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1 Introduction

A fully consistent quantum field theory (QFT) can abstractly be thought of as a renormal-
ization group (RG) flow between two conformal field theories (CFTs). The starting point
is a UV fixed point, perturbed by relevant and marginal operators to trigger a flow in the
space of theories. It is a longstanding open problem to characterize the allowed flows in
theory space, and to understand their underlying structure.
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This subject is guided by C-theorems, which are often said to encapsulate the following
intuition. Along the renormalization group flow, from the high-energy (UV) fixed point to
the low-energy (IR) fixed point, we expect the total number of degrees of freedom to decrease.
This is consistent with the Wilsonian picture of renormalization, where high-energy degrees
of freedom are progressively integrated out as we proceed to lower energies. It is however
not clear how to characterize degrees of freedom, and C-theorems exhibit diverse forms in
different dimensions, lacking a unified, dimension-independent description. Moreover, the
C-theorems in greater than two dimensions have only an indirect and tenuous connection
to the intuition that the C-function counts degrees of freedom.

A C-function is a function on the space of quantum field theories that is universal
at conformal fixed points — that is, it depends only on the physical data of the CFT —
and monotonic under RG flow. If a C-function exists, then the renormalization group is
irreversible [1]. There is a candidate for a universal quantity that counts degrees of freedom
at fixed points, related to the free energy on a sphere (and to a subleading term in the
entanglement entropy) [2–4]. However monotonicity has been proven only in certain cases
including dimensions d = 2 (the c-theorem [1]), d = 3 (the F -theorem [5]), and d = 4 (the a-
theorem [2, 6]), as well as supersymmetric theories in six dimensions [7–9] and holographic RG
flows in all dimensions [10]. These results highlight a fascinating interplay between holographic
duality, quantum information, and more traditional approaches to quantum field theory.

In two dimensions, the degrees of freedom of a CFT are characterized by its central
charge, c. There are various arguments for why the central charge counts degrees of freedom;
for example, it is the coefficient of the thermal free energy [11] and the vacuum entanglement
entropy [12]. Zamolodchikov’s pioneering work identified a particular C-function, which is
a linear combination of form factors in the stress tensor two point function, and flows to c
at conformal fixed points. Invoking reflection positivity of the Euclidean two-point function
⟨ΘΘ⟩, where Θ = Tµ

µ is the trace of the stress tensor, he proved that

cIR ≤ cUV , (1.1)

for the central charges at the endpoints of an RG flow. This is the c-theorem.
Our work focuses on deriving universal constraints on two-dimensional QFTs by applying

two closely related positivity conditions. The first is the positive spectrum Wightman axiom,
which asserts that the spectrum of the momentum operator Pµ lies in the closed forward
lightcone. In Euclidean notation with ds2 = |dz|2, let us denote the null momenta by

E = Pz, Ē = −Pz̄ . (1.2)

The positive spectrum axiom in two dimensions is equivalent to the statement that these
operators are positive semi-definite:

E ≥ 0, Ē ≥ 0 . (1.3)

The second positivity condition that we will apply is the averaged null energy condition
(ANEC). The averaged null energy (ANE) operator is

Eu(v) =
∫
duTuu(u, v) , (1.4)
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with u a null coordinate. The ANE is a non-local operator that exhibits remarkable properties.
In quantum field theory in Minkowski spacetime, the ANEC states that this operator is
non-negative,

Eu ≥ 0 . (1.5)

This was first discussed in the context of general relativity, where it is necessary to prove clas-
sic theorems on causality, positive energy, and wormholes [13–15]. In QFT, it was originally
proven in free theories and lower dimensional settings [16–19], and there are now two deriva-
tions for interacting theories in higher dimensions, that rely respectively on quantum informa-
tion [20] and conformal bootstrap techniques [21]. In QFT, the ANEC has provided several
non-trivial constraints on the coupling constants and anomaly coefficients in CFTs [22, 23] (see
also [21, 24–30]). It is the prototypical example of a light-ray operator, which have a wide array
of applications ranging from holography [22, 23, 31–37] to particle phenomenology [22, 38–40],
the Lorentzian inversion formula [21, 41, 42], and quantum information [20].

In two dimensions, the ANEC and the positive spectrum axiom are closely related —
possibly equivalent. As we will discuss below, in a theory that is either conformal or gapped,
one can prove Eu = Pz and so these positivity conditions are identical. It is plausible that
this equality holds in a dense set of states in all 2d QFTs, but we do not have a general proof
for theories that flow to a nontrivial IR fixed point. We will therefore state our results as
derived from either the ANEC or the positive spectrum axiom, keeping in mind that under
some additional assumptions these are in fact the same.

Using the positive spectrum axiom, we will first give a very simple new proof of the
c-theorem. The C-function we obtain from this proof is different from Zamolodchikov’s,
though of course it agrees at the endpoints of the RG flow. While Zamolodchikov’s C-function
is built from a linear combination of ⟨TzzTzz⟩, ⟨TzzΘ⟩, and ⟨ΘΘ⟩, we show that the stress
tensor two-point function itself provides a monotonic C-function:

C = 8π2z4⟨Tzz(z, z̄)Tzz(0)⟩ . (1.6)

In fact, C is a completely monotonic function of scale, meaning its derivatives along the RG
flow have alternating signs. This statement is derived both from the positive spectrum axiom
and, separately, from the spectral decomposition of the two-point function, using a theorem
relating complete monotonicity to positivity of the inverse Laplace transform. We also find
an infinite set of other, similar constraints on the two-point functions.1

We then describe another new derivation of the c-theorem, using the Lorentzian method
that we developed in a recent paper on the four-dimensional a-theorem [43]. This method,
based on the ANEC, is suitable for either two or four dimensions as it does not use the
connection to the Poincaré generators, but instead uses the three-point function ⟨ΘEuΘ⟩. In
a QFT that flows between two conformal fixed points, we derive the following sum rule for
the change in the central charge, written in the metric ds2 = −dudv:

∆c = cUV − cIR = −6π
∫

v1<0
d2x1

∫
v2<0

d2x2 (u1 − u2)2 ⟨Θ(x1)Tuu(0)Θ(x2)⟩ . (1.7)

1We initially found only the first few constraints. We thank Clay Córdova for posing the question of
whether it is possible to characterize the complete set of constraints of this type.
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A similar sum rule for the change in the Euler coefficient ∆a in four dimensions was recently
derived in [43] and relies on the same machinery. The only difference between two and
four dimensions is the kernel in the integrand. These sum rules come from matching the
conformal anomaly in the IR. The sum rule in (1.7) can be rewritten as an expectation
value of the averaged null energy,

∆c ≈ ⟨ψ|Eu(0)|ψ⟩ , (1.8)

for a particular wavepacket |ψ⟩ in a low-frequency limit. We therefore obtain the c-theorem
as a direct consequence of the ANEC in this state. Using the relation between the ANE
and the null momentum, we also show that the sum rule (1.7) is equivalent to the sum
rule derived by Zamolodchikov.

Outline. We start with the short and simple derivation of the c-theorem in two dimensions
from the positivity of null momentum, together with a brief review of the usual derivation, in
section 2. In section 3, we derive the monotonicity properties that are obeyed by the coefficient
functions in ⟨TµνTαβ⟩. In light of Bernstein’s theorem on completely monotonic functions,
this implies that some combinations of these form factors have non-negative inverse Laplace
transforms, which we confirm using the spectral representation. We then illustrate complete
monotonicity in two examples, the free massive scalar and free massive Majorana fermion.
In section 4, we spell out the connection between the ANE operator and the generator of
null translations in two dimensions in detail. In section 5, we discuss the contact terms at a
conformal fixed point in two dimensions, derive the contact terms in the retarded correlator
⟨R [Eu; ΘΘ]⟩ as well as the time-ordered correlator ⟨T [EuΘΘ]⟩, and match the anomaly
between the UV and the IR for a theory that flows between two fixed points. This allows us
to derive Lorentzian sum rules that imply the c-theorem. We also work out the example of a
free massive scalar and free massive Majorana fermion. More details on the computations of
the contact term in CFT using the conformal anomaly are presented in appendix A.

2 A c-theorem appetizer

2.1 The c-theorem from the positive spectrum axiom

To begin, we will describe what is probably the simplest possible derivation of the Zamolod-
chikov c-theorem. Let us first setup the notation. Our convention for the stress tensor
in Euclidean signature is

Tµν ≡ 2
√
g

δSE

δgµν
, ⟨Tµν⟩ = − 2

√
g

δ

δgµν
logZ , (2.1)

with SE the Euclidean action. Note that the convention (2.1) differs by a factor of −2π
from some of the two-dimensional CFT literature. The null momenta defined in (1.2) are
the generators of translations, such that

[E ,O(z, z̄)] = i∂O(z, z̄), [Ē ,O(z, z̄)] = −i∂̄O(z, z̄) , (2.2)

with ∂ ≡ ∂z and ∂̄ ≡ ∂z̄.
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Let us consider a 2d QFT with mass scale s = M2 that flows between two conformal
fixed points. By dimensional analysis, the stress tensor correlator takes the form [1]

⟨Tzz(z, z̄)Tzz(0)⟩ = 1
2(2π)2z4F (zz̄s) . (2.3)

Inserting the operator Ē , we obtain the following equalities

s
∂

∂s
F = z̄∂̄F = −8π2iz̄z4⟨Tzz(z, z̄)ĒTzz(0)⟩ . (2.4)

Choose z = i so that ⟨TzzĒTzz⟩ can be interpreted as an expectation value, and the prefactor
evaluates to iz̄z4 = 1. Applying the positive spectrum axiom (1.3) we conclude that

∂

∂s
F ≤ 0 . (2.5)

At the conformal fixed points, F = c and (2.5) implies the c-theorem [1]:

cIR ≤ cUV . (2.6)

The change in the central charge can also be written as a sum rule. Equation (2.4) is
equivalent to

|z|2 ∂

∂|z|2
F = −2(2π)2i|z|2z3 ⟨Tzz(z, z̄)ĒTzz(0)⟩ . (2.7)

Therefore

∆c = F (0) − F (∞) = −
∫ ∞

0
d|z|2 ∂

∂|z|2
F = 4πi

∫
z ̸=0

d2z z3 ⟨Tzz(z, z̄)ĒTzz(0)⟩ . (2.8)

2.2 Zamolodchikov’s derivation

For comparison, let us briefly review Zamolodchikov’s original derivation. In addition to (2.3)
the other components of the stress tensor 2-point function take the form

⟨Θ(z, z̄)Tzz(0)⟩ = 1
(2π)2z3z̄

G(s|z|2) (2.9)

⟨Θ(z, z̄)Θ(0)⟩ = 1
(2π)2z2z̄2H(s|z|2) ,

with similar expressions involving Tz̄z̄. The trace is Θ = T µ
µ = 4Tzz̄, and the conservation

equation ∂µT
µν = 0 implies

∂̄Tzz = −1
4∂Θ, ∂Tz̄z̄ = −1

4 ∂̄Θ . (2.10)

This implies the following relations amongst two-point correlators:

2Ḟ + Ġ− 3G = 0 , 4Ġ+ Ḣ − 4G− 2H = 0 , (2.11)

at separated points (z ̸= 0), with Ẋ = s ∂
∂sX. These relations can be combined into

s
∂

∂s
CZam = −3

4H , (2.12)
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with the Zamolodchikov C-function

CZam = F −G− 3
8H . (2.13)

Reflection positivity requires H ≥ 0. Therefore, CZam(s|z|2) decreases monotonically as a
function of s. At long and short distances, the theory is conformal and the trace Θ vanishes, so
G = H = 0, while F approaches the central charge of the CFT at the fixed points. Therefore

lim
s→0

CZam = F (0) = cUV , lim
s→∞

CZam = F (∞) = cIR . (2.14)

This establishes the c-theorem, cUV ≥ cIR, with strict inequality for nontrivial flows where
Θ ̸= 0. Integrating (2.12) gives the sum rule [1, 44]

∆c = 3π
∫

z ̸=0
d2z |z|2⟨Θ(z, z̄)Θ(0)⟩ . (2.15)

Let us compare this original derivation to the derivation above. Positivity of ⟨ΘΘ⟩ leads to
the Zamolodchikov C-function CZam, while positivity of ⟨TzzĒTzz⟩ implies that F itself is
monotonic, and thus serves as a C-function. These are two different C-functions that agree at
the endpoints, but differ along the flow. The Zamolodchikov C-function has a natural flow in
the space of couplings, while we will see that F satisfies an infinite set of additional inequalities.

3 General monotonicity conditions

More inequalities can be generated by inserting higher powers of E and Ē in the stress tensor
2-point functions. We will now show that this leads to an infinite class of constraints on the
scale dependence of the coefficient functions F , G, and H defined in (2.3) and (2.9).

3.1 Inequalities from the positive spectrum condition

Acting on an arbitrary function f(|z|2s), we have

s∂sf(|z|2s) = z ∂f(|z|2s) = z̄ ∂̄f(|z|2s) . (3.1)

Using the Poincare algebra (2.2) and applying this identity repeatedly, it is straightforward
to derive the relations

⟨Θ(z, z̄)EmĒnΘ(0)⟩ = 1
(2π)2

sm+2

(iz)m+2(−iz̄)n+2∂
m
s

(
sn∂n

s

H

s2

)
(3.2)

⟨Tzz(z, z̄)EmĒnTzz(0)⟩ = 1
2(2π)2

sm+4

(−iz̄)n(iz)m+4∂
m
s

(
sn−4∂n

s F
)
. (3.3)

By the positive spectrum axiom, the expectation value ⟨Ψ|EmĒn|Ψ⟩ is non-negative in any
state |Ψ⟩. By setting z = i, z̄ = −i we can interpret the two correlation functions above as
expectation values in the states |Ψ⟩ = e−Ĥ/2Θ(0)|0⟩ and |Ψ⟩ = e−Ĥ/2Tzz(0)|0⟩ respectively,
with Ĥ the Hamiltonian. Accounting for the prefactors we obtain the inequalities

(−1)m+n∂m
s

(
sn∂n

s

H

s2

)
≥ 0 (3.4)

(−1)m+n∂m
s

(
sn−4∂n

s F
)
≥ 0 ,
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for any non-negative integers m and n. The second inequality, with (n,m) = (1, 0), is the
case studied in section 2 which implies the Zamolodchikov c-theorem. Constraints on the
coefficient function G can be obtained by using the conservation equation (2.10). For example,

EΘ|0⟩ = 4ĒTzz|0⟩ , (3.5)

which leads to

⟨Θ(z, z̄)Em+1ĒnΘ(0)⟩ = −4 sm+3

(2π)2(iz)m+3(−iz̄)n+2∂
m
s

(
sn−1∂n+1

s

G

s

)
. (3.6)

Setting z = −z̄ = i gives the inequalities

(−1)m+n∂m
s

(
sn−1∂n+1

s

G

s

)
≥ 0 . (3.7)

3.2 Complete monotonicity from the spectral measure

In this section we will show that the generalized inequalities derived above can be restated in
terms of completely monotonic functions. The complete monotonicity of F is then analyzed
from another perspective in terms of the spectral representation.

3.2.1 Completely monotonic functions

A function f(s) is called completely mononotic if it is C∞ on s ∈ (0,∞) and its derivatives
obey the alternating inequalities

(−1)n d
n

dsn
f(s) ≥ 0 . (3.8)

According to the Bernstein theorem [45, 46], a necessary and sufficient condition for complete
monotonicity is that the function f(s) is the Laplace transform of a non-negative distribution,

f(s) =
∫ ∞

0
dλ e−sλg(λ) , (3.9)

where g ≥ 0 and the integral converges for s > 0. Therefore according to (3.4) and (3.7)
the functions

Hn(s, |z|2) ≡ (−1)nsn∂n
s

H(s|z|2)
s2 (3.10)

Fn(s, |z|2) ≡ (−1)nsn−4∂n
s F (s|z|2)

Gn(s, |z|2) ≡ (−1)nsn−1∂n+1
s

G(s|z|2)
s

are completely monotonic in s for integer n ≥ 0.

3.2.2 Complete monotonicity of F

In particular, the case Fn=0 implies that the function F (s|z|2), seen as a function of s, is
completely monotonic. We will now give a second derivation of this fact using the spectral
representation to write it as the Laplace transform of a positive function.
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The Källén-Lehmann spectral representation of the stress tensor 2-point function in
two dimensions is [47]

⟨Tµν(x)Tρσ(0)⟩ = 1
12π

∫ ∞

0
dµ ρ(µ)

∫
d2p

(2π)2 e
ip·x (gµν − pµpν)(gρσ − pρpσ)

p2 + µ2 , (3.11)

where the spectral density ρ(µ) is non-negative,

ρ(µ) ≥ 0 . (3.12)

Starting from equation (3.11), we can perform the Fourier transform to obtain the stress
tensor two-point function in terms of a single integral over µ. To perform these integrals,
we will need the following standard result:

∫ ∞

0
dλ

e−a2λ− r2
4λ

λ
n
2

= 2
n
2

(
r

a

)1−n
2
Kn

2 −1 (ar) . (3.13)

We can now start from (3.11) and compute the momentum integral to write the two-point
function in terms of a single µ integral. We derive

⟨Tzz(z)Tzz(0)⟩ = 2
12π

∫ ∞

0
dµ ρ(µ)

∫
dpzdpz̄

(2π)2 eipzz+ipz̄ z̄ p4
z

4pzpz̄ + µ2 (3.14)

= 1
384π2

(
z̄

z

)2 ∫ ∞

0
dµ ρ(µ)µ4K4 (µ|z|) , (3.15)

where we introduced a Schwinger parameter λ for the denominator, and then used (3.13)
to perform the λ integral.

As shown in [47], the spectral density takes the general form

ρ(µ) = cIR δ(µ) + 1
µ
ρ̂

(
µ2

s

)
, (3.16)

where cIR is the central charge of the infrared fixed point, s has dimensions of mass-squared and
sets the scale of the QFT, and ρ̂ ≥ 0. The delta function is defined such that

∫∞
0 dµ δ(µ) = 1.

Therefore the form factor is

F (s|z|2) = 8π2z4⟨Tzz(z, z̄)Tzz(0)⟩ (3.17)

= cIR + 2π
3 z4

∫ ∞

0

dµ

µ
ρ̂

(
µ2

s

)∫
d2p

(2π)2
(pz)4eip·x

p2 + µ2 (3.18)

= cIR + π

3 z
4
∫ ∞

0
dσ2 σ2ρ̂

(
σ2
) ∫ d2p

(2π)2

∫ ∞

0
dλ eiσp·xp4

ze
−λ(p2+s) , (3.19)

where p·x = pzz+pz̄ z̄. To obtain the third line, we have redefined the integration variables first
as µ2 → σ2s and then as p→ σp, and introduced a Schwinger parameter for the denominator.
We can then exchange the order of integration to find the Laplace transform representation

F (s|z|2) = cIR +
∫ ∞

0
dλ F̂ (λ, |z|2)e−λs, (3.20)
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where

F̂ (λ, |z|2) = π

3

∫ ∞

0

dσ2

σ2 ρ̂
(
σ2
)
z4∂4

z

[∫
d2p

(2π)2 e
ip·xσ−λp2

]
. (3.21)

The Gaussian integral is ∫
d2p

(2π)2 e
iσp·xe−λp2 = 1

4πλe
−σ2|z|2

4λ . (3.22)

We can thus finally obtain F̂ (λ, |z|2), which is given by

F̂ (λ, |z|2) = |z|8

3072λ5

∫ ∞

0
dσ2 σ6ρ̂

(
σ2
)
e−

σ2|z|2
4λ . (3.23)

This is manifestly positive. It follows that F (s|z|2) is a completely monotonic function of s.

3.3 Examples

In this section, we illustrate the generalized monotonicity constraints in the case of a free
massive scalar and a free massive Majorana fermion.

3.3.1 Free massive scalar

Consider a free massive scalar field of mass m, with the action

Sb = −1
2

∫
d2x

√
−g

(
(∂ϕ)2 +m2ϕ2

)
, (3.24)

and stress tensor

Tµν = −1
2gµν(m2ϕ2 + (∂ϕ)2) + ∂µϕ∂νϕ , (3.25)

such that Tzz(z, z̄) = (∂zϕ(z, z̄))2. The propagator is

Gb(z, z̄) = ⟨ϕ(z, z̄)ϕ(0)⟩ = 1
2πK0(m|z|) , (3.26)

where the subscript b refers to boson. The stress tensor two-point function, computed by
Wick contractions, is

⟨Tzz(z, z̄)Tzz(0)⟩ = 2(−∂2
zGb)2 = m4

32π2

(
z̄

z

)2
K2

(
m
√
zz̄
)2

. (3.27)

The spectral density in the stress tensor two-point function is [47]

ρb(µ) = 24 s
2

µ5

(
1 − 4s

µ2

)− 1
2
θ
(
µ− 2

√
s
)
, (3.28)

with s = m2, which corresponds to

ρ̂b(t) = 24 1
t2

(
1 − 4

t

)−1/2
θ(t− 4) . (3.29)
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∂n

∂sn
Fb(s(|z|)

2)

n=0

n=1

n=2
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Figure 1. The function Fb

(
s|z|2

)
and its first

three derivatives, evaluated at position z = i, z̄ =
−i. The derivatives have alternating signs.

1 2 3 4 5
s

-0.4

-0.2

0.2

0.4

∂n

∂sn

Fb
'' s ( z )2

s2

n=0

n=1

n=2

n=3

n=4

n=5

Figure 2. The function F ′′
b (s|z|2)

s2 and its first five
derivatives, evaluated at position z = i, z̄ = −i.
The derivatives have alternating signs.

Therefore the positive function F̂ defined in (3.23) is

F̂b(λ, |z|2) = |z|8

128λ5

∫ ∞

4
dσ2 σ2

(
1 − 4

σ2

)−1/2
e−

σ2|z|2
4λ (3.30)

= |z|6

16λ5 e
− |z|2

2λ

[
|z|2K0

(
|z|2

2λ

)
+
(
|z|2 + λ

)
K1

(
|z|2

2λ

)]
. (3.31)

Performing the Laplace transform in (3.20) reproduces the stress tensor form factor obtained
from (3.27),

Fb(s|z|2) = 2(2π)2z4 ⟨Tzz(z, z̄)Tzz(0)⟩ = 1
4s

2|z|4K2(|z|
√
s)2 , (3.32)

thus confirming that Fb is a completely monotonic C-function. Note that Fb is not the same
as the Zamolodchikov C-function given in (2.13), though of course it agrees at the endpoints
of the flow, where Fb(0) = cUV = 1 and Fb(∞) = cIR = 0. The function Fb and its first
few derivatives are plotted in figure 1. The complete monotonicity of F ′′

b /s
2, which is the

case Fn=2 in (3.10), is illustrated in figure 2.

3.3.2 Free massive fermion

We now consider a free massive Majorana fermion in two dimensions. The action is

Sf =
∫
d2x

(
ψ∂z̄ψ + ψ̄∂zψ̄ + imψ̄ψ

)
, (3.33)

where ψ, ψ̄ are one-component spinors. The propagator is [48]

⟨ψ(z, z̄)ψ(0, 0)⟩ = 2∂z

[∫
d2p

(2π)2
eip·x

p2 +m2

]
= 1
π
∂zK0 (m|z|) = −m

2π

(
z̄

z

)1/2
K1 (m|z|) ,

(3.34)
and the stress tensor derived from the action (3.33) has

Tzz(z, z̄) = 1
2ψ(z, z̄)∂zψ(z, z̄) . (3.35)
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Correlators can be computed using Wick’s theorem. The stress tensor two-point function is

⟨Tzz(z1, z̄1)Tzz(z2, z̄2)⟩ = 1
4 [(∂z1 ⟨ψ1ψ2⟩) (∂z2 ⟨ψ1ψ2⟩) − ⟨ψ1ψ2⟩ (∂z1∂z2 ⟨ψ1ψ2⟩)] , (3.36)

where ψi = ψ(zi, z̄i), leading to

Ff (s|z|2) = 2z4
[
∂zK0(

√
s|z|)∂3

zK0(
√
s|z|) − (∂2

zK0(
√
s|z|))2

]
. (3.37)

The spectral density for the stress tensor is [47]

ρf (µ) = 6 s

µ3

(
1 − 4s

µ2

) 1
2
θ
(
µ− 2

√
s
)
, (3.38)

with s = m2, so

ρ̂f (t) = 61
t

(
1 − 4

t

) 1
2
θ (t− 4) . (3.39)

Therefore, using (3.23), Ff is the Laplace transform of the manifestly positive function

F̂f (λ, |z|2) = |z|8

512λ5

∫ ∞

4
dσ2 σ4

(
1 − 4

σ2

)1/2
e−

σ2|z|2
4λ (3.40)

= |z|4

32λ4 e
− |z|2

2λ

[
|z|2K0

(
|z|2

2λ

)
+
(
|z|2 + 4λ

)
K1

(
|z|2

2λ

)]
.

It follows that Ff is a completely monotonic C-function, interpolating from Ff (0) = cUV = 1
2

in the UV to Ff (∞) = cIR = 0 in the IR.

4 The ANEC in two dimensions

So far we have worked in Euclidean signature and derived constraints from the positive
spectrum axiom. We will now venture into Lorentzian signature, with the aim of writing
a Lorentzian sum rule for ∆c and deriving the c-theorem from the averaged null energy
condition (ANEC). We will first discuss the close relation between the ANEC and the positive
spectrum axiom.

In two-dimensional Minkowski space we use null coordinates ds2 = −dudv, with u = t−y,
v = t+y. These are related by analytic continuation to the Euclidean coordinates ds2 = |dz|2

by z = −u, z̄ = v. With our conventions, the stress tensor is Tµν = − 2√
−g

δS
δgµν , and the

classical null energy condition is Tuu, Tvv ≥ 0. The momentum operator is

Pµ = −
∫

Σ

√
hTµνu

ν , (4.1)

where Σ is a Cauchy slice and uµ is the forward-pointing timelike unit normal.
The averaged null energy (ANE) is the operator

Eu(v) =
∫
duTuu(u, v) . (4.2)
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This operator has several nice properties, but in particular, the ANE operator is non-negative:

⟨ψ|Eu(v)|ψ⟩ ≥ 0 , (4.3)

in any state [16–21]. In two dimensions, the ANEC is almost equivalent to the positive
spectrum axiom, which states that the spectrum of the momentum operator lies in the
closed forward cone [49]:

P t ≥ 0, P 2 ≤ 0 . (4.4)

Equivalently,

Pu ≤ 0, Pv ≤ 0 . (4.5)

To relate this to the ANEC, let us write the null momentum as an integral over the t = 0
Cauchy slice,

Pu = −
∫ ∞

−∞
dyTut . (4.6)

Deforming the contour of integration as shown in figure 3 gives

Pu = −Eu(v0) + 1
4

∫
I1 ∪I2

dvΘ , (4.7)

where we used Tvu = −1
4Θ. I1 and I2 are segments of future and past null infinity, respectively:

I1 = {u = ∞, v ∈ (−∞, v0]} I2 = {u = −∞, v ∈ [v0,∞)} . (4.8)

In states satisfying the physical condition that there is no flux of right-moving energy along
I1 or I2, the trace term in (4.7) vanishes and we have

Eu = −Pu ≥ 0 . (4.9)

It seems plausible that Eu = −Pu holds within a dense set of states in any QFT, but we do
not have a general proof. In a CFT, it holds because Θ = 0. In a theory with a mass gap,
a rigorous proof of (4.9) in algebraic QFT can be found in [50, Theorem 2.5]. For theories
with a flow to a nontrivial IR fixed point, with local operators inserted at finite distance
from the origin, it also holds for the leading terms in the OPE.

If we assume Eu = −Pu, then the ANEC follows from the positive spectrum axiom. This
is quite different from the situation in higher dimensions, where the derivation of the ANEC
in interacting QFT relies on monotonicity of relative entropy [20] or causality/analyticity
of correlation functions [21].

5 Lorentzian sum rule

Consider a 2d QFT with mass scale M that flows from CFTUV to CFTIR. Connected
correlation functions in the QFT are denoted ⟨·⟩, while the connected correlation functions
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t = 0
I 1

I 2

ν 0

u ν

Figure 3. Relation between the null translation generator Pu and the ANE operator Eu in 2d QFT.
The null momentum Pu, initially defined on the t = 0 slice, is deformed to the blue contour. This
implies Pu = −Eu so long as Θ falls off fast enough that the contributions along I1 and I2 vanish.

of the UV and IR CFTs are denoted ⟨·⟩UV and ⟨·⟩IR. When not referring to any particular
CFT, the CFT correlators are written ⟨·⟩CFT.

The trace of the stress tensor in a 2d CFT in curved space is

⟨Θ⟩CFT = c

24πR+ b

24πΛ2 . (5.1)

The first term is the Weyl anomaly, with c the central charge and R the Ricci scalar of the
background spacetime. The second term, with Λ the UV cutoff and b a dimensionless constant,
can be removed by a local counterterm so it is customarily set to zero. It corresponds to
a cosmological constant in the effective action.

We tune the cosmological constant to zero in the UV, setting bUV = 0. The cosmological
constant will be generated along the RG flow, so in order to match the QFT we write the
trace at the UV and IR fixed points as

⟨Θ⟩UV = cUV

24πR (5.2)

⟨Θ⟩IR = cIR

24πR+ b

24πM
2 . (5.3)

In this section we will discuss two manifestly-positive sum rules for the difference in central
charge between the two CFTs, i.e. ∆c = cUV − cIR. The first is Zamolodchikov’s sum rule
relating ∆c to the Euclidean 2-point function, ⟨ΘΘ⟩, which we review. We then derive the
new sum rule relating ∆c to the averaged null energy ⟨ΘEuΘ⟩ using the method developed
in [43]. We also show that in two dimensions, these sum rules are in fact equivalent using
the identity Eu = −Pu to reduce the 3-point function to a 2-point function.

5.1 Review of the Zamolodchikov sum rule

In section 2.2 we reviewed Zamolodchikov’s derivation of the c-theorem from the conservation
laws, which only uses the correlation functions at separated points. We will now review how
the same sum rule can be obtained by the studying the contact term in ⟨ΘΘ⟩.

In a CFT, any stress tensor correlation function involving at least one Θ can be obtained by
varying the Weyl anomaly (5.1) with respect to the metric. This is reviewed in appendix A.1.
The first variation gives the Euclidean 2-point function, which is

⟨Θ(x1)Θ(x2)⟩CFT = 1
12π (−c∂2 + bΛ2)δ(2)(x1 − x2) , (5.4)
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and is derived in detail in appendix A. The Fourier transform is

⟨⟨Θ(K)Θ(−K)⟩⟩CFT =
∫
d2x eiK·x⟨Θ(x)Θ(0)⟩CFT = 1

12π (cK2 + bΛ2) , (5.5)

where we use the double bracket notation,

⟨O(k1) · · · O(kn)⟩ ≡ (2π)dδ(d)(k1 + · · · + kn)⟨⟨O(k1) · · · O(kn)⟩⟩ . (5.6)

This computation is presented in appendix A. The formula (5.5) can be inverted to solve for the
central charge c. We simply act on both sides with the momentum Laplacian ∂2

K = ∂2
K1 +∂2

K2 ,
then set the momentum to zero. This produces the identity

c = 3π ∂2
K

∣∣∣
K=0

⟨⟨Θ(K)Θ(−K)⟩⟩CFT = −3π
∫
d2xx2⟨Θ(x)Θ(0)⟩CFT . (5.7)

The integral in (5.7) is over Euclidean space, and the entire contribution comes from the
contact term at x = 0.

We will now apply this formula to the infrared CFT coming from an RG flow. The
correlators of the QFT match those of CFTIR at low momentum, i.e.

⟨Θ(K)Θ(−K)⟩ ≈ ⟨Θ(K)Θ(−K)⟩IR , (5.8)

for K2 ≪M2. The match includes the O(K2) term that is responsible for the IR anomaly.
Therefore,

cIR = 3π ∂2
K

∣∣∣
K=0

⟨⟨Θ(K)Θ(−K)⟩⟩ , (5.9)

where now the correlator on the right-hand side is in the QFT, not the CFT. Writing this
as a Fourier integral, we obtain

cIR = −3π
∫
d2xx2⟨Θ(x)Θ(0)⟩ . (5.10)

The integral has a UV contact term at x = 0, which is controlled by the UV CFT, plus
contributions from separated points. Let us write the 2-point function in the QFT as

⟨Θ(x)Θ(0)⟩ = ⟨Θ(x)Θ(0)⟩UV + ⟨Θ(x)Θ(0)⟩sep , (5.11)

where the first term is a pure contact term, and the second term is only nonzero at separated
points. Moving the UV contact term to the other side of (5.10), we find the sum rule

∆c ≡ cUV − cIR = 3π
∫
d2xx2⟨Θ(x)Θ(0)⟩sep . (5.12)

This is the sum rule of Zamolodchikov [1] (see also [44, 47, 51]), as reviewed in section 2.2.
The right-hand side is manifestly positive because in Euclidean signature, reflection positivity
implies that

⟨Θ(x)Θ(0)⟩sep ≥ 0 . (5.13)
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5.2 Sum rule from the 3-point function

We will now apply a similar strategy to the correlation function ⟨ΘEuΘ⟩, following [43]. This
is a Lorentzian correlation function, so ordering is important, and the sum rule will be in
Lorentzian signature. We nonetheless start in Euclidean signature. Varying the Weyl anomaly
a second time gives the Euclidean 3-point function ⟨ΘΘTαβ⟩CFT. In momentum space, the
result for the null-null component (which is presented in appendix A) is

⟨⟨Θ(K1)Θ(K2)Tuu(K3)⟩⟩CFT = c

6πK1uK2u . (5.14)

Since this is a pure contact term, the analytic continuation to the time-ordered, anti-time-
ordered, retarded, or advanced correlator in Lorentzian signature is trivial in momentum
space, as reviewed in [43, 52]. Time ordering T is defined in the standard way, and the
retarded ordering is defined

⟨R[Tαβ(x3);O(x1)O(x2)]⟩ = −θ(t3 − t1)θ(t1 − t2)⟨[[Tαβ(x3),O(x1)],O(x2)]⟩ − (x1 ↔ x2)
+ contact terms . (5.15)

For O = Θ in a CFT only the contact terms are nonzero. By analytically continuing (5.14)
we obtain

⟨⟨R[Tuu(k3); Θ(k1)Θ(k2)]⟩⟩CFT = −⟨⟨T [Θ(k1)Θ(k2)Tuu(k3)]⟩⟩CFT = c

6πk1uk2u . (5.16)

We use K for Euclidean momentum and k for Lorentzian momentum. The ANE operator is

Eu(v) = 1
π

∫
dkv e

ikvvTuu(ku = 0, kv) =
∫
duTuu(u, v) . (5.17)

This relation is used to calculate retarded and time-ordered correlators of the ANE from
⟨ΘΘTαβ⟩. Thus integrating (5.16) using δ(2)(k) = 1

2δ(ku)δ(kv) we find

⟨R[Eu(0); Θ(k1)Θ(k2)]⟩CFT = −⟨T [Eu(0)Θ(k1)Θ(k2)]⟩CFT = c

3k1uk2uδ(k1u + k2u) . (5.18)

Note that Eu(0) = Eu(v = 0) is in position space while the other operators are in momentum
space. The equation (5.18) can be inverted to solve for c as follows: write the retarded
correlator in (5.18) as a Fourier transform, integrate both sides

∫
dk2u, act with −3

2∂
2
k1u

,
then set the momenta to zero. The result is

c = 3π
∫
d2x1

∫
d2x2 u

2
1δ(u2)⟨R[Eu(0); Θ(x1)Θ(x2)]⟩CFT . (5.19)

This holds in CFT, where the correlator is a pure contact term. To turn it into an RG sum
rule we will now follow the same strategy as in the derivation of the Zamolodchikov sum rule
above. First, we apply (5.19) to the IR CFT. Since the integral is a correlation function at zero
momentum, we can replace the IR CFT correlation function by the QFT correlation function,

cIR = 3π
∫
d2x1

∫
d2x2 u

2
1δ(u2)⟨R[Eu(0); Θ(x1)Θ(x2)]⟩ . (5.20)

– 15 –



J
H
E
P
0
1
(
2
0
2
4
)
1
0
2

Now we split the QFT correlator into three pieces:

⟨R[Eu(0); Θ(x1)Θ(x2)]⟩ = ⟨R[Eu(0); Θ(x1)Θ(x2)]⟩sep + ⟨R[Eu(0); Θ(x1)Θ(x2)]⟩P C (5.21)
+ ⟨R[Eu(0); Θ(x1)Θ(x2)]⟩UV ,

which are the terms with no points coincident (labeled ‘sep’ for separated), two points
coincident (labeled ‘PC’ for partial contact), and three points coincident, respectively.2 In [43]
we showed that in d ≤ 4, partial contact terms in this correlation function can only come from
marginal spin-2 operators Oαβ other than the stress tensor. In two dimensions, assuming
an interacting theory so there is a unique stress tensor, there are no such operators so the
partial contact term vanishes. This is a special feature of the lightray correlation function,
as the derivation of this result in [43] uses both the fact the ANE operator annihilates the
vacuum Eu|0⟩ = 0 [53] and properties of the stress tensor OPE.

Applying (5.21) to (5.20), discarding the vanishing partial contact term, and moving
the UV contact term to the other side, we obtain the sum rule

cUV − cIR = −3π
∫
d2x1

∫
d2x2 u

2
1δ(u2)⟨R[Eu(0); Θ(x1)Θ(x2)]⟩sep . (5.22)

The retarded correlator at separated points is by definition

⟨R[Eu(0); Θ(x1)Θ(x2)]⟩sep = −θ(−v1)θ(v1 − v2)⟨[[Eu(0),Θ(x1)],Θ(x2)]⟩sep − (1 ↔ 2) . (5.23)

When the nested commutator is expanded in Wightman functions, many of the terms vanish
using Eu|0⟩ = 0. Only the two orderings where each trace is on one side of the lightray
integral (i.e. ⟨ΘEuΘ⟩) survive. We therefore obtain the sum rule

cUV − cIR = −6π
∫

v1<0
d2x1

∫
v2<0

d2x2 u
2
1δ(u2)⟨Θ(x1)Eu(0)Θ(x2)⟩ . (5.24)

There is no contribution to the integral from coincident points.
In (5.24) the u2 position is fixed to zero. Using translation invariance we can instead fix

the null energy to the origin, which leads to the equivalent, more symmetrical sum rule

cUV − cIR = −6π
∫

v1<0
d2x1

∫
v2<0

d2x2 (u1 − u2)2⟨Θ(x1)Tuu(0)Θ(x2)⟩ . (5.25)

If we had started from the time-ordered rather than retarded correlator, the only differ-
ences would be the sign of the contact term and the arguments of the step functions when the
ordered correlator is expanded in Wightman functions. This leads to a time-ordered sum rule

cUV − cIR = 6π
∫

v1>0
d2x1

∫
v2<0

d2x2 u
2
1δ(u2)⟨Θ(x1)Eu(0)Θ(x2)⟩ , (5.26)

which is equivalent to (5.24) under rotating the v1 contour.
2The formula (5.21) must be interpreted carefully: it holds when integrated against a test function such

that all three terms converge individually. Otherwise, the split into three terms can have ambiguities. For
example, if the separated term is highly singular, then its Fourier transform diverges and must be regulated,
and the choice of regulator affects the contact terms.
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5.2.1 Comparison to the Zamolodchikov sum rule

We will now show this is equivalent to the Zamolodchikov sum rule (5.12). Using

[Eu,O] = −[Pu,O] = −i∂uO , (5.27)

and d2x = 1
2dudv, the sum rule (5.26) becomes

cUV − cIR = 3π
2 i

∫
du1dv1dv2 θ(v1)θ(−v2)u2

1∂u1⟨Θ(u1, v1)Θ(0, v2)⟩sep (5.28)

= −3πi
∫
du1dv1dv2 θ(v1)θ(−v2)u1⟨Θ(u1, v1 − v2)Θ(0)⟩sep (5.29)

= 6πi
∫
d2x θ(v)x2⟨Θ(x)Θ(0)⟩sep (5.30)

= 3πi
∫
d2xx2⟨T [Θ(x)Θ(0)]⟩sep . (5.31)

We integrated by parts in the second line and used
∫∞

0 dv1
∫ 0
−∞ dv2G(v1 − v2) =

∫∞
0 dv v G(v)

and x2 = −uv in the third line. These formulas are all in Minkowski space. Wick rotating
the last line gives the Zamoldchikov formula (5.12).

5.3 The c-theorem from the ANEC

The sum rules in (5.24)–(5.26) are not manifestly positive. To prove the c-theorem from
the ANEC, we must write ∆c = cUV − cIR in terms of the expectation value of Eu in some
state. The obvious candidate from (5.24) is a state created by an insertion of the trace in
the region v < 0. Consider the wavepacket

|Ψ(ku)⟩ =
∫
d2x θ(−v)eikuu−u2

σ2 Θ(u, v)|0⟩ (5.32)

where σ is an infrared cutoff with σ−1 ≪ ku ≪ M . The sum rule (5.24) is equivalent to
the statement that at leading order in k,∫

v1<0
d2x1

∫
v2<0

d2x2e
ik1·x1+ik2·x2⟨Θ(x1)Eu(0)Θ(x2)⟩ ≈ cUV − cIR

6 k2
1uδ(k1u + k2u) . (5.33)

The expectation value of the ANE in the state |Ψ(ku)⟩ is calculated from this relation by a
convolution with the Gaussian damping factor. The result at order k2 is

⟨Ψ(ku)|Eu(0)|Ψ(ku)]⟩ ≈ (cUV − cIR)k2
u

σ

12
√

2π
, (5.34)

with corrections suppressed by ku/M and 1/(kuσ). Thus the ANEC, ⟨Ψ(ku)|Eu(0)|Ψ(ku)]⟩ ≥ 0,
implies the c-theorem cUV ≥ cIR.

5.4 Examples

In this section, we will illustrate the ANE sum rule for a free massive scalar field and a
free massive fermion.

– 17 –



J
H
E
P
0
1
(
2
0
2
4
)
1
0
2

5.4.1 Free massive scalar

We will first apply the ANE sum rule to a free massive scalar field in two dimensions, which
flows from the massless scalar in the UV with cUV = 1 to the trivial theory in the IR with
cIR = 0. The analogous calculation in four dimensions was described in [43].

The action for a free massive scalar is given in (3.24), while the stress-tensor is presented
in (3.25). From this stress-tensor, we can obtain the trace and null energy, which are

Θ = −m2ϕ2 , Tuu = (∂uϕ)2 . (5.35)

The Feynman propagator is

Gb(x− y) = ⟨T [ϕ(x)ϕ(y)]⟩ = −i
∫

d2p

(2π)2
eip·(x−y)

p2 +m2 − iϵ
. (5.36)

The 3-point function at separated points, calculated by Wick contractions, is

⟨T [Tuu(x3)Θ(x1)Θ(x2)]⟩sep = 8m4Gb(x1 − x2)∂u1∂u2 [Gb(x1 − x3)Gb(x2 − x3)] . (5.37)

In momentum space,

⟨⟨T [Tuu(k3)Θ(k1)Θ(k2)]⟩⟩sep (5.38)

= 8m4i

∫
d2p

(2π)2
(pu + k1u)(pu − k2u)

(p2 +m2 − iϵ)((p+ k1)2 +m2 − iϵ)((p− k2)2 +m2 − iϵ) .

This is a triangle loop diagram. Expanding at low momentum,

⟨⟨T [Tuu(k3)Θ(k1)Θ(k2)]⟩⟩sep = 1
6π
(
k2

1u + 3k1uk2u + k2
2u

)
+O(k4) . (5.39)

We calculated the loop in (5.38) by combining the denominator with Feynman parameters,
then expanding in k. Finally we evaluate the sum rule in the form (5.26),

∆c = 3π
∫
du3

∫
d2x1d

2x2 u
2
1δ(u2)⟨T [Tuu(u3, v3 = 0)Θ(x1)Θ(x2)]⟩sep (5.40)

= −3π (∂k1u − ∂k2u)2⟨⟨T [Tuu(−k1 − k2)Θ(k1)Θ(k2)]⟩⟩sep
∣∣∣
k1=k2=0

= 1 .

This produces the correct ∆c.
Note that the momentum dependence in (5.39) does not naively match the CFT re-

sult (5.16). It is only after setting k3u = 0 that they agree. This reflects the presence of nonzero
partial contact terms in the 3-point function, which drop out of the averaged null energy.

5.4.2 Free massive Majorana fermion

A free massive Majorana fermion in two dimensions flows from a massless Majorana fermion
CFT (i.e. the 2d critical Ising model) with cUV = 1

2 to an empty theory in the IR with
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cIR = 0, such that ∆c = 1/2. The action was presented in (3.33) while the ⟨ψ(z, z̄)ψ(0)⟩
propagator was presented in (3.34). The two other fermion propagators are

⟨ψ̄(z, z̄)ψ̄(0,0)⟩= 2∂z̄

[∫
d2p

(2π)2
eip·x

p2 +m2

]
= 1
π
∂z̄K0 (m|z|) =−m

2π

(
z

z̄

)1/2
K1 (m|z|) , (5.41)

⟨ψ̄(z, z̄)ψ(0,0)⟩=−im
∫

d2p

(2π)2
ep·x

p2 +m2 =−i m2πK0 (m|z|) . (5.42)

Note that under the interchange of two fermions, all the correlators pick up a minus sign, i.e.

⟨ψ̄(z, z̄)ψ̄(0, 0)⟩ = −⟨ψ̄(0, 0)ψ̄(z, z̄)⟩ , ⟨ψ̄(z, z̄)ψ(0, 0)⟩ = −⟨ψ(z̄, z)ψ̄(0, 0)⟩ . (5.43)

The stress tensor derived from the action (3.33) is shown in (3.35), and repeated here for
convenience along with the trace:

Tzz(z, z̄) = 1
2ψ(z, z̄)∂zψ(z, z̄) , Θ = −imψ̄(z, z̄)ψ(z, z̄) . (5.44)

The theory is free, so correlators can be computed using Wick’s theorem. The trace two
point function is

⟨Θ(z, z̄)Θ(0, 0)⟩ =
(
m2

2π

)2 (
K1 (m|z|)2 −K0 (m|z|)2

)
(5.45)

The Zamolodchikov sum rule is given in (5.12), and in radial coordinates, it becomes

∆c = 3π
∫
d2xx2 ⟨Θ(x)Θ(0)⟩ = 6π2

∫ ∞

0
dr r3 ⟨Θ(r)Θ(0)⟩ , (5.46)

with r =
√
zz̄. Using (5.45) within (5.46), we obtain

∆c = 3
2m

4
∫ ∞

0
dr r3

(
K1 (mr)2 −K0 (mr)2

)
= 1

2 . (5.47)

Now that we have checked the c-theorem at the level of the trace-trace two-point function
using Zamolodchikov’s result, we can move to the sum rule involving the ANE operator.
For this, we need to compute the three-point function. This is again a Wick contraction
exercise, and we obtain

⟨T [Tzz(z3, z̄3)Θ(z1, z̄1)Θ(z2, z̄2)]⟩sep (5.48)

= −m
2

2 i

∫
d2p1
(2π)2

d2p2
(2π)2

d2p3
(2π)2

eip1·x12+ip2·x13+ip3·x23

(p2
1 +m2 − iϵ)(p2

2 +m2 − iϵ)(p2
3 +m2 − iϵ)

×
[
2(p2z − p3z)(m2(p1z − p2z + p3z) + 4p1z̄p2zp3z)

]
,

where pi · xjk = piz(zj − zk) + piz̄(z̄j − z̄k). Going to momentum space, we obtain a one-loop
integral that is performed by the same method as above. We then use kiz → −kiu and
kiz̄ → kiv and expand at low momenta to obtain

⟨⟨T [Tuu(k3)Θ(k1)Θ(k2)]⟩⟩sep = k2
1u + 4k1uk2u + k2

2u

24π +O(k4) . (5.49)
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We can now evaluate the sum rule in the form (5.26). This amounts to

∆c = 3π
∫
du3

∫
d2x1d

2x2 u
2
1δ(u2)⟨T [Tuu(u3, v3 = 0)Θ(x1)Θ(x2)]⟩sep (5.50)

= −3π (∂k1u − ∂k2u)2⟨⟨T [Tuu(−k1 − k2)Θ(k1)Θ(k2)]⟩⟩sep
∣∣∣
k1=k2=0

= 1
2 ,

as expected.
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A Varying the trace anomaly

In this appendix, we give more details on the CFT calculations necessary to obtain the
results in the main text. By varying the conformal anomaly, we compute both Euclidean and
Lorentzian two- and three-point functions involving the trace of the stress tensor. We will
perform the variations in Euclidean spacetime, then Wick rotate to Lorentzian at the end.
These calculations (and our conventions) are similar to the four-dimensional CFT calculations
in [43] and we refer the reader there for more detailed discussion of analytic continuations,
choices made in the variational definitions, and the Ward identities.

A.1 Correlator conventions

Brackets ⟨· · ·⟩ denote connected correlators. In Euclidean signature, we define the stress
tensor correlators through the variations

⟨Tµν(x1) . . . Tαβ(xn)⟩ = (−2)n√
g(x1) . . .

√
g(xn)

δn

δgµν(x1) . . . δgαβ(xn) logZ . (A.1)

⟨Θ(x1) . . .Θ(xn)⟩ = (−2)n√
g(x1) . . .

√
g(xn)

gµν(x1) δ

δgµν(x1) · · · g
αβ(xn) δ

δgαβ(xn) logZ

and

⟨Θ(x1)Tµν(x2)⟩ = 4√
g(x1)

√
g(x2)

δ

δgµν(x2)g
αβ(x1) δ

δgαβ(x1) logZ (A.2)

⟨Θ(x1)Θ(x2)Tµν(x3)⟩ = −8√
g(x1)

√
g(x2)

√
g(x3)

δ

δgµν(x3)g
αβ(x2) δ

δgαβ(x2)g
ρσ(x1) δ

δgρσ(x1) logZ .
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These conventions, in particular where to place the trace contractions and √
g’s, affect the

contact terms, and were chosen to simplify the discussion of partial contact terms in [43].

A.2 Trace anomaly

The trace of the stress tensor in a 2d CFT is

⟨Θ(x)⟩ = 1
24π

(
cR(x) + bΛ2

)
, (A.3)

where c is the central charge, R is the Ricci scalar of the background, and the b term is
explained in section 5. By varying the trace (A.3) according to the definitions in section A.1,
we can obtain higher-point functions involving the stress tensor and its trace.

A.3 ⟨TµνΘ⟩

To obtain the Euclidean two-point function, we vary the trace (A.3) once with respect to
the background metric:

⟨Θ(x1)Tµν(x2)⟩ = − 2√
g(x1)

√
g(x2)

δ

δgµν(x2)

[√
g(x1) ⟨Θ(x1)⟩

]
. (A.4)

Using the variation of the Ricci scalar, we obtain

⟨Θ(x1)Tµν(x2)⟩=− 1
12π

1√
g(x2)

[
−1

2gαβ

(
cR+bΛ2

)
+c
(
Rαβ −∇α∇β +gαβ∇2

)] δgαβ(x1)
δgµν(x2) .

(A.5)
We now use the variation

δgαβ(x1)
δgµν(x2) = 1

2
(
δα

µδ
β
ν + δα

ν δ
β
µ

)
δ̃(2)(x1 − x2) , (A.6)

The Dirac delta function in (A.6) is the density δ̃(d)(x), which is related to the scalar Dirac
delta function δ(d)(x) by

δ(2)(x) = δ̃(2)(x)√
g(x)

, (A.7)

which obeys
∫
d2x

√
gδ(2)(x) = 1. The Euclidean two-point function is thus

⟨Θ(x1)Tµν(x2)⟩ = − 1
12π

[
−1

2gµν

(
cR+ bΛ2

)
+ c

(
Rµν −∇(µ∇ν) + gµν∇2

)]
δ(2)(x1 − x2) .

(A.8)
In flat space, (A.8) becomes

⟨Θ(x1)Tµν(x2)⟩ = 1
12π

[1
2bgµνΛ2 + c

(
∂µ∂ν − gµν∂

2
)]
δ(2)(x1 − x2) , (A.9)

where all the derivatives act at position x1, and gµν is the flat Euclidean metric. The Fourier
transform to momentum space is

⟨Θ(K1)Tµν(K2)⟩ =
∫
d2x1d

2x2 e
iK1x1+iK2x2 ⟨Θ(x1)Tµν(x2)⟩ , (A.10)
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such that

⟨⟨Θ(K1)Tµν(−K1)⟩⟩ = 1
12π

(1
2bgµνΛ2 − c

(
K1µK1ν − gµνK

2
1

))
, (A.11)

where the double bracket notation was defined in equation (5.6). Note that the correlator
in (A.11) does depend explicitly on b even in flat space.

It is straightforward to calculate the trace-trace two-point function from (A.11). We find

⟨Θ(x1)Θ(x2)⟩ = gµν ⟨Θ(x1)Tµν(x2)⟩ = 1
12π

[
−c∇2 + bΛ2

]
δ(2)(x1 − x2) , (A.12)

which is the curved spacetime expression. In flat space,

⟨Θ(x1)Θ(x2)⟩ = 1
12π

(
−c∂2 + bΛ2

)
δ(2)(x1 − x2) . (A.13)

This is (5.4) in the main text. In momentum space, it becomes

⟨⟨Θ(K1)Θ(−K1)⟩⟩ = 1
12π (cκ2

1 + bΛ2) , (A.14)

which is the result (5.5) of the main text.

A.4 ⟨TµνΘΘ⟩

With the conventions in (A.2), the three-point function can be calculated by the variation

⟨Θ(x1)Θ(x2)Tµν(x3)⟩ = − 2√
g(x1)

√
g(x2)

√
g(x3)

δ

δgµν(x3)

[√
g(x1)

√
g(x2) ⟨Θ(x1)Θ(x2)⟩

]
= 4√

g(x1)
√
g(x2)

√
g(x3)

δ

δgµν(x3)

[
gαβ δ

δgαβ(x2)

[√
g(x1) ⟨Θ(x1)⟩

]]
. (A.15)

We will use the following metric variation

δ
[
δ(2)(x12)

]
= 1

2δ
(2)(x12)gαβδg

αβ , (A.16)

where xij = xi − xj . Performing these variations explicitly, and taking the flat space limit,
we obtain the Euclidean three-point function

⟨Θ(x1)Θ(x2)Tµν(x3)⟩ = c

6π
(
δ(2)(x13)∂µ∂νδ

(2)(x12) + ∂(µδ
(2)(x13)∂ν)δ

(2)(x12)
)

(A.17)

+ gµν

12π
[
−c
(
δ(2)(x13)∂2δ(2)(x12) + ∂αδ

(2)(x12)∂αδ(2)(x13)
)

+ bΛ2δ(2)(x12)δ(2)(x13)
]
,

where all derivatives act at position x1. The Fourier transform to momentum space is done
by first converting the derivatives acting at x1 to derivatives acting on x2 and x3, accounting
for minus signs, which then makes Fourier transforming trivial. The result, for the Euclidean
momentum space correlator is

⟨⟨Θ(K1)Θ(K2)Tµν(K3)⟩⟩ = c

6π
(
K1(µK2ν)

)
− gµν

12π
[
c (K1 ·K2) − bΛ2

]
. (A.18)

In flat Euclidean space, the null-null component is

⟨Θ(x1)Θ(x2)Tuu(x3)⟩ = c

6π
(
∂u1δ

(2)(x12)∂u1δ
(2)(x13) + δ(2)(x13)∂2

u1δ
(2)(x12)

)
, (A.19)
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where we used guu = 0. All terms proportional to b vanished, as needed for the sum rule.
Finally, in momentum space, we obtain

⟨⟨Θ(K1)Θ(K2)Tuu(K3)⟩⟩ = c

6πK1uK2u , (A.20)

which is the result (5.14) in the main text.
In [43], we derived the Ward identities that follow from the definitions in section A.1.

While we will not go through this exercice again here, we will just quote the equation that
the three-point correlator must solve, which is

Kµ
3 ⟨⟨Tµν(K3)Θ(K1)Θ(K2)⟩⟩ = −K2ν⟨⟨Θ( K1)Θ(−K1)⟩⟩ −K1ν⟨⟨Θ(K2)Θ(−K2)⟩⟩ . (A.21)

Plugging in (A.18) and (A.14), it is easy to verify that this equation holds.

A.5 Lorentzian correlators

Following similar steps but in Lorentzian signature, or by Wick rotating the final answers,
we obtain

⟨⟨T [Θ(k1)Θ(k2)]⟩⟩ = − i

12π
(
ck2

1 + bΛ2
)
. (A.22)

The Lorentzian three-point functions are

⟨⟨T [Θ(k1)Θ(k2)Tµν(k3)]⟩⟩ = − c

6π
(
k1(µk2ν)

)
+ gµν

12π
[
c (k1 · k2) − bΛ2

]
(A.23)

⟨⟨T [Θ(k1)Θ(k2)Tuu(k3)]⟩⟩ = − c

6πk1uk2u . (A.24)
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