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ABSTRACT

Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version
of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distribution function is
expanded on a velocity-space polynomial basis allowing us to reduce its evolution to the solution of an arbitrary number of fluid-like equa-
tions for the expansion coefficients, denoted as the gyro-moments (GM). By focusing on the electrostatic and neglecting finite Larmor radius
effects, a full-F GM hierarchy equation is derived to evolve the ion dynamics, which includes a nonlinear Dougherty collision operator, local-
ized sources, and Bohm sheath boundary conditions. An electron fluid Braginskii model is used to evolve the electron dynamics, coupled to
the full-F ion GM hierarchy equation via a vorticity equation where the Boussinesq approximation is used. A set of full-F turbulent simula-
tions are then performed using the parameters of the LArge Plasma Device (LAPD) experiments with different numbers of ion GMs and dif-
ferent values of collisionality. The ion distribution function is analyzed illustrating the convergence properties of the GM approach. In
particular, we show that higher-order GMs are damped by collisions in the high-collisional regime relevant to LAPD experiments. The GM
results are then compared with those from two-fluid Braginskii simulations, finding qualitative agreement in the time-averaged profiles and
statistical turbulent properties.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167997

I. INTRODUCTION

Despite recent progress in the development of gyrokinetic (GK)
codes, such as COGENT,1 Gkeyll,2 GENE-X,3,4 and XGC,5 extend-
ing the GK model from the core to the boundary remains challeng-
ing since it requires dealing with a wide range of collisionality,
order-one fluctuations across various scales, complex magnetic field
geometry, steep pressure gradients, and the interaction of the plasma
with the wall. As a consequence, less computationally demanding
tools, such as fluid simulations (see, e.g., Refs. 6–8) based on the
drift-reduced Braginskii model,9 are often used to simulate the
plasma dynamics in the boundary. However, the Braginskii fluid
approach remains limited to the highly collisional region of the
boundary, namely, the scrape-off layer (SOL) and cannot describe
kinetic effects at lower collisionality.

To tackle the challenges of the boundary region, an approach is
formulated in Ref. 10 based on the Hermite–Laguerre expansion of the
full (full-F) distribution function, which leads to the evolution of an
arbitrary number of expansion coefficients, referred to as the gyro-

moments GMs. This approach features kinetic effects,11–13 which are
absent in Braginskii-like fluid models, and collisional effects modeled
using advanced collision operators13–17 with an arbitrary number of
GMs. The ability to adjust the number of GMs with a simple closure
by truncation removes the need for ad hoc kinetic closures18,19 since
the accuracy of the model can be improved by increasing arbitrarily
the number of GMs and, therefore, the velocity-space resolution. So
far, investigations based on the GM approach are limited to the df
regime (where only the a priori small deviation of the distribution
function from thermal equilibrium is evolved20) showing convergence
with a low number of GMs, in particular, at high collisionality.13 We
notice that the first nonlinear df simulations using advanced linearized
collision operators have been recently performed17,21 and that a similar
approach has also been implemented to perform df turbulent calcula-
tions focusing on the core region.22,23 In this work, we present the first
full-F turbulent results that are based on the GM approach using a
flexible number of moments. In particular, we focus on simulations of
plasma turbulence in a linear plasma device.
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Linear plasma devices, such as LAPD,24 HelCat,25 and RAID,26

are experiments that allow for the investigation of basic plasma phe-
nomena in a simplified magnetic geometry characterized by the
absence of magnetic gradients, curvature, and shear.24,26–29 Despite
their simplicity and the lack of kinetic effects such as trapped electrons,
linear plasma devices share some of the most important physical pro-
cesses that occur in the boundary of magnetic confinement devices. In
fact, similar to the boundary, the turbulent dynamics in a linear plasma
device result from the interplay of cross field transport, parallel flows
to the magnetic field, and plasma losses at the end plates where a
sheath forms due to plasma–wall interactions. At the same time, the
straight magnetic field lines in these devices facilitate the development
of newmodeling tools, compared to complex magnetic geometry char-
acterizing the boundary of fusion devices. The modeling in these devi-
ces is also simplified by the perpendicular incidence of the magnetic
field lines to the wall of the machine, which simplifies the sheath
boundary model compared to an oblique incidence30–32 and by the
low plasma temperatures comparable to typical SOL values (e.g.,
Ti �Te � 6 eV in typical LAPD discharges33), which are ideal for
applying the full-F GM approach.

The low plasma temperature allows for a direct comparison of
the GM approach with validated fluid simulations,29,34–36 which have
been considered because of the collisional conditions often met in, e.g.,
LAPD experiments. Moreover, we note that, in addition to fluid simu-
lations, the LAPD configuration was also chosen to perform the first
full-F GK simulation in open field lines with the Gkeyll code that
uses a discontinuous-Galerkin approach to discretize the velocity-
space.37 LAPD turbulent simulations using the GK GENE code are
also reported in Ref. 38 based on the same physical model. In both
cases, the GK model used for the LAPD simulations neglects finite
Larmor radius (FLR) effects and can, therefore, be considered equiva-
lent to a drift-kinetic model. As a matter of fact, previous fluid and GK
simulations of LAPD provide a comparison that make linear plasma
devices an ideal testbed to perform the first full-F turbulent simulations
using the GM approach with an arbitrary number of GMs.

In this work, we consider a simplified version of the full-F GM
model derived in Ref. 10. Consistently with Refs. 37 and 38, we focus
on the long-wavelength electrostatic limit of the GK model to describe
the ion dynamics, with ion–ion collisions modeled using a simple non-
linear Dougherty39 collision operator (similar to the one used in Refs.
37 and 38) In addition, we neglect FLR effects, and we refer to our ion
model as a GK model for consistency with previous works,37,38 but
emphasize its similarity to a drift-kinetic ion model. On the other
hand, electrons are assumed collisional, such that their dynamics can
be approximated by the drift-reduced Braginskii model.9 This is in
contrast with respect to previous GK simulations where electrons are
treated using the long-wavelength (without FLR effects) GK equation.
Hence, our model can be considered as a hybrid kinetic-fluid model,
with a GK ion and fluid electron description.

In contrast to previous GK simulations of linear devices,37,38 the
ion GK equation is solved within the GM approach where the full ion
distribution function Fi is expanded on a Hermite and Laguerre poly-
nomial basis. A parallel (to the magnetic field) velocity-space coordi-
nate shifted by the local ion parallel fluid velocity and the adiabatic
invariant are used to describe efficiently sonic ion parallel flows near
the end plates where the sheath forms. A full-F ion GM hierarchy
equation for the expansion coefficients is then derived. The ion full-F

GM hierarchy equation and the fluid electron model are coupled
through a vorticity equation where the Boussinesq approximation is
considered. To incorporate the losses at the end plates, Bohm sheath
boundary conditions31 are implemented in the parallel direction,
which are equivalent to the ones used in the previous Braginskii simu-
lation of LAPD.29,35 Nonlinear simulations of LAPD are then per-
formed with various numbers of GMs. For comparison, a set of
nonlinear turbulent simulations are also performed using the two-fluid
drift-reduced Braginskii equations9 (or simply Braginskii model), simi-
larly to Refs. 29 and 35 and using a reduced cold-ion model derived
from the full-F ion GM hierarchy.

The present results demonstrate that the full-F GM approach
properly describes fluctuations in an open-field line geometry. In fact,
a detailed analysis shows that turbulence, driven by a long perpendicu-
lar wavelength Kelvin–Helmholtz (KH) instability, is in qualitative
agreement with the Braginskii model. The importance of the KH insta-
bility in determining the radial turbulent transport in LAPD, as
pointed out in Ref. 29, motivates the long-wavelength approximation
and neglecting FLR effects in the present work. Our findings exhibit
weak dependence on the number of GMs employed in the simulations
and on the collisional regime. This is primarily due to the absence of
significant kinetic effects in LAPD and the fluid nature of the KH
instability, which governs radial turbulent transport and manifests
itself at long perpendicular wavelengths. The analysis of the velocity-
space representation of the ion distribution function demonstrates that
the amplitude of the GMs decays rapidly with the order of the polyno-
mial when collisions are considered. The present investigation also
reveals that a simple closure based on the truncation of the GM hierar-
chy is sufficient in our case and has little effect on turbulence. It is
important to note that the purpose of these simulations is not to
achieve a highly fidelity and realistic description of LAPD turbulence,
but rather to establish confidence in the applicability of the GM
approach in full-F turbulent calculations with a flexible number of
GMs. Furthermore, a direct comparison with LAPD experimental
data35,40 and with previous GK simulations37,38 falls outside the scope
of our study but will be addressed in future work.

We remark that the GM approach of Ref. 10 shares some similar-
ities with previous (full-F or df) gyrofluid models,19,41–49 where a fixed
number of moments, usually up to the third-order velocity-space
moments, are evolved as dynamical variables. These models can be
considered as the limit of the GM approach where a finite number of
moments is evolved and properly designed closures to mimic kinetic
effects, such as Landau damping and FLR effects. Hence, the GM
approach used in this work is similar to a full-F gyrofluid model with-
out FLR effects when the number of moments is kept constant. Finally,
although our model considers a closure by truncation, FLR closures at
arbitrary perpendicular wavelengths49–51 and collisional closures48,52

for full-F gyrofluid models can also be considered with an arbitrary
number of GMs.

This paper is structured as follows: In Sec. II, we derive the ion
full-F GM hierarchy equation in a straight magnetic field and intro-
duce the electron fluid model, as well as the two-fluid drift-reduced
Braginskii model. The numerical implementation of the full-F GM
hierarchy equation is detailed in Sec. III. The results of the first full-F
GM turbulent simulations are presented in Sec. IV, which includes a
detailed comparison with the Braginskii simulations and an analysis of
the ion distribution function. We conclude in Sec. V. The Appendix
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reports on the derivation of the ion temperature equation at high colli-
sionality using the GM approach.

II. LINEAR PLASMA DEVICE MODEL

In this section, we derive the full-F GM hierarchy equation for
the ion dynamics by expanding the ion distribution function onto a
Hermite and Laguerre polynomials basis. The hierarchy includes parti-
cle and energy sources and a simple nonlinear long-wavelength
Dougherty collision operator. The ion full-F GM hierarchy is derived
by neglecting FLR effects from gyro-average and the difference
between particle and gyrocenter fluid quantities, but includes long-
wavelength approximation of the polarization density in the quasineu-
trality equation where the Boussinesq approximation is considered.
Ultimately, this allows us to remove the complexities of FLR effects in
full-F calculations using a flexible number of GMs. A reduced cold-ion
model is also considered, for comparison purpose, which is obtained
analytically from the full-F GM hierarchy in the cold-ion (Ti¼ 0) limit.
For the electron dynamics, the Braginskii fluid equations are used to
evolve the electron density ne, parallel velocity Uke, and temperature
Te. A vorticity equation is derived using the Boussinesq approximation
for the electrostatic potential /, which couples the ion and electron
models. Finally, we present the two-fluid Braginskii model.

The simple magnetic geometry in a linear plasma device allows
us to introduce a simple coordinate system. In particular, assuming a
rectangular shape of the linear device cross section, we define the carte-
sian coordinate system (x, y, z), such that the ðx; yÞ coordinates
describe the plane perpendicular to B, while z is the coordinate along
the magnetic field lines. The height and width of the perpendicular
cross section are Lx and Ly, respectively, and the length of the linear
plasma device is Lz. The constant in time and uniform in the space
magnetic field can simply be written as B ¼ $� A ¼ Bz, where A is
the magnetic vector potential, which is constant in time, and z is the
unit vector pointing along the axis of the linear device.

This section is structured as follows: We describe the ion full-F
model in Sec. IIA, and we derive the ion full-F GM hierarchy equation
in Sec. IIB. A presentation of the reduced cold-ion model is then
obtained from the GM hierarchy equation in Sec. IIC. The fluid elec-
tron model follows in Sec. IID, and the vorticity equation is derived in
Sec. II E. Section II F describes the two-fluid Braginskii model used for
comparison purpose and, finally, Sec. IIG details the Bohm sheath
boundary conditions we use in our simulations.

A. Ion full-F model

Focusing on the electrostatic and neglecting FLR effects with con-
stant and straight magnetic field lines, the ion one-form Ci (Ref. 10)
expressed in the gyrocenter coordinates Z ¼ ðRg ; l; vk; hÞ, where Rg is
the gyrocenter position, l ¼ miv2?=ð2BÞ is the magnetic moment, and
vk ¼ b � v is the velocity parallel to the magnetic field with b ¼ B=B,
reduces to

CiðRg ; l; vk; tÞ ¼ qiA
�
i � _Rg � lB

Xi

_h �miv
2
k=2� qiUi; (1)

with qiUi ¼ qi/þ lB and qiA�
i ¼ qiAþmivkb. We remark that, in

Eq. (1), the electrostatic potential / is evaluated at the gyrocenter posi-
tion, i.e., / ¼ /ðRgÞ, such that ion FLR effects are neglected. From Eq.
(1), we deduce the ion equations of motion

_Rg ¼ bvk þ E � b
B

; (2a)

_vk ¼ qi
mi

b � E; (2b)

and _l ¼ 0, with vk ¼ _Rg � b and E ¼ �$/ the electric field. Equation
(2a) describes the parallel streaming along the magnetic field lines and
the perpendicular drift due to the E � B velocity, while Eq. (2b) repre-
sents the acceleration in the parallel direction associated with the elec-
tric field E. Using the equations of motion given in Eq. (2), the
evolution equation of the full-F (gyrophase-independent) ion distribu-
tion function, Fi ¼ FiðRg ; l; vk; tÞ, in the electrostatic limit of the GK
ion Boltzmann equation20 is given by

@

@t
J iFi
� �þ $ � J i

_RgFi
� �

þ @

@vk
J iFi _vk
� � ¼ J iC i þJ iSi;

(3)

where J i ¼ B=mi is the gyrocenter phase-space Jacobian, which is a
constant in the case of linear devices. On the right-hand side of Eq. (3),
Si ¼ SiðRg ; l; vkÞ ¼ SN þ SE models the particle (SN) and energy
(SE) sources and is defined by

53,54

SN ¼ A N FMi; (4a)

SE ¼ A E s2ki þ xi � 3
2

� �
FMi; (4b)

respectively. We note that the sources, given in Eq. (4), neglect FLR
and polarization effects associated with the transformation from
particle to gyrocenter coordinate.48 In Eq. (4), the perpendicular nor-
malized velocity-space coordinate is defined by xi ¼ lB=Ti0, while we
use ski ¼ ðvk � UkiÞ=vTi (with v2Ti ¼ 2Ti0=mi and Uki ¼ b � ui
¼ Ð dvFivk=Ni the ion parallel fluid velocity) for the normalized par-
allel velocity-space coordinate. Here, Ti0 is the reference ion temper-
ature, which is assumed constant in time and space. We remark that
in previous fluid investigations of LAPD, the low ion temperature
assumption (Ti � Te) is used, and the ion energy source is
neglected.

The functions AN ¼ AN ðx; yÞ and AE ¼ AE ðx; yÞ in Eq. (4)
are chosen to describe the spatial localization of the sources
resulting from ionization processes due to fast electrons and ions.55

Neglecting the presence of localized sources (not uniform in z) near
the end plates, we assume that these sources are uniform in z and radi-
ally localized with a top-hat-like shape. For instance,AN ðx; yÞ is given
by29

AN ðx; yÞ ¼ AN 00:5 1� tanh
r � rs
Ls

� �� 	
þAN 1; (5)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the perpendicular distance from the center of

the device (r¼ 0), rs is the radial extent of the plasma source, Ls > 0 is
its typical source decay scale length, AN0 is a positive and constant
coefficient, which represents the physical particle fueling rate near the
center of the device, while AN 1 represents a small (AN 1 � AN 0)
positive and constant particle source away from r � rs added for
numerical reasons, in particular, to avoid regions of small or negative
plasma density. Similar definitions for AE ðx; yÞ; AE 0 and AE1 are
used. In Eq. (4), we also introduce a shifted Maxwellian distribution
function defined by41,44
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FMi ¼ Ni

p3=2v3Ti
e�s2ki e�xi ; (6)

which assumes isotropic ion temperatures. We remark that the sources
given in Eq. (4) neglect non-Maxwellian sources, which can be relevant
to fast ion injections, and that the functional form of Eq. (4) has a
straightforward projection in the Hermite–Laguerre basis.

Finally, the term C i in Eq. (3) is a full-F and nonlinear collision
operator model describing ion–ion collisions. In particular, we use a
long-wavelength (neglecting FLR effects) Dougherty collision opera-
tor,39 given by

C i ¼ �i
@

@v
� 2Ti

mi

@

@v
Fi � ðv� uiÞFi

� 	
; (7)

where Ti ¼
Ð
dvFimiðv� uiÞ2=ð3NiÞ and ui ¼

Ð
dvFiv=Ni are

the ion temperature and mean fluid velocity, respectively, and
�i ¼ 4

ffiffiffi
p

p
Niq4i ln k=ð3m1=2

i T3=2
i0 Þ is the ion–ion collision frequency,

which is constant in the present work. The effects of ion–electron colli-
sions are neglected in Eq. (3) since they occur on a timescale larger by,
at least, a factor proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
than ion–ion collisions.

Equation (3) is equivalent to the ion GK model used in previous
GK turbulent simulations of LAPD, implemented in the Gkeyll37

and in the GENE38 codes. Both implementations use the same nonlin-
ear Dougherty collision operator for ion–ion collisions [given in Eq.
(7)] and neglect ion–electron collisions. The Gkeyll code employs a
discontinuous-Galerkin approach, and GENE uses a finite-volume
method to discretize the velocity-space coordinates ðvk; lÞ, while our
work uses the GM approach to simulate the full-F ion distribution
function Fi. To our knowledge, this is the first time such a moment
approach is applied to perform nonlinear full-F turbulent simulations
with an arbitrary number of ion GMs.

B. Full-F ion GM hierarchy equation

Following Ref. 10, we perform the GM expansion of the full-F
ion distribution function, Fi. More precisely, we expand Fi onto a set of
Hermite, HpðskiÞ, and Laguerre, LjðxiÞ, velocity-space polynomials,56

such that

Fi ¼
X1
p¼0

X1
j¼0

N pj HpðskiÞLjðxiÞffiffiffiffiffiffiffiffi
2pp!

p FMi

Ni
; (8)

where N pj are the ion GMs, evaluated by using the Hermite and
Laguerre orthogonality relations56

N pj ¼ 2p
ð1
�1

dvk

ð1
0
dl

B
mi

Fi
HpðskiÞLjðxiÞffiffiffiffiffiffiffiffi

2pp!
p : (9)

By introducing the GM projector10,22,44,52

kvkpj ¼ 2p
ð1
�1

dvk

ð1
0
dlv

B
mi

Fi
HpðsiÞLjðxiÞffiffiffiffiffiffiffiffi

2pp!
p (10)

with v ¼ vðRg ; l; vk; tÞ being an arbitrary gyrocenter phase-space
function, we find N pj ¼ k1kpj from Eq. (10). We remark that, in Eq.
(8), the shift of the parallel velocity coordinate ski, appearing in FMi

defined in Eq. (6) and in the argument of the Hermite polynomial Hp,
is necessary to ensure good convergence property of the GM approach
with respect to the number of GMs in Eq. (8), in particular, in the

presence of sonic ion flows (see Sec. IVC). These flows appear at the
sheath entrance where ions are accelerated to the ion sound speed (see
Sec. IIG). Additionally, we note that FMi, defined in Eq. (6), is assumed
to have the same parallel and perpendicular temperature, Tki ¼ T?i

¼ Ti0. The assumption of an isotropic Maxwellian distribution func-
tion in Eq. (8) is justified by the large ion–ion collision frequency typi-
cally found in a linear plasma device (where Ti � 1 eV) compared to
the boundary region in fusion devices (where Ti � 10 eV). The
absence of strong external energy sources driving temperature anisot-
ropy in LAPD experiments supports this assumption [see Eq. (4)].

The lowest-order GMs can be related to fluid ion gyrocenter
quantities, such as the ion gyrocenter density Ni, the ion parallel veloc-
ity Uki, and the ion parallel and perpendicular pressure and tempera-
ture Pki ¼ TkiNi and P?i ¼ T?iNi, respectively. Indeed, using Eq. (9),
we derive that

Ni ¼ N 00; (11a)

N 10 ¼ 0; (11b)

Pki ¼ NiTki ¼ 2p
ð1
�1

dvk

ð1
0
dlBFiðvk � UkiÞ2

¼ Ti0

ffiffiffi
2

p
N 20 þ Ni

� �
; (11c)

P?i ¼ NiT?i ¼ 2p
ð1
�1

dvk

ð1
0
dl

B
mi

lBFi

¼ Ti0ðNi �N 01Þ; (11d)

with the total ion temperature defined by Ti ¼
Ð
dvFimiðv

�bUkiÞ2=ð3NiÞ ¼ ðTki þ 2T?iÞ=3 ¼ Ti0

ffiffiffi
2

p
N 20 þ 3Ni � 2N 01

� �
=

ð3NiÞ. We remark that Eq. (11b) is a direct consequence of our choice
of using a shifted parallel velocity-space coordinate ski in Eq. (8). In the
Appendix, we use the definitions of Eq. (11) to derive the Braginskii
ion temperature equation. We note that the ion gyrocenter fluid quan-
tities given in Eq. (11) are equivalent to the particle ones since FLR and
polarization effects,14,48,52 associated with the transformation from
particle to gyrocenter coordinates, are neglected in our model.

We now derive the full-F GM hierarchy equation describing the
evolution of an arbitrary number of GMs, N pj. This is obtained by
projecting the ion full-F equation given in Eq. (3) onto the
Hermite–Laguerre basis. In addition, we normalize time t to R=cs0
(with cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
the ion sound speed evaluated at the reference

constant electron temperature Te0 and R the radial extension of the
plasma chamber in the direction perpendicular to B), the potential /
to Te0=e, the parallel and perpendicular spatial scales to R and
qs0 ¼ cs0=Xi, respectively. We also normalize the ion and electron
densities, Ni and Ne, to the constant reference density N0, the parallel
electron velocity Uke to cs0, and the electron temperature, Te, to Te0. In
addition, we assume qi ¼ þe, considering a hydrogen plasma. Hence,
we derive the normalized ion GM hierarchy equation, which describes
the evolution of the GMsN pj, i.e.,

@

@t
N pj þ

ffiffiffiffi
p
si

r
N p�1j @

@t
Uki þ $ � k _Rgkpj

þ
ffiffiffiffi
p
si

r
k _Rg kp�1j � $Uki �

ffiffiffiffi
p
si

r
k _vkkp�1j ¼ C

pj
i þ SpjN þ SpjE ;

(12)

where the GM projections are given by
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$ � k _Rg kpj ¼ ffiffiffiffi
si

p
@z

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
N pþ1j þ ffiffiffi

p
p

N p�1j
� �

þ @z UkiN
pj

� �
þ 1
q�

/;N pj
� �

; (13a)

ffiffiffiffi
p
si

r
k _Rg kp�1j � $Uki

¼ pN pj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� 1Þ

p
N p�2j þ

ffiffiffiffi
p
si

r
UkiN

p�1j

 !
@zUki

þ
ffiffiffiffi
p
si

r
1
q�

N p�1j /;Uki
� �

; (13b)

ffiffiffiffi
p
si

r
k _vkkp�1j ¼ �N p�1j

ffiffiffiffi
p
si

r
@z/; (13c)

with q� ¼ qs0=R and si ¼ Ti0=Te0. In Eq. (13), we introduce the
Poisson bracket operator that is ½f ; g� ¼ @xf @yg � @yf @xg. The GM

expansions of the particle and energy sources, SpjN and SpjE , are given by

SpjN ¼ AN d0pd
0
j ¼ SN ; (14a)

SpjE ¼ AE

d2pd
0
jffiffiffi
2

p � d0pd
1
j

 !
; (14b)

respectively. The contribution of Eq. (14a) to the ion density equation
obtained with ðp; jÞ ¼ ð0; 0Þ represents particle sources, while the
non-vanishing terms with ðp; jÞ ¼ ð2; 0Þ and (0, 1) in Eq. (14b) are
associated with parallel and perpendicular energy sources.

Finally, we express the nonlinear Dougherty collision operator in
terms of GMs. We first express Eq. (7) in terms of the velocity-space
coordinates ðski; xiÞ and project it onto the Hermite–Laguerre basis.
This yields

C
pj
i ¼ �i

h
� ðpþ 2jÞN pj þ Ti � 1ð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� 1Þ

p
N p�2j � 2jN pj�1

� �i
; (15)

where Ti is expressed in terms of the GMs using Eq. (11). The nonlin-
ear Dougherty collision operator conserves particles (C 00

i ¼ 0),
momentum (C 10

i ¼ 0), and energy (C 20
i ¼ ffiffiffi

2
p

C 01
i ). While simpler in

form compared to the GM expansion of the nonlinear Fokker–Planck
Landau collision operator,14 the Dougherty collision operator consti-
tutes an initial step to incorporate advanced collisional effects in the
nonlinear and full-F ion GM hierarchy equation. The numerical
implementation of the nonlinear Fokker–Planck Landau collision
operator14 will be considered in future work.

To obtain the time evolution of the GMs N pj, it is necessary to
derive an explicit expression for the time derivative of the ion parallel
velocity, @tUki which appears in Eq. (12) and resulting from the use
of the shifted parallel velocity-space coordinate ski. By setting
ðp; jÞ ¼ ð1; 0Þ in Eq. (12) and using the fact thatN 10 vanishes exactly
[see Eq. (11b)], we derive the desired expression for @tUki given by

Ni@tUki þ Ni

q�
/;Uki
� �þ si@zPki þ NiUki@zUki þ Ni@z/ ¼ 0; (16)

where the parallel ion pressure Pki is expressed in terms of GMs
according to Eq. (11c).

We note that the full-F GM hierarchy equation, given in Eq. (12),
can also be derived from the electromagnetic full-F GM hierarchy

equation described in Ref. 10. This is achieved by considering the elec-
trostatic limit, neglecting FLR effects, and assuming isotropic and con-
stant ion temperatures in FMi. We remark that, if FMi is normalized
with the local parallel and perpendicular ion temperatures [Tki and
T?i in Eqs. (11c) and (11d), respectively] as in Ref. 10, additional terms
proportional to their time derivatives and gradients appear in Eq. (12).
These terms might be important in the case of large temperature varia-
tions such as the ones in the boundary but can be neglected in the case
of LAPD.

Notably, the GMs with different p are coupled in Eq. (12) due to
the parallel streaming terms, associated with the ion Landau damping.
On the other hand, the GMs with different j are only coupled through
the collision operator [see Eq. (15)] as our model neglects FLR effects
yielding additional coupling in j.12 As a result, a few Laguerre GMs are
expected to be sufficient in our nonlinear turbulent simulations.

To carry out the numerical turbulent simulations presented here,
a simple closure by truncation is applied to the GM hierarchy equa-
tion. More precisely, we set N pj ¼ 0 for all ðp; jÞ > ðP; JÞ with
0 	 P; J < 1. The full-F GM hierarchy equation enables us to per-
form turbulent simulations of LAPD using an arbitrary number of
GMs. Different values of (P, J) are considered in Sec. IV, where we
demonstrate that the closure by truncation is sufficient to perform full-
F turbulent simulations in our case.

C. Cold-ion reduced model

We consider here the cold-ion limit of the full-F GM hierarchy
and derive a simplified model, similar to the one used in previous tur-
bulent investigations of linear devices based on fluid models (see, e.g.,
Refs. 29, 34, and 35) where the effects of finite ion temperature Ti are
neglected.

In the cold ion limit (Ti¼ 0), only the GM N 00
i and Uki, associ-

ated with the ion gyrocenter density and the parallel ion velocity, need
to be evolved and the contribution from the parallel ion pressure Pki in
Eq. (16) can be neglected. As a consequence, the ion GM hierarchy
equation given in Eq. (12) reduces to the ion gyrocenter continuity
equation for Ni and to the ion parallel momentum equation for
Uki,

47,48,57 i.e.,

@

@t
Ni þ 1

q�
/;Ni½ � þ @z UkiNið Þ ¼ SN ; (17a)

@tUki þ 1
q�

/;Uki
� �þ Uki@zUki þ @z/ ¼ 0; (17b)

respectively. We remark that the particle and momentum conservation
of the collision operator is used in deriving Eq. (17).

D. Electron fluid model

We use the Braginskii model to evolve the electron dynamics,
avoiding the evolution of their distribution function, in contrast to
Refs. 37 and 38. The fluid approach for the electrons is justified when
the electron collision frequency is much larger than the ion collision
frequency and electron FLR effects are negligible for modes developing
at k?qs � 1, which is the case of LAPD experiments. In the absence of
electron FLR effects, the electron particle and gyrocenter position coin-
cide such that no distinction is made between the electron particle and
gyrocenter fluid quantities. Hence, the time evolution of the electron
density ne, electron parallel velocity Uke, and temperature Te is
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determined by the continuity equation, the generalized Ohm’s law,
and the temperature equation, respectively. These equations are given
by

@tne þ 1
q�

/; ne½ � þ @z Ukeneð Þ ¼ SN ; (18a)

@tUke þ 1
q�

/;Uke
� �þ Uke@zUke

¼ mi

me
�kJk þ @z/� Te

ne
@zne � 1:71@zTe

� 	
; (18b)

@tTe þ 1
q�

/;Te½ � þ Uke@zTe

¼ 2
3
Te

0:71
Ne

@zJk � @zUke

� �
þ @z vke@zTe

� �þ STe ; (18c)

Where the normalized parallel electrical resistivity and electron ther-
mal conductivity are given by �k ¼ �0=T3=2

e and vke ¼ 1:075T5=2
e =�0,

respectively. Here, �0 ¼ 4
ffiffiffiffiffi
2p

p
e4ne0R

ffiffiffiffiffiffi
me

p
ln k=½3cs0miT

3=2
e0 1:96� is the

normalized electron collisionality. On the right-hand side of Eqs. (18a)
and (18c), SN and STe are the normalized density and temperature
sources, respectively. In Eq. (18), the parallel electrical current is
Jk ¼ neðUki � UkeÞ.

E. Vorticity equation

We now obtain the vorticity equation that governs the evolution
of the electrostatic potential /. This equation imposes the charge con-
servation constraint to the time evolution of the plasma densities and
electrical currents.

To derive the vorticity equation, we consider the quasineutrality
condition in the long-wavelength limit, given by10,20

�ene þ qiNi ¼ �$ � q2i Ni

miX
2
i

$?/

 !
: (19)

We remark that Eq. (19) neglects FLR effects (associated with the
gyro-average) but retains the polarization effect in its right-hand side.
Including high-order FLR contributions to the gyro-average and polar-
ization terms, which are important for predicting of small-scale fluctu-
ations,51 requires the development of FLR closures at arbitrary
wavelength (see, e.g., Ref. 50) using an arbitrary number of GMs, a
task left to future work. We also notice that Eq. (19) is equivalent to
the quasineutrality condition used in previous GK turbulent simula-
tions of LAPD37,38 if the Boussinesq approximation is used, i.e., if Ni is
approximated by N0 on the right-hand side of Eq. (19). The
Boussinesq approximation is widely used in fluid codes8,36 and is also
considered below to derive the vorticity equation.

While Eq. (19) can be solved to obtain / given the electron and
ion densities, ne and Ni, respectively, we use a vorticity equation
instead which is often considered in turbulent fluid codes.29,34–36 The
vorticity equation is derived by taking the time derivative of the quasi-
neutrality equation given in Eq. (19) and by using the electron and ion
continuity equations, given in Eqs. (17a) and (18a), respectively.
Furthermore, we use the Boussinesq approximation, such that

$ � q2i Ni

miX
2
i

$?/

 !
’ q2i Ni

miX
2
i

X; (20)

where we introduce the vorticity variable X ¼ $2
?/. The vorticity

equation is then

�@tX� 1
q�

/;X½ � � @zðUkiXÞ þ 1
Ni

@zJk ¼ 0: (21)

We note that the effects of the Boussinesq approximation on plasma
turbulence are the subject of previous studies.36,51,58–60 While it might
not be justified in LAPD when steep density gradients are present, it
allows us to reduce the computational cost of our simulations when
inverting the two-dimensional Laplacian to obtain / from the vorticity
variable X. We use the vorticity equation given in Eq. (21) to evolve X
when considering the full-F ion GM hierarchy equation and the cold
ion models, given in Eqs. (12) and (17), respectively, coupled to the
fluid electron model in Eq. (18).

F. Two-fluid Braginskii fluid model

We finally introduce the two-fluid Braginskii fluid model,9 valid
in the high-collisional regime, for comparison with the full-F ion GM
hierarchy equation and the cold-ion model.

We first note that, in the two-fluid Braginskii model, quasineu-
trality is assumed [neglecting the polarization term in Eq. (19)] and, as
a consequence, the electron particle density is used as an independent
variable, such that ne ’ Ni. On the other hand, ion polarization effects
are retained by the presence of the polarization drift [neglected in Eq.
(2a)] in the ion particle continuity equation, from which the vorticity
equation (given below) is derived for the electrostatic potential.
Furthermore, since FLR effects associated with the difference between
particle and gyrocenter positions are neglected in the two-fluid
Braginskii fluid model, the ion gyrocenter fluid quantities, such as ion
parallel velocityUki and ion temperature Ti, are assumed to be equal to
particle fluid quantities.

In addition to the fluid electron fluid equations for ne, Uke, and Te
already described in Sec. IID, the two-fluid Braginskii equations pre-
scribe a parallel ion momentum equation to evolve Uki, an ion temper-
ature equation to evolve Ti, and vorticity equations for X. These
equations are given by

@tUki þ 1
q�

/;Uki
� �þUki@zUki ¼�@zTe � si@zTi � ðTe þ siTiÞ@znene

;

(22a)

@tTi þ 1
q�

/;Ti½ � þ Uki@zTi

¼ þ 2
3
Ti Uki � Ukeð Þ @zne

ne
� @zUke

� 	

þ @z vki@zTi
� �þAE

ne
þ ð1� TiÞAN

ne
; (22b)

@tXþ si@t$
2
?Ti ¼ 1

ne
@zJk � 1

q�
/;Xþ si$

2
?Ti

� �
� Uki@z Xþ si$

2
?Ti

� �
; (22c)

respectively. In Eq. (22b), vki ¼ 1:32
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p ðsiTiÞ5=2=�0 is the nor-
malized parallel ion thermal conductivity. In Eq. (22b), the two last
terms are the ion temperature sources associated with the energy
source SE [see Eq. (14b)], which appears on the right-hand side of Eq.
(3). In the Appendix, we demonstrate analytically how these terms are
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determined by deriving the ion temperature equation, Eq. (22b), from
the ion GM hierarchy equation.

In contrast to the cold-ion model given in Eq. (17), the parallel
electric field @z/, appearing in the parallel ion momentum equation,
Eq. (17b), is approximated in Eq. (22a) by the electron parallel pressure
gradient, such that @z/ ’ @zPe with Pe ¼ neTe [see Eq. (18b)]. We
also note that the terms proportional to the Laplacian of the ion tem-
perature, i.e., si$2

?Ti, present in the vorticity equation, Eq. (22c), are
absent in Eq. (21), which is derived from the GM hierarchy equation.
Indeed, these terms are associated with the long-wavelength FLR effect
correction, which are neglected in Eq. (21) as FLR effects are omitted.
While the ion temperature in LAPD experiments is generally lower
than the electron temperature, it has been shown that FLR effects can
be important in this regime. Further investigations are hence required
to investigate the effects of finite ion temperature and related FLR
effects on small scale fluctuations in LAPD.

G. Boundary conditions

Boundary conditions are required for the ion GMs,N pj, the elec-
tron fluid quantities, Ne, Uke, Te, and the potential / in the perpendic-
ular (x, y) plane at x ¼ 6Lx=2 and y ¼ 6Ly=2 at the end plates
located in the z direction at z ¼ 6Lz=2, where a sheath forms due to
the plasma–wall interaction.

At x ¼ 6Lx=2 and y ¼ 6Ly=2, homogenous Neumann bound-
ary conditions are used for all quantities. These ad hoc boundary con-
ditions have a negligible effect on plasma turbulence near the center of
the device as they are imposed at a distance sufficiently large from the
center of the device. On the other hand, the boundary conditions in
the z direction have an important impact since the formation of a
Debye sheath is observed when the magnetic field lines intercept the
end plates that control the plasma losses.61 Since the sheath region can-
not be modeled by the field equations derived in Sec. II E (the GK for-
malism is violated in this region), the sheath is modeled in our
simulations by a set of appropriate boundary conditions imposed at
the sheath entrance.

In previous GK simulations of LAPD,37,38 a conducting wall is
considered. Accordingly, the fraction of electrons that cross the sheath
and are lost being absorbed by the walls is determined by the value of
the potential at the sheath entrance. This fraction is imposed by evalu-
ating the cutoff velocity of the electron distribution function numeri-
cally. Leveraging the GM approach, we use the standard fluid Bohm
boundary conditions,61 which set the value of the parallel electron and
ion velocities, Uke and Uki, at the sheath entrance. Therefore, we
assume that31,62

Ukeðx; y; z ¼ 6Lz=2Þ ¼ 6
ffiffiffiffiffiffiffi
Te;s

p
eK�/s=Te;s ; (23a)

Ukiðx; y; z ¼ 6Lz=2Þ ¼ 6cs ¼ 6
ffiffiffiffiffiffiffi
Te;s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ siTi;s=Te;s

p
; (23b)

with K ¼ logmi=ð2meÞ ’ 3 for hydrogen plasmas. In Eq. (23), Te;s

and Ti;s are the electron and ion temperatures evaluated at the sheath
entrance, i.e., Te;s ¼ Teðx; y; z ¼ 6Lz=2Þ and Ti;s ¼ Tiðx; y; z
¼ 6Lz=2Þ, and, similarly /s ¼ /ðx; y; z ¼ 6Lz=2Þ. We notice that
the boundary conditions in Eq. (23) reduce to the ones used in Ref. 29
when Ti � Te and correspond to the ones used in SOL turbulent sim-
ulations using the drift-reduced Braginskii model.8 For the remaining
quantities, we assume, for simplicity, that the gradients of electron den-
sity, ne, electron temperature, Te, ion GMs, N pj, and electrostatic

potentials, /, vanish along the direction of the magnetic field at the
sheath entrance, i.e., homogenous Neumann boundary conditions are
imposed at z ¼ 6Lz=2. While the homogenous Neumann boundary
conditions considered here are sufficient to ensure the numerical sta-
bility of the present simulations, further investigations are needed to
develop first-principles sheath boundary conditions for the GM
approach. In particular, the analytical procedure outlined in, e.g., Refs.
31 and 62, can be extended to an arbitrary number of GMs and kinetic
sheath boundary conditions can also be developed.63–65 Magnetic field
lines intercept the machine wall with a small oblique angle in fusion
devices, further complicating the treatment of the sheath boundary
conditions.30,32

III. NUMERICAL IMPLEMENTATION

To solve the full-F ion GM hierarchy given in Eq. (12) coupled
with the electron fluid model in Eq. (18) and the vorticity equation in
Eq. (21), we have developed a new three-dimensional full-F simulation
code. This code solves the turbulent dynamics for an arbitrary number
of ion GMs. It also solves the cold ion model (Sec. II C) and the two-
fluid Braginskii model (Sec. II F) for comparison with the GM results.

To evolve the plasma dynamics, we employ similar numerical
algorithms as the two-fluid GBS code.8 More precisely, an explicit
fourth-order Runge–Kutta time-stepping scheme is used. The perpen-
dicular and parallel directions are discretized using a uniform cartesian
grid in the (x, y, z) coordinates with the x, y, and z directions discre-
tized using Nx, Ny, and Nz points uniformly distributed between the
intervals ½�Lx=2;þLx=2�; ½�Ly=2;þLy=2� and ½�Lz=2; Lz=2�,
respectively. The Poisson bracket operator, ½f ; g� ¼ b� $f � $g
¼ @xf @yg � @yf @xg, with b ¼ B=B ¼ ez , is evaluated by using a
fourth-order Arakawa method.66 The numerical evaluation of the
other spatial operators appearing in the GM hierarchy equation is
based on a fourth-order and centered finite difference scheme, result-
ing in a five-points centered stencil.8 To avoid checkerboard patterns,60

the grid used to evolve the parallel velocities, Uke and Uki, and the
GMs N pj with odd p, is staggered to the left along the z-direction by
Dz=2 (Dz is the grid spacing) with respect to the grid where the other
fluid quantities, i.e., ne, Te, X (and thus /), and the GMs N pj with
even p are evaluated. Fourth-order interpolation techniques are used
between two staggered grids.60 To improve the numerical stability of
our numerical simulations, parallel and perpendicular numerical diffu-
sions, such as

Dðf Þ ¼ g? @2
xx þ @2

yy

� �
f þ gz@

2
zzf ; (24)

where f denotes one of the evolved quantities, are added to the right-
hand side of all equations. We choose the perpendicular and parallel
diffusion coefficients, g? and gz, to be constant and sufficiently small
not to affect significantly the results. The model is implemented in a
Fortran code using a MPI domain decomposition in all spatial direc-
tions. As a consequence, the computation cost of our simulation scales
approximately linear with the number of GMs taken into account.

The initial conditions of the turbulent nonlinear simulations
impose equal electron and ion densities and temperatures, such that
ne ¼ N 00 and Te¼Ti with top-hat-like profiles in the perpendicular
plane and uniform in z, similar to Eq. (5), such that f ¼ A0½1
�tanh ðr � rsÞ=ð4LsÞ

 ��=2. We use A0 ¼ 0:4 for f¼ ne and
A0 ¼ 0:4 for f¼Te. In addition, we set / ¼ KTe to avoid unphysical
and large electron current into the sheath region. The initial values of
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N 20 and N 01, given the initial ion density N and ion temperature
Ti profiles, are obtained by inverting Eq. (11), which yields N 20

¼ NiðTi � 1Þ= ffiffiffi
2

p
and N 01 ¼ Nið1� TiÞ, with Tki ¼ T?i ¼ Ti.

Finally, the parallel velocities, Uki and Uke, are initialized with smooth
profiles along z, interpolating the values at the end plates fixed accord-
ing to the boundary conditions given in Eq. (23). Random noise (with
constant amplitude 0.01) is added to the initial densities, ne and Ni,
temperatures Ti (and associated GMsN 01; N 02), and parallel veloci-
ties, Uke and Uki, profiles to seed turbulence. Typically, a quasi-steady
state is achieved after 100 cs0=R time unit (corresponding to t � 4 ms),
where the sources of particle and energy are compensated by the losses
at the end plates.

IV. FULL-F TURBULENT SIMULATION RESULTS

In this section, we present the first turbulent and full-F simula-
tions of the GM approach of a linear plasma device, focusing on the
parameters of the LAPD experiment. We perform a comparison
between the turbulent predictions of the full-F GM approach (see Sec.
II B), with different numbers of GMs and values of collisionality and
compare them with the Braginskii model introduced in Sec. II F.

Our simulation parameters are similar to those used in Ref. 29,
where a helium LAPD plasma is considered. These parameters are
summarized as follows: ne0 ¼ 2� 1012 cm�3, Te0 ¼ 6 eV, Ti0 ¼ 3 eV
(si ¼ 0:5), Xi � 960 kHz, qs0 ¼ 1:4 cm, cs0 ¼ 1:3� 106 cm s�1,
mi=me ¼ 400, and �0 ¼ 0:03. The LAPD vacuum chamber has a
radius of R ’ 0:56 m (i.e., R ’ 40qs0) and a parallel length of Lz ’ 18
m, such that we use Lx ¼ Ly ¼ 100qs0 (or Lx � Ly � 1:4 m) and
Lz ¼ 36R. The reference time is R=cs0 � 43 ls. We consider the fol-
lowing parameters for the density and temperature sources Ls ¼ 1qs0;
rs ¼ 20qs0; AN 0 ¼ ATe0 ¼ 0:04 (with AN 1 ¼ ATe1 ¼ 0:001),
and AE 0 ¼ 0:02 (with AE1 ¼ AN 1). We use a numerical resolu-
tion of Nx ¼ Ny ¼ 192 in the perpendicular plane, which corresponds
to a grid spacing of � 0:52qs0. This resolution is also sufficient to
resolve turbulence occurring at perpendicular wavelengths longer than
qs0 in the perpendicular plane, which is dominated by the long-
wavelength KH instability.29 On the other hand, a coarser resolution of
Nz¼ 64 is used in the parallel direction. Given our numerical resolution,
we use g? ¼ 0:05 and gz ¼ 5 for numerical stability. We remark that
further numerical studies are required to fully assess the impact of the
numerical diffusion and resolution we use in our simulations, but the
values considered here are sufficient for the goals of the present work.

In order to investigate the impact of ion collisions, we conduct a
set of nonlinear simulations in the high (HC) and low (LC) ion colli-
sionality regime. For each set, we consider different numbers of GMs
(P, J) to investigate the convergence of the GM approach. More pre-
cisely, we consider ðP; JÞ ¼ ð2; 1Þ (6, 1) and (12, 1) in the LC regime
and ðP; JÞ ¼ ð2; 1Þ and (6, 1) in the HC regime. We change the ion
collisionality by varying the ion collision frequency �i as an indepen-
dent parameter while keeping all other parameters constant. In the HC
regime, the ion collision frequency is computed using the LAPD physi-

cal parameters, such that �i ¼ 1:38
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
�0=s

3=2
i ’ 2:34. In this

regime, the ion mean-free-path, kmpf, is considerably shorter than the
total length Lz, i.e., kmpf =Lz ’

ffiffiffiffiffiffi
2si

p
R=Lz=�i � 1, and the effects of

the collision operator are expected to be important. On the other
hand, we set the ion collision frequency to be small in the LC regime,
such that �i ’ 4� 10�3 yielding kmpf =Lz � 6:9. In this regime, the
effect of the collision operator on the GMs is expected to be negligible.

In all cases, no artificial diffusion in velocity-space is added, since the
damping of the GMs by the Dougherty collision operator given in Eq.
(15) is sufficient to ensure stability of our simulations.

We remark that using J¼ 1 is expected to be sufficient to repre-
sent the ion distribution function Fi in xi since kinetic effects such as
magnetic drifts12 and trapped particles13 (which couple GMs with dif-
ferent j) are absent in the LAPD configuration. In addition, neglecting
the gyro-average in our ion model allows us to remove the coupling
between different j driven by the xi-dependence of the gyro-average
operator.10 We also note that a number J¼ 1 of Laguerre polynomials
fully resolves the density and energy sources [see Eq. (14)]. As a matter
of fact, the only coupling to the j 
 2GMs is from the pitch-angle scat-
tering contained in the collision operator given in Eq. (15), which is
dominated by collisional damping. Indeed, if collisions are neglected
GMs with j> 1 are completely decoupled from the GMs with j 	 1.

This section is structured as follows: First, Sec. IVA provides an
analysis and comparison of simulations based on the full-F GM hierar-
chy, the cold-ion, and the Braginskii models. Second, the turbulence
characteristics are analyzed and compared in more details in Sec. IVB.
Finally, we investigate the ion distribution function in velocity-space in
Sec. IVC and the GM spectrum in quasi-steady state in Sec. IVD as a
function of the number of GMs and for the two collisionality regimes.

A. Simulation results

This section presents a set of nonlinear and turbulent simulations
of the LAPD using the full-F GM hierarchy equation given in Eq. (12),
the cold-ion model in Eq. (17), and the Braginskii model introduced in
Eq. (22).

A typical nonlinear evolution of the electron density, ne, obtained
by using the GM hierarchy equation with ðP; JÞ ¼ ð6; 1ÞGMs in the
HC regime is shown in Fig. 1. For t� 21R=cs0, the profiles build up
because of the localized particle and energy sources present in the sys-
tem. The steep density and temperature gradients near r � rs drive an
unstable resistive drift-wave (not visible in Fig. 1 due to their small
relative amplitude), with the most unstable mode occurring at
k?qs0 � 0:5 (k? is the perpendicular wavenumber) with finite parallel
wavenumber and rotating in the ion diamagnetic direction. Large
poloidal flows, with velocity typically larger than the phase-velocity of
the resistive drift waves,34 nonlinearly trigger a KH instability, charac-
terized by a long perpendicular wavelength (k?qs0 � 1) and kk ’ 0.
The KH instability becomes clearly visible around t ’ 45R=cs0. This
instability, which has been shown to dominate the radial transport in
LAPD,29 saturates at t ’ 53R=cs0, transporting the plasma to the
r� rs region and yielding the broadening of the initial profiles. The
role of the KH-dominated transport in our simulations is confirmed
by the strong steepening of the profiles (similar to Ref. 29) when the
nonlinear term ½/;X� in Eq. (21) is artificially suppressed.

After t � 130R=cs0 (similarly to previous GK and Braginskii tur-
bulent simulations of LAPD34,38), a quasi-steady state is reached. At
this point, the sources are compensated by the losses at the end plates.
In particular, the quasi-steady state in our simulations can be moni-
tored by examining the radial profiles. This is shown in Fig. 2, where
the initial radial profile of ne (associated with Fig. 1) reaches a quasi-
steady state after t � 130R=cs0. To support the steady-state assump-
tion in our simulations, we present the time-averaged radial density
profiles obtained over two time windows along with their associated
standard deviations. As observed, the time-averaged density profiles
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remain the same (within their standard deviations). A similar qualita-
tive evolution is observed with a higher number of GMs in the LC and
HC regimes, as well as in the cold-ion and Braginskii simulations.

Regarding the computational cost, we remark that reaching a
quasi-steady state requires a total of� 41500CPU hours on the multi-
core partition of the Piz Daint supercomputer, approximately.

The dynamics in the direction parallel to the magnetic field is
shown in Fig. 3 during the quasi-steady state. Instantaneous snapshots
of the parallel turbulent structures of the electrostatic potential /, elec-
tron density ne, and electron temperature Te reveal elongated struc-
tures. All quantities show weak parallel gradients kk ’ 0 but have
slightly larger values at the center (z¼ 0) and decrease in amplitude
slowly near the end plates (located at z ¼ �18R and at z ¼ 18R) due
to the particle and energy losses caused by the sheath boundary condi-
tions. Similar parallel structures are obtained when using a larger num-
ber of GMs. The turbulent structures observed in Fig. 3 are in
qualitative agreement with previous fluid29,34,35 and GK37,38 turbulent
simulations of LAPD.

We now examine the time-averaged radial profiles. These profiles
are obtained by averaging over a time window of � 2 ms during the
quasi-steady state as well as over the central region of LAPD, i.e.,
�8R 	 z 	 þ8R (or�4m� z� 4m), a region commonly considered
to present experimental data.40 (A similar approach is used in previous
GK simulations.37,38) More precisely, the averaged profile of the
electrostatic potential / is computed by defining h/it;z
¼ Ðþ‘z=2

�‘z=2
dz
Ð s
0 dt/=ð‘zsÞ, with ‘z and s are the z and time length of

the average windows, respectively. The results are shown in Fig. 4,
which displays the profiles of h/it;z; hneit;z , and hTeit;z obtained in
the GM simulations, using different numbers of GMs, in the cold-ion
and the Braginskii simulations and as a function of the radius.
Instantaneous profiles are also included for comparison.

We note, first, that the plasma profiles extend beyond rs illustrat-
ing the broadening caused by the KH instability.29 More precisely, the
profiles are approximately constant close to the center of the device
(r < rs) and far from the source region (r > rs), showing a region of
steep gradients near r � rs, where the fluctuation level is large (see Sec.
IVB). Second, the time-averaged radial profiles from the GM simula-
tions are very similar to the ones obtained from the Braginskii model.
Third, no noticeable differences are found between the simulations in
the LC and HC regimes and with different numbers of GMs. This sug-
gests that ion kinetic effects may not significantly influence the predic-
tions of the equilibrium (time-averaged) profiles in LAPD. On the
other hand, the cold-ion model consistently predicts larger time-
averaged radial profiles, while the gradients (not shown here) are of
the same order as those obtained in the GM and Braginskii

FIG. 2. Saturation of the radial profile of ne (binned by radius) associated with
Fig. 1 at z ¼ 0R. Instantaneous radial profiles are shown by the dashed lines for
different times, and time-averaged radial profiles over the time-windows t
2 ½150; 170� (red) and t 2 ½170; 190� (blue) are also presented for comparison. The
shaded colored areas represent the standard deviations of each time-averaged pro-
file. A quasi-steady state is reached for t� 130. The time t is normalized to R=cs0.

FIG. 3. Typical snapshots of the parallel turbulent structures of the electrostatic
potential / (top), electron density ne (middle), and electron temperature Te (bottom)
using ðP; JÞ ¼ ð6; 1ÞGMs in the HC regime during the quasi-steady state and as a
function of r. We notice that / � 3Te.

FIG. 1. Typical snapshots during the time evolution (from top-left to bottom-right) of
a LAPD simulation using ðP; JÞ ¼ ð6; 1ÞGMs in the HC regime. The normalized
electron density ne (taken at z¼ 0) is shown. First, the top-hat-like sources fuel the
central region (r� rs) while a resistive drift-wave instability is triggered as the gra-
dients build up (top left). Second, the KH instability develops (top right), saturates
nonlinearly (bottom left), and broadens the profiles to reach a quasi-steady state
(bottom right). ne is normalized, as well as all the quantities shown in the following
figures.
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simulations. This difference between the cold-ion model and other
cases with finite ion temperature is a consequence of the boundary
conditions given in Eq. (23), as discussed below. Fourth, the analysis of
the instantaneous profiles (indicated by dotted lines in Fig. 4) shows
the existence of large perpendicular turbulent structures associated
with the KH instability. Finally, we note that the time-averaged profiles
obtained in Fig. 4 feature a similar behavior of those obtained in previ-
ous fluid simulations29 and GK simulations.37,38

We remark that the electrostatic potential profile / follows
approximately the electron temperature Te, as shown in Fig. 4. Indeed,
/ � KTe is required to have comparable electron and ion outflows in
steady-state, such that Uki � Uke near the end plates, according to Eq.
(23). To verify that / � KTe in our simulations, we evaluate the radial
profile of the instantaneous difference, /� KTe, taken at the center of
the device (z ¼ 0R) for the GM (both the LC and HC regimes are con-
sidered), cold-ion and Braginskii simulations during the quasi-steady
state. The results are shown in Fig. 5. We first observe that the GM
and Braginskii simulations yield similar negative /� KTe values. On
the other hand, /� KTe is roughly constant and approximately

vanishes for all radii in the cold-ion model. The deviations observed in
/� KTe are the result of the boundary conditions specified in Eq.
(23). In fact, to achieve an equilibrium between parallel ion and elec-
tron flows, it is necessary that /� KTe ’ �Te;s ln ð1þ siTi;s=Te;sÞ=2
(as indicated by the black dotted line in Fig. 5) when the finite ion tem-
perature is considered in the case of Braginskii and GM simulations. In
contrast, this condition reduces to /� KTe ’ 0 in the cold-ion model.
Consequently, due to the finite ion temperature dependence of the
boundary condition Eq. (23b), the equilibrium electrostatic potential /
exhibits higher amplitude in the cold ion model, which is confirmed in
the time-averaged profiles observed in Eq. (4). Finally, in all cases con-
sidered, /� KTe remains smaller than the values of / and KTe

(/� KTe � 0:1 for r� rs compared to/ � KTe � 2, see Fig. 3).

B. Turbulence analysis

We now delve into the analysis of the turbulence properties, com-
paring the GM predictions with the Braginskii simulations. The instan-
taneous fluctuations are obtained by subtracting the time-averaged
profiles from the full quantities, such that the fluctuation of, e.g.,
the electrostatic potential, ~/, is defined by ~/ ¼ /� h/it , where
h/it ¼

Ð s
0 dt/=s denotes the time-averaged potential. Similar defini-

tions for the other quantities are used. The top panels of Fig. 6 show
instantaneous snapshots of / in the plane perpendicular at the center
of the device z ¼ 0R, while the bottom panels illustrate ~/ snapshots.
The Braginskii, cold-ion, and GM simulations with various (P, J) are
considered.

We first observe that the fluctuations in the Braginskii model
exhibit similar structures than those obtained in Ref. 35. In particular,
the level of fluctuations is low at the center of the device and far from
the source region, while it is large where the equilibrium gradient is
steeper, in particular, near r � rs (see Fig. 9). Notably, the ~/ snapshots
reveal the presence of large amplitude structures propagating out-
wards. These observations hold for all the GM simulations, demon-
strating qualitative agreement between the GM approach and the
Braginskii model. While the fluctuations of the potential / are not sig-
nificantly affected by the number of GMs used in the simulation or by
the collisionality regime, pointing out the fact that the KH instability
(which drives turbulence) has a fluid nature, minor differences in the

FIG. 4. Time-averaged profiles (solid colored lines) of the electrostatic potential h/it;z (left), electron density hneit;z (center), and electron temperature hTeit;z (right) obtained
in the GM simulations in the HC regime using ðP; JÞ ¼ ð2; 1Þ (6, 1) and in the LC regime using ðP; JÞ ¼ ð2; 1Þ (6, 1) and (12, 1), as a function of the radial coordinate r. The
cold-ion and Braginskii simulations are also shown. The profiles are averaged over the region �8R 	 z 	 8R. The instantaneous profiles are shown by the dotted colored
lines for the Braginskii and ðP; JÞ ¼ ð6; 1ÞGM in the HC regime simulations. The gray shaded areas represent the radial extent of the localized sources.

FIG. 5. Radial instantaneous profiles of the difference between / and KTe at
z ¼ 0R, in the LC and HC regimes for different number of GMs (P, J) and at quasi-
steady state. The results from the cold-ion and Braginskii simulations are also
shown. The black dotted line shows the value of �Te;s ln ð1þ si Ti;s=Te;sÞ=2 in the
Braginskii simulation at z ¼ 0R (similar values of obtained in the GM simulations).
The gray shaded area (r 	 rs) represents the radial extent of the top-hat-like sour-
ces. For r � rs; / relaxes to KTe.
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turbulent properties can still be observed. In fact, the use of a small
number of GMs tends to produce slightly larger turbulent structures.
This can be observed, for instance, by comparing the results of
ðP; JÞ ¼ ð2; 1Þ with the (12, 1) simulations in the LC regime. Finally,
we observe that the cold-ion model produces the largest turbulent
structures, which is consistent with the broad time-averaged profiles
observed in Fig. 4. The same observations apply to the snapshots of the
electron density ne and its associated fluctuations ~ne , as shown in
Fig. 7. Similar plots are obtained for Ti and Te, but not shown. Finally,
it is worth noting that the fluctuations of the electrostatic potential ~/
normalized to the electron temperature Te can be of the order of unity,
as inferred from Eqs. (4) and (6). In particular, we observe ~/=Te � 1
at all radii with, for example, ~/ � 0:5 and Te � 0:6 for r� rs.

In Fig. 8, we present snapshots of the vorticity for the E � B flow,
which is described by the vorticity variable X ¼ $2

?/, defined in Eq.
(21), at the center of the device (z ¼ 0R) at steady-state obtained in
the case of the GM simulations with ðP; JÞ ¼ ð6; 1Þ in the LC and HC
regimes. It is observed that the vorticity exhibits large perpendicular
structures, i.e., k?qs0 � l, driven by the KH instability, which develop
in the region of steep equilibrium gradients near r � rs. These struc-
tures have slightly smaller amplitude away from rs in all cases.
Additionally, no clear differences are observed between the LC and
HC regimes. Similar plots are obtained with the Braginskii and GM
simulations. Finally, we note that further numerical investigations are
necessary to verify the numerical resolution of the smallest perpendic-
ular scale revealed in Fig. 8.

FIG. 6. Snapshots of the electrostatic potential / (top) and of the fluctuations ~/ ¼ /� h/it (bottom) taken at z ¼ 0R obtained in the Braginskii, cold-ion (cold-Ti),
ðP; JÞ ¼ ð2; 1Þ, 12, 1 in the LC regime, and ðP; JÞ ¼ ð6; 1Þ in the HC regime simulations (from left to right).

FIG. 7. Snapshots of the electron density ne (top) and of the fluctuation ~ne ¼ ne � hneit (bottom), similar to Fig. 6.
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We now proceed to analyze the root mean square (RMS) of the

fluctuations, defined as
ffiffiffiffiffiffiffiffiffiffiffiffi
h ~ne 2it

q
in the case of the electron density

fluctuations ~ne (and similarly for the other quantities). Figure 9 dis-
plays the RMS of the electron density, ne, and the electrostatic poten-
tial, /, fluctuations plotted as a function of the radius. The data are
computed at z ¼ 0R and normalized to hneitðrÞ (and to h/itðrÞ).33,37
We find that the RMS values of the density displayed in Fig. 9 exhibit a
qualitatively similar behavior to those obtained in previous fluid simu-
lations35,36 and GK simulations.37 Consistent with the observations
made in Fig. 7, the RMS values reach their maximum when the gra-
dients are most pronounced near r � rs. For r� rs and for r� rs
(where the gradients are smaller), the RMS values decrease because of
the absence of the instability drive. Using a low number of GMs or
considering the LC regime results in slightly larger RMS values (in par-
ticular of ~/). Overall, this indicates that the level of fluctuations in the

steep gradient region can be sensitive to the number of GMs used in
the simulations. Finally, we note that the GM simulation with ðP; JÞ
¼ ð6; 1Þ in the HC regime is closest to the Braginskii predictions, and
the largest RMS values (especially for ~ne ) are obtained in the cold-ion
model.

We compare the RMS of the parallel electrical current Jk mea-
sured at the sheath entrance located at z ¼ �18R. The results are
shown in Fig. 10 as a function of the radius and normalized to the
maximum of hJkitðrÞ. It is clearly observed that the boundary condi-
tions imposed on the electron and ion parallel velocities allow for the
parallel current to fluctuate. This is in contrast to the case of logical
sheath boundary condition, where Jk ¼ 0 is imposed everywhere.67

We remark that larger fluctuations of Jk are obtained in the Braginskii
simulations, while the largest RMS is observed in the case of the cold-
ion model, a consequence of the finite ion temperature effect in the
boundary conditions retained in the former [see Eq. (23)] and ignored
in the later.

We now turn our attention to the skewness of the ion density
fluctuations, which is defined as the third normalized moment of the
electron density fluctuation, that is h ~ne 3it=h ~ne 2i3=2t . The skewness of
the density is often used to characterize the dominance of plasma holes
and blobs, associated with negative and positive skewness, respec-
tively.33,35,36 Figure 11 shows the skewness of the electron density ne.
In all cases, the skewness is negative for r� rs, indicating the presence
of density holes in the region where the plasma source is present. On
the other hand, in the region where r� rs, the skewness is positive.

FIG. 8. Snapshots of the vorticity variable, X, obtained in the GM simulations with
ðP; JÞ ¼ ð6; 1Þ in the LC (left) and HC (right) regimes at z ¼ 0R.

FIG. 10. RMS of the total parallel current Jk (normalized to the maximum of
hJkitðrÞ) as a function of the radius at the sheath entrance near z ¼ �18R.

FIG. 11. Skewness of the electron density ne as a function of r at z ¼ 0R. The gray
shaded area represents the radial extent of the sources.

FIG. 9. RMS of the electron density ne (normalized to hneitðrÞ) (top) and electrostatic
potential / (normalized to h/itðrÞ) (bottom) fluctuations (computed from Figs. 6 and
7) as a function of the radius r in the case of the Braginskii, cold-ion, and GM simula-
tions at z ¼ 0R. The shaded area indicates the radial extent of the sources.
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The sign and amplitude of the skewness shown in Fig. 11 have similar
qualitative behavior as in previous fluid36 and GK37,38 simulations. In
particular, the values obtained in the GM simulations are of the same
order to those observed in the Braginskii case, albeit slightly smaller.
Overall, the present turbulent analysis demonstrates that the full-F
GM approach is in qualitative agreement with the Braginskii model,
which is also employed in previous numerical investigations35,36 and
validated with experimental data.33 We note that a more comprehen-
sive analysis of turbulence, including aspects such as particle and
energy transport, is necessary to evaluate the impact of velocity-space
resolution and collisions (along with collision operator models) in
greater detail. This analysis is deferred to future investigations, which
would involve extending the present work to include FLR effects and
removing the Boussinesq approximation, important for accurate tur-
bulence transport predictions.

C. Ion distribution function at quasi-steady state

We now investigate the features of the ion distribution function
Fi in velocity-space. To obtain the full-F ion distribution function, Fi,
from the GM simulations, we use the expansion in Eq. (8), truncated
to a finite number of GMs, and we compute it as a function of xi and
the unshifted parallel coordinate, given by vk=vTi ¼ ski þ

ffiffiffiffiffiffi
2si

p
Uki.

Also for this analysis, we consider the quasi-steady period. Figure 12
shows Fi obtained from the ðP; JÞ ¼ ð6; 1Þ simulations in the HC and
LC regimes at the center of the machine (z ¼ 0R) and at the sheath
entrances, z ¼ �18R and z ¼ 18R. At the two sheath entrances, Fi is
centered around the ion parallel velocity, Ui ¼ 6cs, respectively, a
consequence of the Bohm sheath boundary conditions given in Eq.
(23). On the other hand, Fi is centered around vk ’ 0 at z ¼ 0R, where
Uki ’ 0. The absence of fine velocity-space structures in Fig. 12 in
both the HC and LC regimes confirms the weak dependence of turbu-
lence properties on the number of GMs, as reported in Sec. IVB. In
fact, fine velocity-space structures in Fi are not expected to play a sig-
nificant role in LAPD due to the absence of magnetic drifts, trapped
particles, of the high-collisional regime, and the fluid nature of the

KH-dominated turbulent transport. Nevertheless, we remark that
strong velocity-space gradients can appear near the sheath entrance in
the electron distribution function (see, e.g., Ref. 38). The Maxwellian
shape of Fi observed in our simulations is also consistent with the fact
that both two-fluid Braginskii29,36 and GK37,38 simulations of LAPD
yield qualitatively similar results.

Figure 13 shows the ion distribution function at the sheath
entrance (z ¼ 18R and x ¼ y ¼ 0) for xi¼ 0, in the LC and HC
regimes and for different values of (P, J). We first observe that the bulk
region of Fi (near vk=vTi � 1) is well approximated by a shifted
Maxwellian. However, deviations from the Maxwellian distribution
function are noticeable in the tails of Fi in the LC regime. These devia-
tions become pronounced as (P, J) increases [e.g., from (6, 1) to
(12, 1)] which indicates that Fi is not sufficiently resolved in the LC
regime. Finally, we remark that collisional effects tend to widen Fi due
to the collisional parallel velocity-space diffusion present in the nonlin-
ear Dougherty operator. We note that further convergence studies are
required to fully evaluate the velocity-space resolution in Fig. 13 by
considering a larger number of GMs than those considered in the pre-
sent work, in particular, in the LC regime.

The GM hierarchy equation in Eq. (12) does not enforce the posi-
tivity of the ion distribution function when evolving a finite number of
GMs. For instance, the use of vk=vTi as an argument in the Hermite poly-
nomials, Hp, in Eq. (8) would compromise the convergence properties of
the GM approach, with respect to the use of vk=vTi, leading to simula-
tions that show unphysical distribution functions with negative values
when the same number of GMs are considered, as in the simulations pre-
sented here (Fig. 12 would show negative values). In fact, if the unshifted
GMsN pj

vk , defined with respect to vk=vTi as the argument ofHp, i.e.,

N pj
vk ¼ 2p

ð1
�1

dvk

ð1
0
dl

B
mi

Fi

Hp
vk
vTi

� �
LjðxiÞffiffiffiffiffiffiffiffi

2pp!
p (25)

are used to expand Fi, it is found that N pj
vk 6¼ 0 for ðp; jÞ > 0, even

when Fi is a Maxwellian distribution function centered at Uki 6¼ 0.

FIG. 12. Quasi-steady state ion distribution function, Fi, plotted as a function of ðvk=vTi ; xiÞ, obtained using ðP; JÞ ¼ ð6; 1ÞGMs in the HC regime (top) and LC regime (bot-
tom). Fi is computed at the z ¼ �18R (left), z ¼ 0R (center), and z ¼ 18R (right) at the center in the perpendicular plane (x ¼ y ¼ 0).
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Indeed, using Eq. (25), one derives the analytical expression of the
unshifted GMs for Fi ¼ FMi,

N pj
vk ¼

d0jffiffiffi
p

p
ð1
�1

d
vk
vTi

� �
e�ðvk=vTi�Uki=ð

ffiffiffiffi
2si

p ÞÞ2
Hp

vk
vTi

� �
ffiffiffiffiffiffiffiffi
2pp!

p
¼

ffiffiffiffiffi
2p

p!

s
Ukiffiffiffiffiffiffi
2si

p
� �p

d0j ; (26)

where Uki is normalized to cs0. While the amplitude of the unshifted
GM decreases rapidly in the presence of subsonic ion flow, Uki � 1,
the decrease in the amplitude with p is slower in the presence of sonic
flows, such thatN pj

vk �
ffiffiffiffiffiffiffiffiffiffiffi
2p=p!

p
.

D. GM spectrum at quasi-steady sate

To better assess the velocity-space representation of Fi in our sim-
ulations, we plot the absolute value of the GMs, N pj (normalized to
N 00), at the sheath entrance of the device, z ¼ 18R and r¼ 0, in
Fig. 14. We consider the GMs associated with the distribution func-
tions displayed in Fig. 13. As it can be clearly observed, the amplitude
of the GMs decays faster in the HC regime than in the LC regime. In

fact, extrapolating from a linear theory in slab geometry,12 the ampli-
tude of the GMs is expected to follow jN pjj � exp ½�cpð�iÞpa� in the
p � 1 limit [with cpð�iÞ a positive coefficient that increases with colli-
sionality, �i and a > 0]. While this estimate has been verified in linear
studies and remains to be proven valid in full-F turbulent simulations,
it provides us with a useful proxy for the expected decay of the GMs in
the presence of collisions.

The results show that P> 12 would be required to ensure that Fi
is sufficiently well resolved in the LC regime. Since the smaller relevance
of the LC regime for the experimental parameters of LAPD, simulations
with P> 12 have not been carried out in the present work to properly
assess the velocity-space resolution of Fi. On the other hand, the contri-
butions fromN p0 with p� 4 are negligible in the HC regime, thereby
justifying the closure by truncation for P� 4. We also notice that
N 10 ¼ 0 in all cases, as a consequence of Eq. (11b). Finally, we note
that the amplitude of the low-order GMs is not sensitive to P, as shown
in Fig. 14. More precisely, the low-order GMs for ðP; JÞ ¼ ð6; 1Þ
strongly resemble the ones of the ðP; JÞ ¼ ð12; 1Þ simulation in the LC
case. This also holds true in the HC regime, for instance, by comparing
the ðP; JÞ ¼ ð6; 1Þ and ðP; JÞ ¼ ð2; 1Þ simulations.

We also shown in Fig. 14 that the amplitudes of the j¼ 1 GMs
are smaller than the ones with j¼ 0. Numerical experiments (not
shown) have also revealed that GMs with j> 1 have a negligible ampli-
tude due to the absence of source for j> 1 and of FLR effects. This sug-
gests [in addition to the similar results obtained in Sec. IVB with
different (P, J)] that full-F turbulent calculations using the GM
approach are less sensitive to the values of P and J than linear compu-
tations,11,12 where applying a closure by truncation at low P and J can
introduce spurious artifacts.13 Otherwise, Fig. 14 reveals that the
slightly larger RMS values depicted in Fig. 9 [e.g., ðP; JÞ ¼ ð6; 1Þ in the
LC and ðP; JÞ ¼ ð2; 1Þ in the HC regime] correspond to cases where
the GM representation of Fi is unresolved. Additional investigations
are required to verify the effect of closure in the presence of kinetic
effects such as trapped particles and magnetic drifts, which are absent
in LAPD, and of FLR effects, which are neglected in our model.

FIG. 14. Absolute value of the GMs N pj (normalized to N 00) associated with the
distribution functions shown in Fig. 13, plotted on a logarithmic scale as a function
of p 
 2 (solid lines for j¼ 0 and dashed lines for j¼ 1) obtained from different (P,
J) simulations in the LC (square colored markers) and HC (circle colored markers)
regime at z ¼ 18R and x ¼ y ¼ 0. The amplitude of the GM decreases with p in
all cases and it is faster in the HC regime.

FIG. 13. Cuts of the ion distribution function Fi (normalized to its maximum) at
xi¼ 0 at the right sheath entrance near z ¼ 18R and x ¼ y ¼ 0 (top) for different
(P, J) in the HC (solid lines) and LC (dotted lines) regimes, and close view over the
region vk=vTi 2 ½1; 2:5� (bottom). The solid black line represents a Maxwellian dis-
tribution function shifted by the ion sound speed cs [see Eq. (6)]. A similar plot is
obtained at the left sheath entrance (z ¼ �18R).
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Finally, Fig. 15 presents snapshots of the GMs for different values
of p in the perpendicular plane obtained for the ðP; JÞ ¼ ð6; 1Þ simula-
tions in the LC and HC regimes. It is also visible that the turbulent
structures are dominated by long-wavelength perpendicular fluctua-
tions for all values of p, which are driven by the KH instability. Indeed,
the amplitude of these turbulent structures is strongly reduced if the
nonlinear drive of the KH instability is artificially removed from our
simulations. The decay of the amplitude of the turbulent structures
due to collisions and with increasing p is also evident.

V. CONCLUSIONS

In this work, we present the first full-F turbulent simulations
based on the GM approach using an arbitrary number of moments in
a linear plasma device configuration with open straight field lines, such
as LAPD. Neglecting FLR effects, we consider an electrostatic and
long-wavelength ion GK model for the full ion distribution function Fi,
coupled to the electron Braginskii fluid model for the electron density
ne, parallel velocity Uke, and temperature Te. The ion GK model is
solved by deriving a full-F ion GM hierarchy equation, based on the
Hermite–Laguerre polynomial expansion of Fi. In particular, a
velocity-space coordinate centered at the local fluid ion parallel velocity
is used to expand Fi, which ensures good convergence properties of the
Hermite expansion in the presence of sonic ion flows. The GM hierar-
chy equation we consider is equivalent to the electrostatic and
Boussinesq limits of the GK moment model for the boundary region
derived in Ref. 10 with vanishing FLR effects. To account for the paral-
lel losses at the end plates, Bohm sheath boundary conditions are used,
equivalent to those previously used in LAPD fluid simulations.29 A
nonlinear ion–ion Dougherty collision operator is also considered. The
ion GM hierarchy equation with the fluid electron model is imple-
mented in a numerical code, allowing us to perform the first full-F tur-
bulent calculations based on a moment approach with a flexible
number of GMs. This is in contrast to previous full-F gyrofluid simula-
tions where the number of moments is fixed.46–48

We present the simulations of a linear device using LAPD physi-
cal parameters based on a Helium plasma29 and a first-of-the-kind
comparison with the two-fluid Braginskii model. Several nonlinear
simulations are performed using a different number of Hermite and
Laguerre GMs in a low and high-collisional ion regime. Overall, a
qualitative agreement on the time-averaged radial profiles between the
Braginskii model and the GM approach is observed. This is expected
from our analysis which shows that turbulence is dominated by the
long perpendicular wavelength and kk ’ 0Kelvin–Helmoltz instability
of fluid nature.

The RMS and skewness of the fluctuations in the GM simulations
also agree with the ones previously obtained in fluid29,35 and GK37,38

simulations of LAPD. In particular, we find that the RMS values are
often larger than the ones predicted by the Braginskii model, if the
number of GMs is not sufficient to properly resolve the ion distribu-
tion function. The largest RMS values are observed with the cold-ion
reduced model (with a difference up to � 20% with respect to the
Braginskii model), while the results closest to the one of the Braginskii
model are obtained if collisions are introduced in the GM approach
with a sufficient number of GMs, in this case ðP; JÞ ¼ ð6; 1Þ. Overall,
collisions reduce slightly the turbulent fluctuations level, but they do
not significantly alter the observed turbulent regimes. At the same
time, the analysis of the ion distribution function Fi reveals that colli-
sions damp the amplitudes of the GMs, thereby allowing for a reduc-
tion in the number of GMs required in the simulations [typically from
ðP; JÞ � ð12; 1Þ in the low collisional regime to ðP; JÞ � ð6; 1Þ in the
high-collisional regime of LAPD].

We note that although the present work allows the simulation of
LAPD with a flexible number of GMs, unlike previous full-F gyrofluid
simulations,46–48 improvements in our physical model are required to
increase the fidelity of our simulations. For example, the inclusion of
FLR effects50,51 is necessary to study small scale fluctuations. A more
detailed study of the role of FLR effects is the subject of future work.
Incorporating FLR effects with a flexible number of GMs necessitates

FIG. 15. Instantaneous snapshots of the GMs N pj , with p ¼ 2; 3; 4; 6 and j¼ 0, in the (x, y) perpendicular plane at the sheath entrance located at z ¼ 18R from the
ðP; JÞ ¼ ð6; 1Þ simulations in the LC (top) and HC (bottom) regime. The large perpendicular structures are caused by the KH instability.
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conducting comprehensive numerical investigations to evaluate the
impact of the numerical and velocity-space resolution on turbulent
structures, in particular, at small scales, supported by the examination of
conservation laws, an aspect not explored in the present work. In addi-
tion, a more accurate description of the role of collisions requires the
implementation of a nonlinear collision operator model with increasing
physical fidelity, such as the nonlinear Coulomb operator.14 Proper
sheath boundary conditions for the GM hierarchy equation, which
extend the simplified Bohm sheath boundary condition used here [see
Eq. (23)], can improve the reliability of our simulations. These boundary
conditions can be obtained by a procedure similar to that described in
Ref. 31. Finally, we note that the implementation of a kinetic electron
description is also essential to perform high-fidelity LAPD simulations,
since fast and less collisional electrons (with Te � 15 eV) are emitted by
pulsed plasma discharges in experiments.68 Furthermore, kinetic elec-
trons are important in setting the sheath boundary conditions where
electrons are reflected due to the potential drop, giving rise to strong
velocity-space gradients in the electron distribution function.38

More generally, the present work represents a step toward the
development of future full-F turbulent simulations of the boundary
region of fusion devices using the GM approach with a flexible number
of GMs, which may provide an ideal flexible tool to capture kinetic
and collisional effects at the desired level of accuracy.
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APPENDIX: HIGH-COLLISIONAL LIMIT OF ION
TEMPERATURE EQUATION

In this appendix, we derive the Braginskii equation for the ion
temperature Ti, given in Eq. (22b), from the ion GM hierarchy
equation provided in Eq. (12). This allows us to elucidate the rela-
tionship between the GM approach and the Braginskii model, par-
ticularly in the high-collisional regime, and to justify the terms on
the right-hand side of Eq. (22b).

First, we note that since our model neglects FLR effects, the
gyrocenter quantities are assumed to be equal to the particle fluid
quantities. Hence, the time evolution of the ion temperature Ti can
be expressed in terms of GMs using the definitions of the gyrocenter
fluid quantities in Eq. (11). Evaluating the time derivative of Ti

yields

Ni@tTi ¼
ffiffiffi
2

p

3
@tN

20 � 2
3
@tN

01 þ ð1� TiÞ@tNi: (A1)

The time derivatives of the GMs contained in Eq. (A1) can be evalu-
ated using the ion GM hierarchy equation given in Eq. (12) with
ðp; jÞ ¼ ð2; 0Þ and (0, 1). We obtain

@tN
20 ¼ � ffiffiffiffi

si
p

@z
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20
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� 1
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� 2N 20 þ
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N 00
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01
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� �

þ C 01
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Using Eq. (A2) with the ion continuity equation given in Eq. (17a)
into Eq. (A1), we derive

Ni@tTi ¼ �
ffiffiffiffiffiffi
2si

p
3

@z
ffiffiffi
3

p
N 30 �

ffiffiffi
2

p
N 11

� �
� UkiNi@zTi � Ni

q�
/;Ti½ � � 2

3
Pki@zUki

þ SE þ 1� Tið ÞSN ; (A3)

where the collision terms, C 20
i and C 01

i , cancel out due to the energy
conservation of the collision operator [see Eq. (15)]. In addition, the
definitions of the sources given in Eq. (14) are used to derive the
last terms on the right-hand side of Eq. (A3).

We now use the fact that FLR effect are neglected in our model
such that Ni ’ ne. Moreover, an expression for the parallel gradient
of the parallel ion flow, @zUki, can be obtained from the vorticity
equation given in Eq. (22c). At the leading-order in the long-
wavelength limit, one finds that @zJk ’ 0, such that

Ni@zUki ’ Uke � Ukið Þ@zne þ ne@zUke: (A4)

Finally, introducing the normalized parallel ion heat flux,

qki ¼
ffiffiffiffiffiffi
2si

p
p
ð1
�1

dvk

ð1
0
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B
mi
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3
i

� ffiffiffiffiffiffi
2si

p ffiffiffi
3

p

2
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2
p

 !
(A5)

and using Eq. (A4), the ion temperature equation Eq. (A3) becomes
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@tTi þ 1
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/;Ti½ � þ Uki@zTi ¼ þ 2
3
Tki Uki � Ukeð Þ @zne

ne
� @zUke

� 	

� 2
3
1
ne

@zqki þ AE

ne
þ 1� Tið Þ SN

ne
:

(A6)

We remark that Eq. (A6) can also be deduced from other full-F
gyrofluid models,45,48 which consider finite ion temperature effects
with a fixed number of GMs. To close Eq. (A6), an expression for
the parallel ion heat flux qki must be prescribed. In contrast to the
ion GM hierarchy equation, which treats the ion parallel heat flux
qki as a dynamical variable by evolving high-order GMs [see Eq.
(A5)], the Braginskii model assumes a high-collisional limit (where
kmpf kk � 1), allowing for the derivation of a collisional closure for
qki. Specifically, using the Fokker–Planck collision operator and
applying the high-collisional closure via the Chapman–Enskog pro-
cedure,52,69,70 we can obtain the fluid closure qki ’ �vk@zTi, where
vk represents the normalized parallel ion thermal conductivity pre-
dicted by the Braginskii transport equation.9,70 Hence, in the high-
collisional limit, the ion temperature equation (A6) reduces to

@tTi þ 1
q�

/;Ti½ � þ Uki@zTi ¼ þ 2
3
Ti Uki � Ukeð Þ @zne

ne
� @zUke

� 	

þ @z vki@zTi
� �þ AE

ne
þ 1� Tið Þ SN

ne
;

(A7)

where the temperature anisotropy is neglected such that Tki ’ Ti at
high-collisionality.12 Hence, Eq. (A7) is equivalent to the ion tem-
perature equation given in Eq. (22b) used in the Braginskii model
where the source terms are due to the density and energy sources
[see Eq. (14)] considered in the ion GM hierarchy equation.

A high-collisional closure for the parallel ion heat flux can also
be derived using the Dougherty collision operator (or other collision
operator models). However, it has been shown that simplified colli-
sion operators can lead to large deviations (with respect to the
Fokker–Planck collision operator) in the predictions of the conduc-
tivities,16 especially when using operators like Dougherty, as in this
work.

Finally, it is worth noting that, while the Braginskii collisional
closure diverges in the low-collisionality limit,71 resulting in an
overestimate of the parallel heat flux, the GM hierarchy equation
allows for the evolution of qki using a larger number of GMs.
However, while this effect may not be as significant in LAPD due to
the low temperature, it could be more pronounced in the boundary
region.
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