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1 Introduction

QCD axion [1–9] and axion-like particles [10–13], are widely discussed in the literature as
well-motivated dark matter (DM) candidates. The QCD axion, originally suggested as a
solution to the strong CP problem [14, 15], was soon realized [7] to be produced in the early
universe and behave as cold dark matter after the QCD phase transition endowing it with
the mass. The requirement that the QCD axion accounts for all of DM leads to a preferred
mass window1 maQCD ∼ 10−6 ÷ 10−4 eV.

Axion-like particles with broad range of masses and very weak coupling to the Standard
Model naturally arise in many beyond Standard Model scenarios and string theory [10, 16].
For brevity, we will refer to DM made of such particles as axion DM. Particularly interesting
is the case of ultralight (also called “fuzzy”) DM with mass ma ∼ 10−22 ÷ 10−19 eV [17].
The de Broglie wavelength of such ultralight particle corresponding to virial velocity in
a galactic halo,2

λa = 2π
mva

∼ 1.2×
(

ma

10−22 eV

)−1 ( va
100 km/s

)−1
kpc , (1.1)

1The mass can be smaller in scenarios where Peccei-Quinn symmetry is never restored after inflation.
2Throughout the paper we use the system of units ~ = c = 1.
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is comparable to the typical cosmological and astrophysical distances. Due to this prop-
erty, ultralight dark matter exhibits rich phenomenology affecting various cosmological
observables and galactic dynamics [11–13]. The analysis of Lyman-α forest [18–20], galactic
rotation curves [21, 22], halo profiles of dwarf galaxies [23, 24] and subhalo population in
the Milky Way [25] strongly disfavor DM lighter than 10−21 eV. Dynamical heating of
stars by ultralight DM in ultrafaint dwarf galaxies has been used to infer tighter constraints
ma & 10−19 eV [26, 27].

A distinctive feature of axion DM is its huge occupation numbers (phase-space density)
which are allowed because axions are bosons,

fk ∼ 1086 ×
(

ρa

0.3 GeV/cm3

) (
ma

10−20 eV

)−4 ( va
100 km/s

)−3
. (1.2)

This implies that, rather than behaving as a collection of individual particles, axion DM is
best described by a coherent classical scalar field with the scattering rate of axions increased
due to the Bose enhancement. Typically, in the study of structure formation all axion
interactions besides gravity can be neglected resulting in a universal wave dynamics described
by Schrödinger-Poisson equations [13]. The dependence of these equations on the axion
mass can be taken into account by a simple rescaling, and thus they apply to any axion
DM as long as fk � 1.

The Schrödinger-Poisson system admits a spherically symmetric localized solution known
as axion soliton or boson star3 [28]. All axions comprising the soliton are in the same state
which is the ground state of the gravitational potential and hence the soliton can be viewed
as inhomogeneous Bose-Einstein condensate sustained by its own gravity [29]. Numerical
simulations of axion DM have revealed formation of boson stars in the centers of virialized
axion halos (also known as miniclusters [30, 31] in the case of QCD axion). This phenomenon
was observed in the cosmological setting [32–35], in numerical experiments with halos created
by collisions of several seed solitons [36–38], and in the kinetic relaxation regime [39]. It
was also found that if the soliton is artificially removed from the halo, evolution readily
reinstates it back [40].

Thus, presence of a solitonic core appears to be a generic feature of an axion halo. The
rest of the halo represents a cloud of randomly moving wavepackets with the velocities roughly
following the Maxwellian distribution and the average density fitted by the NFW profile [41],
similarly to the usual cold DM. It is natural to ask how the soliton interacts with this
environment. Refs. [42–45] showed that interference between the soliton and wavepackets
leads to oscillations of its density and to a random walk of the soliton center around the halo
center of mass. Further, an interesting correlation between the soliton mass and the mass of
its host halo has been established in cosmological numerical simulations [32, 36] and confirmed
in [33, 42]. This relation can be rephrased as equality between the virial temperatures of the
soliton and the host halo. While this relation may appear intuitive, the physical mechanism
behind it remains unclear. It is not reproduced by simulations starting from non-cosmological
initial conditions [37, 38, 46], whereas more recent cosmological simulations [35, 46, 47]
indicate that it is subject to a large scatter, perhaps due to different merger histories of

3We will use the two names interchangeably.
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different halos. The results of ref. [39] disfavor a potential interpretation of the soliton-host
halo relation as a condition for kinetic equilibrium. Indeed, it was observed that, once formed,
the solitons continue to grow by condensation of axions from the surrounding gas. On the
other hand, refs. [42, 48] argue that this growth slows down when the soliton becomes heavy
enough to heat up the inner part of the halo and, given the finite time of the simulations,
this can explain the observed correlation. The mass of the soliton can be also significantly
affected by baryonic matter, typically leading to its increase [49, 50].

Boson stars give rise to important signatures opening up various opportunities for future
discovery or constraints on axion DM. In the case of fuzzy DM, they are expected to play a
prominent role in galactic dynamics modifying the rotation curves [21, 22] and heating the
stars in the central regions through oscillations and random walk [26, 51, 52]. When axion
self-interaction is included, they become unstable if their mass exceeds a certain threshold
and collapse producing bursts of relativistic axions [53]. Further allowing for possible axion
coupling to photons, they can be sources of radio emission [54–56]. Presence or absence of
boson stars in axion miniclusters can have important implications for their density profiles
and lensing searches [57, 58]. Very dense boson stars made of inflaton field get produced in
inflationary models with delayed reheating opening a potentially rich phenomenology, such
as seeding primordial black holes or contributing into stochastic high-frequency gravitational
wave background [59].

The dynamical range achievable in axion DM simulations is severely limited by the
computational costs (see the discussion in [35]). This calls for better theoretical understanding
of the physical laws governing the evolution of boson stars in various environments which
would allow their extrapolation outside of the parameter regions explored in simulations. In
the present paper we make a step in this direction by studying the evolution of a boson star
immersed in a box filled with homogeneous axion gas. Focusing on this setup allows us to
get rid of the uncertainties related to the dynamics of the halo and keep under control the
gas density and its velocity distribution. The latter is chosen to be Maxwellian at the initial
moment of time. Similar setup was employed in ref. [39] to study the formation of the soliton
in the process of the gas kinetic relaxation. By contrast, we do not assume the soliton to
be formed from the gas and simply add it in the initial conditions of our simulations. In
this way we are able to explore a wide range of soliton masses corresponding different ratios
between the soliton virial temperature Ts and the temperature of the gas Tg.

The key quantity that we are interested in is the rate of change of the soliton mass,

Γs = 1
Ms

dMs

dt
. (1.3)

We study the dependence of this quantity on the parameters characterizing the gas and the
soliton by a combination of analytical and numerical methods. We find that the solitons
with Ts/Tg & 0.1 grow by absorbing particles from the gas. For fixed gas parameters, the
growth rate is essentially constant in the range 0.1 . Ts/Tg . 1, whereas at Ts/Tg & 1 it
decreases as (Ts/Tg)−n/2 with n = 2 ÷ 4.

Interestingly, we find that if Ts/Tg . 0.08, the soliton evaporates. This does not contradict
previous results on soliton formation from the gas by kinetic relaxation [39]. Prior to the
soliton formation the momentum distribution in the gas evolves away from Maxwellian, with
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an increase of occupation numbers in low-momentum modes. Only after the soliton is formed,
the gas distribution returns to approximately Maxwellian. On the other hand, the time scale
of evaporation happens to be shorter than the relaxation time, so the gas distribution remains
Maxwellian, as postulated initially. Running the simulations longer than the evaporation
time and allowing the gas to relax, we observe after a while the birth of a new soliton with
Ts/Tg & 0.1, in agreement with [39]. It is worth stressing the difference between the soliton
evaporation and tidal disruption by large-scale gradients of the halo gravitational field [60].
This is clear already from the fact that there is no halo in our setup. Moreover, the qualitative
direction of the process — evaporation vs. condensation — is entirely determined by the
soliton and gas temperatures and does not depend on the density contrast between them.4

The paper is organized as follows. In section 2 we introduce our framework and review
the relevant properties of the soliton solution to the Schrödinger-Poisson equations. In
section 3 we address the computation of the soliton growth/evaporation rate formulating
it as a quantum-mechanical scattering problem. We consider separately the cases of light
(cold, Ts/Tg � 1) and heavy (hot, Ts/Tg � 1) solitons and employ various approximations to
estimate the rate analytically. In section 4 we describe our numerical simulations, extract the
soliton growth rate from them and compare it to the analytic predictions. In section 5 we
discuss the implications of our results and compare to other works. Three appendices contain
auxiliary material. In appendix A we provide an alternative derivation of the soliton growth
rate using only classical equations of motion. In appendix B we describe a suit of simulations
reproducing the setup of ref. [39] where the soliton forms from the gas spontaneously due to
kinetic relaxation. Appendix C contains additional details about our numerical procedure.

2 Soliton wavefunction and axion gas

Non-relativistic axions with mass m are described by a complex scalar field ψ obeying the
Schrödinger-Poisson equations,

i∂tψ + ∆ψ
2m −mΦψ = 0 , (2.1a)

∆Φ = 4πGm |ψ|2 , (2.1b)

where G is the gravitational coupling, Φ is the Newton potential and ∆ denotes the Laplacian.
The square of the field gives the particle number density, |ψ(t,x)|2 = n(t,x). Equations (2.1)
are invariant under scaling transformations,

ψ 7→ ψ̃(t,x) = Λ3ψ(Λ1t,Λ2x) , Φ 7→ Φ̃(t,x) = Λ2
1

Λ2
2
Φ(Λ1t,Λ2x) , (2.2a)

m 7→ m̃ = Λ2
2

Λ1
m, G 7→ G̃ = Λ3

1
Λ2

2Λ2
3
G , (2.2b)

where Λ1,2,3 are arbitrary parameters. A one-parameter family of these transformations that
leaves m and G invariant connects different solutions for a given axion; the transformations

4Though the quantitative characteristics — the evaporation rate — does depend on the gas density, Γs ∝ ρ2
g

(see eq. (3.13)).
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that change the mass, but not G, allow one to map between solutions for axions with different
masses; finally, the rescaling of G provides a freedom in the choice of units which is handy
in numerical simulations.

The system (2.1) admits periodic spherically symmetric solutions of the form,

ψs(t,x) = χ(|x|)e−iEst . (2.3)

The corresponding density ρs(x) = m|χ(|x|)|2 is time-independent and localized in space,
hence these solutions are called solitons. Es represents the binding energy (chemical potential)
of axions in the soliton and is negative. There is a continuous family of solitons differing by
their mass Ms and related by the subgroup of the scaling transformations (2.2) that leave m
and G fixed. Using this symmetry, the soliton wavefunction can be written as

χ(x) = k2
s√

4πGm3
χ0(ksx) , (2.4)

where ks is the scaling parameter characterizing the soliton width. By the uncertainty relation,
it sets the typical momentum of particles comprising the soliton. The dimensionless function
χ0(ξ) describes the “standard soliton” normalized by the condition

χ0(0) = 1 . (2.5a)

It solves the eigenvalue problem following from the Schrödinger-Poisson system,

χ′′0 + 2
ξ
χ′0 = 2(Φ0 − ε0)χ0 , (2.5b)

Φ′′0 + 2
ξ

Φ′0 = χ2
0 , (2.5c)

where Φ0(ξ) is the standard soliton gravitational potential and ε0 is its binding energy.
Figure 1 shows the function χ0(ξ) obtained by numerically solving eqs. (2.5). It is well
approximated by an analytic fit,

χ0,fit =
(
1 + c0ξ

2)−4
, c0 = 0.0539 , (2.6)

also shown in the figure. The fit differs from the exact solution only at the tail where the
exact solution falls off exponentially, whereas the fit behaves as a power-law.

The standard soliton is characterized by the following dimensionless quantities:

ε0 = −0.692 binding energy , (2.7a)

µ0 = 4π
∫ ∞

0
dξ ξ2χ2

0(ξ) = 25.9 total mass , (2.7b)

ξ0 = 1.299 half-density radius, |χ0(ξ0)|2 = 1/2 . (2.7c)

The corresponding values for a general soliton are obtained by rescaling,

Es = ε0
k2
s

m
, Ms = µ0

ks
4πGm2 , rs = ξ0

ks
, (2.8)

– 5 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
1

0 1 2 3 4 5 6 7 8

ξ

0.0

0.2

0.4

0.6

0.8

1.0
χ

0
numerical

fitting

0 1 2 3 4 5 6 7 8

ξ

10-3

10-2

10-1

100

χ
0

numerical

fitting

Figure 1. The standard soliton profile in linear (left) and in log (right) scale. The solid lines show
the exact solution of the Schrödinger-Poisson equations, while the dotted lines correspond to the
fitting function (2.6).

and its density profile can be approximated as

ρs(x) ≈ ρs, peak[
1 + cs (|x|/rs)2

]8 , ρs, peak = k4
s

4πGm2 , cs = 0.091 . (2.9)

Note that the width of the soliton is inversely proportional to its mass. Accordingly, the
peak density is proportional to the fourth power of the mass. The total energy of the soliton
consists of kinetic and potential parts,

Es = Es,kin + Es,pot =
∫
d3x

(
|∇ψs|2

2m + mΦs|ψs|2

2

)
. (2.10)

Using the Schrödinger-Poisson equations one can show that they obey the virial theorem,
Es = −Es,kin = Es,pot/2, and

Es = MsEs
3m . (2.11)

It is instructive to introduce the soliton virial temperature,

Ts = 2mEs,kin
3Ms

= −2
9Es . (2.12)

Using eqs. (2.8) one obtains alternative expressions,

Ts = 0.154k
2
s

m
= 0.259

mr2
s

. (2.13)

We are interested to study how the mass of the soliton varies due to its interaction with
a gas of axion waves. We assume the gas to fill a box of size

L� rs . (2.14)

Far away from the soliton, it is described by a collection of plane waves,5

ψg(t,x) = 1
L3/2

∑
k
ak e−i

k2
2m

t+ikx , |x| � rs . (2.15)

5At |x| . rs the wavefunctions are modified by the gravitational field of the soliton, see below.
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We choose the occupation numbers to follow the Maxwell distribution, consistent with the
velocity distribution in a DM halo,

fk ≡ |ak|2 = fg e−k2/k2
g , (2.16)

where kg sets the characteristic momentum of particles in the gas. The normalization fg
is related to the gas density as

fg = (4π)3/2

mk3
g

ρg . (2.17)

Validity of the classical description requires fg � 1. The phases of the amplitudes ak are
assumed to be random.

Using kg we can define an effective gas temperature,

Tg =
k2
g

2m . (2.18)

To avoid confusion, we stress that this is not a true thermodynamic temperature since eq. (2.16)
is not an equilibrium distribution of the boson gas which should follow the Bose-Einstein
formula. However, the latter cannot be reached within the classical field theory. Rather,
as demonstrated in ref. [39], a homogeneous axion gas with initial distribution (2.16) will
evolve towards the Rayleigh-Jeans occupation numbers diverging at low k. This relaxation
proceeds on the time scale

τrel =
√

2b k6
g

12π3G2m3ρ2
g ln(kgL) , b ≈ 0.9 , (2.19)

and culminates in the spontaneous formation of a soliton. We neglect the change of the gas
distribution in our theoretical considerations and discuss the validity of this simplification
later on. Numerically, we observe that the Maxwell distribution appears to get reinstated in
the gas once the soliton is formed. Moreover, in the simulations where the soliton is present
for the whole duration, the distribution remains close to Maxwellian at all moments of time.

Being a self-gravitating system, the homogeneous axion gas is unstable with respect to
gravitational collapse leading to a halo formation. The corresponding Jeans length is

lJ = kg
m

√
π

2Gρg
, (2.20)

where we have used that the sound speed in non-relativistic Maxwellian gas is kg/(
√

2m).
We avoid this instability by considering the box size smaller than the Jeans length,

L < lJ . (2.21)

Note that this condition is compatible with eq. (2.14) since lJ can be made arbitrarily large
by decreasing the gas density. In practice, however, eq. (2.21) imposes strong limitations
on the numerical simulations, see section 4.

The total axion field describing a soliton immersed in the gas is given by the sum

ψ(t,x) = ψs(t,x) + ψg(t,x) . (2.22)
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For this decomposition to be well-defined, the number of particles in the soliton must be
much larger than in any other state in the gas,

Ms/m� fk . (2.23)

To compare the soliton size with the characteristic wavelength of axion waves, we introduce

ν ≡ kg
ks

= 0.773 rskg = 0.555
√
Tg
Ts
. (2.24)

Recalling that the mass of the soliton is inversely proportional to its size, we split solitons
into three groups: light solitons (ν � 1), heavy solitons (ν � 1), and median solitons (ν ∼ 1).
Note that light solitons are also cold, heavy solitons are hot, whereas median solitons have
the same virial temperature as the gas. We are going to see that the evolution of solitons
from different groups is dramatically different.

3 Particle exchange between soliton and gas

3.1 Soliton growth rate from wave scattering

Soliton is composed of Bose-Einstein condensate occupying the ground state in its own
gravitational potential. Several processes affect the soliton in the axion gas. One of them
is the interference of gas waves with the soliton field, which would be present even in the
absence of interactions. Another one is elastic scattering of waves on the soliton which endows
it with momentum and leads to its Brownian motion as a whole. To estimate the resulting
rms velocity vB, one can use the quasi-particle picture [12]. The wavepackets of the gas can
be thought as quasi-particles of the size of order the de Broglie wavelength π/kg and mass,
Mqp ∼ ρg(π/kg)3, moving with the average velocity of the gas. Using the assumption of
energy equipartition, we write Msv

2
B ∼ Mqp(kg/ma)2 which gives

vB
kg/ma

∼
√
Mqp

Ms
∼
√
ρg
ρs
ν−

3
2 . (3.1)

In our analyses, we assume that Mqp � Ms so that the Brownian motion of the soliton
is negligible. In the simulations we check that the quantity of the r.h.s. of eq. (3.1) does
not exceed a few per cent.

We focus on the processes that lead to particle exchange between the gas and the soliton
and thereby affect the amplitude of the Bose-Einstein condensate. In this section we develop
their description using scattering theory. We adopt the language of quantum field theory as
the most convenient tool for this task. However, it is important to emphasize that quantum
physics is not essential for the soliton-gas interaction. In appendix A we show how the same
results can be obtained within purely classical approach.

We start by observing that the Schrödinger-Poisson equations can be derived from
the action

S =
∫
dtd3x

(
iψ∗∂tψ + ψ∗∆ψ

2m + Φ∆Φ
8πG −mΦ|ψ|2

)
. (3.2)

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
1

We decompose the total axion field into the soliton and gas components as in eq. (2.22). At
this point we should be more precise about how we perform the split. The spectrum of particle
states in the soliton background contains unbound states with wavefunctions becoming plane
waves far away from the soliton, as well as bound states in the soliton gravitational potential.
In the literature, the latter are usually interpreted as excitations of the soliton. While this
is a valid interpretation, it is more convenient for our purposes to include them into the
gas. The physical reason is that no matter whether the state is bound or not, a transfer of
particles to it from the ground state will deplete the coherence of the soliton, whereas the
inverse process clearly has an opposite effect. Thus, we adopt the following convention: the
soliton component refers to coherent particles strictly in the ground state described by the
wavefunction (2.3), whereas the gas includes all the rest of particles.

Decomposing also the Newton potential into the gravitational potential of the soliton and
perturbations, Φ = Φs + φ, substituting it into eq. (3.2) and keeping only terms containing
perturbations, we obtain the gas action,

Sg =
∫
dtd3x

(
iψ∗g∂tψg+

ψ∗g∆ψg
2m −mΦs|ψg|2+φ∆φ

8πG−mψ
∗
s φψg−mψsφψ∗g−mφ|ψg|2

)
.

(3.3)
In deriving this expression we have used that the soliton fields ψs, Φs satisfy the Schrödinger-
Poisson equations. It is exact, regardless of any assumption about the magnitude of the
fields entering into it. We notice that the perturbation of the Newtonian potential φ enters
quadratically, so it can be integrated out. The resulting Lagrangian will contain terms
quadratic, cubic and quartic in the field ψg. Following the standard rules of quantum
field theory, we promote ψg to second-quantized fields, whereas ψs, Φs are treated as c-
valued background.6 The quadratic Lagrangian then determines the modes of ψg in the
soliton background, whereas cubic and quartic describe the interactions. We focus on the
cubic interactions that break the phase-rotation symmetry of the axion gas, ψg 7→ ψgeiα,
and therefore lead to non-conservation of gas particles. Of course, the total number of
non-relativistic axions is conserved, meaning that the particles from the gas go into the
soliton and vice versa. The quartic term preserves the gas particle number and describes
interactions of axions in the absence of soliton. It is responsible for the kinetic relaxation
in a homogeneous gas [39, 62].

Due to energy conservation, a particle can be absorbed or emitted by the soliton only if
it exchanges energy with another particle from the gas. This leads us to consider the process
g + g → g + s when two gas particles scatter on each other and one of them merges into
the soliton, as well as the inverse process s + g → g + g when a particle hits the soliton
and kicks out another particle. The Feynman diagrams for these processes are shown in
figure 2. Solid straight lines represent the gas particles, whereas dashed line corresponds to
the soliton. Wavy line stands for the “propagator” of the Newton potential which appears
as a result of integrating out φ and is proportional to the inverse of Laplacian. In the

6This distinction between ψg and ψs is justified by much higher particle occupation number in the soliton
than in the gas. Of course, it is possible to treat both ψs and ψg classically, which gives equivalent results, as
we demonstrate in appendix A (see also [61]).
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+ k
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Figure 2. Feynman diagrams describing absorption (a, b) and emission (c, d) of a particle by the
soliton interacting with axion gas. Solid lines correspond to gas particles, dashed line corresponds
to the soliton, and wavy line — to the Newtonian interaction. The time direction is from left to
right. The labels on the external legs represent the energies of the scattered states, whereas k is the
momentum exchange.

approximation of infinite box size it reads,

(t,x) (t′,x′) = −i 4πGδ(t− t′)
∫ [dk]

k2 eik(x−x′) , (3.4)

where we have introduced a shorthand notation for the integration measure

[dk] ≡ d3k

(2π)3 . (3.5)

Combining it with the vertices implied by the action (3.3), we obtain the amplitude for
the diagram (a) in figure 2,

A1s,23 = (2π)δ(E1 + E2 − E3 − Es) (4πGm2)
∫ [dk]

k2 V1s(k)V23(−k) , (3.6)

with the vertex form factors

V1s(k) =
∫
d3xψ1(x)χ(|x|)eikx , V23(k) =

∫
d3xψ2(x)ψ∗3(x)eikx , (3.7)

where ψi(x), i = 1, 2, 3, are the wavefunctions of the states with energies Ei. The diagram (b)
is obtained simply by interchanging the particles 1 and 2, so the total absorption amplitude
is A1s,23 + A2s,13. The emission process — diagrams (c, d) in figure 2 — is described by
the complex conjugate amplitude A∗1s,23 + A∗2s,13.

The probability that two particles 1 and 2 scatter in the way that one of them merges
into soliton in unit time is given by the usual formula,

dp12→3s
dt

= (2π)δ(E1 + E2 − E3 − Es) |A′1s,23 +A′2s,13|2 , (3.8)

where prime denotes the amplitudes stripped off the energy δ-function,

A′1s,23 = (4πGm2)
∫ [dk]

k2 V1s(k)V23(−k) , (3.9)
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and similarly for A′2s,13. To obtain the change in the soliton mass, we have to subtract
the rate of the inverse process and sum over all states in the gas weighting them with the
occupation numbers fi. The weighting takes into account the effect of the Bose enhancement
due to non-zero occupation numbers of the initial and final states. This yields,

Γs = m

Ms
× 1

2
∑

states 1,2,3
(2π)δ(E1+E2−E3−Es)

(
f1f2(1+f3)− (1+f1)(1+f2)f3

)
|A′1s,23 +A′2s,13|2

' m

2Ms

∑
states 1,2,3

(2π)δ(E1+E2−E3−Es)
(
f1f2 − f1f3 − f2f3

)
|A′1s,23 +A′2s,13|2 , (3.10)

where the factor 1/2 has been inserted to avoid double-counting the pairs of states related by
the interchange of particles 1 and 2. In going to the second line we used that the occupation
numbers are large and kept only the leading terms quadratic in fi. Equation (3.10) represents
the key result of this subsection. It describes the evolution of the soliton mass for arbitrary
distribution of the gas particles.

To proceed, we assume that the gas distribution far away from the soliton is controlled by
a single characteristic momentum kg as, for example, in the case of the Maxwellian gas (2.16).
For the bound states localized near the soliton, the occupation numbers can, in principle,
also depend on the soliton properties. These, as discusses in section 2, are determined by
a single parameter ks. Thus, we write an Ansatz,

fi = ρg
mk3

g

u

(
mEi
k2
g

,
kg
ks

)
, (3.11)

where ρg is the density of the gas far away from the soliton, and u is a dimensionless function.
Next, it is convenient to rescale the coordinates, momenta, energies and wavefunctions to
units associated with the soliton,

x = ξ/ks , k = ksκ , Ei = εi
k2
s

m
, ψi(x) = k3/2

s ϕi(ksx) . (3.12)

Substituting these rescaled variables into eqs. (3.7), (3.9), (3.10) we obtain,

Γs =
(4πG)2m3ρ2

g

k6
g

γs(ν) , (3.13)

where ν = kg/ks is the parameter introduced in eq. (2.24). The dimensionless function γs(ν)
is computed by summing over the states in the background of the standard soliton of section 2,

γs(ν) = π

µ0

∑
states 1,2,3

δ(ε1+ε2−ε3−ε0)
(
u1u2 − u1u3 − u2u3

)
|A′1s,23 +A′2s,13|2 , (3.14)

where ε0, µ0 are numerical coefficients quoted in eq. (2.7) and ui ≡ u(εi/ν2, ν) are rescaled
occupation numbers. For the rescaled amplitudes we have

A′1s,23 =
∫ [dκ]

κ2 V1s(κ)V23(−κ) , (3.15)

V1s(κ) =
∫
d3ξ ϕ1(ξ)χ0(ξ)eiκξ , V23(κ) =

∫
d3ξ ϕ2(ξ)ϕ∗3(ξ)eiκξ , (3.16)

where χ0(ξ) is the standard soliton profile. In section 4 we extract the function γs(ν) from
numerical simulations, whereas in the rest of this section we estimate it analytically for the
cases of light and heavy solitons in Maxwellian gas.
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k
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k
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Figure 3. s-channel diagrams for absorption (left) and emission (right) of a particle by the soliton
arising due to mixing between positive and negative frequency modes. This contribution is subdominant
compared to the diagrams in figure 2 for the kinematic configurations studied in this paper.

Before moving on, let us comment on the structure of the eigenfunctions in the soliton
background which enter into the calculation of the soliton growth rate through the form
factors (3.7) or (3.16) (the details will be presented in a forthcoming publication [63]). First,
it is clear from the third term in the action (3.3) that the wavefunctions will be affected by the
soliton gravitational potential Φs. While this effect is small for highly excited unbound states
with energies Ei � |Es|, it becomes important for the states with Ei . |Es| and gives rise to a
discrete spectrum of bound states. Second, an additional modification of the eigenfunctions
comes from the term −mψ∗s φψg and its complex conjugate in eq. (3.3). These terms bring
qualitatively new features by mixing positive and negative frequencies in the eigenvalue
equation [63, 64]. As a result, the eigenmodes contain both positive and negative frequency
components which can be interpreted as consequence of the Bogoliubov transformation
required to diagonalize the Hamiltonian in the presence of the condensate [65]. The negative-
frequency part is significant for low lying modes and cannot be discarded. In particular, it
is crucial for the existence of zero-energy excitations required by the spontaneously broken
translation symmetry. On the other hand, for the modes of the continuous spectrum the
negative-frequency component is essentially negligible.

The admixture of negative frequencies admits, in addition to the diagrams considered
above, an s-channel exchange shown in figure 3. In principle, the corresponding amplitude
A′3s,12 should be included in the calculation of the scattering rate. This amplitude is, however,
subdominant for most kinematic configurations. It is proportional to the negative frequency
component of particle 1 or 2 and thus is negligible when these particles are unbound. In other
cases, like in the case of light soliton studied below, it is suppressed by the hard momentum
transfer in the propagator. We do not consider this diagram in what follows.

Note that the above calculation has been carried out in the kinetic regime when the
inverse relaxation time in the gas eq. (2.19) is much longer than the characteristic frequencies
of the waves ∼ k2

g/m. This implies that the soliton growth/evaporation is an adiabatic
process, with the rate eq. (3.13) being much smaller than the inverse scattering time kg/(mrs).
This justifies treating the soliton as a constant background when computing the scattering
rate. The back-reaction on the soliton is then captured by solving the differential equation
d logMs/dt = Γs.

3.2 Light soliton

Calculation of γs(ν) is challenging in general. The task simplifies for the case ν � 1 which
corresponds to light soliton as defined in section 2. The typical momentum of particles in
the gas in this case is much larger than the momentum of particles in the soliton. In other
words, the soliton is colder than the gas.
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Let us understand which kinematical region gives the dominant contribution into the
sum in eq. (3.14). To this aim, consider the amplitude (3.15) and take the particles 2 and
3 to be typical particles in the gas. Since their energies are much higher that the soliton
binding energy, their wavefunctions are well described by plane waves with momenta κ2, κ3
which are of order ν. Substituting these into the vertex V23 we obtain,

V23(−κ) = (2π)3δ(κ2 − κ3 − κ) , (3.17)

and hence the amplitude

A′1s,23 = V1s(κ)
κ2 , κ = κ2 − κ3 . (3.18)

The denominator enhances the amplitude for soft momentum exchange. However, the
exchange cannot be arbitrarily small since the matrix element V1s(κ) vanishes at κ = 0
due to orthogonality of the wavefunctions ϕ1 and χ0. It can be further shown [63] that a
linear in κ contribution also vanishes as a consequence of (spontaneously broken) translation
invariance. Thus,

V1s(κ) ∼ κ2 (3.19)

and the pole in the amplitude cancels out. We conclude that the amplitide is maximal at
κ ∼ 1 where it is of order 1. The corresponding wavefunction ϕ1 must be one of the low-lying
states with characteristic energy and momentum |ε1|, κ1 ∼ 1. Notice that the amplitude
obtained by the interchange of particles 1 and 2 for the same kinematics is suppressed,

A′2s,13 = V2s(κ1 − κ3)
|κ1 − κ3|2

∼ 1
κ2

3
∼ 1
ν2 . (3.20)

We now return to the expression (3.14) and rewrite it in the following form,

γs(ν) = π

µ0

∑
states 1,2,3

δ(ε1 + ε2 − ε3 − ε0)
[
2u1(u2 − u3)|A′1s,23|2 − 2u2u3|A′1s,23|2

+ (u1u2 − u1u3 − u2u3)(A′1s,23A′∗2s,13 + h.c)
]
.

(3.21)

For the preferred kinematics, the first term in brackets is small. Indeed, using the Maxwell
distribution for the unbounded states we obtain,

u2 − u3 = u2
(
1− e−2(ε3−ε2)/ν2) = u2

(
1− e−2(ε1−ε0)/ν2) ≈ u2

2(ε1 − ε0)
ν2 = O(ν−2) , (3.22)

where in the second equality we used the energy conservation. The terms in the second
line in eq. (3.21) are also suppressed due to eq. (3.20). Thus, up to corrections of order
O(ν−2), we have

γs(ν) =−2π
µ0

∑
state 1

∫
[dκ2][dκ3]δ

(
ε1−ε0+ κ2

2
2 −

κ2
3

2

)
(4π)3e−(κ2

2+κ2
3)/ν2 |V1s(κ2−κ3)|2

|κ2−κ3|4
.

(3.23)
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Two comments are in order. First, we observe that γs(ν) is negative. Recalling that it
multiplies the rate of the soliton mass change, eq. (3.13), we conclude that the mass of a
light soliton decreases — it evaporates. Second, the expression (3.23) does not depend on
the occupation number of the low-lying state 1. This is a nice property. Particles from the
low-lying energy levels are further upscattered by the gas and eventually become unbound.
Calculation of the occupation numbers of these levels presents a nontrivial task. Fortunately,
we don’t need to know them to determine the soliton evaporation rate in the leading order.

The next steps include changing the integration variables to κ = κ2 − κ3 and κ+ =
(κ2 + κ3)/2 and performing the integration over κ+. Discarding suppressed terms, we obtain
that γs is proportional to ν2 with a numerical coefficient equal to a certain weighted sum
over states in the standard soliton background,

γs(ν) = −Cls ν2 , Cls = 8π2

µ0

∑
state 1

∫ [dκ]
κ5 |V1s(κ)|2 . (3.24)

Despite an apparent pole of the integrand at κ→ 0, the coefficient Cls is finite due to the
property (3.19). Numerical evaluation gives [63],

Cls = 4.3± 0.2 . (3.25)

To summarize, the light solitons evaporate. The change of the soliton mass is dominated
by the process of g + s→ g + g, with gas particles kicking off axions from the soliton. By
considering the soft momentum exchange, we have obtained the leading term in the function
γs(ν) in the evaporation rate, which is proportional to ν2 with an order-one coefficient.

It is instructive to compare the time scale of evaporation |Γs|−1 with the relaxation time in
the gas (2.19). We see that evaporation is faster than relaxation if ν exceeds the critical values

νc =
√

3π ln(kgL)
4
√

2 bCls
' 1.5 , (3.26)

where we have used ln(kgL) ∼ 5. This is close to the threshold for soliton evaporation found
in numerical simulations, see section 4. For ν > νc the relaxation in the gas can be neglected
and our assumption of the stability of the Maxwell distribution is well justified.

It is worth stressing that our results about the light soliton evaporation are based on
the assumption of the Maxwellian distribution in the gas. This assumption is valid on the
time-scale of the soliton evaporation which is parametrically shorter by a factor of ν−2 � 1
than the relaxation time τrel, eq. (2.19). There is no contradiction with the earlier findings
of [39] about formation of solitons from the gas on the time scale τrel, which is preceded by a
significant change of the gas distribution. We have verified this in the numerical simulations.
We run the simulations with light soliton evaporation for a longer period of time and indeed
observe reapperance of a new soliton after τrel, see appendix B. The new soliton quickly gets
heavy, i.e. its mass gets above the value corresponding to ν ∼ 1. At the same time the gas
distribution returns to an approximately Maxwellian form.

3.3 Heavy soliton

In this section we consider the opposite limit ν � 1 corresponding to heavy or hot soliton.
The analysis in this case is more complicated, so we content ourselves with semi-qualitative
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discussion focusing on the overall scaling of the growth rate function γs with ν. A more
detailed study is left for future.

For heavy soliton, the typical energy of gas particles is much smaller than the soliton
binding energy which in our dimensionless units is of order one. Then the process with
kicking-off particles from the soliton shown on the right of figure 2 is strongly suppressed since
it requires from particle 3 to have order-one energy. We are left with the absorption process
given by the diagrams (a, b) on figure 2 and corresponding to the term proportional to u1u2 in
eq. (3.14). This already allows us to conclude that the heavy soliton grows at a strictly positive
rate, thereby excluding the possibility of a kinetic equilibrium between the soliton and the gas.

Particles 1 and 2 that participate in the absorption process can belong either to unbound
or to bound states. A problem arises because the occupation numbers of the bound states
are unknown. In a complete treatment, they must be determined self-consistently from the
solution of the Boltzmann equation in the gas. Such analysis is beyond the scope of this paper.
Below we focus on the contribution into γs(ν) coming from the processes when both states 1
and 2 are unbound, assuming that it correctly captures the scaling of the full result with ν. We
stress that this assumption must be verified by a detailed study which we postpone to future.
We further assume that the occupation numbers of the unbound states are Maxwellian.

Even for unbound sates, the wavefunctions are significantly modified by the long-range
Newtonian potential of the soliton which in the dimensionless units has the form,

U(ξ) = − µ0
4πξ ≡ −

β

ξ
. (3.27)

We can capture its effect by approximating the exact eigenfunctions with the Coulomb
wavefunctions,

ϕκ(ξ) = ei(β/κ)(lnβ/κ−1)+iπ/4 Γ

(
1− iβ

κ

)
eπβ/(2κ) eiκξ

1F1

(
i
β

κ
; 1; i(κξ − iκξ)

)
, (3.28)

where Γ stands for the gamma-function and 1F1 is the confluent hypergeometric (Kummer)
function. This solution describes a scattered wave with initial momentum κ. Note that,
compared to the standard definition, we have added a phase in eq. (3.28) for later convenience.

For modes with small asymptotic momenta the eigenfunctions simplify,

ϕκ(ξ)→
√

2πβ
κ

J0

(
2
√
β(ξ − nξ)

)
≡ 1√

κ
ϕ̂n(ξ) , κ� 1 , (3.29)

where n = κ/κ is the unit vector in the direction of momentum. We observe that the
dependence on the absolute value of momentum factorizes. Note that the eigenfunctions
get enhanced at κ → 0 which reflects the focusing effect of the Coulomb field. Note also
that, despite the small momentum at infinity, the eigenfunctions oscillate with order-one
period at ξ ∼ 1, consistent with the fact that particles accelerate to an order-one momentum
in the vicinity of the soliton.

We now use eq. (3.29) for the gas particles 1 and 2 (but not for the particle 3 which
has κ3 ∼ 1). This yields for the amplitude,

V1s(κ) = 1
√
κ1

∫
d3ξ ϕ̂n1(ξ)χ0(ξ)eiκξ ≡ 1

√
κ1
V̂1s(κ) , (3.30a)
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V23(κ) = 1
√
κ2

∫
d3ξ ϕ̂n2(ξ)ϕ∗κ3(ξ)eiκξ ≡ 1

√
κ2
V̂23(κ) , (3.30b)

A′1s,23 = 1
√
κ1κ2

∫ [dκ]
κ2 V̂1s(κ)V̂23(−κ) ≡ 1

√
κ1κ2

Â′1s,23 , (3.30c)

where the hatted quantities do not depend on the absolute values of the momenta κ1, κ2. We
substitute this into the expression for γs and, upon neglecting ε1, ε2 in the energy δ-function,
perform the integration over κ1, κ2. In this way we obtain,

γ(u)
s (ν) = ν4

(2π)2µ0

∫
dn1dn2[dκ3] δ

(
κ2

3
2 + ε0

)
|Â′1s,23 + Â′2s,13|2 , (3.31)

where the superscript (u) is to remind that we consider only the contribution from unbound
states. All quantities inside the integral are ν-independent. Thus we conclude that γ(u)

s scales
as the fourth power of ν. Assuming that this also holds for the full contribution we write,

γs(ν) = Chsν
4 , Chs > 0, at ν → 0 . (3.32)

This implies that the soliton growth slows down with the increase of the soliton mass.
We do not attempt to estimate the numerical coefficient Chs. As already mentioned,

this would require inclusion of the bound state contribution which is beyond our present
scope. Another caveat comes from the fact that the time scale of the heavy soliton growth
Γ−1
s happens to be parametrically longer than the gas relaxation time (2.19). On these

time scales the gas distribution may evolve away from Maxwellian which we assumed in our
derivation.7 Thus, the formula (3.32) should be taken with a grain of salt. Its comparison
with the results of simulations is discussed in the next section.

4 Wave simulations

In this section we present our numerical simulations. We first describe the setup. Then we
provide three typical examples of simulation runs for heavy, intermediate and light solitons
and introduce the procedure which we use to measure the soliton growth rate. Finally, we
assemble 195 individual simulation runs to extract the soliton growth/evaporation rates
and compare them to the theoretical predictions of the previous section. We focus here on
the main suit of simulations where in each run we assign a single soliton surrounded by
Maxwellian axion gas as the initial conditions. In appendix B we also report the simulations
without the initial soliton where it forms dynamically from the axion gas, as in ref. [39].

4.1 Setup

Evolution. We use the scaling transformation (2.2) to convert the Schrödinger-Poisson
equations into the following dimensionless form,

i∂tψ̃ + 1
2∆ψ̃ − Φ̃ ψ̃ = 0 , (4.1a)

∆Φ̃ = |ψ̃|2 , (4.1b)
7As discussed below, numerical simulations suggest that Maxwell distribution may still be a good approxi-

mation, but this question requires further study.
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which is equivalent to the choice of units m = 4πG = 1. This system is solved on a cubic
lattice of size N with periodic boundary conditions on ψ̃ and Φ̃. We use the residual scaling
symmetry to fix the lattice spacing to one, dx = 1. The size of the lattice thus sets the length
of the box side and remains a free parameter. We run simulations for three different values
N = 128, 256, 512. In what follows we omit tildes over dimensionless quantities.

The wavefunction is advanced by the leapfrog integration algorithm (drift-kick-
drift) [49, 66],

ψ(t+ dt,x) = ei∆ dt/4 · e−iΦ(t+dt/2,x) dt · ei∆ dt/4 ψ(t,x) . (4.2)

We transform ψ to the momentum space to evolve with ei∆ dt/4 and ∆ is converted to −k2,
while the evolution with the gravitational potential, e−iΦ dt, is performed in the real space.
Fourier components of the gravitational potential with k 6= 0 are found from eq. (4.1b),

Φk = −(|ψ|2)k
k2 , (4.3)

whereas the zero mode is set to vanish,8 Φk=0 = 0. We use uniform time step dt = 2/π
which is determined by the requirement that the phase difference of a high-momentum mode
with k = π between consecutive time slices does not exceed π. To assess the accuracy of the
simulations, we monitor the total energy of the axion field in the box,

E = 1
2
∑

k
k2|ψk|2 + 1

2
∑

x
Φ(x)|ψ(x)|2 . (4.4)

We have observed that the energy conservation quickly deteriorates for heavy solitons with
sizes comparable to the lattice spacing, rs ∼ 1 (see appendix C.1 for details). In our analysis
we only use runs where the energy is conserved with the precision . 0.1%.

Initial conditions for axion gas. The gas wavefunction is set up in the initial conditions
through its Fourier decomposition,

ψg(t = 0,x) = 1
N 3/2

∑
k
ak · eik·x , (4.5)

where the absolute values of the amplitudes ak are taken to follow the Maxwell distribu-
tion (2.16). To ensure that the gas modes are well resolved on the lattice, we restrict to
kg ≤ 1. The phases of ak are assigned to random numbers uniformly distributed in the range
(0, 2π). We have repeated simulations for several random initial phase realizations and have
found that the choice of realization does not affect our results. The mean gas density ρg
and its total mass Mg can be deduced as

ρg = 1
N 3

∫
d3x |ψ(x)|2 =

fgk
3
g

(4π)3/2 , Mg = ρgN 3 =
fgk

3
gN 3

(4π)3/2 . (4.6)

The gas density is limited from above by the condition to avoid the Jeans instability that
triggers a halo formation and thereby complicates the interpretation of simulation results.

8This corresponds to an arbitrary choice of the zero-point energy in the Schrödinger equation (4.1a).
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Thus, we require the size of the simulation box to be smaller than the Jeans length (2.20),
which yields the condition:

N < lJ ⇐⇒ fg kg < 0.054
( N

128

)−2
. (4.7)

This puts a stringent restriction on the parameter space of the simulations.

Initial conditions for soliton. We superimpose the soliton wavefunction on top of the
gas wavefunction at the beginning of the simulations.9 The input soliton density profile uses
the analytic fit (2.9) characterized by a single parameter, the half-peak radius rinit

s . The
peak density of the fit is taken to be [36],

ρinit
s, peak = 2.794

(rinit
s )4 , (4.8)

which is slightly lower (by less than 2%) than the exact value implied by the formulas of
section 2. This discrepancy is negligible given other uncertainties of the simulations. The
initial phase of the soliton wave function is set to be zero. This choice does not change
our average result since the phases of the axion gas are random. We notice that the initial
soliton gets slightly deformed after superposing on the wavefunction of axion gas, but this
deformation has little effect on the late time evolution.

We take rinit
s ≥ 1.5 for the soliton to be resolved on the lattice. Periodic boundary

conditions give rise to image solitons at distance N from the central one. We have observed
that these images can distort the central soliton wavefunction. To avoid this distortion, we
require the soliton size to be much smaller than the box, rinit

s < 0.1N .

Measurement of the soliton mass. During the simulations the radius of the soliton
evolves together with its mass. We estimate rs, Ms at a given time using their relation to
the soliton peak density provided by the fit to the soliton density profile,10

rs = 1.293 ρ−1/4
s, peak , Ms = 25.04 ρ1/4

s, peak. (4.9)

Since the soliton moves through the box during simulations, the position of its peak is
unknown. We choose the maximal density in the whole box as a proxy for the soliton peak
density assuming that the soliton is prominent within the axion gas. Note that due to
interference between the soliton and the gas, the peak density of the axion field does not,
in general, coincide with the soliton peak. Choosing the maximal density in the box can
bias our estimate of the soliton peak density, and hence of its mass, upwards. Detailed
investigation of this bias is performed in appendix C.2. It shows that the bias is at most
20% when the maximal density is higher than the mean gas density by a factor of 30 and
quickly decreases for higher density contrasts. To obtain the soliton growth rate we analyze
only the parts of the simulations with ρs, peak > 30 ρg.

9Dynamical soliton formation from the gas is discussed in appendix B.
10The expression for the soliton mass (4.9) is by 3% lower for a given peak density than the value obtained

from the exact wavefunction, see section 2. This error is insignificant for our analysis. Note that its effect is
opposite to the bias introduced by the interference with the axion gas discussed below.
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Figure 4. Parameters of 195 individual simulations used in this work. The four-dimensional parameter
space is projected on the directions corresponding to the box size N , the soliton half-peak radius
rinit

s , and the parameters of the Maxwell distribution of axion gas kg, fg. The horizontal axis is
common to all panels and shows the product kgr

init
s . Green circles correspond to simulations leading

to soliton growth, while red circles show the cases of soliton evaporation. Darker circles indicate
multiple realizations of axion gas by changing the phases in the wavefunction.

On the other hand, we require the mass of the soliton to be significantly smaller than
the total mass of the gas in order to avoid any effects on the soliton evolution that can arise
due to a shortage of particles in the gas. We implement this by the condition Ms < 0.5Mg.

Parameter space. Our simulations have four input parameters: N , kg, fg, and rinit
s , which

describe the box size, the momentum distribution of axion gas, and the size of soliton. In
this work, we use three box sizes, N = 128, 256, and 512. For the regime of light soliton,
most of the simulations are conducted with N = 128, while for heavy solitons we use large
boxes N = 512 in order to reach low (kgrs) ∼ 0.1. The remaining three parameters are
sampled in the ranges

kg ∈ (0.1 , 1) , fg ∈ (10−4 , 0.12) , rinit
s ∈ (1.5 , 12) . (4.10)

Their choice is dictated by the goal to efficiently capture the soliton growth/evaporation
within realistic simulation time, while resolving the axion gas and the soliton on the lattice. In
addition, they are subject to constraints discussed above which we summarize here for clarity:

a) fg kg < 0.054 (N/128)−2: the axion gas does not form a halo due to Jeans instability;

b) rinit
s < 0.1N : the effect of periodic images on the soliton is suppressed;
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c) ρs, peak > 30ρg: soliton is prominent enough to suppress bias in its mass measurement;

d) Ms < 0.5Mg: soliton does not overwhelm axion waves.

Note that the conditions (a,b) are imposed on the initial configuration, whereas the conditions
(c,d) are monitored throughout the whole duration of the simulations. In total we have run 195
simulations with independent realizations of random gas phases. Their parameters are shown
in figure 4 against the product kgrinit

s which controls the physics of the soliton-gas interaction.

4.2 Growing and evaporating solitons

In this section we present a case study of several simulations that illustrate possible evolution
of the soliton-gas system. We use these examples to introduce our procedure for extraction
of the soliton growth rate. We also provide evidence that the gas distribution remains close
to Maxwellian during the simulations.

We consider three simulation runs with the same initial gas configuration characterized
by (N = 128, kg = 1, fg = 0.01) and different initial soliton sizes rinit

s : 1.51 (heavy soliton),
2.71 (median soliton), and 3.62 (light soliton). Figures 5–7 show the evolution of the soliton
characteristics in the three runs. These include the soliton peak density ρs, peak(t) (which
we identify with the maximal density in the box), the soliton mass Ms(t) and the soliton
radius rs(t). The peak density is normalized to the mean density of the gas, whereas the
mass and radius are determined using the relations (4.9). Clearly, the heavy soliton grows
and the light soliton evaporates which is consistent with the analysis of section 3. The
median soliton remains approximately unchanged indicating that the transition from growth
to evaporation occurs at (kgrs) ∼ 2.7. We also plot in figures 5–7 the change in the total
energy of the axion field in the box. For the median and light solitons the energy is conserved
with high precision |E(t)/E(0)− 1| . 10−5 throughout the whole duration of the simulations.
For the heavy soliton, the energy exhibits a slow drift and the error exceeds 0.1% by the
end of the simulations. We associate this with the loss of spatial and temporal resolution
for heavy solitons which have small sizes rs ∼ 1 and high oscillation frequencies |Es| ∼ 1
(see appendix C.1 for a detailed discussion). In our analysis we use only the portion of the
simulation where |E(t)/E(0) − 1| < 10−3.

We now describe our algorithm to extract the soliton growth rate Γs. The task is
complicated by strong oscillations of the soliton peak density which are clearly visible in
the plots and translate into oscillations of the estimated soliton mass and radius. Such
oscillations have been observed in previous works [33, 42] and correspond to the normal
modes of the soliton [64, 67] with the frequency of the lowest mode ω ∼ 0.5 r−2

s . To mitigate
their effect, we construct running averages of the soliton parameters by smoothing them with
a top-hat function.11 We take the width of the top-hat as a function of the initial soliton size
twidth = 70(rinit

s )2 which covers about five periods of the oscillations. The resulting smoothed
dependences are shown in figures 5–7 by thick curves.

While smoothing suppresses most of the chaotic oscillations, it still leaves some irreg-
ularities in the time dependence of the soliton mass that introduce significant noise when
calculating its time derivative. To further suppress this noise, we fit the smoothed mass
with an analytic function of time. We have found that a quadratic fit is sufficient in all

11Note that we smooth ρs, peak(t), Ms(t) and rs(t) separately.
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Figure 5. Evolution of the soliton peak density, mass and radius for the case of heavy soliton
(rinit

s = 1.51). The mass and radius are estimated from the peak density. Thin blue curves show
the instantaneous values, whereas the thick curves are obtained by smoothing with a top-hat filter.
Yellow dots show the result of fitting the soliton mass with a quadratic polynomial. We also show the
time dependence of the total energy in the simulation box used to control the precision of numerical
calculations. The gas parameters are (N = 128, kg = 1, fg = 0.01).

Figure 6. Same as figure 5 for the case of median soliton (rinit
s = 2.71).

cases. Thus, we write

Mfit
s (t) = a0 + a1t+ a2t

2 , (4.11)

where a0, a1 and a2 are fitting parameters. The fitting time-range is determined by the
following criteria:

• Inside the range the soliton peak density, mass and radius satisfy the conditions (c,d)
from section 4.1;

• The total energy in the simulation box is conserved within precision |E(t)/E(0)−1|< 0.1%;
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Figure 7. Same as figure 5 for the case of light soliton (rinit
s = 3.62).

rinit
s a0 a1 a2

heavy soliton 1.51 20.79 0.283× 10−5 0.00239× 10−10

median soliton 2.71 11.35 −0.203× 10−5 0.0282× 10−10

light soliton 3.62 8.80 −0.595× 10−5 −0.0837× 10−10

Table 1. Parameters of the soliton mass fit for the three simulations shown in figures 5–7. The initial
size of the soliton is rinit

s . The parameters of axion gas are N = 128, kg = 1, fg = 0.01.

• The time duration is smaller than half of the relaxation time (2.19) to avoid possible
changes in the gas distribution due to kinetic relaxation [39].12

The best-fit values of a0, a1, a2 for the three sample runs are given in table 1. The corresponding
fitted curves are shown in figures 5–7 with yellow dots. We also define the “fitted” soliton
radius by converting it from the soliton mass in accordance with eqs. (4.9),

rfit
s (t) ≡ 32.37

Mfit
s (t) = 32.37

a0 + a1t+ a2t2
. (4.12)

The result matches very well the smoothed dependence rs(t), see figures 5–7. We have verified
that an independent fit of smoothed rs(t) with a quadratic polynomial produces essentially
identical curves, which provides a consistency check of our procedure.

We can now estimate the soliton growth rate substituting the fitted time dependence
of the soliton mass in the defining formula (1.3), which yields,

Γfit
s (t) = a1 + 2 a2 t

a0 + a1 t+ a2 t2
. (4.13)

We are interested in the dependence of the growth rate on the soliton radius rs. Both
these quantities depend on time, so a single run provides a continuous set of data points

12In principle, this requirement might be too stringent since we observe that in the presence of a soliton the
gas distribution remains close to Maxwellian even on time scales longer than the relaxation time, as will be
discussed shortly.
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Figure 8. Soliton mass evolution in simulations with kgr
init
s from 0.75 to 2.26 (top) and from 3.32 to

4.52 (bottom). By shifting the curves along the time axis we have observed that they can be stacked
on top of each other.

(
rfit
s (t),Γfit

s (t)
)
sampled at different moments of time. In view of uncertainties of our smoothing

and fitting procedure, we reduce this set to 20 data points
(
rfit
s (ti),Γfit

s (ti)
)
, i = 1, . . . , 20,

evenly distributed in time within the range of the fitting functionMfit
s (t). These 20 data points

represent the output of a single run. In the next subsection we combine the outputs of 195
runs to build the cumulative dependence of the growth rate on the soliton and gas parameters.

Soliton growth rate depends on the gas distribution which can, in principle, change
during the simulations. This could lead to incompatibility of the results read out at different
moments from the start of the runs. To verify that this is not the case, we compare the
runs that differ by the initial soliton mass, but have overlapping soliton mass ranges spanned
during the evolution. The top panel of figure 8 shows the evolution of the soliton mass in five
simulations of heavy solitons with kgrinit

s varying from 0.75 to 2.26. The gas parameters are
chosen the same in all five runs (N = 128, kg = 0.5, fg = 0.06). The curves have been shifted
in time until they overlap. We observe that the curves are well aligned with each other. In
the lower panel of figure 8 we repeat the same exercise for five light soliton simulations with
kgr

init
s from 3.32 to 4.52 and the gas parameters (N = 128, kg = 1, fg = 0.01). The stacked

curves are again well aligned. We conclude that the soliton growth rate depends only on the
initial gas parameters and the instantaneous soliton mass (or radius), and is insensitive to
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Figure 9. Growth of the soliton mass in the simulations with the same values of (N = 128, kg =
0.5, kgr

init
s = 1.51) and varying fg. The time axis in different runs has been scaled by f2

g and
normalized to the case fg = 0.06. The time span of the curves is restricted to half of the relaxation
time (2.19) and covers the portion of the data used in the measurement of the soliton growth rate.

the previous evolution of the soliton-gas system. This justifies combination of the results
extracted from different runs at different stages of simulations.

The above results suggest that the gas distribution remains close to Maxwellian during the
simulations with solitons. We have measured the distribution directly at different moments
of time and have seen that it is compatible with Maxwellian, though the measurement is
rather noisy, see figure 16 in appendix B. This is in stark contrast with simulations [39]
without initial soliton where the gas distribution exhibits distinct evolution on the time
scale τrel (eq. (2.19)) towards populating low-momentum modes which culminates in the
soliton formation. However, as discussed in appendix B, the distribution appears to return
to Maxwellian after the soliton is formed. We also find that the growth of the soliton mass,
though faster than in the Maxwellian gas right after the formation, approaches the Maxwellian
rate within time of order τrel, see figure 15. This gives another evidence that the presence
of the soliton “Maxwellizes” the gas.

The analytic derivation of section 3 implies that at fixed kgrs the soliton growth/evapo-
ration rate is proportional to ρ2

g/k
6
g ∝ f2

g . To verify if this scaling holds in the simulations,
we perform several runs with the same N , kg and rinit

s , but different fg. We measure the
time dependence of the soliton mass and scale the time axis by f2

g . The results are shown in
figure 9. We see a satisfactory agreement between different curves. A slightly faster growth of
the curve with the highest value of fg at late times can be due to the fact that the gas in this
case is closer to the Jeans instability leading to the development of an overdensity (proto-halo)
around the soliton. We have clearly seen this overdensity in the runs with the parameters
near the Jeans instability limit (4.7) and observed that it is correlated with the increase of the
ratio Γs/f2

g . The associated bias is comparable to the other uncertainties in the measurement
of Γs and is included in the error bars for our final results in the next section.

4.3 Results

In this section, we construct the cumulative dependence of Γs on the soliton and gas parameters.
As explained above, each simulation run produces 20 data points (rs,Γs). We collect the
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data points from 195 runs and bin them in logarithmic scale in kgrs. In each bin we compute
the average value and variance of

Γs ×
(4π)3

f2
g

= Γs ×
k6
g

ρ2
g

. (4.14)

The results of this procedure are shown in figure 10. Note that we restore the dimensionful
constants in the scale of Γs in the figure.

Consistently with the analysis of section 3, the growth rate is positive at small kgrs
(heavy solitons) corresponding to the soliton growth, and is negative at large kgrs (light
solitons) corresponding to evaporation. Moreover, the data points with the largest values of
kgrs match the asymptotic dependence (3.24), including the numerical coefficient (3.25),13

Γs ' −2.6×
(4πG)2m3ρ2

g

k6
g

(kgrs)2 . (4.15)

This dependence is shown by the blue line. Thus, we conclude that the asymptotics (3.24)
are reached already at kgrs & 5. The transition from evaporation to growth happens at
kgrs ∼ 2.5 which is in reasonable agreement with the naive estimate (3.26). In terms of the
gas and soliton virial temperatures, it corresponds to Tg/Ts ' 12.

For lower kgrs the soliton grows. The growth rate stays almost constant in the range
0.7 < kgrs < 2 where it is comparable to the inverse of the gas relaxation time τ−1

rel , see
eq. (2.19). The lower end of the plateau corresponds to the equality of the gas and soliton
virial temperatures, Tg/Ts = 1, which is marked by the dashed vertical line in figure 10.

At kgrs < 0.7 (equivalently Tg/Ts < 1) the growth rate quickly decreases. We find that
this decrease is consistent with a power law

Γs ∝ (kgrs)n (4.16)

with n ' 3 indicated by the dotted line in the plot. The points with the smallest values
of kgrs hint at a steepening dependence with n = 4 at kgrs → 0, in agreement with the
analytic estimate (3.32). There are, however, several caveats that prevent us from claiming
that we have reached the heavy soliton asymptotics. First, as pointed out in section 3.3, the
expression (3.32) has been obtained under the assumption that the contribution of the bound
states into the soliton growth scales with kgrs in the same way as the contribution of states
from continuum. This assumption must be verified by analyzing the kinetic cascade in the
soliton-gas system which is beyond the scope of the present paper. Second, the low-(kgrs)
bins in our simulations are at the extreme of the numerical resolution and close to the
threshold for halo formation. Therefore they can be affected by systematics. Without the
three lowest-(kgrs) bins the numerical data are compatible with a shallower slope n = 2. All
in all, the heavy soliton limit is challenging both to numerical and analytical methods. Taking
into account the uncertainties, we conservatively conclude that the power n in eq. (4.16) for
heavy solitons lies in the range 2 ≤ n ≤ 4. More work is needed to pin down the precise
asymptotic value of n at kgrs → 0.

13Recall the proportionality between ν and kgrs, eq. (2.24).
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Figure 10. The soliton growth/evaporation rate as function of kgrs — the product of the gas
momentum and the soliton half-density radius. The cumulative dependence is constructed using 3900
data points extracted from 195 independent simulations with different gas and soliton parameters.
The data are binned on logarithmic scale in kgrs. Each dot gives the average value of the growth
rate in the bin, while the vertical error bars correspond to the standard deviation within the bin.
The blue solid line shows the asymptotic dependence predicted by eq. (3.24). At small kgrs the
dotted lines indicate possible power-law dependences. The dashed vertical line marks the value of
kgrs corresponding to the equality of the gas and soliton virial temperatures, Tg/Ts = 1.

5 Discussion and outlook

Absence of kinetic equilibruium. We have found that a soliton (boson star) immersed
into a homogeneous Maxwellian axion gas evaporates if its virial temperature is about 12
times lower than the virial temperature of the gas, and grows otherwise. This rules out the
possibility of a stable kinetic equilibrium between the gas and the soliton.

Evaporation of light solitons. Though evaporation of cold solitons may at first sight
appear surprising, the mechanism behind it is quite intuitive. Being a self-gravitating system,
the soliton possesses negative heat capacity. Thus, a transfer of energy from the hot gas
to the cold soliton makes the latter even colder. This leads to a run-away of the soliton
temperature, and hence its mass, towards zero.

The parametric dependence of the evaporation rate can be estimated using the following
simple considerations.14 Wave interference in the axion gas produces density inhomogeneities
with the characteristic size of half de Broglie wavelength λa/2 = π/kg. These inhomogeneities
can be though of as quasi-particles with the massMqp ∼ ρg(λa/2)3 [12]. A single quasi-particle

14We thank Neal Dalal and Junwu Huang for the discussion on this topic.
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colliding with the soliton transfers to it a recoil momentum

δp ∼ GMsMqp

r2
s

· rs
vqp

, (5.1)

where vqp ∼ kg/m is the quasi-particle velocity, and rs appears as the typical impact
parameter. This implies the soliton recoil energy

δEs ∼
δp2

2Ms
∼
G2M2

qpMs

2r2
sv

2
qp

. (5.2)

Since the size of the quasi-particle is smaller than rs for the light soliton, the recoil energy
is distributed non-uniformly throughout the soliton volume. This leads to excitation of its
normal modes. The number of axions that get excited from the ground state and hence get
lost by the soliton is of order δNs ∼ −δEs/|Es|. Combining everything together, we obtain
the mass loss of the soliton in a single quasi-particle collision,

δMs

Ms
∼ −

G2M2
qpm

2

2v2
qp

, (5.3)

where we have used that |Es|r2
s ∼ 1/m. To obtain the evaporation rate, we have to multiply

this result by the number of quasi-particles bombarding the soliton in a unit of time,
Jqp ∼ 4πr2

s(λa/2)−3vqp. In this way we arrive at

Γs ∼ −
2π4G2m3ρ2

g

k6
g

(kgrs)2 , (5.4)

which agrees with the exact expression (4.15) obtained from the kinetic theory, up to a
factor about 0.5.

We have seen that the threshold for evaporation is set by the equality of the evaporation
rate and the relaxation rate in the gas — a competing process leading to the soliton
formation [39]. This explains why the solitons that are formed in the gas always have virial
temperature comparable to that of the gas: they are just hot (and heavy) enough to survive.

In what physical situation can the soliton evaporation be relevant? For fuzzy dark
matter, this is the case when a small subhalo with low velocity dispersion and light solitonic
core falls into a bigger halo with higher velocity dispersion. Evaporation then adds a new
destruction mechanism for the subhalo soliton, on top of the tidal stripping [60]. The time
scale of evaporation is given by the inverse of |Γs|,

tevap ' 2.4× 109
(

m

10−21 eV

)3 ( ρg
0.3 GeV/cm3

)−2 ( vg
30 km/s

)6 (kgrs
10

)−2
yr , (5.5)

where ρg and vg should be taken as the density and velocity dispersion of the bigger halo at
the orbit of the soliton. The evaporation time is very sensitive to the halo parameters and
can be longer or shorter than the age of the universe depending on their precise values. The
evaporation should be also taken into account in the evolution of boson stars in merging QCD
axion miniclusters. Though here the particle mass is much higher, the evaporation time can
still be much shorter than the age of the universe due to the very small velocity dispersion
vg ∼ 10−5 km/s in the miniclusters and their extremely high density ρg & 106 GeV/cm3 [68].
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Growth of heavy solitons. For solitons with virial temperature above the evaporation
threshold (Ts & 0.1Tg) we have found that the growth rate quickly decreases once the soliton
temperature exceeds that of the gas. This result is in qualitative agreement with other
works [39, 48]. The growth rate of heavy solitons measured from our numerical simulations is
consistent with the power law (4.16) with n between 2 and 4. We have presented analytic
arguments favoring n = 4 in the limit kgrs → 0, which is compatible with the numerical
data in the lowest kgrs bins. These bins, however, suffer from large uncertainties and it
remains unclear if the range kgrs & 0.2 probed in the simulations is sufficient to reach into
the asymptotic heavy soliton regime.

The power-law dependence of the rate (4.16) translates into power-law growth of the
soliton mass,15

Ms ∝ tα , α = 1/n . (5.6)

Ref. [39] established that α = 1/2 provides a good fit to the soliton growth right after
formation, whereas ref. [48] found a dramatic flattening of the soliton mass curve at late times
corresponding to α = 1/8. The results of ref. [39] are consistent with ours, though our central
value for the power n = 3 predicts a somewhat shallower dependence with α = 1/3. The
steep growth observed in [39] might be due to a short duration of the simulations. Indeed,
by carrying out numerical experiments with the same setup as in [39] (see appendix B) and
fitting the soliton mass with the formula (5.6), we have observed a correlation of the best-fit
index α with the soliton lifetime: α is about 1/2 for newly formed solitons and descreases
down to 1/4 for grown-up solitons long after the relaxation time (see figure 14). This trend
is in agreement with our main simulations where we see indications of increasing n, and
hence decreasing α, for heavier solitons. However, at this point the numerical data are rather
inconclusive as to the robustness of this trend and the asymptotic value of α at t→∞.

On the other hand, we do not see any evidence for the low α = 1/8 found in [48].
Moreover, our analytic considerations suggest that the asymptotic value of α is at least as
high as 1/4. The discrepancy may be due to the difference in the setups. We study a soliton
in a homogeneous gas, whereas ref. [48] considers a soliton in the center of an axion halo. It
is conceivable that suppression of the soliton growth in the latter case stems from its back
reaction on the halo. It will be interesting to explore this possibility in more detail in future.

Soliton-host halo relation. One can ask whether our results have any implications for
the soliton-host halo relation. The answer is: not directly, because in the cosmological setting
the solitons were found to form during the initial halo collapse when axions are not yet in the
kinetic regime. Still, with some degree of extrapolation, one can argue that our results make
unlikely formation of a light soliton since it would be evaporated by the fast axions from the
halo. This sets a lower bound on the soliton mass which is just a factor of a few lower than
MSSH
s , the mass corresponding to the soliton-host halo relation.16 Heavier solitons can, in

15Recall that rs ∝M−1
s , whereupon the evolution equation for the mass is easily integrated.

16Note that by the soliton-host halo relation we understand here correlation between the soliton mass and
the virial temperature of the halo, while in the literature the soliton-host halo relation is commonly formulated
in terms of the halo mass. We believe that the former formulation reflects better the underlying physical
mechanisms behind the relation.
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principle, form with arbitrary masses and will continue growing upon the halo virialization.
The time scale for this growth can, however, be very long and exceed the age of the universe
when the soliton mass exceeds MSSH

s . Moreover, it is natural to speculate that the solitons
are more likely to form as light as they can which singles out MSSH

s as the sweet spot. This
reasoning still does not tell us how far the soliton-host halo relation can be extrapolated in
the parameter space. In particular, we do not know whether the solitons form in any halo
and for any value of axion mass, or for some parameters their formation becomes improbable.
More work is needed to answer these questions.

Persistence of Maxwell distribution. It is known that without a soliton the velocity
distribution of axion gas relaxes towards thermal form with high population of low-momentum
modes [39]. We have found evidence that the presence of soliton changes the picture. In this
case the Maxwell distribution appears to persist on timescales significantly longer than the
kinetic relaxation time. Moreover, in the simulations with soliton formation we observed
restoration of the Maxwell distribution after a transient period with enhanced population
of low-momentum modes preceding the birth of the soliton. Our calculation of the soliton
growth rate with the Maxwellian distribution does not apply to the initial growth of the
new-born soliton during the transient regime, but it appears to be a good approximation to
the evolution afterwards. This is supported by the universality of the soliton mass evolution
in simulations with different histories (figures 8, 15), as well as by the directly measured
momentum distribution at different moments of time (figure 16). The latter, however, is
subject to large temporal fluctuations which presently do not allow us to move beyond
qualitative statements. It will be interesting to study this phenomenon more quantitatively
in future by developing methods of measuring the momentum distribution with reduced
noise. A complementary approach would be to track the distribution of axions in energy,
instead of momentum, as suggested in ref. [39].

Towards realistic setup. We simulated the axion gas and soliton with a periodic boundary
condition and chose the gas density low enough to avoid the halo formation. These settings
have helped us to understand the soliton dynamics. In realistic situations, there are more
effects to take into account. Let us list some of possible extensions:

• Host dark matter halo will enhance the density around the soliton and modify the
gravitational potential, resulting in the change of the wavefunctions of the soliton and
axion gas [40].

• Relevant for fuzzy dark matter, the superheavy solitons in the galactic centers are
expected to contain a significant amount of baryonic matter. This can also lead to the
change of the soliton profile and to its dynamical heating [21, 49, 50, 69].

• If axion comprises only part of dark matter, the formation of solitons in cosmological
simulations may be inhibited [70]. One can also consider scenarios with multiple wave
dark matter components [71–73].

• Axion self-interaction can provide additional mechanism of boson star condensation
and evaporation [74, 75].
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A Classical derivation of the soliton growth rate

In this appendix we derive the expression (3.10) for the soliton growth rate as the consequence
of the classical equations of motion. It is convenient to integrate out the gravitational potential
and rewrite the Schrödinger-Poisson system as a single equation with non-local interaction,

i∂tψ + ∆ψ
2m − 4πGm2ψ

1
∆ |ψ|

2 = 0 , (A.1)

where 1
∆ denotes the Green’s function of the Laplacian. Clearly, this equation conserves

the total mass of axions in a box Mtot = m
∫
d3x|ψ|2. Now, we make the split (2.22) into

the soliton and gas and, using the fact that the soliton is a solution of eq. (A.1), obtain
the equation for the gas component,

i∂tψg + ∆ψg
2m − 4πGm2

[
ψg

1
∆ |ψs|

2 + ψs
1
∆(ψ∗sψg) + ψs

1
∆(ψsψ∗g)

]
− 4πGm2

[
ψg

1
∆(ψ∗sψg) + ψg

1
∆(ψsψ∗g) + ψs

1
∆ |ψg|

2 + ψg
1
∆ |ψg|

2
]

= 0 .
(A.2)

In the first line we have grouped the terms that affect the gas field at linear order, whereas the
second line contains interactions. Note that, despite the presence of the small factor 4πGm2,
all terms in the first line are of the same order because ψs is proportional to (4πGm2)−1/2,
see eq. (2.4). Correspondingly, the leading interaction terms are of order

√
4πGm2.

The mass of the gas is not constant. From eq. (A.2) we have,

dMg

dt
=m

d

dt

∫
d3x|ψg|2 =−(8πGm3)Im

∫
d3x

[
ψ∗sψg

1
∆(ψ∗sψg)+ψ∗sψg

1
∆ |ψg|

2
]
, (A.3)

where we have canceled the boundary terms assuming periodic boundary conditions. Since
the total mass is conserved, this must be compensated by the change in the soliton mass.
Thus, we obtain for the soliton growth rate,

Γs = 8πGm3

Ms
Im
∫
d3x

[
ψ∗sψg

1
∆(ψ∗sψg) + ψ∗sψg

1
∆ |ψg|

2
]
. (A.4)
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If we neglect the interaction terms in eq. (A.2), it admits a set of periodic-in-time
solutions. We decompose the gas field in these eigenmodes,17

ψg(t,x) =
∑
i

ai(t)e−iEitψi(x) , (A.5)

where the amplitudes ai(t) slowly vary due to the interactions. Substituting into eq. (A.4)
we obtain,

Γs =−2m
Ms

Im
[∑
i,j

aiaje−i(Ei+Ej−2Es)tA′is,js+
∑
i,j,k

aiaja
∗
ke−i(Ei+Ej−Ek−Es)tA′is,jk

]
, (A.6)

where the scattering amplitude A′is,jk is defined in eq. (3.9), and A′is,js is defined similarly
with the kth wavefunction replaced by the soliton. All terms in the first sum quickly oscillate
since the gas states are separated from the ground state by an energy gap of order |Es|.
Thus, they disappear once we average the growth rate over time scales of order |Es|−1 and
we omit them in what follows.

The second sum does not vanish upon time averaging because the combination of energies
in the exponent can be small. However, to obtain the physical growth rate we also have
to average over random initial phases of the gas amplitudes. In the absence of interactions
the amplitudes ai in eq. (A.6) coincide with the initial amplitudes a(0)

i and thus averaging
over their phases will give Γs = 0. To obtain a non-zero result, we have to take into account
gas interactions.

The first correction to the free gas field is due to terms of order
√

4πGm2 in eq. (A.2).
We can write it schematically as

ψ(1)
g = (4πGm2)Gret ∗

{
ψ(0)
g

1
∆
(
ψ∗sψ

(0)
g

)
+ ψ(0)

g

1
∆
(
ψsψ

(0)
g

∗)+ ψs
1
∆ |ψ

(0)
g |2

}
, (A.7)

where ψ(0)
g is the free gas field and Gret is the retarded Green’s function of the operator in

the first line of (A.2). Using the complete set of eigenmodes, it can be written as,18

Gret(t− t′,x,x′) =
∑
i

∫
dE
2π

ψi(x)ψ∗i (x′)
E − Ei + iε

e−iE(t−t′) . (A.8)

Substituting this expression into (A.7) and expanding ψ(1)
g and ψ

(0)
g into eigenmodes, we

obtain the first-order correction to the amplitudes,

a
(1)
i = −

∑
j,k

[
a

(0)
j a

(0)
k

e−i(Ej+Ek−Ei−Es)t

Ej + Ek − Ei − Es + iε
A′ks,ji

+ a
(0)
j a

(0)
k

∗ e−i(Ej−Ek−Ei+Es)t

Ej − Ek − Ei + Es + iε
(A′∗ks,ij +A′∗is,kj)

]
.

(A.9)

17Due to the last term in the first line of eq. (A.2) that mixes ψg and ψ∗g , the eigenmodes contain both
positive and negative frequencies [63]. To avoid cumbersome expressions, we neglect this subtlety in the
following discussion. It does not affect the final result for the soliton growth rate.

18For simplicity, we again neglect the subtleties associated with the negative-frequency components of the
eigenmodes [63].
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Next, we insert this expression into the first-order contribution to the soliton growth rate,

Γ(1)
s = −2m

Ms

∑
i,j,k

(
a

(1)
i a

(0)
j a

(0)
k

∗
+ a

(0)
i a

(1)
j a

(0)
k

∗
+ a

(0)
i a

(0)
j a

(1)
k

∗)
e−i(Ei+Ej−Ek−Es)tA′is,jk , (A.10)

and average over the phases of a(0)
i using

〈a(0)
i a

(0)
j a

(0)
i′
∗
a

(0)
j′
∗
〉 = fifj(δii′δjj′ + δij′δji′) . (A.11)

Upon a somewhat lengthy, but straightforward calculation, we arrive at

〈Γs〉 = m

Ms
Im
∑
i,j,k

{
fjfk + fifk

Ek − Ej − Ei + Es + iε
|A′is,jk +A′js,ik|2

+ fjfk
−Ei + Es + iε

[
(A′is,jj +A′js,ij)(A′∗is,kk +A′∗ks,ik) + h.c.

]
+ fifj
Ei + Ej − Ek − Es − iε

|A′is,jk +A′js,ik|2
}
.

(A.12)

In the final step we use the formula

Im 1
z + iε

= −iπδ(z) . (A.13)

Then the second term vanishes because Ei 6= Es, whereas the rest of the terms reproduce
eq. (3.10). Thus, we have shown that the classical derivation leads to the same soliton growth
rate as the quantum mechanical one, upon averaging over the ensemble of gas realizations
with different initial phases.

The above derivation also allows us to estimate the r.m.s. fluctuations of Γs in individual
realizations. To this aim, let us return to eq. (A.6) and smooth it with a Gaussian filter
over time scales 〈Γs〉−1 > τ � |Es|−1. We obtain,

Γs = −2m
Ms

Im
∑
i,j,k

aiaja
∗
ke−i(Ei+Ej−Ek−Es)tA′is,jke−τ

2(Ei+Ej−Ek−Es)2/2 . (A.14)

To get the r.m.s. fluctuations, we subtract 〈Γs〉, square the result and average over the gas
phases. In the latter step we can replace ai with a

(0)
i to obtain the leading contribution.

Retaining only the unsuppressed terms we obtain,

〈δΓ2
s〉 '

(
m

Ms

)2 ∑
i,j,k

fifjfk |A′is,jk +A′js,ik|2e−τ2(Ei+Ej−Ek−Es)2

'
√
π

τ

(
m

Ms

)2 ∑
i,j,k

fifjfk |A′is,jk +A′js,ik|2δ(Ei + Ej − Ek − Es) .
(A.15)

Comparing this with the expression (3.10) for the rate, we get an estimate

〈δΓ2
s〉 ∼

1
τ

m

Ms
fg〈Γs〉 . (A.16)

The fluctuations are much smaller than the average if 〈Γs〉τ � mfg/Ms which can be
always achieved by an appropriate choice of the smoothing scale, as long as the number
of particles in the soliton is much larger than the occupation numbers of individual modes
in the gas, Ms/m � fg.
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Figure 11. Gas parameters for the simulations with soliton formation. Solid lines bound the regions
without Jeans instability for different simulation box sizes (see eq. (4.7)). The number of runs on
different lattices is indicated in parenthesis.

B Formation of axion soliton from the gas

In this appendix we report the results of simulations with formation of the soliton from
the gas. We use the same numerical scheme and initial conditions for the gas as described
in section 4.1, but we do not put the initial soliton. Instead, we wait for the soliton to
emerge spontaneously. The purpose of these simulations is twofold. First, we cross-check
our numerical approach by comparing with the simulations carried out in [39].19 Second,
we investigate to what extent the evolution of spontaneously formed solitons is similar to
the evolution of the solitons inserted into the gas from the start.

We perform 118 independent simulations with the parameters summarized in figure 11.
The parameter space is restricted by the requirement of absence of the Jeans instability, so
that the gas does not form a halo and remains homogeneous.

Figure 12 shows the results of a typical simulation run. The maximal axion density
within the simulation box remains small for time less than the relaxation time (2.19) marked
with the red dotted line. Then it starts growing which signals the formation of a soliton.
As in section 4, we determine the soliton mass from its peak density using eq. (4.9). We
also construct smoothed peak density and soliton mass using a top-hat filter with the width
twidth = 70/k2

g . The smoothed dependences are shown in the figure with thick blue lines.

19We thank Dmitry Levkov and Alexander Panin for sharing with us their results for a detailed comparison.
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Figure 12. Example of spontaneous soliton formation in axion gas with parameters
(N = 128, kg = 0.5, fg = 0.02). From top to bottom: maximal density in the simulation box, soliton
mass estimated from the peak density, virial ratio EU/EK , total energy in the box. Thick blue lines
show the smoothed dependences. Yellow dotted line is the fit (B.2). Vertical red and green dotted
lines mark the relaxation time (2.19) and the measured soliton formation time, respectively.

To pin down the moment of soliton formation, we use the method proposed in [33].
We identify the density maximum within the simulation box and compute the kinetic (EK)
and potential (EU ) energy in a spherical region around it. The radius of the sphere is
chosen as the radius at which the shell-averaged density drops to half of its peak value.
To calculate the kinetic energy, we evaluate the field gradient, subtract the center-of-mass
velocity contribution, square the result and integrate over the volume of the sphere. The
potential energy is approximated by the potential energy of a uniform ball with the mass
enclosed inside the sphere. For a random peak in the gas the ratio EU/EK is close to zero,
whereas for the soliton it obeys the virial condition20 EU/EK ' −2.8. In figure 12 we see that
this ratio changes abruptly from 0 to −2.8 around t ∼ τrel. We identify the soliton formation
time τform as the moment when the smoothed curve EU/EK crosses half of its virial value,

EU/EK
∣∣∣
τform

= −1.4 . (B.1)

This time is marked with the green dotted line in the plot. We see that it agrees well
with the relaxation time τrel.

Ref. [39] suggested that upon formation the growth of the soliton is described by a
power-law

Ms(t) = M0

(
t

τ0
− 1

)α
(B.2)

with α = 1/2, τ0 = τrel and M0 ' 12πkg. To verify if this law is obeyed in our simulations,
we fit the smoothed soliton mass at t > τform with the formula (B.2) allowing α, τ0, M0 to
vary as free fitting parameters. The fitting time range is restricted by the condition that the
energy error |E(t)/E(0)− 1| does not exceed 0.1%. The result of the fit is shown by yellow

20The ratio is different from −2 because we consider only the inner part of the whole soliton.
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Figure 13. Results of the measurements in the simulations with soliton formation. The histograms
show the distributions of the soliton formation time τform, and the parameters in the power-law
fit (B.2) of the soliton mass growth: α, τ0, M0. The relaxation time τrel is given by eq. (2.19) and kg

is the gas momentum.

dotted line in figure 12. The best-fit parameters for this run are α = 0.22, τ0 = 8.2 × 105,
M0 = 17.03. Note that the value of α is significantly lower than 1/2. We will discuss shortly
how this result can be reconciled with those of ref. [39].

We repeat the above analysis for each of 118 runs and construct the histograms of τform,
α, τ0, M0 measured in different runs. These histograms are shown in figure 13 together
with their means and standard deviations. The mean values of τform, τ0 and M0 are in
good agreement with the findings of [39]. On the other hand, for the exponent we obtain
a lower mean, α = 0.33± 0.02. It is important to notice, however, that the distribution of
α is quite broad, extending from21 0.2 to 0.5. From the analysis in the main text we know
that the soliton growth rate decreases when the soliton gets heavier. This suggests that the
spread in α can arise due to different soliton masses achieved in different simulations. In
this picture, the runs with larger duration should yield lower values of α since the solitons
in them have more time to grow.

To check this expectation, we plot in figure 14 the best-fit value of α as function of
the duration of the simulation22 in units of relaxation time. Apart from a few outliers,
the bulk of the data exhibit a pronounced anti-correlation between α and tend/τrel. The
exponent varies from α ' 0.5 for newly-born solitons down to α . 0.25 for long-lived solitons.
Thus, the value α = 1/2 found in [39] can be explained by short duration of the simulations
used in the analysis, whereas longer simulations carried out in the present work uncover
a trend for the decrease of α with time. This trend is consistent, both qualitatively and

21There are three outlier runs with very high (α ' 0.8) and very low (α ' 0.1) exponents. The origin of
these large fluctuations is unknown.

22More precisely, we take tend to be the end of the time range used in the fit (B.2).
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Figure 14. The exponent in the power-law fit (B.2) for the soliton mass against final simulation
time tend measured in units of the relaxation time (2.19). Longer simulations produce more massive
solitons which have slower growth rate and hence lower values of α. Three outlier simulations with
α ' 0.8 and α ' 0.1 represent large fluctuations of unknown origin.

quantitatively, with the results on heavy soliton growth from the main text. Indeed, the
scaling (4.16) of the soliton growth rate implies

1
Ms

dMs

dt
∝ 1
Mn
s

=⇒ Ms ∝
(
t

τ0
− 1

)1/n
, (B.3)

which leads to the identification α = 1/n. Thus, the slow-down of the soliton growth with α
decreasing from 1/2 to 1/4 as time goes on matches the steepening of the Γs dependence
on kgrs with n increasing from 2 to 4 at smaller kgrs (see section 4.3).

The above match is non-trivial. The simulations of section 4 are performed with
Maxwellian gas and the growth rate is extracted from time ranges shorter than half of the
relaxation time to avoid any significant change in the gas distribution. On the other hand, the
simulations in this appendix, by construction, span more than the relaxation time. Moreover,
it is known [39] that the soliton formation is preceded by a dramatic change in the gas
distribution with enhanced population of low-momentum modes. Thus, the solitons in the
two simulation suits are embedded in environments with very different histories and their
growth rate need not be the same. Nevertheless, it turns out that the soliton growth exhibits
a remarkable universality. In figure 15 we superimpose the time-dependent mass of a soliton
born in the gas on top of the soliton masses from out main simulation suit with solitons
incorporated in the initial conditions. We see that after a brief transient period of a faster
growth, the formed soliton approaches the same time dependence as the solitons with the
same mass that are present in the gas from the start.

This suggests that the gas distribution restores its Maxwellian form after the soliton
formation. We check this conjecture by measuring the amplitudes of axion modes |ψk|2 in the
simulation from figure 15 at several moments of time: at the beginning of the simulation (t = 0),
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Figure 15. Same as upper panel in figure 8 with the addition of the soliton mass evolution from a
run with soliton formation (in grey). The spontaneously formed soliton approaches the same growth
rate as the solitons embedded in the gas from the start.

Figure 16. Left panel: evolution of momentum distribution of axions in the simulation box. The
mode amplitudes are spherically averaged over shells with fixed k = |k|. Right panel: zoom-in on the
low-k part of the spectrum, where we divide the distribution by k2 to make the difference between
curves more pronounced. The distribution in a simulation with spontaneous formation of the soliton
from the gas (N = 128, kg = 0.5, fg = 0.06) is shown by solid lines with circles. It is sampled at three
moments of time: at the beginning of the simulation (black), at the time before soliton formation
(red) and after the soliton has formed (blue). Just before the soliton forms the distribution features a
pronounced bump at low momenta which disappears afterwards. For comparison, we show with dashed
lines the distribution in a simulation with soliton inserted in the initial conditions (kgr

init
s = 1.51)

sampled at the same time intervals. Maxwell distribution corresponding to the input gas parameters
is shown with thick green line. The momentum wavefunction of the soliton with the mass achieved at
latest sampling point is plotted by thick yellow line.
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Figure 17. An example of soliton formation after the evaporation of a light soliton, with the
parameters of (N = 128, kg = 0.8, fg = 0.01, kgr

init
s = 3.14). We adopts the same conventions and

color coding as figure 12.

before the soliton formation (t = 0.89 τrel), and after the soliton has formed (t = 1.78 τrel).
The amplitudes are averaged over spherical shells with fixed values of k = |k|. The results are
shown in figure 16 (solid lines with circles). We see that right before the soliton formation,
the distribution develops a pronounced bump in the low-k part of the spectrum, consistently
with the results of [39]. This bump, however, disappears after the soliton is formed and at
late times the distribution qualitatively resembles Maxwellian (shown by the thick green line).
We also superimpose in the same figure the distribution for the run with soliton initially
present in the gas sampled at the same intervals from the start of the simulation (dashed
lines). The parameters of this run are (N = 128, kg = 0.5, fg = 0.06, kgrinit

s = 1.51) and
correspond to the blue curve in figure 15. In this case we see that the distribution preserves
the Maxwellian shape at all times, without any excess at low-k modes. We conclude that
the presence of the soliton affects the axion gas in a curious way: it stabilizes the Maxwell
distribution of axion momenta.

It is worth stressing that we are talking about the distribution in the gas and not in the
soliton itself. Though our numerical procedure does not allow us to separate the two, we
can compare the total distribution to the wavefunction of the soliton in momentum space.
This is shown by thick yellow line in figure 16. We take the soliton mass to be Ms = 20
corresponding to the latest sampling time. We see that the contamination of the distribution
from the soliton is negligible.

We do not attempt to explore this “Maxwellization” phenomenon further in this work.
The axion momentum distribution is subject to significant temporal fluctuations which form
an obstruction for moving beyond qualitative statements. For a quantitative study, one needs
to devise less noisy probes. We leave this task for future.

Finally, we run a simulation with an initial light soliton (N = 128, kg = 0.8, fg =
0.01, kgrinit

s = 3.14) for a long period of time. The results are shown in figure 17. We first
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Figure 18. Convergence tests in the simulations with pure gas (left) and an isolated soliton (right).
In each case we perform three runs: one with the fiducial time step dt = 0.64, and two with time
steps reduced by a factor of 2 and 4. The gas momentum is kg = 0.5, whereas the soliton radius is
rinit

s = 1.5. The lattice size if N = 128 in both cases.

observe evaporation of the light soliton, consistently with theoretical expectations and other
numerical runs. However, after a further span of order relaxation time, a new soliton forms
and rapidly grows to a heavy one. This demonstrates that the soliton formation represents a
kind of phase transition, with solitons being born heavy from the start.

C Details of the numerical simulations

C.1 Convergence tests

In this work, we adopt second order drift-kick-drift operator (4.2) to evolve wave function
for each time step dt. The gravitational potential Φ and kinetic energy operators ∆ are
calculated with CUDA Fast Fourier Transform (cuFFT).23 We notice that the single precision
of cuFFT causes ≈ 10% mass loss in 106 time steps. We therefore conduct the simulations in
this work using the double precision. This makes the mass loss negligible (less than 10−6).

The requirement that the gas and the soliton must be resolved by the spatial lattice puts
and upper bound on the gas momentum kg and a lower bound on the initial soliton size rinit

s

accessible in the simulations. To determine the domain of validity of our code, we perform
several convergence tests. First, we evolve the gas without the soliton using three different
time steps: dt = 2/π ' 0.64 (our fiducial value), dt = 1/π ' 0.32 and dt = 1/(2π) ' 0.16.
The gas parameters in all three runs are (N = 128, kg = 0.5, fg = 0.04). The maximal
density within the box and the total energy measured in these runs are shown in the left panel
of figure 18. We observe that the density curves essentially coincide, while the energy error is
proportional to (dt)2, as it should. For our fiducial value of dt = 2/π, the error stays well
below 10−7. We conclude that the gas with kg = 0.5 is comfortably resolved in our simulations.

Next, we repeat the same convergence test with an isolated soliton of radius rinit
s = 1.5.

The results are shown in the right panel of figure 18. Since the analytical template (2.9)
used in the simulations to set the initial conditions slightly deviates from the exact soliton
profile, the soliton is initiated in an excited state which leads to the oscillations of the peak
density. The oscillations obtained with three different time steps match almost identically.

23https://developer.nvidia.com/cufft.
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Figure 19. Temporal (left) and spatial (right) convergence tests for the extreme values of the gas
momentum and soliton radius kg = 1, rinit

s = 1.5. Temporal test contains three simulations by
decreasing the time step size dt by 2 or 4 relative to the fiducial value, whereas the spatial test consists
of two simulations with the box size N differing by a factor of 2. The simulations for spatial test
follow the scaling relation (2.2).

The energy error also exhibits the proper scaling, |E(t)/E(0) − 1| ∝ (dt)2. However, now
it is significantly larger, reaching up to 10−3 for the fiducial dt. This is likely due to high
frequency of the soliton phase rotation |Es| ' 0.52 which is less resolved with the large time
step. Therefore, to correctly capture the evolution of the soliton wavefunction, we restrict
our simulations to rinit

s ≥ 1.5.
For a third test, we superimpose the soliton and the gas and again run three simulations

with decreasing time step. We take the soliton with rinit
s = 1.5 and push the gas momentum

up to kg = 1. The evolution of the soliton mass and the total energy in these runs is shown
in the left panel of figure 19. The soliton mass growth in the three cases is broadly the
same, though detailed features are slightly different. The energy error is low in the initial
time range t . 103 where it also obeys the (dt)2 scaling. However, from t ∼ 103 it starts to
steadily grow and its scaling with (dt)2 gets violated. Still, the error remains small until very
late times. For the fiducial time step it reaches 10−3 when the soliton mass exceeds Ms ' 27
and hence its radius drops below rs ' 1.2. This suggests that the soliton-gas system with
rs ∼ 1.2 and kg ∼ 1 is at the extreme of our numerical resolution. Since we are interested in
the averaged properties of the soliton evolution, rather than fine details, we accept kg = 1
as the upper boundary for admissible gas momenta. To ensure the absence of any excessive
loss of precision, we monitor the energy conservation throughout our simulations and only
use data where the energy is conserved with accuracy better than 10−3.

Finally, we perform a spatial convergence test. Instead of varying dx, which is fixed to
1 in our code, we make use of the scaling symmetry (2.2). It implies that decreasing dx is
equivalent to an increase of N accompanied by an appropriate rescaling of other parameters.
Thus we consider two simulation runs with (N = 128, kg = 1, fg = 0.04, rinit

s = 1.5) and
(N = 256, kg = 0.5, fg = 0.02, rinit

s = 3.0). Note that we do not rescale the time step
dt = 2/π which is tied to the lattice spacing in order to avoid aliasing [35]. The results
of these two runs are compared in the right panel of figure 19. While energy conservation
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Figure 20. Ratio of the soliton mass estimator to the true soliton mass as functon of the density
contrast in the axion field generated by superposition of the soliton and gas wavefunctions. We adopt
the threshold ρmax > 30 ρg when measuring the soliton mass from the simulations.

is much better satisfied on the bigger lattice, the broad features of the mass evolution in
these two runs agree. This further support the validity of our numerical results up to the
extreme values kg = 1, rinit

s = 1.5.

C.2 Conversion of peak density into soliton mass

As discussed in section 4.1, we estimate the mass of the soliton and its radius from the
maximal density in the box ρmax, assuming that it corresponds to the soliton peak density
ρs, peak. However, the interference of the soliton wavefunction with the gas waves can increase
the maximal density above that of the soliton. The increase is proportional to the product
of the soliton and gas wavefunctions, hence to the geometric mean of their densities. In
more detail, we can estimate the bias as

ρmax
ρs, peak

− 1 ∼ 2
√

ρg
ρs, peak

, (C.1)

which can be significant even for large density contrasts. For example, the density bias is
about 40% for ρs, peak/ρg = 30. The situation is further complicated by large fluctuations
in the local gas density that can further increase the bias. In particular, when the soliton
is too light, its peak becomes completely obscured by the gas.

To pin down the lowest density contrast between the soliton and the gas for which the
bias is unimportant, we conduct a series of the following auxiliary numerical experiments. We
generate a gas field with given mean density ρg and superimpose on it a soliton of mass Ms

without any evolution. Then we evaluate the estimator of the soliton mass using our formula

Ms,est = 25.04 ρ1/4
max , (C.2)

where ρmax is the maximal density of the axion field in the box. The estimator is compared
to the true soliton mass in figure 20. We observe that when the soliton is prominent enough,
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say ρs, peak ' ρmax > 100 ρg, the estimator is unbiased. On the other hand, for ρmax . 20 ρg,
we are essentially unable to distinguish the soliton peak against the gas density fluctuations.
We adopt the threshold ρmax > 30 ρg when measuring the soliton mass in our simulations,
which introduces an error of at most 20% in the mass estimate.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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