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Abstract. We study the maximum-average submatrix problem, wherein given
an N ×N matrix J, one needs to find the k × k submatrix with the largest aver-
age number of entries. We investigate the problem for random matrices J, whose
entries are i.i.d. random variables, by mapping it to a variant of the Sherrington–
Kirkpatrick spin-glass model at fixed magnetisation. We analytically characterise
the phase diagram of the model as a function of the submatrix average and the
size of the submatrix k in the limit N →∞. We consider submatrices of size
k =mN with 0<m< 1. We find a rich phase diagram, including dynamical,
static one-step replica symmetry breaking (1-RSB) and full-step RSB. In the
limit of m→ 0, we find a simpler phase diagram featuring a frozen 1-RSB phase,
where the Gibbs measure comprises exponentially many pure states each with
zero entropy. We discover an interesting phenomenon, reminiscent of the phe-
nomenology of the binary perceptron: there are efficient algorithms that provably
work in the frozen 1-RSB phase.
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We consider the maximum-average submatrix (MAS) problem, that is the problem of
finding the k × k submatrix of an N ×N matrix J with the largest average number of
entries. This is a natural combinatorial optimisation problem that has been researched
in the mathematical and data science literature [1], primarily in the context of biclus-
tering [2]. Theoretical works have focussed on the case where J is a random matrix
(i.i.d. standard Gaussian entries), the size of J is large (N →∞) and the size of the
submatrix k ≪N [3–5].

From a statistical physics point of view, the MAS problem is a natural variant of
the well-known Sherrington–Kirkpatrick (SK) model [6] with spins σi ∈ {0,1} at fixed
magnetisation. The statistical physics of disordered systems and the related replica
method [7] have been widely used to assess other combinatorial optimisation problems,
such as graph partitioning [8], matching [9], graph colouring [10], K -satisfiability of
Boolean formulas [11], and many others. As far as we are aware, the MAS problem has
not been examined from the statistical physics point of view. Filling this gap is the
main purpose of this paper.

Our results reveal the exact phase diagram of the MAS problem when k =mN, N
is large and m is finite. We unveil that at large values of m as the submatrix average
increases, the system undergoes a continuous phase transition to a full replica symmetry
breaking (RSB) phase [7]. At intermediate values of m, the phase transition becomes
discontinuous, passing through a dynamical one-step RSB (1-RSB) and static 1-RSB
phases to a full-RSB one [7]. At yet lower m, the full-RSB phase then vanishes and the
maximum average is obtained by the 1-RSB solution. In the limit of m→ 0, the MAS
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problem behaves in a way related to the random energy model [12] presenting frozen
1-RSB [13, 14].

We also find that in the limit m→ 0, the phase diagram presents a region where
polynomial algorithms are proven to work [4] yet according to our results, the equilib-
rium behaviour of the problem is given by the frozen 1-RSB phase that is considered
algorithmically hard [15]. One other such problem is known in the literature—the bin-
ary perceptron. For the binary perceptron, an explanation of the discrepancy between
equilibrium properties and algorithmic feasibility has been proposed with respect to
out-of-equilibrium large-local-entropy regions of the phase space that are not described
within the standard replica solution [16]. This finding has been used to discuss learning
in artificial neural networks [17] and propose new algorithms [18]. The analogy of the
behaviour between the binary perceptron and the MAS problem is therefore interesting
as it may serve to shed light over the fundamental question of algorithmic hardness.
From the point of view of the mathematics of spin glasses, the perceptron problem is
difficult to handle due to the effective bipartite structure of the correlations. The MAS
problem instead belongs to a class of problems for which the exactness of the replica
calculation has been established rigorously in [19].

We now review the mathematical results that we later connect to our analysis.
All these results hold in the regime k ≪N . In [3], the authors proved that the glob-

ally optimal submatrix has an average equal to Aopt = 2
√
logN/k (log is the natural

logarithm). They also conjectured, and it was later proven by [4] that the largest
average submatrix (LAS) algorithm—an efficient iterative row/column optimisation
scheme—fails to reach the global optimum, as its fixed point—akin to local minima—
has with high probability average equal to ALAS =

√
2logN/k. The fact that the LAS

algorithm fails bears a natural question: is ALAS an algorithmic threshold signalling
the onset of a hard phase? In [4], the authors introduced a new algorithm called
incremental greedy procedure (IGP) that is able to produce submatrices with aver-

age AIGP = 4/3
√
2logN/k > ALAS . Furthermore, they proved that for averages larger

than at least AOGP = 10/(3
√
3)
√
logN/k > AIGP , the problem satisfies the overlap gap

property (OGP) [20]. This means that (i) the LAS threshold ALAS seems to be an
algorithm-specific threshold and not a more general trace of an intrinsic computational-
to-statistical gap, and (ii) the problem will likely exhibit a hard phase preventing
algorithms to find submatrices with averages larger than at least AOGP. [21] discusses
additional results for k =Nγ, 0< γ < 1.

1. The model

We consider an Nr×Nc random matrix J comprising i.i.d. Gaussian entries with zero
mean and unit variance. A kr× kc submatrix σ of J is defined by two arbitrary subsets
of rows and columns Ir,Ic such that J ij belongs to the submatrix σ if and only if i ∈ Ir
and j ∈ Ic, and the cardinalities satisfy |Ir|= kr and |Ic|= kc. There are three versions
of the MAS problem:

• Rectangular MAS: Nr, Nc, kr and kc are unconstrained. This is a problem relevant
for applications [1, 2].

https://doi.org/10.1088/1742-5468/ad1391 3
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• Square MAS of a square matrix: Nr =Nc =N and kr = kc = k. This version is
studied in the mathematical literature [3, 4, 21].

• The principal MAS of a symmetric matrix: Nr =Nc =N , kr = kc = k, J = JT is
symmetric and we consider only principal submatrices, that is submatrices for which
Ir = Ic.

In the following section, we focus on the case of the principal MAS of a symmetric ran-
dom matrix motivated by its close relationship to the SK model. In the supplementary
data, we sketch the corresponding solution for the rectangular MAS of a random matrix
and realise with surprise that the equations leading to the phase diagram of the square
MAS of a square random matrix are exactly the same as the ones for the principal
MAS of a symmetric random matrix. This allows us to compare our results directly
to the mathematical literature, and it also means that the phase diagram provided by
us applies to the non-symmetric case. We believe that the physics of the rectangular
MAS problem has two more hyperparameters, namely Nr/Nc and kr/kc, leading to a
four-dimensional phase diagram. Its exploration is left for future works.

We encode principal submatrices, that is their row/column index set I, as Boolean
vectors σ = {σi }Ni=1 ∈ {0,1}N such that if i ∈ I then σi = 1 and vice versa. We fix the
size of the submatrix to k =mN , which in the Boolean representation translates to the
condition

∑
i σi =mN . We call m ∈ (0,1) magnetisation. The average of the entries of

a submatrix σ can be then expressed as:

A= |σ|= 1

m2N 2

N∑
i,j=1

Jijσiσj. (1)

We define a=A
√
N , and we will see that a is of order one in the thermodynamic limit.

We probe the energy landscape of the MAS problem by studying the associated
Gibbs measure:

p(σ) = eβE(σ)+βh
∑N

i=1σi/Z (β,h) , (2)

where β is an inverse temperature that we use to fix the average energy, h is a magnetic
field that we use to fix the magnetisation m and Z(β,h) is the partition function.
The uncommon plus sign in front of the inverse temperature is due to the fact that
the problem is a maximisation problem. Thus, small temperatures correspond to large
positive energies in this model. The energy function is defined as:

E (σ) =
1√
N

∑
i<j

Jijσiσj =
m2N

2
a , (3)

which, modulo subleading contributions coming from the diagonal term, is a multiple of
the submatrix average a. Because the considered model resembles the classic SK model,
note that the mapping of the Boolean spins to ±1 spins, that is s= 2σ− 1, leads to an
SK model in a random magnetic field, with couplings correlated to the magnetic field
(see the supplementary data). Such a model has not been considered in the physics
literature as far as we are aware.
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We will compute all thermodynamic observables through the quenched free entropy,
that is Φ = limN→∞EJ logZ(β,h)/N where EJ denotes averaging over the distribution
of J. We will show that the free entropy can be expressed as a variational problem
for the overlap order parameter, which is defined as q =N−1

∑N
i=1σ

a
i σ

b
i ∈ [0,m] for two

replicas of the system σa and σb .

2. Replica analysis of the free entropy

We compute the quenched free entropy Φ using the replica formalism [7], that is by
using the replica trick EJ logZ = limn→0(EJZ

n− 1)/n, computing EJZ
n for integer val-

ues of n and performing an analytical continuation to take the n→ 0 limit. We perform
the analytical continuation under the 1-RSB ansatz, in which we assume that the Gibbs
measure decomposes into a two-level hierarchy of pure states. This hierarchy is charac-
terised by two overlaps: the average overlap between microstates belonging to the same
pure state q1 and the one between microstates belonging to different pure states q0.
The Parisi parameter p acts as a temperature controlling the trade-off between the free
entropy of a single pure state, and the entropy of pure states [22]. After a derivation
that follows the steps standard to the replica method [7, 23], we obtain the following
variational free entropy:

Φ1-RSB (m,q0,q1,p) =−β2

4

[
m2+(p− 1)q21 − pq20

]
+

1

p

ˆ
Du log

[ˆ
Dv
[
1+ eβH(u,v)

]p]
,

H (u,v) = h+
β

2
(m− q1)+

√
q0u+

√
q1− q0v ,

(4)

where Du and Dv denote the integration against a standard Gaussian measure. The
variational free entropy depends on the submatrix size/magnetisation m, the intra-
state overlap q1, the inter-state overlap q0 and the Parisi parameter p. To obtain the
equilibrium free entropy, we extremise the variational free entropy over m,q0 and q1.
The Parisi parameter must be set to one if the resulting complexity (whose definition
we provide in the following) is positive; otherwise, the variational free entropy must also
be extremised over p.

Under the 1-RSB ansatz, we have the following expressions for the observables to be
evaluated at the equilibrium values of the order parameters. The average energy density
(and the submatrix average) equals:

e=
m2

2
a=

β

2

[
m2+(p− 1)q21 − pq20

]
, (5)

the total entropy (logarithm of the number of microstates) equals:

stotal =Φ −βhm−βe, (6)
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and the complexity (logarithm of the number of pure states contributing to the Gibbs
measure) equals:

Σ =max

(
0,∂p

[
extr
m,q0,q1

Φ1-RSB

]
p=1

)
. (7)

If the complexity is non-zero, the total entropy decomposes as stotal = sinternal+Σ, where
the internal entropy sinternal is the logarithm of the number of microstates contributing
to each of the exponentially many pure states.

Finally, we need to investigate whether the 1-RSB result is exact in the thermo-
dynamic limit. This is done by analysing the stability of the 1-RSB ansatz against
perturbations of higher-order RSB nature. We perform the so-called type-I stability
analysis (see supplementary data section I.d) and obtain the stability condition:

ˆ
Du

´
Dv
(
1+ eβH

)p [
ℓ(βH)2 (1− ℓ(βH))2

]
´
Dv (1+ eβH)

p <
1

β2
, (8)

where ℓ(x) = 1/(1+ exp(−x)). If this condition is not satisfied, then the 1-RSB results
are just an approximation and more steps of RSB need to be considered.

We derived the variational free entropy using the replica trick. Note, however, that
the proof of the full-RSB free entropy giving the exact solution in the thermodynamic
limit from [19] applies to the MAS problem and thus to our setting. To apply their results
to our model, we note that [19] constrains the free-entropy to fixed self-overlap qself =
N−1

∑
i σ

2
i , whereas we constrain the model to fixed magnetisation m=N−1

∑
i σi. Due

to the choice of Boolean spins, we have that σ2
i = σi, so that the two constraints coincide

(this is not true in general).

3. The phase diagram

After solving the above equations, we identify five distinct phases for finite m ∈ (0,1),
and we plot them in figure 1.

• RS phase: For small submatrix average (corresponding to large temperatures), we
observe a replica-symmetric (RS) phase, in which the extremum of the variational free
entropy is attained at q*0 = q*1. In this phase, the complexity is zero, whereas the total
entropy is strictly positive. As the submatrix average increases (i.e. the temperature
is lowered), the system undergoes a phase transition to an RSB phase. The nature of
the transition is different for m⩽mc and m⩾mc. We start by discussing the former
case.

• Dynamical 1-RSB phase: For m⩽mc, we observe a discontinuous transition at a
value adynamic(m) of the submatrix average from the RS phase to a dynamical 1-RSB

phase, in which the extremum of the variational free entropy satisfies q*0 ̸= q*1. This
transition is identified by a sharp jump of the complexity from zero to a positive value,
meaning that the measure shatters into an exponential number of pure states each

https://doi.org/10.1088/1742-5468/ad1391 6
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with non-zero entropy. As m decreases, the appropriately rescaled internal entropy
decreases, suggesting that in the m→ 0 limit, this phase becomes a frozen 1-RSB
phase, see figure S2 in the supplementary data.

• Static 1-RSB phase: For m⩽mc, in the dynamical 1-RSB phase, the complexity
continuously decreases with the increase in the submatrix average. At the value of
the submatrix average astatic(m)> adynamic(m) at which the complexity vanishes, we
observe a first-order phase transition, from the dynamical 1-RSB phase to a static
1-RSB phase (q*0 ̸= q*1, zero complexity, positive entropy).

• The full-RSB phase: For values m⩾mc we observe a continuous phase transition
from the RS to the full-RSB phase at astability(m). The transition occurs when the
type-I 1-RSB stability condition (8) fails. We conjecture that this phase is full RSB
due to the similarity to the SK model, in which a similar continuous phase transition
to full-RSB occurs. For the values of mc ⩾m⩾m*, we observe a Gardner-like phase
transition at a value astability(m) of the sub-matrix average from the 1-RSB phase to
the full-RSB phase. This transition is reminiscent of the one known from the Ising
p-spin model [24].

• The UNSAT phase: As the average of the matrix increases, we encounter a point at
which the total entropy vanishes, denoting that the sub-matrix average has reached
its maximum value amax(m). After this point, the total entropy becomes negative and
we observe an unsatisfiable (UNSAT) phase, where no submatrix with that value of
the submatrix-average exists. For m⩾m*, we provide only an approximate estimate
of this transition line (while all other transitions presented are exact up to the pre-
cision of the numerical solver). We estimated amax(m) in the 1-RSB solution, even
though this ansatz is unstable in this phase, by computing the 1-RSB entropy, finding
the temperature at which it vanishes, and computing the corresponding submatrix
average.
It is often the case that the 1-RSB prediction for the maximum energy is numerically
very close to the full-RSB prediction. Evaluation of the full-RSB equations, which are
proven to yield the correct maximum average (analogous to the ground-state energy
in the SK model) [19], is left for future works.

• Tricritical points: The phase diagram features two tricritical points. The first one,
at (mc,ac)≈ (0.09–0.1, 9.3–9.7), marks the coexistence of the RS, 1-RSB and full-
RSB phases. It can be pinpointed by finding the intersection of the stability and
the static transition lines. As m→m−

c , the static and dynamic transitions approach
very quickly so that it is very difficult to distinguish them numerically. The second
tricritical point is at (m*,a*)≈ (0.0001–0.002, 100–650), marking the crossing between
the stability and the UNSAT transition lines. For m⩽m*, the 1-RSB phase is stable
up to the maximum average amax(m). This second tricritical point is hard to pinpoint
numerically and accurately. In the supplementary data, we show analytically that at
least for m→ 0, the 1-RSB phase is indeed stable up to amax(m). Thus, by continuity,
this second tricritical point must exist.
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Figure 1. The phase diagram of the MAS problem as a function of the submatrix
average a and the submatrix size m= k/N for a linear scale in m (left), the log-
arithmic scale in m (centre) and m→ 0 (right). In the central and right panels, we

rescale the submatrix average as a/
√
log(1/m)/(m) to highlight the limit’s con-

vergence. We identify five distinct phases. In the RS phase (green), the system is
replica symmetric. In the 1-RSB phases, the replica symmetry is broken to one step
and two sub-phases. A dynamical 1-RSB with an extensive number of equilibrium
pure states (blue) and a static 1-RSB exists with only finitely many pure states
(purple). All the phase boundaries are exact in the thermodynamic limit except
the boundary between full RSB (orange) and UNSAT (red), which would require
solving the full-RSB equations. In the full-RSB phase (orange), the replica sym-
metry is completely broken and the set of pure states manifests ultrametricity. In
the unsatisfiable phase (UNSAT, red), no submatrix exists with the given values of
a and m. The transition from RS and 1-RSB to full-RSB is continuous and caused
by an instability of the 1-RSB ansatz (dashed line), whereas the other transitions
are discontinuous. We observe two tricritical points: one at (mc,ac) where the sys-
tem shows the coexistence of RS, 1-RSB and full-RSB phase (white marker) and
one at (m*,a*) where the largest-average submatrices become 1-RSB stable and
the full-RSB region ceases to exist (black marker). In the limit m→ 0, we observe
only the RS, 1-RSB and UNSAT phases. The 1-RSB phase is frozen, meaning that
the internal entropy of each pure state goes to zero in the m→ 0 limit.

4. The small magnetisation limit

We now study the phase diagram in the m→ 0 limit, corresponding to the 1≪ k ≪N
regime. The limit must be carefully taken to preserve the extensivity of the energy
function in the thermodynamic limit. Indeed, we have that for fixed m and N:

var(E (σ)) =O
(
m2N

)
, # =O (Nm log1/m) , (9)

where # denotes the logarithm of the number of microstates at fixed m and N. As
m→ 0, the energy must be rescaled by c(m) =

√
log(1/m)/m, and the entropy and

complexity must be rescaled by m log(1/m). This can be achieved by considering the
m→ 0 limit of (4) at fixed b= β/c(m). We perform analytically the limit in the RS and
1-RSB solutions, leading to the following phase diagram.

• RS phase: For sub-matrix average a < adynamic =
√
2c(m), we observe a stable RS

phase with zero complexity and positive total entropy. In this phase, q0 = q1 =m2.
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• Frozen 1-RSB phase: For sub-matrix average adynamic < a < astatic = 2c(m), we
observe a stable 1-RSB phase with q1 =m, q0 =m2 and complexity Σ = 1− b2/4.
This is a frozen phase, meaning that each of the exponentially-many pure states con-
tributing to the measure has zero internal entropy.

• The UNSAT phase: For submatrix average a > astatic, the total entropy is negative,
signalling the onset of the UNSAT phase.

The threshold adynamic and astatic coincide with the thresholds proved in [3] for, respect-

ively, the submatrix-average of the local maxima ALAS = adynamic/
√
N and the maximum

submatrix-average achievable Aopt = astatic/
√
N . Thus, as a byproduct of our analysis,

we obtain an equilibrium interpretation of ALAS as a freezing transition.
The m→ 0 limit of the MAS phase diagram closely resembles that of the random

energy model (REM) [12]. More precisely, we find that the static threshold, as well as
the values of the entropy and complexity, do coincide (in the REM the static transition
threshold equals astatic,REM = 2, the complexity equals Σ = 1− b2/4 and the internal
entropy is zero for all b> 0). This connection is related to the fact that the MAS energy
E(σ) is a Gaussian random variable with covariance ⟨E(σ)E(σ ′)⟩ ∝ q(σ,σ ′)⩽m, which
vanishes in the m→ 0 limit. The notable difference between the REM and the MAS
problem is given by the finite value of the dynamic threshold in the MAS problem,
whereas the system is frozen at all temperatures in the REM.

In [4], the authors introduced an algorithm called IGP, and they proved that it
can find submatrices with average A which, following our analysis, are inside the frozen
1-RSB region. This is at odds with the common belief that solutions in frozen states are
algorithmically hard to find [15]. Another problem in which a similar situation happens
is the binary perceptron, where the algorithmic feasibility is explained with respect to
out-of-equilibrium dense regions [16, 17]. We leave for future work a deeper understand-
ing of the out-of-equilibrium properties of the MAS problem, and more generally, the
relationship between them and algorithmic tractability.

5. Conclusions

In this paper, we studied the maximum-average submatrix problem using tools from the
statistical physics of disordered systems, and in particular, a mapping onto a variant of
the SK model.

We unveiled the phase diagram in the large submatrix regime k =mN , discovering
a rich phenomenology including glassy phases and phases where exponentially many
pure states contribute to the equilibrium behaviour of the system.

By considering the m→ 0 limit, we characterised the phase diagram in the small
submatrix regime k ≪N , shedding some light on previous results [3, 4] and highlighting
a connection to the REM. We note that there exist efficient algorithms that work in the
frozen 1-RSB phase, usually associated with hard-algorithmic phases, similar to what
happens in the binary perceptron due to non-equilibrium phenomena.

Our findings leave many questions answered: (i) the study of the out-of-equilibrium
properties of the problem and their relationship with algorithmic hardness and (ii) how
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for k ≪N the vanishingly small correlations between the energies combine to shift the
dynamical temperature from infinite (REM) to finite (MAS).

We conclude by remarking that our techniques generalise straightforwardly to the
case in which the entries of J are non-Gaussian as long as they are i.i.d. with finite first
and second moments, and to the rectangular MAS problem, in which both J and the
submatrices may be rectangular, possibly with different aspect ratios.
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