ Rn×n is called 1-level banded (or simply banded) with
bandwidth b if

|i− j| > b =⇒ bij = 0 i, j = 1, . . . , n.

Definition 3.4 (d-level banded matrix). A block matrix B ∈ Rn1n2...nd×n1n2...nd partitioned as

B =

 B1,1 · · · B1,n1

...
. . .

...
Bn1,1 · · · Bn1,n1


is called d-level banded with bandwidths (b1, b2, . . . , bd) if each block Bi,j ∈ Rn2...nd×n2...nd is (d − 1)-level banded
with bandwidths (b2, . . . , bd) and

|i− j| > b1 =⇒ Bi,j = 0 i, j = 1, . . . , n1.
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This hierarchical notion of bandedness is related to the standard notion of bandedness through the bandwidths
and block sizes. In the rest of the paper we will denote rk =

∏d
j=k+1 nj the size of the matrices on the kth

hierarchical level (with k < d). On the finest level, the “blocks” reduce to scalars and we set rd = 1.

Lemma 3.5. Let B ∈ Rn1n2...nd×n1n2...nd be d-level banded with bandwidths b = (b1, b2, . . . , bd) and block sizes
r = (r1, r2, . . . , rd). Then B has bandwidth

b · r =

d∑
i=1

biri. (3.1)

Proof. The proof is by induction on the dimension d. For d = 1, B is 1-level banded (i.e. banded) with bandwidth
bd and the property (3.1) holds since rd = 1. We now verify the property for dimension d assuming it holds for
dimension d− 1. Let B be d-level banded with bandwidths b = (b1, b2, . . . , bd). Then, by definition,

B =

 B1,1 · · · B1,n1

...
. . .

...
Bn1,1 · · · Bn1,n1


and each block Bi,j is (d − 1)-level banded with bandwidths (b2, . . . , bd) and Bi,j = 0 if |i − j| > b1. Thus, the
bandwidth of B is given by the sum of b1r1 and the bandwidth of Bi,j . Since Bi,j is (d − 1)-level banded, the
induction hypothesis completes the proof.

Definitions 3.3 and 3.4 only provide a description of the sparsity. In order to build a working framework, they
must be complemented with Definitions 3.6 and 3.7 that describe both symmetry and spectral properties.

Definition 3.6. The sets of symmetric positive semidefinite (SPSD) and symmetric positive definite (SPD) matrices
of size n are defined, respectively, as

Sn = {B ∈ Rn×n : B = BT , B ⪰ 0} and S+
n = {B ∈ Rn×n : B = BT , B ≻ 0}.

The next definition provides a hierarchical generalization.

Definition 3.7. For block matrices B ∈ Rn1n2...nd×n1n2...nd partitioned as

B =

 B1,1 · · · B1,n1

...
. . .

...
Bn1,1 · · · Bn1,n1


where Bi,j ∈ Rn2...nd×n2...nd , we define the sets

S(n1,n2,...,nd) = {B ∈ Sn : Bi,j ∈ S(n2,...,nd)} and S+
(n1,n2,...,nd)

= {B ∈ S+
n : Bi,j ∈ S(n2,...,nd)}

where n =
∏d

i=1 ni.

Given a vector n = (n1, n2, . . . , nd), we will often denote the corresponding sets Sn and S+
n , respectively. Clearly,

if B ∈ Sn (or S+
n ) is d-level banded with bandwidths b = (b1, b2, . . . , bd), then b ≤ n− 1 componentwise, where 1

is the vector of all ones.

Lemma 3.8. For any vector n = (n1, n2, . . . , nd) ∈ Nd,

S(n1,n2,...,nd) ⊆ S(n1,n2,...,nd−1,rd−1) ⊆ S(n1,n2,...,nd−2,rd−2) ⊆ · · · ⊆ S(n1,r1) ⊆ Sn,

S+
(n1,n2,...,nd)

⊆ S+
(n1,n2,...,nd−1,rd−1)

⊆ S+
(n1,n2,...,nd−2,rd−2)

⊆ · · · ⊆ S+
(n1,r1)

⊆ S+
n .

Proof. We prove the inclusions from left to right. Let B ∈ S(n1,n2,...,nd). By definition, on the (d− 1)th hierarchical
level the matrices are in Snd

= Srd−1
and the first inclusion trivially follows. On the (d− 2)th level the matrices are

in S(nd−1,rd−1) ⊆ Srd−2
. Thus, B ∈ S(n1,n2,...,nd−2,rd−2). We then repeatedly apply the same argument by moving up

the hierarchical structure and realizing that at level k (with 1 ≤ k ≤ d− 2) the matrices are in S(nk+1,rk+1) ⊆ Srk .
The proof of the second statement is completely analogous.

Thus, d-level banded matrices in Sn (or S+
n ) have a hierarchical block banded structure with SPSD blocks. The

following lemma shows that the isogeometric mass matrix falls in this category.

Lemma 3.9. Let M ∈ Rn1...nd×n1...nd be a d-dimensional isogeometric single-patch mass matrix with associated
dimensions vector n = (n1, n2, . . . , nd). Then
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1. M is d-level banded,
2. M ∈ S+

n .

Proof. We prove the two statements below.

1. The key observation is noticing that the mass matrices M and M̂ in the physical and parametric domains,
respectively, have the same sparsity pattern and therefore the same hierarchical block bandedness. Indeed,
their entries are defined as (see (2.3))

Mij =

∫
Ω̂

c(x̂)B̂i(x̂)B̂j(x̂) and M̂ij =

∫
Ω̂

B̂i(x̂)B̂j(x̂).

From the positivity of the B-spline (or NURBS) basis and the fact that c(x̂) := ρ(F (x̂))|det(JF (x̂))| > 0, it
follows that Mij = 0 ⇐⇒ M̂ij = 0. Thus, M and M̂ have the same sparsity pattern. Moreover, since M̂
is the mass matrix in the parametric domain

M̂ =

d⊗
i=1

M̂i

where M̂i ∈ Rni×ni is banded with bandwidth bi for i = 1, . . . , d. Thus, by definition, M̂ is d-level banded
with bandwidths (b1, b2, . . . , bd) and consequently so is M.

2. We start at the top of the hierarchical structure and work our way downward. Firstly, since the mass matrix
is symmetric positive definite M ∈ S+

n . Secondly, it may be written as

M =

M1,1 · · · M1,n1

...
. . .

...
Mn1,1 · · · Mn1,n1

 (3.2)

where Mi,j ∈ Rr1×r1 . We will show that Mi,j ∈ Sr1 for all i, j = 1, . . . n1. Let B̂l ∈ Rnl denote the vector of

basis functions {B̂li}nl
i=1 along the lth direction in the parametric domain. The matrix Mi,j is then given by

Mi,j =

∫
Ω̂

c(x̂)B̂1iB̂1j︸ ︷︷ ︸
gij

d⊗
l=2

B̂lB̂
T
l =

∫
Ω̂

gij

d⊗
l=2

B̂lB̂
T
l . (3.3)

From (3.3), Mi,j is evidently symmetric. Moreover, thanks to the pointwise nonnegativity of the basis func-
tions, gij ≥ 0 and consequently, for any vector x ∈ Rr1 ,

xTMi,jx =

∫
Ω̂

gij(x
T

d⊗
l=2

B̂l)
2 =

∫
Ω̂

gijv
2 ≥ 0 (3.4)

where v = xT
⊗d

l=2 B̂l is a function in a finite element subspace. Thus, (3.3) and (3.4) together show that
Mi,j ∈ Sr1 . Finally, since M ∈ S+

n and Mi,j ∈ Sr1 for all i, j = 1, . . . n1, then M ∈ S+
(n1,r1)

by definition.

We now repeat the same argument by first showing that each Mi,j can itself be expressed as a block matrix
similarly to (3.2) with blocks of size r2 × r2. By repeating the arguments in (3.3) and (3.4) one easily shows
that each of these blocks is in Sr2 and consequently Mi,j ∈ S(n2,r2). Finally, moving up one level, we deduce

that M ∈ S+
(n1,n2,r2)

. By recursively applying the same arguments, we finally prove that M ∈ S+
n .

Remark 3.10. For single-patch isogeometric discretizations, the dimensions vector n corresponds to the number
of basis functions along each parametric direction and is always uniquely determined by the number of subdivisions,
order, smoothness and boundary conditions. Moreover, for maximally smooth discretizations, the bandwidths are
equal to the spline degrees such that b = p.

The definitions above also accommodate vector-valued PDEs such as linear elasticity. In this context, the mass
matrix is a (d+1)-level banded matrix of bandwidths (0, b1, . . . , bd) (i.e. a block diagonal matrix). Moreover, if each
component of the solution is discretized using the same scalar spaces, then M ∈ S+

(d,n), where n is the dimensions

vector for a scalar problem.
We stress that Lemma 3.9 is a sole consequence of the tensor product construction of the basis functions and

their pointwise nonnegativity and does not depend on the geometry mapping. In particular, it shows that the
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isogeometric mass matrix is not only symmetric positive definite, but actually enjoys additional structure. For
instance S+

(n1,n2)
, typically encountered for 2-dimensional discretizations, is the set of SPD block matrices with

SPSD blocks. This structure is key to extending mass lumping techniques to nontrivial problems in dimension
d ≥ 2. We now define the block analogue of the lumping operator introduced in [32].

Definition 3.11 (Block lumping operator). Let B ∈ Rn1n2×n1n2 be a block matrix partitioned as

B =

 B1,1 · · · B1,n1

...
. . .

...
Bn1,1 · · · Bn1,n1


where Bi,j ∈ Rn2×n2 . The block lumping operator L is defined as

L(B) = diag(D1, . . . , Dn1) :=

D1 · · · 0
...

. . .
...

0 · · · Dn1


where Di =

∑n1

j=1 Bi,j for i = 1, . . . , n1.

Whereas the (scalar) lumping operator in Definition 3.1 returns a diagonal matrix, the block lumping operator
returns a block diagonal matrix. We establish some useful consequences of this definition for the sets Sn and S+

n .

Lemma 3.12. For any vector n = (n1, n2, . . . , nd) ∈ Nd,

L(Sn) ⊆ Sn and L(S+
n ) ⊆ S+

n .

Proof. Let B ∈ Sn. The result for d = 1 is obvious from Definition 3.1. Now assume that d ≥ 2 and let L(B)
be constructed following Definition 3.11. The proof simply follows from the stability of Sn under addition: since
Bi,j ∈ S(n2,...,nd) for all i, j = 1, . . . n1, then

Di =

n1∑
j=1

Bi,j ∈ S(n2,...,nd).

Since L(B) is block diagonal with SPSD blocks, it is itself SPSD and L(B) ∈ Sn. The proof of the second statement
is completely analogous (noting that for matrices B ∈ S+

n all diagonal blocks and diagonal sub-blocks down the
hierarchy are positive definite).

The next lemma is the block generalization of [32, Lemma 3.9].

Lemma 3.13. Let B ∈ S+
n with n = (n1, . . . , nd) ∈ Nd and d ≥ 2. Then,

L(B) ⪰ B.

Proof. Let B ∈ S+
n ,

B =

 B1,1 · · · B1,n1

...
. . .

...
Bn1,1 · · · Bn1,n1

 , x =

 x1

...
xn1

 .

Then, using the fact that Bi,j = BT
j,i = Bj,i and Bi,j ⪰ 0 for all i, j = 1, . . . , n1,

xT (L(B)− B)x =

n1∑
i=1

xT
i

 n1∑
j=1

Bi,j

xi −
n1∑

i,j=1

xT
i Bi,jxj

=
1

2

 n1∑
i=1

xT
i

 n1∑
j=1

Bi,j

xi − 2

n1∑
i,j=1

xT
i Bi,jxj +

n1∑
j=1

xT
j

(
n1∑
i=1

Bj,i

)
xj


=

1

2

n1∑
i,j=1

xT
i Bi,jxi − 2xT

i Bi,jxj + xT
j Bi,jxj

=
1

2

n1∑
i,j=1

(xi − xj)
TBi,j(xi − xj) ≥ 0,

which proves that L(B)− B ⪰ 0.
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Remark 3.14. Interestingly, Lemma 3.13 also holds for the larger set of symmetric block matrices with SPSD
blocks. Moreover, denoting e the vector of all ones, (1, e) is an eigenpair of (B,L(B)) regardless of whether B is
nonnegative. For nonnegative matrices and d = 1, our results simply reduce to those of [32].

In [32], the authors considered the matrix splitting B = Di+Ri, where Di consists of all super and sub-diagonals
strictly smaller than i and Ri is the remainder. Lumped matrices were then defined by lumping the remainder
Ri and adding it to Di. The block lumped matrices introduced in Definition 3.15 are the block analogue of those
constructed in [32] and feature blockwise operations instead of entrywise operations.

Definition 3.15 (Block lumped matrices). Let B ∈ S+
n with n ∈ Nd and d ≥ 2 and consider the matrix splitting

B = Di +Ri where Di consists of all super and sub block diagonals strictly smaller than i and Ri is the remainder.
We define the sequence of matrices Pi = Di + L(Ri) for i = 1, . . . , n1. In particular, we observe that P1 = L(B)
and Pn1

= B.
By construction, Pi only reduces the highest hierarchical level of bandedness: if B is d-level banded with

bandwidths (b1, b2, . . . , bd), then Pi (with i ≤ b1 + 1) is d-level banded with bandwidths (i − 1, b2, . . . , bd). Figure
3.1 shows an example for a 2-level banded matrix P2 with bandwidths (1, 3) (block tridiagonal matrix) constructed
from a 2-level banded matrix B with bandwidths (3, 3) (block septadiagonal matrix). The next theorem provides
a generalization of [32, Theorem 3.21]. From now on, we will always assume that the eigenvalues are ordered
increasingly.
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Figure 3.1: Block tridiagonal matrix P2 constructed from a block septadiagonal matrix B

Theorem 3.16. Let B ∈ S+
n with n = (n1, . . . , nd) ∈ Nd and d ≥ 2. Then, the sequence of matrices {Pi}n1

i=1

constructed from B according to Definition 3.15 satisfies the following properties:

1. Λ(B,Pi) ⊂ (0, 1] for all i = 1, . . . , n1,
2. λk(B,Pi) ≤ λk(B,Pi+1) for all k and any given i = 1, . . . , n1 − 1,
3. λn(B,Pi) = 1 for all i = 1, . . . , n1.

Proof. The proof is analogous to [32, Theorem 3.21] using Lemma 3.13 and Remark 3.14.

The proof arguments of Theorem 3.16 also show that the block lumped matrices satisfy

L(B) = P1 ⪰ P2 ⪰ · · · ⪰ Pn1−1 ⪰ Pn1 = B. (3.5)

This ordering implies that for a matrix A ∈ Sn,

λk(A,L(B)) = λk(A,P1) ≤ λk(A,P2) ≤ · · · ≤ λk(A,Pn1−1) ≤ λk(A,Pn1
) = λk(A,B) 1 ≤ k ≤ n.

Clearly, block diagonal matrices such as P1 are very appealing given that linear systems can be solved in parallel for
each block. The block tridiagonal case can still be treated efficiently by a block forward elimination and backward
substitution algorithm; see [45, Section 4.5.1] for the details.
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3.3 Hierarchical mass lumping

Mass lumping can also be applied down the hierarchical structure in many different ways. The following lemma
sets the foundation and generalizes Lemma 3.12.

Lemma 3.17. If B ∈ S+
n with n = (n1, . . . , nd) ∈ Nd, then Pk ∈ S+

n for all k = 1, . . . , n1.

Proof. The case d = 1 was already proved in [32, Theorem 3.21]. For d ≥ 2, by definition Pk = Dk + L(Rk) and is
partitioned similarly to (3.2) with blocks Pi,j for i, j = 1, . . . , n1. Since Sn is closed under addition, Pi,j ∈ S(n2,...,nd)

for all i, j = 1, . . . , n1. Moreover, Pk ⪰ B ≻ 0 implies that Pk ∈ S+
n and consequently Pk ∈ S+

n .

Although P1 = L(B) is block diagonal, for high-dimensional problems the size of each block may still be quite
large. However, following Lemma 3.17, P1 ∈ S+

n , which suggests recursively applying the lumping operator on its
diagonal blocks, which are in S+

(n2,...,nd)
. On the second to last level, all diagonal blocks are in S+

nd
. At this stage, if

B is nonnegative, applying the standard row-sum technique results in the standard row-sum lumped mass matrix.
As we progress down the hierarchical structure, the number of diagonal blocks increases but their size decreases.
Indeed, on the kth level, the number of diagonal blocks is qk =

∏k
j=1 nj and their size is rk =

∏d
j=k+1 nj such that

for all k the product qkrk = n is the size of the full matrix. The following definition formalizes the procedure.

Definition 3.18 (Hierarchical lumped matrices). Let B ∈ S+
n with n = (n1, . . . , nd) ∈ Nd and d ≥ 2. Set

H1 = L(B) and let Hk for 1 ≤ k ≤ d− 1 be such that

Hk = diag(Dk,1, . . . , Dk,qk)

where qk =
∏k

j=1 nj . Then, Hk+1 is defined from Hk as

Hk+1 = diag(L(Dk,1), . . . ,L(Dk,qk)).

Figure 3.2, for example, shows the sparsity pattern of a matrix B ∈ S+
(n1,n2,n3)

together with its hierarchical

lumped mass matrices Hk for k = 1, 2, 3. By construction, hierarchical mass lumping reduces the bandwidth down
the hierarchical structure: if B is d-level banded with bandwidths (b1, b2, . . . , bd), then Hk is d-level banded with
bandwidths (0, . . . , 0, bk+1, . . . , bd). Similarly to (3.5), hierarchical lumped matrices also satisfy an order relation.

Corollary 3.19. Let B ∈ S+
n with n ∈ Nd and d ≥ 2. Then, the sequence of matrices {Hk}dk=1 constructed from

B according to Definition 3.18 satisfies
Hd ⪰ Hd−1 ⪰ · · · ⪰ H1.

Proof. The proof is an obvious consequence of Lemma 3.13.

(a) B (b) H1 (c) H2 (d) H3

Figure 3.2: Sparsity patterns

3.4 Multipatch mass lumping

We recall that in the multipatch setting, the stiffness and mass matrices are expressed as

K =

Np∑
r=1

RT
r KrRr and M =

Np∑
r=1

RT
r MrRr

where Np is the number of patches, Kr and Mr are the local stiffness and mass matrices of the rth patch and
Rr maps its local degrees of freedom to global ones. Since Mr are single-patch mass matrices, it motivates the
following definition of multipatch mass lumping.
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Definition 3.20 (Multipatch lumped matrices). Let B =
∑Np

r=1 R
T
r BrRr be a multipatch matrix, where Br ∈ S+

n

for all r = 1, . . . , Np. We define Pi =
∑Np

r=1 R
T
r Pr,irRr as a multipatch lumped matrix, where Pr,ir is constructed

from Br following Definition 3.15 and i = (i1, . . . , iNp) is a multi-index.

For notational convenience, we will assume that the discretization parameters are identical for each patch such
that we may choose ir = i for all patches r = 1, . . . , Np and simply denote Pi the resulting multipatch lumped
mass matrix. Although this notation conflicts with the single-patch case, it will always be clear from the context
whether Pi refers to a single-patch or multipatch lumped mass matrix. The next lemma generalizes our previous
findings to the multipatch case.

Lemma 3.21. Let B =
∑Np

r=1 R
T
r BrRr, where Br ∈ S+

n for all r = 1, . . . , Np. Then the sequence of matrices
{Pi}n1

i=1 constructed from B following Definition 3.20 satisfies

P1 ⪰ P2 ⪰ · · · ⪰ Pn1−1 ⪰ Pn1 = B.

Proof. First recall that for any symmetric matrices A,B ∈ Rn×n and any V ∈ Rn×m, if A ⪰ B, then V TAV ⪰
V TBV [46, Theorem 7.7.2(a)]. The result then immediately follows since for any 1 ≤ r ≤ Np and any index
1 ≤ i < n1,

Pr,i ⪰ Pr,i+1, see (3.5)

=⇒ RT
r Pr,iRr ⪰ RT

r Pr,i+1Rr,

=⇒ Pi =

Np∑
r=1

RT
r Pr,iRr ⪰

Np∑
r=1

RT
r Pr,i+1Rr = Pi+1.

The statement then follows from an inductive application of the previous inequality.

For high-dimensional problems, it might be useful to resort to hierarchical mass lumping techniques on the
single-patch level, as described in Section 3.3. There is an obvious analogue of Definition 3.20 and Lemma 3.21 for
such cases.

The purpose of mass lumping is first and foremost to reduce the block bandedness of the mass matrix and
guarantee a CFL condition that cannot be worse than the original one. However, generally speaking, mass lumping
does not significantly improve the CFL while it might undermine the accuracy. Multipatch problems are not exempt
and the issue already originates on the single-patch level, before local matrices are merged into the global one. This
merging process is identical to the assembly procedure of classical finite element methods, which is not surprising
given the analogy between patches and elements. Thus, the proof of the following lemma is well-known (see e.g.
[47, 48]), but is repeated for the sake of completeness and notational consistency.

Lemma 3.22. Let A =
∑Np

r=1 R
T
r ArRr and B =

∑Np

r=1 R
T
r BrRr, where Ar ∈ Sn and Br ∈ S+

n for all r = 1, . . . , Np.
Then,

min
r

λmin(Ar,Br) ≤ λmin(A,B), λmax(A,B) ≤ max
r

λmax(Ar,Br).

Proof. We first note that the assembly of global multipatch matrices can be written out more compactly as

A =

Np∑
r=1

RT
r ArRr = RTAR, B =

Np∑
i=1

RT
r BrRr = RTBR

where RT = [RT
1 , . . . , R

T
Np

], A = diag(A1, . . . ,ANp
) and B = diag(B1, . . . ,BNp

). Consequently, by the Courant-

Fischer theorem [46, Theorem 4.2.6],

λmin(A,B) = min
x̸=0

xTRTARx

xTRTBRx
= min

y∈V
y ̸=0

yTAy

yTBy
≥ min

y ̸=0

yTAy

yTBy
= min

r
λmin(Ar,Br).

where V is the space spanned by the columns of R. Similarly,

λmax(A,B) = max
x̸=0

xTRTARx

xTRTBRx
= max

y∈V
y ̸=0

yTAy

yTBy
≤ max

y ̸=0

yTAy

yTBy
= max

r
λmax(Ar,Br).

The upper bound of Lemma 3.22 may be quite tight and is an incentive for acting on the single-patch matrices
before assembling the global ones.
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3.5 Solving linear systems with the lumped mass matrix

In the single-patch case, linear systems with the lumped mass matrices are conveniently solved using sparse Cholesky
factorizations; i.e. P = LLT , where L is a lower triangular matrix. In isogeometric analysis, the fill-in of the
Cholesky factor is well described by the envelope of the matrix [49].

Definition 3.23. The envelope of a matrix B ∈ Rn×n is defined as

env(B) = {(i, j) : 1 ≤ i ≤ n, Ji(B) ≤ j < i}, Ji(B) = min{j : 1 ≤ j ≤ i, bij ̸= 0}.

In words, Ji(B) is simply the index of the first nonzero entry in the ith row of the lower triangular part of
B. The envelopes of the consistent mass and lumped mass matrices of Figure 3.2 are shown in Figure 3.3. It is
well-known that any fill-in of the Cholesky factor can only occur within the envelope [50]. For this reason, many
techniques for minimizing the fill-in are based on minimizing the envelope of a permuted matrix. The mass lumping
techniques discussed in this work reduce the bandwidth and envelope of the consistent mass, thereby significantly
accelerating sparse direct solvers. Indeed, a direct application of Lemma 3.5 shows that the bandwidth of Hk is

(0, . . . , 0, bk+1, . . . , bd) · (r1, . . . , rk, rk+1, . . . , rd) =

d∑
i=k+1

biri.

In comparison to the bandwidth of B, the bandwidth of Hk suppresses the first k largest contributors to the sum.
For multi-dimensional problems, it is a compelling argument for first reducing the bandwidth at the top of the
hierarchy and then working our way downward.

(a) env(M) (b) env(H1) (c) env(H2) (d) env(H3)

Figure 3.3: Envelope of the matrices in Figure 3.2

While solving linear systems with the lumped mass matrix in the single-patch case is relatively straightforward,
the multipatch case deserves some more explanations. The multipatch lumped mass matrix (after potentially a
symmetric permutation) is a generalized saddle point matrix [51], expressed as

P =

(
D C
CT X

)
with D = diag(D1, . . . , DNp).

We consider the linear system (
D C
CT X

)(
x
y

)
=

(
f
g

)
.

After block Gaussian elimination, we solve the upper block triangular system(
D C
0 S

)(
x
y

)
=

(
f
g̃

)
(3.6)

where S = X − CTD−1C is the Schur complement of D in P and g̃ = g − CTD−1f . Contrary to the consistent
mass matrix (which features a similar structure), the Schur complement of the lumped mass matrix can be formed
explicitly and cheaply owing to its sparsity and simple block diagonal structure. Once the Schur complement is
formed, which is done once and for all, (3.6) can be solved by backward substitution.
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4 Outlier removal

4.1 Deflation techniques

Mass lumping generally mitigates but does not completely eliminate outlier frequencies from the spectrum. Thus,
it is usually combined with dedicated outlier removal techniques. Unfortunately, the methods described in [14, 22,
16, 12] are only applicable to highly structured problems rarely met in practical applications. Moreover, numerical
experiments show that predefined penalization terms barely help remove outliers and must instead be tailored to the
specific problem at hand. For this reason, we present in this section a robust and algebraic outlier removal technique
based on low-rank perturbations. Our strategy consists in deflating the spectrum from its largest eigenvalues, while
preserving the smallest ones. Of course, this choice of scaling assumes that the dynamics are completely resolved by
the low-frequency part of the spectrum, which is often (nearly) the case. We first recall some preliminary results,
providing the theoretical foundation of the method.

Lemma 4.1 ([52, Theorem VI.1.15]). Let A,B ∈ Rn×n be symmetric matrices with B positive definite. Then, all
generalized eigenvalues of (A,B) are real and there exists an invertible matrix U ∈ Rn×n such that

UTAU = D, UTBU = I,

where D = diag(λ1, . . . , λn) is a real diagonal matrix containing the eigenvalues.

Definition 4.2 (Scaled matrix pencil). Let A,B ∈ Rn×n be symmetric matrices with B positive definite and f , g
be two functions defined on the spectrum of (A,B). The scaled pencil (Ā, B̄) is defined as

Ā = A+ V f(D2)V
T ,

B̄ = B + V g(D2)V
T ,

where V = BU2 ∈ Rn×r, with U2 = [un−r+1, . . . ,un] the matrix formed by the last r B-orthonormal eigenvectors
of (A,B) and D2 = diag(λn−r+1, . . . , λn) ∈ Rr×r the diagonal matrix formed by the last r eigenvalues with r ≪ n.

The next theorem shows that this definition provides the desired scaling.

Theorem 4.3 (Deflation of matrix pencils). Let A,B ∈ Rn×n be symmetric matrices with B positive definite and
(Ā, B̄) be the scaled pencil introduced in Definition 4.2. Then,

• The eigenvectors of (A,B) and (Ā, B̄) are the same.
• The eigenvalues of (Ā, B̄) are given by:

λ̄ik =

{
λk for k = 1, . . . , n− r,
λk+f(λk)
1+g(λk)

for k = n− r + 1, . . . , n.

Proof. We first note that the matrices Ā and B̄ can be rewritten as

Ā = A+BU diag(0, f(D2))U
TB,

B̄ = B +BU diag(0, g(D2))U
TB,

where diag(0, f(D2)),diag(0, g(D2)) ∈ Rn×n are the block diagonal matrices obtained by appending zeros to f(D2)
and g(D2), respectively, and U = (U1, U2) is the matrix of eigenvectors. Verifying that ui is an eigenvector of (Ā, B̄)
for i = 1, . . . , n is straightforward. Moreover, since the matrix pencils (Ā, B̄) and (UT ĀU, UT B̄U) are equivalent
[53, Chapter 15],

Λ(Ā, B̄) = Λ(UT ĀU, UT B̄U) = Λ(D + diag(0, f(D2)), I + diag(0, g(D2))) = {λk}n−r
k=1 ∪

{
λk + f(λk)

1 + g(λk)

}n

k=n−r+1

,

where the second equality follows from Lemma 4.1.

Remark 4.4. In numerical linear algebra, deflation refers to the removal of unwanted eigenvalues. The result of
Theorem 4.3 is analogous to deflation “by substraction”, which originated from the early work of Hotelling [54].
The reader may refer to [53, 55] for an overview of deflation techniques.

The previous theorem allows to map the largest eigenvalues of (A,B) to virtually any real number. However,
the transformation must be carefully chosen such that it does not reduce too much the outlier frequencies. Indeed,
since the eigenvectors are not affected by the transformation, if outlier frequencies are mapped to low frequencies,
their spurious eigenvectors will artificially enter the solution, which might have disastrous consequences for the
dynamics. We give below some suitable choices for the functions f and g that avoid this issue.
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1. Set f(λ) = λn−r − λ and g(λ) = 0.
2. Set f(λ) = 0 and g(λ) = λ

λn−r
− 1.

3. More generally, choose any function g(λ) (defined on the spectrum of (A,B)) and set f(λ) = λn−r(1+g(λ))−λ.

In the first case, a negative semidefinite perturbation is added to the stiffness matrix while in the second case, a
positive semidefinite perturbation is added to the mass matrix. The latter has already been proposed in [27, 28]
as a mass scaling strategy (referred therein as spectral scaling and mass tailoring, respectively). The nature of the
perturbation in the third case depends on the specific choice of functions. In the remaining part of the article, we
will confine ourselves to the choices of f and g listed above, which all lead to the same transformed eigenvalues,
given by

λ̄k =

{
λk for k = 1, . . . , n− r,

λn−r for k = n− r + 1, . . . , n.

The result, graphically illustrated in Figure 4.1, consists in shaving off the upper part of the spectrum. Note
that in our context λn−r is the largest “regular” (or non-outlier) eigenvalue. In principle, it could be replaced
with a cutoff value, as suggested in [27, 28], to avoid computing an additional eigenvalue. However, choosing λn−r

preserves the eigenvalue numbers and prevents spurious eigenfunctions from moving to the lower to intermediate
frequency part of the spectrum. Thus, we prefer computing this additional eigenvalue, which in practice barely
introduces any overhead.
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Figure 4.1: Truncation of the largest eigenvalues

Clearly, once the r + 1 largest eigenpairs have been computed, the increase in critical time step is known. For
instance, for the central difference method in the undamped case (see (1.1))

∆̄tc
∆tc

=

√
λn

λn−r
.

On the one hand, Theorem 4.3 circumvents the lack of robustness from predefined perturbations terms. On the
other hand, the cost for its implementation is also much higher since it involves a few eigenpairs, which must be
computed on a case by case basis. We first focus on the rationale of our method and discuss its computational cost
more thoroughly in Section 4.2.

As we have seen, we may deflate the spectrum by either perturbing the mass, stiffness or both. In order to
align ourselves with common practice, which tends to only modify the mass matrix, we propose a two-step lumping-
scaling strategy: we first approximate the mass matrix with one of the lumping strategies proposed in Section 3
(or, alternatively, any suitable ad hoc mass lumping technique) and then scale the lumped mass matrix to remove
persistent outliers. Note that the scaled mass matrix is generally completely dense and must obviously never be
formed explicitly (in contrast to the method proposed in [27]). Instead, it is represented implicitly by only storing
the lumped mass matrix and the terms V and g(D2) defining the low-rank perturbation. Moreover, since the
perturbation is low-rank, the scaled mass matrix may be easily inverted thanks to the Woodbury matrix identity
[56] leading to

B̄−1 = B−1 − U2(g(D2)
−1 + Ir)

−1UT
2 . (4.1)

Since g(D2) is diagonal (and nonsingular), (g(D2)
−1+ Ir)

−1 can be formed explicitly. Thus, solving a linear system
with the scaled mass matrix only requires solving a linear system with the lumped mass matrix and computing
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a matrix-vector multiplication with a low-rank matrix. While the former uses standard techniques, as described
in Section 3.5, the latter only requires O(rn) additional flops. Thus, if the perturbation’s rank is relatively small,
these matrix-vector multiplications do not introduce any significant overhead. Due to repeated matrix-vector
multiplications with the stiffness matrix in the time stepping scheme, the cost incurred by instead scaling the
stiffness matrix is the same and eventually the choice is just a matter of taste. The method described herein is very
general and could even be beneficial for practitioners using the consistent mass. Indeed, the scaling does not effect
the smallest eigenpairs and therefore preserves the higher order convergence characterizing the consistent mass.

Nevertheless, the strategy may seem rather impractical given that it requires explicit knowledge of the outlier
eigenvalues and associated eigenvectors, whose number grows under mesh refinement [12]. Surprisingly, this aspect
was completely neglected in earlier works [27, 28]. Several arguments underpin our strategy. Firstly, in contract to
classical C0 finite elements for which similar methods were proposed, maximally smooth Cp−1 spline discretizations
feature far fewer outlier eigenvalues, as outlined in the Appendix. Secondly, although practitioners often rule out
(approximate) eigenvalue computations as prohibitively expensive, as we will discuss in the next subsection, the
workload for computing a few of the largest eigenpairs with the Lanczos method is very similar to performing a few
iterations of an explicit algorithm for dynamical simulations. Thus, it might be worthwhile spending a few iterations
to remove outliers if we might save up on hundreds of iterations later on, especially for long-time simulations. The
Lanczos method is the state-of-the-art solver for sparse symmetric generalized eigenvalue problems. It is briefly
summarized in the next section to support our argument.

4.2 Eigenvalue and eigenvector computations

The Lanczos method for generalized eigenproblems can be derived from the one for standard eigenproblems, after
transforming the generalized eigenproblem to standard form; e.g. via the Cholesky factorization of B. However,
further transformations are needed for computational efficiency and numerical stability. A basic version is presented
in Algorithm 4.1.

Input: Symmetric matrix pair (A,B) with B positive definite, starting vector b, number of iterations m
Output: m approximate eigenpairs of (A,B)

1: Set v0 = 0, v1 = b/∥b∥B , β1 = 0
2: for j = 1, 2, · · · ,m do
3: v = Avj

4: αj = (v,vj)
5: w = B−1v − αjvj − βjvj−1

6: βj+1 =
√

(v,w)
7: vj+1 = w/βj+1

8: end for

Algorithm 4.1: Lanczos method [55, Algorithm 9.1]

The vectors vj computed during the course of the iterations are stored along the columns of the matrix Vm; i.e.
Vm = [v1,v2, . . . ,vm], which by construction forms a B-orthonormal basis for the Krylov subspace

Km(C,b) = span(b, Cb, C2b, . . . , Cm−1b),

where C = B−1A and b is the starting vector, usually randomly chosen. The coefficients αj and βj are stored in
the symmetric tridiagonal matrix

Tm =


α1 β2

β2 α2
. . .

. . .
. . . βm

βm αm

 .

Rewriting line 5 in matrix form leads to the famous Lanczos decomposition

AVm = BVmTm + βm+1Bvm+1e
T
m.

From the B-orthonormality of Vm, we deduce that

V T
mAVm = Tm, V T

mBVm = Im.

Following the Rayleigh-Ritz procedure [53, 55], an approximate eigenpair (called Ritz pair) is defined as (λ,u) =
(µ, Vmq), where (µ,q) is an exact eigenpair of the much smaller tridiagonal matrix Tm.
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Remark 4.5. Due to the propagation of round-off errors, a reorthogonalization procedure is necessary to restore,
at least occasionally, the B-orthonormality of the Krylov basis. Implementations of the Lanczos method are
further supplemented with restarting procedures that truncate the Krylov basis to avoid its prohibitive growth
and potential storage issues. Common guidelines recommend using a basis size of m = 2k, where k is the number
of desired eigenpairs [57]. Finally, convergence checks are also implemented to serve as stopping criterion. We have
voluntarily left aside all those advanced topics to focus on the essential. The interested reader may refer to the
extensive literature for a detailed discussion; e.g. [57, 58, 53, 55].

Although we have implemented an eigensolver from scratch for the sake of writing this paper, it is absolutely not
necessary for applying the techniques presented herein. Several efficient implementations are available in software
packages and all the user has to worry about is supplying an algorithm for computing matrix-vector multiplications
with the stiffness matrix and solving linear systems with the (lumped) mass matrix, which depends on the nature
of the problem (e.g. single-patch, multipatch,...). If the number of iterations m remains relatively small, which is
ensured through restarting procedures, each iteration of the Lanczos method costs nearly as much as an iteration
of the central difference method. Moreover, the Lanczos method is known to converge very fast to eigenvalues that
are well separated from the rest of the spectrum [59, 53, 55], which is precisely a distinctive feature of outliers.
However, the time span of the simulation must be sufficiently large to amortize the cost of computing outlier
eigenpairs. In general, the shorter the simulation, the smaller the number of outliers we can afford computing.
Finally, although our method scales down outlier frequencies, it does not remove the corresponding outlier modes
that might negatively impact the solution.

The deflation procedure proposed in this section is very general and can in principle be applied to any type of
problem, including nontrivial (multipatch) geometries.

In the multipatch setting, it is possible to locally scale the single-patch system matrices, similarly to local
(elementwise) mass scaling techniques [27, 60]. Indeed, Lemma 3.22 reveals that the largest eigenvalues of (K,Pi)
could be controlled by the largest eigenvalues of (Kr,Pr,i) and suggests a scaling strategy directly targeting the
origin of the issue: at the patch level. While this strategy is generally cheaper than scaling (K,Pi) globally, it has
three shortcomings: firstly, the assembly into global matrices generally effects the smallest eigenvalues; secondly it
cannot remove outliers introduced by the C0 coupling of patch interfaces and finally, since the inverse of the global
mass matrix is not given by the assembly of the local inverses, we cannot directly apply (4.1) locally. To resolve the
third issue, we suggest locally scaling the stiffness matrix instead. Denoting K̄r the locally scaled stiffness matrix
and recalling that the perturbation is negative semidefinite (see Section 4.1), K̄r ⪯ Kr and

K̄ :=

Np∑
r=1

RT
r K̄rRr ⪯

Np∑
r=1

RT
r KrRr = K.

Consequently, λk(K̄,Pi) ≤ λk(K,Pi) ≤ λk(K,M). Thus, our strategy essentially boils down to computing a few
of the largest eigenpairs of a sequence of generalized eigenproblems on single patches, which is also well suited for
parallel computations. We will better assess the numerical properties of this method in Section 5.

Remark 4.6. For some special cases it is yet far more advantageous to exploit the structure of the problem. In
particular, for problems featuring a Kronecker product structure, all outliers can be removed by separately scaling
the 1D factor matrices. For maximally smooth spline discretizations of 1D problems, the number of outliers only
depends on the spline order, differential operator and type of boundary conditions [12, 16]. Consequently, the
number of eigenvalues computed scales linearly with the dimension and does not depend on the mesh size. For
instance, based on the upper bounds provided in [16], for a uniform Cp−1 discretization of the Laplace on the
hypercube (0, 1)d with homogeneous Dirichlet boundary conditions, only d(p− 1) eigenpairs are required to remove
O(nd−1(p− 1)) outliers, where n is the dimension of the univariate spline space [12]. This method also offers some
advantages over the ones presented in [12, 16]. Firstly, its implementation is straightforward: it does not require a
change of basis, the standard B-spline basis is sufficient. Secondly, it seems more robust than the method presented
in [12], which generally stumbles on domains with curved boundaries, even if the mass matrix is a Kronecker
product.

5 Numerical experiments

This section gathers a few numerical experiments designed to verify our theoretical results and demonstrate the
usefulness of our strategies in the context of explicit dynamics. All experiments in this section are done using
GeoPDEs [61], a software package for isogeometric analysis.
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5.1 Single-patch geometries

Example 5.1. We consider a cubic discretization of the 2D Laplace on two nontrivial single-patch domains shown
in Figures 5.1a and 5.2a: a stretched square and a quarter of a plate with a hole, represented by a (near) singular
NURBS patch. Here, M ∈ S+

(n1,n2)
and we construct the first three lumped mass matrices of the sequence.

The spectrum of (K,M) and (K,Pi), for i = 1, 2, 3, is shown in Figures 5.1b and 5.2b for the stretched square
and the plate with a hole, respectively. As predicted, the generalized eigenvalues of the matrix pairs (K,Pi)
monotonically converge to the eigenvalues of (K,M) from below for increasing values of i. This property holds for
all eigenvalues, including the “outliers”, now characterized by a sharp but smooth increase of the spectrum rather
than a stepwise increase. For this reason, the distinction between “outlier” and “regular” eigenvalues is rather
ambiguous. For nontrivial problems, “outlier” eigenvalues are merely large eigenvalues, which can be removed
using deflation techniques such as those presented in Section 4.1. In order to assess the practical gains of the
procedure, we solve the wave equation on the plate geometry shown in Figure 5.2a over the time span T = [0, 6]
with the manufactured solution u(x, y, t) = xy(x+4)(y− 4)(x2+ y2− 1)(2+ sin(2πt)). The numerical solutions are
computed with the central difference method using the critical time step (1.1) multiplied by a safeguarding factor
of 0.85. The results are shown in Figure 5.3 for a small time (t = 0.65) and a larger time (t = 2.65). Figure 5.4
represents the evolution of the L2 error over time. As one could expect, increasing the block bandwidth improves
the accuracy of the lumping techniques.

Figure 5.5 shows the ratio (Ns +Ni)/Nw for the block diagonal matrix P1, where Ns and Nw are the number
of iterations with and without scaling, respectively, and Ni is the number of iterations needed by the eigensolver
for computing the scaling. The ratio is computed for ranks r = 10, 20, 40 and simulations ranging over increasingly
larger time spans. The horizontal line for r = 0 indicates the absence of scaling and serves as comparison. A ratio
strictly larger than 1 indicates a deficit: the saving due to the scaling could not offset the cost for computing it.
This situation commonly occurs for short-time simulations. However, the workload for computing a few eigenpairs
is quickly amortized over longer simulations and may eventually save more than 50% iterations. In general, one
should favor smaller ranks for shorter simulations and larger ranks for longer simulations. Moreover, we could verify
over the range of ranks tested that the scaling did not have any significant effect on the quality of the solution.
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Figure 5.1: Stretched square
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Figure 5.2: Quarter of a plate with a hole

(a) Solution at time t = 0.65

(b) Solution at time t = 2.65

Figure 5.3: Numerical solutions for the plate geometry
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Figure 5.4: Relative L2 error for the plate geometry
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Figure 5.5: Ratio of number of iterations for the scaled and unscaled methods using P1

Remark 5.2. It is important to bear in mind that mass lumping generally depends on the labeling of the parametric
directions, which is specific to each software. GeoPDEs, for instance, uses a reverse labeling; i.e. labels 1, 2 and 3
are associated to the z, y and x directions, respectively. It might sometimes be advantageous to reorder the system
matrices and relabel the parametric directions but we have not experimented with it.

Example 5.3 (Convergence test). We now check the convergence of the smallest eigenfrequency for the approxi-
mations introduced in Section 3. We consider two test cases designed to evaluate the effect of a coefficient function
and geometry mapping. The first one is the unit square with a non-separable (but continuous) density function
ρ(x) = | sin(xy)|+ x+ y+1 and the second one is the quarter of a plate with a hole (see Figure 5.2a). Figures 5.6a
and 5.6b show the relative error

ω1−ωh,1

ω1
for the first eigenfrequency and a cubic discretization. Due to the lack of

closed form solutions, the reference eigenfrequency ω1 is a high order approximation computed with the consistent
mass on a very fine mesh. The smallest eigenfrequency of (K,M) converges at the expected rate of 2p, while the
smallest eigenfrequency of (K,Pi) converges at a reduced quadratic rate. This observation is in agreement with
the well-known fact that the row-sum technique converges at a reduced quadratic rate, independently of the spline
order [6].
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(b) Quarter of a plate with a hole

Figure 5.6: Relative error
ω1−ωh,1

ω1

Example 5.4 (Hierarchical mass lumping). Now we consider a quadratic discretization of the 3D Laplace on the
magnet domain shown in Figure 5.7a and test the hierarchical lumped mass matrices described in Section 3.3. Their
sparsity pattern is shown in Figure 5.8 together with the consistent mass for N = 6 subdivisions in each parametric
direction. Hierarchical mass lumping leads to a significant reduction of the bandwidth and number of nonzero
entries, which drastically speeds up sparse direct solvers. For assessing the performance of mass lumping in explicit
dynamics, we solve a sequence of 1000 linear systems with the consistent mass M and hierarchical lumped mass
matrices Hk for k = 1, 2, 3 on increasingly fine meshes. The solver relies on sparse Cholesky factorizations computed
on the reordered matrices using nested dissection. According to Table 5.1, mass lumping may save several orders of
magnitude of computing time, even for relatively small systems. We also noticed that the reordering only slightly
reduced the number of nonzero entries in the Cholesky factors and was not the main driver for the enhanced
performance. Table 5.2 shows the computing time for a simulation spanning 50 seconds. While Table 5.1 only
accounts for the effect of the linear system solver, Table 5.2 additionally accounts for the saving in the number of
time steps thanks to the increase of the critical time step computed with (1.1).

The impact of hierarchical mass lumping on the accuracy of the solution is (partly) determined by the generalized
eigenpairs of (K,Hk). The eigenvalues are shown in Figure 5.7b alongside those of (K,M) for N = 6 subdivisions.
Interestingly, H2 seems much more accurate than H3 and yet barely increases its associated CFL condition. This
encouraging result indicates that improved accuracy is possible with only a marginal increase in computational cost.
Moreover, similarly to Example 5.3, we verified that hierarchical mass lumping delivered second order convergent
eigenvalues.
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Figure 5.7: Magnet
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Figure 5.8: Sparsity patterns

Time [s]
N Size M H1 H2 H3

3 216 0.02 0.008 0.006 0.005
6 1728 0.56 0.07 0.03 0.02
9 5832 3.64 0.33 0.11 0.07
12 13824 13.5 0.97 0.27 0.17
15 27000 36.38 3.22 0.53 0.33

Table 5.1: System size and computing times (in seconds) for solving a sequence of 1000 linear systems with the
consistent mass and hierarchical lumped mass matrices. N = h−1 denotes the number of subdivisions in each
parametric direction.
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Time [s] Number of time steps
N Size M H1 H2 H3 M H1 H2 H3

3 216 0.012 0.004 0.002 0.001 578 530 270 257
6 1728 0.67 0.08 0.02 0.01 1167 1069 539 518
9 5832 6.37 0.54 0.09 0.06 1756 1608 814 785
12 13824 31.7 2.06 0.29 0.18 2345 2148 1090 1052
15 27000 106.3 6.46 0.73 0.45 2935 2689 1367 1320

Table 5.2: System size, computing times (in seconds) and number of time steps for simulating 50 seconds with
the consistent mass and hierarchical lumped mass matrices. N = h−1 denotes the number of subdivisions in each
parametric direction.

We consider now a more realistic situation by solving a linear elasticity problem on the magnet domain of Figure
5.7a. Homogeneous Dirichlet boundary conditions are prescribed on its base and homogeneous Neumann boundary
conditions on its side faces. A slowly oscillating traction force, given by

τ (x, t) =

 0
0

−q sin( 8πtT )


is applied on its top face, where q = 20 MPa is the pressure’s magnitude and T = 10−2 s is the final time. We assume
the magnet is made out of steel (elastic modulus E = 207 GPa, Poisson’s ratio ν = 0.3 and density ρ = 7800 kg/m3).
The problem is discretized in space using quadratic B-splines with N = 6 subdivisions in each parametric direction
and approximated in time using the central difference method. The critical time step, given by (1.1), and multiplied
by a safeguarding factor of 0.85 leads to 2305, 2213, 1107 and 1057 time steps for M, H1, H2 and H3, respectively.
Figure 5.9 compares the vertical component of the displacement at the point identified by a red dot in Figure 5.7a.
Whereas the row-sum lumped mass matrix H3 induces a significant error, the hierarchical lumped mass matrices
H2 and H1 provide a much better approximation. Moreover, the computing times for solving linear systems scaled
similarly as those reported in Table 5.2 for N = 6. These two observations make a compelling case for H2 as it
(nearly) provides the accuracy of H1 but at the cost of H3.

0 0.002 0.004 0.006 0.008 0.01
Time [s]

-3

-2

-1

0

1

2

3

D
is
p
la

ce
m

en
t
[m

]

#10-4 Displacement

M
H1

H2

H3

Figure 5.9: Vertical displacement at the point identified by a red dot in Figure 5.7a

5.2 Multipatch geometries

Example 5.5. We consider a cubic discretization of the Laplace on the quarter of a plate with a hole, as shown
in Figure 5.2a, and split into two patches to remove sources of singularity. The sparsity patterns of the consistent
mass and lumped mass matrices Pi for i = 1, 2 are shown in Figure 5.10 for 15 subdivisions in each parametric
direction and each patch. Mass lumping for multipatch problems does not completely remove the coupling but
instead focuses on reducing the bandwidth of the diagonal blocks in order to easily form the Schur complement.
As explained in Section 4, we try scaling the local stiffness matrices before assembling them into a global matrix.
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For clarity, we denote K̄loc the locally scaled stiffness matrix. Given its heuristic nature, this scaling strategy might
effect the smallest eigenvalues. Nevertheless, Figure 5.11a, obtained for a rank 20 patchwise scaling, reveals that
this effect is very mild. By comparing the results with a rank 40 global mass scaling, we notice that the local scaling
method removes fewer outliers. This is expected given that it cannot remove interior outliers, arising from the C0

coupling of patch interfaces. The convergence test carried out in Figure 5.11b further indicates that the smallest
eigenfrequency converges at a second order rate, as it does in the purely lumped mass case (using P1). For the sake
of clarity, we have only reported the results for P2 but they seem to hold more generally.
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Figure 5.10: Sparsity patterns
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Figure 5.11: Spectrum and convergence test

Example 5.6. This experiment aims at better understanding how patch configurations effect the scaling outcome.
Our benchmarks consist of the unit square split into a 4×4 grid of patches and a rectangle of length 4 and width 0.25
split into a 1×16 grid. Both configurations are discretized using quadratic B-splines and N = 8 subdivisions in each
direction and each patch. The size and number of patches of both configurations are the same (16 patches of size
0.25× 0.25) but are coupled very differently. Although homogeneous Dirichlet boundary conditions are prescribed
along the entire boundary in both cases, the first one features a number of interior patches and consequently
more degrees of freedom. Figures 5.12a and 5.12b compare for both configurations a local patchwise scaling of
rank 10 with a global scaling of rank 160. Surprisingly, our local scaling strategy performs poorly even for the
second, weakly coupled, configuration. In both cases, the global scaling is again more efficient at removing outliers.
However, this strategy is also more expensive than our local (sequential) patchwise scaling, as shown in Tables 5.13a
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and 5.13b for increasingly fine meshes. The global scaling strategy is slightly faster on the second configuration,
probably owing to the smaller system size. Nevertheless, the outcome generally depends on the patch configuration,
which effects the spectral properties of the system matrices and consequently the convergence speed of the Lanczos
method. Therefore, a direct comparison of global and local scaling is not trivial, even while neglecting potential for
parallelism. A more thorough study is needed before drawing definite conclusions.
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(a) Unit square split in a 4× 4 grid of patches
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Figure 5.12: Comparison of global and local scaling for different patch configurations

Time [s]
N Size Global Local
4 361 0.04 0.03
8 1225 0.22 0.06
12 2601 0.48 0.07
16 4489 0.77 0.12
20 6889 1.40 0.16

(a) Unit square split into a 4× 4 grid of patches.

Time [s]
N Size Global Local
4 316 0.02 0.03
8 1144 0.14 0.09
12 2484 0.38 0.12
16 4336 0.83 0.13
20 6700 1.29 0.17

(b) Rectangle of length 4 and width 0.25 split into a 1× 16
grid of patches.

Figure 5.13: System size and computing times (in seconds) for the global and local (sequential) scaling strategies.
N = h−1 denotes the number of subdivisions in each parametric direction and each patch.

Example 5.7. As we have noted in Section 3.4, any suitable mass lumping technique may be applied patchwise
before assembling the global multipatch lumped mass matrix. In dimension d ≥ 3, hierarchical mass lumping stands
out as the natural candidate. When the context is clear, we do not distinguish the single-patch matrices from their
multipatch counterpart. We solve the Laplace eigenvalue problem on the 3-patch twisted box geometry shown in
Figure 5.14a, discretized with quadratic B-splines and N = 6 subdivisions in each parametric direction and each
patch. The spectrum of (K,M) and (K,Hk) for k = 1, 2, 3 is shown in Figure 5.14b and confirm the improved
accuracy on the low-frequency part of the spectrum with respect to the row-sum technique (i.e. H3). Similarly to
Example 5.4, hierarchical mass lumping yields a drastic reduction of the bandwidth and number of nonzero entries,
as shown in Figure 5.15.
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(a) Geometry. Different colors identify different patches
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Figure 5.14: Twisted box
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Figure 5.15: Sparsity patterns

Example 5.8. In this example, the Laplace eigenvalue problem with pure Neumann boundary conditions is solved
on a shifted and rotated square, as shown in Figure 5.16. The physical domain is embedded in a regular unit square,
which is trimmed to fit the domain’s boundaries. We test our block lumping strategies, combined with a rank 80
scaling, and compare them to the standard row-sum technique. System matrices for trimmed domains generally do
not feature a Kronecker structure, not even in their sparsity. However, by padding them with zero entries, they may
be embedded in larger matrices whose structure allows applying the block lumping operator. Once the operator
has been applied, they are trimmed back to their original size by removing the artificial rows and columns. Thus,
our lumping strategies also apply to trimmed geometries. The spectrum (after discarding the zero eigenvalue) is
reported in Figures 5.17a and 5.17b for p = 2 and p = 3, respectively. It is well-known that small trimmed elements
heavily deteriorate the conditioning of the system matrices (among other issues) [42, 62]. Beyond a certain threshold,
the computations altogether are no longer accurate. Our rotation angle, while still being unfavorable, avoids such
extreme situations. Nevertheless, one should exercise caution when computing eigenvalues of matrix pairs (A,B)
with a heavily ill-conditioned matrix B. In our numerical experiments, we have computed the eigenvalues of the
equivalent matrix pair (DAD,DBD), where D = diag(d1, . . . , dn) with di = 1/

√
bii for i = 1, . . . , n is a Jacobi

preconditioner for B [62]. In the context of trimming, the conditioning of DBD is generally orders of magnitude
better than the one of B, which improves the stability of eigensolvers.

As shown in Figures 5.17a and 5.17b, the outlier eigenvalues for this problem are particularly pronounced, as
evidenced by the sharp change of curvature in the spectrum. Although the row-sum technique is most effective
at improving the CFL condition, it is also most inaccurate, even for moderate spline degrees. Our block lumping
method drastically improves the accuracy but also leads to more restrictive CFL conditions. However, combining it
with scaling strongly mitigates this effect. The fast increase of the outlier eigenvalues also speeds up the convergence
of the Lanczos method, which in turn improves the efficiency of the method for explicit dynamics.
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Figure 5.16: Shifted and rotated square
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Figure 5.17: Spectrum

6 Conclusion

In this article, we have proposed robust mass lumping and outlier removal techniques for nontrivial isogeometric
discretizations, including multipatch and trimmed geometries. Our mass lumping techniques provably do not
deteriorate the CFL condition of the original problem and oftentimes improve it, thereby extending the methods
proposed in [32] to more realistic settings. For a significant increase in step size, we suggest purging persistent
outliers by deflating the spectrum. Contrary to existing outlier removal techniques, this method only relies on
standard eigensolvers, whose cost per iteration is comparable to explicit time integration methods and whose
efficiency is enhanced by the large eigenvalue gaps characterizing outliers. Numerical experiments have shown that
the cost for computing a few eigenpairs is rapidly amortized by the subsequent increase in critical time step.
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A Appendix

It was shown in [4] that maximally smooth spline spaces provide better approximation per degree of freedom than C0

finite element spaces in almost all cases of practical interest. In this section we shall see how this improved approxi-
mation guarantees that there are fewer highly inaccurate outlier modes in the case of smooth spline approximations
than for C0 FEM for any elliptic PDE. In this section we use the standard Sobolev spaces

Hr(Ω) := {u ∈ L2(Ω) : ∂α1
1 · · · ∂αd

d u ∈ L2(Ω), 1 ≤ α1 + · · ·+ αd ≤ r, αi ≥ 0, i = 1, . . . , d},
with corresponding norms ∥ · ∥Hr given by

∥u∥2Hr =
∑

0≤α1+···+αd≤r

∥∂α1
1 · · · ∂αd

d u∥2L2 .

Furthermore,H−1(Ω) is the usual dual space toH1
0 (Ω) = {u ∈ H1 : u|∂Ω = 0} with corresponding dual norm ∥·∥H−1 .

For simplicity, we will only consider a second-order elliptic problem with zero Dirichlet boundary conditions. The
variational form of such a PDE can be stated as: given f ∈ H−1(Ω) find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω). (A.1)

The problem is well-posed if
∥u∥2H1 ≲ a(u, u) ∀u ∈ H1

0 (Ω),

a(u, v) ≲ ∥u∥H1∥v∥H1 ∀u, v ∈ H1
0 (Ω).

(A.2)

Here we use the notation a ≲ b as shorthand for the inequality a ≤ Cb for some constant C > 0 independent of u.
For a well-posed PDE the solution u in (A.1) satisfies

∥u∥H1 ≲ ∥f∥H−1 . (A.3)

If the coefficients in a(·, ·) are sufficiently smooth and the domain Ω is either convex or its boundary ∂Ω is also
sufficiently smooth then it follows from the elliptic regularity theorem that (A.3) can be improved to

∥u∥H2 ≲ ∥f∥L2 , (A.4)

see [63, Chapter 6.3] and [64, Chapter 3.2] for the details. In fact, for any nonnegative integer m, if the coefficients
in a(·, ·) are Cm+1 and the boundary ∂Ω is Cm+2 then we have the estimate [63, Chapter 6.3]

∥u∥Hm+2 ≲ ∥f∥Hm . (A.5)

Let us now consider the eigenvalue problem: find µj ∈ R and uj ∈ H1
0 (Ω), j = 1, 2, . . ., such that

a(uj , v) = µj(uj , v) ∀v ∈ H1
0 (Ω). (A.6)

As explained in Section 2, problem (A.6) can be discretized using B-splines to obtain the problem: find λj ∈ R and
uj ∈ Rn, j = 1, 2, . . . , n, such that

Kuj = λjMuj . (A.7)

To simplify the analysis we assume that p = p1 = . . . = pd, k = k1 = . . . = kd and that the mesh is uniform.
Consider the (pushforward) L2 projection Πk

p,n onto the (pushforward) spline space Sk
p,Ξ. This projection is stable

in H1(Ω) since the mesh is uniform. For a non-uniform mesh a different projection should be considered in the
following analysis (ideally, the so-called Ritz projection); see [16] for the details in the case of the Laplacian in one
space dimension. It follows from the min-max theory of Strang and Fix [65] that the error between the discrete
eigenvalue λj in (A.7) and the true eigenvalue µj in (A.6) is bounded by the error ∥uj −Πk

p,nuj∥L2 , where uj is the
corresponding eigenfunction in (A.6).

Following [5] we define the constant Cp,k,r as follows. If k = p− 1, we let

Cp,p−1,r :=

(
1

π

)r

and if k ≤ p− 2, we let

Cp,k,r :=



(
1

2

)r
(

1√
(p− k)(p− k + 1)

)r

, k ≥ r − 2,

(
1

2

)r
(

1√
(p− k)(p− k + 1)

)k+1√
(p+ 1− r)!

(p− 1 + r − 2k)!
, k < r − 2.
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For any u ∈ Hr(Ω) it is shown in [5] that we have the explicit error estimate

∥u−Πk
p,nu∥L2 ≤ CGeoCp,k,rh

r∥u∥Hr , r ≤ p+ 1 (A.8)

where the constant CGeo only depends on the geometry maps Fi, i = 1, . . . , Np and is explicitly given in [5]. In
classical finite element methods the smoothness k = 0 and in this case the constant Cp,0,r satisfies, for p ≥ 2, the
following inequalities [5, Remark 3]

Cp,0,r =

(
1

2
√

p(p+ 1)

)r

≤
(

1

2p

)r

, r = 1, 2

and

Cp,0,r =

(
1

2

)r
(

1√
p(p+ 1)

)√
(p+ 1− r)!

(p− 1 + r)!
≤
(

e

4p

)r

, r > 2.

It follows from the spline dimension formula that the mesh size h ∼ d(p − k)/n and thus Cp,k,rh
r ∼ Cp,k,r(d(p −

k)/n)r. More explicitly, with the upper bounds previously obtained:

• For r = 1, 2,

Cp,k,r
d(p− k)

n
≲

{ (
d
2n

)r
if k = 0,(

d
πn

)r
if k = p− 1.

• For r > 2,

Cp,k,r
d(p− k)

n
≲

{ (
ed
4n

)r
if k = 0,(

d
πn

)r
if k = p− 1.

Although these estimates are only upper bounds, the difference between the C0 and Cp−1 cases is readily appreci-
ated. For instance, for p = 3 and r = 4 the upper bound is about 20 times smaller in the Cp−1 case than in the
C0 case. The reader may refer to [5, Figs. 1 and 2] for a graphical comparison of the constants for different values
of p and r. In fact, by using a lower bound on the best approximation constant in the C0 case it is shown in [4]
that the maximally smooth approximation constant Cp,p−1,r becomes exponentially better than the best achievable
approximation constant for k = 0 as the degree p ≥ 3 and r increase.

Theorem A.1. Let n be the dimension of Sk
p,Ξ. For any j = 1, . . . , n let uj be the jth eigenfunction of (A.6) with

corresponding eigenvalue µj . Then, for all 0 ≤ k ≤ p− 1, we have

∥uj −Πk
p,nuj∥L2

∥uj∥L2

≤ CPDECGeoCp,k,1h
√
µj . (A.9)

Proof. Let u = uj in (A.8) with r = 1 and use (A.2) together with a(uj , uj) = µj∥uj∥2L2 .

From our previous discussion, it follows that for fixed n and r and for a given tolerance, maximally smooth
splines allow to approximate a larger fraction of the eigenfunctions (and eigenvalues) than C0 finite element spaces.
Moreover, if the PDE satisfies elliptic regularity then the error estimate in (A.9) can be further improved.

Theorem A.2. Let r ≤ p+ 1 and assume the coefficients in a(·, ·) are Cr−1 and the boundary ∂Ω is Cr. Let n be
the dimension of Sk

p,Ξ. For any j = 1, . . . , n let uj be the jth eigenfunction of (A.6) with corresponding eigenvalue
µj . Then, for all 0 ≤ k ≤ p− 1, we have

∥uj −Πk
p,nuj∥L2

∥uj∥L2

≤ CPDECGeoCp,k,rh
rµ

r/2
j ,

Proof. If r is even then iterate the elliptic regularity result in (A.5) with f = µjuj , r/2 times and use (A.8). If r is
odd then additionally use the argument of Theorem A.1 once.

The improved approximation for maximally smooth splines compared with C0 finite element spaces will only
get better as r increases in Theorem A.2, and we are guaranteed good approximation of a larger fraction of the
eigenfunctions and eigenvalues than for C0 FEM.
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