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Abstract: Measurement of the ultra-rare K+ → π+νν̄ decay at the NA62 experiment at
CERN requires high-performance particle identification to distinguish muons from pions.
Calorimetric identification currently in use, based on a boosted decision tree algorithm,
achieves a muon misidentification probability of 1.2×10−5 for a pion identification efficiency
of 75% in the momentum range of 15–40GeV/c. In this work, calorimetric identification
performance is improved by developing an algorithm based on a convolutional neural
network classifier augmented by a filter. Muon misidentification probability is reduced by a
factor of six with respect to the current value for a fixed pion-identification efficiency of
75%. Alternatively, pion identification efficiency is improved from 72% to 91% for a fixed
muon misidentification probability of 10−5.
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1 Introduction

The NA62 experiment at CERN is dedicated to measurements of charged kaon decays,
including the highly-suppressed “golden mode” K+ → π+νν̄ [1] with a Standard Model
branching ratio of (8.4 ± 1.0) × 10−11 [2]. Suppression of the K+ → µ+ν background to
the K+ → π+νν̄ decay requires a µ+ misidentification probability below 10−7, which is
achieved by a combination of calorimetric π+ identification providing a muon suppression
factor of O(10−5), and Cherenkov π+ identification providing an additional suppression
factor of O(10−2).

Machine learning (ML) methods developed primarily for image recognition can be
applied to particle identification (PID) at NA62. Convolutional neural networks (CNN), a
type of deep neural network, have been successfully used for classification tasks commonly
encountered in particle physics [3–5]. In this work, a calorimetric PID algorithm based
on ML models is designed for the NA62 experiment. Two ML models are considered:
LightGBM [6], which is an implementation of a gradient boosting machine (GBM) [7], and
a CNN-based model. Performance of the algorithm is compared to that of the boosted
decision tree (BDT) implemented using TMVA GradientBoost [8], currently used by NA62.

2 NA62 beam and detector

The layout of the NA62 detector [9] is shown schematically in figure 1. An unseparated
secondary beam of π+ (70%), protons (23%), and K+ (6%) is created by directing 400GeV/c
protons extracted from the CERN SPS onto a beryllium target in spills of 3 s effective
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Figure 1. Schematic side view of the NA62 detector used in 2018.

duration. The central beam momentum is 75GeV/c, and the momentum spread is 1% (rms).
Beam kaons are tagged with 70 ps time resolution by a differential Cherenkov counter
(KTAG) using a nitrogen gas radiator at 1.75 bar pressure contained in a 5 m long vessel.
Beam particle positions, momenta and times are measured by a silicon pixel spectrometer
consisting of three stations (GTK1, 2, 3) and four dipole magnets. A 1.2 m thick steel
collimator (COL) is placed upstream of GTK3 to absorb hadrons produced in upstream
K+ decays. Inelastic interactions of beam particles in the GTK are detected by an array of
scintillator hodoscopes (CHANTI). The beam is delivered into a vacuum tank evacuated to
a pressure of 10−6 mbar, which contains a 75 m long fiducial decay volume (FV) starting
2.6 m downstream of GTK3.

Downstream of the FV, undecayed beam particles continue their path in vacuum.
Momenta of charged particles produced in K+ decays in the FV are measured by a
magnetic spectrometer (STRAW) located in the vacuum tank downstream of the FV. The
spectrometer consists of four tracking chambers made of straw tubes, and a dipole magnet
located between the second and third chambers that provides a horizontal momentum kick
of 270MeV/c. The spectrometer momentum resolution is σp/p = (0.30⊕ 0.005 · p)%, where
the momentum p is expressed in GeV/c.

A ring-imaging Cherenkov detector (RICH), consisting of a 17.5 m long vessel filled
with neon at atmospheric pressure (with a Cherenkov threshold for pions of 12.5GeV/c),
is used for the identification of charged particles and for time measurement with 70 ps
precision. Two scintillator hodoscopes (CHOD) located downstream of the RICH provide
trigger signals and time measurements with 200 ps precision.

A quasi-homogeneous liquid krypton (LKr) electromagnetic calorimeter with a thickness
equivalent to 27 radiation lengths or 2.1 nuclear interaction lengths is used for particle
identification and photon detection. The calorimeter has an active volume of 7 m3, is
segmented in the transverse plane into 13248 projective cells of 2 × 2 cm2, and provides
an energy resolution σE/E = (4.8/

√
E ⊕ 11/E ⊕ 0.9)%, where E is expressed in GeV. To

achieve hermetic acceptance for photons emitted in the FV by K+ decays at angles up
to 50 mrad to the beam axis, the LKr calorimeter is supplemented by annular lead glass
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detectors (LAV) installed in 12 positions inside and downstream of the vacuum tank, and
two lead/scintillator sampling calorimeters (IRC, SAC) located close to the beam axis.

A steel/scintillator hadronic sampling calorimeter is formed of two modules (MUV1, 2)
with transverse dimensions of approximately 2.6× 2.6 m2. The MUV1 (MUV2) module
consists of 24 steel plates of 26.8 (25) mm thickness, interleaved with 9 (4.5) mm thick
scintillator layers, resulting in a total thickness of 4.1 (3.7) interaction lengths. The
scintillator layers in both modules are made of strips aligned alternately in the horizontal
and vertical directions in consecutive planes. Each MUV1 scintillator layer consists of
48 strips, including 40 strips spanning the entire transverse length of the detector (read out
at both ends), and 8 central strips of half-length (read out at the peripheral end), leading
to 2× 44 channels per plane. Each MUV2 scintillator layer consists of 2× 22 strips, each
spanning half the transverse length and read out at the peripheral end. In both modules,
all strips located in the same transverse position in different layers are coupled to the same
photomultiplier, thus providing a horizontal and a vertical view. A muon detector (MUV3)
is located behind a 80 cm (4.8 interaction lengths) thick iron wall, has a transverse size
of 2.64 × 2.64 m2, and is built from 50 mm thick scintillator tiles, including 140 regular
tiles of 220× 220 mm2 transverse dimensions, and eight smaller central tiles adjacent to the
beam pipe.

A two-level trigger system [10, 11] is employed to reduce the event rate from 10 MHz
to about 100 kHz. Multiple trigger lines with different downscaling factors are operated
concurrently.

3 GBM and CNN algorithms

Supervised ML algorithms are used to construct a function (called model or classifier),
f(xi; θ), mapping a set of inputs xi (called examples) consisting of a number of attributes
(called features) to a set of outputs yi (called labels). The set of model parameters, θ, is
chosen to minimise a loss function (also called objective function), L =

∑
i ` (yi, f(xi; θ)),

where the function ` (y, f(x; θ)) is selected depending on the problem to solve [12, 13].
GBM is a generic family of algorithms used to build strongly predictive classifiers as

linear combinations of weak classifiers (such as decision trees). The classifier, f(xi), is
constructed iteratively, starting from an initial decision tree. At each step m, residuals are
computed using the loss function obtained at the previous step as −∂` (yi, fm−1(xi)) /∂fm−1,
and a regression tree fitting the residuals is constructed and added to the linear combination.
This procedure is repeated until a stopping condition is met [7].

CNN algorithms have been developed to address computer vision tasks such as
translation-invariant image classification, and can recognize complex geometric features at
multiple scales. CNNs consist of consecutive layers, the output of each layer being the input
to the next one. Each layer is represented by a function g(x), where x is an input tensor.
Common layer types include convolutional, batch normalisation and pooling layers [12, 13].
It has been observed [14] that increasing the number of layers leads to degradation of the
training performance; to mitigate this issue, the ResNet architecture [14] introduces groups
of consecutive layers called the residual blocks. Instead of learning the parameters of the

– 3 –



J
H
E
P
1
1
(
2
0
2
3
)
1
3
8

underlying function g(x) directly, the block learns the parameters of the residual function
gr(x), encoding the difference between the input and output of the layer. Many of these
blocks are typically stacked.

4 Data samples

Two independent datasets are employed: a training and validation dataset is used to train
the models and adjust the hyperparameters (i.e. the parameters not derived via training),
while an independent test dataset is used to characterise the performance of the optimal
model with a frozen set of hyperparameters. The training and validation (test) dataset
is based on 2.5% (1.5%) of the data sample collected by the NA62 experiment in 2016–
2018. The training and validation dataset contains events collected with a non-downscaled
K+ → π+νν̄ trigger line [1] based on RICH and CHOD signals in the absence of in-time
MUV3 signals, and a control trigger line based on the CHOD signal downscaled by a
factor of 400. The test dataset contains events collected with the control trigger line.
This provides sufficient statistics for training, ensuring that the test dataset is free from
trigger-induced bias.

High-purity pion (π+), muon (µ+) and positron (e+) track samples in the momentum
range 15–50GeV/c are obtained from K+ → π+π0, K+ → µ+ν and K+ → π0e+ν decay
candidates selected without calorimetric particle identification, following the procedure
used earlier for the existing NA62 BDT algorithm [15]. Isolated STRAW tracks with
associated in-time KTAG, CHOD, RICH and LKr signals and a single associated GTK
track are considered. The decay vertex, reconstructed as the point of closest approach of
the STRAW and GTK tracks, is required to be located in the FV and within the beam
envelope. For the K+ → π+π0 and K+ → π0e+ν decays, a prompt π0 → γγ decay is
reconstructed by measuring the photons in the LKr calorimeter. Further selection criteria
are based on photon veto conditions, particle identification in the RICH, and missing mass
squared, m2

miss = (PK −Ptr)2, where PK and Ptr are the K+ and decay track four-momenta,
respectively. A label (π+, µ+ or e+) is assigned to each selected track.

The following features are encoded as matrices and vectors: track momentum and
impact position in the LKr front plane; presence of a matching MUV3 signal; energy deposits
in a matrix of 22×22 LKr calorimeter cells centered around the track impact position (these
matrices are sparse due to the LKr Molière radius of 4.7 cm); total LKr energy deposit
associated to the track; energy deposits in the horizontal and vertical views in all MUV1
channels (2× 44 channels in each view) and all MUV2 channels (2× 22 channels in each
view). Energy deposits within 10 ns of the track time are considered; the energy deposit
values in every channel or cell are divided by the track momentum.

The GBM algorithms require input information in the form of a single vector for each
track. Therefore the LKr, MUV1 and MUV2 energy deposit matrices are transformed into
vectors; the LKr matrix is cropped to a size of 18× 18 to exploit its sparsity. The results
are concatenated into a 588-element feature vector containing the complete information
about the track.

– 4 –



J
H
E
P
1
1
(
2
0
2
3
)
1
3
8

LKr MUV1 horiz. MUV1 vert. MUV2 horiz. MUV2 vert.

10−3 10−2 10−1 1
Deposited energy divided by the STRAW track momentum

Figure 2. CNN input matrices of 44× 44 size constructed for a µ+ track (top row) and a π+ track
(bottom row) from the training dataset. The LKr matrix is centred at the track impact point in
the LKr front plane. In the MUV matrices related to the horizontal (vertical) view, the vertical
(horizontal) coordinate is centered at the track impact point in the LKr front plane.

Track E/p and p cuts MUV3 signal? Filter MIP? ML model

(pµ, pπ, pe)Stop
pµ = 1

yes no no

no yes yes

Figure 3. Flow chart of the developed calorimetric PID algorithms.

The CNN processing aims to exploit the correlations between the LKr, MUV1 and
MUV2 signals. Most CNN architectures require an arbitrary number of matrices of identical
dimensions (known in the ML context as channels) as input. Therefore the LKr, MUV1
and MUV2 matrices are transformed to a fixed size of 44× 44 by replicating the element
values (though the LKr and MUV matrices correspond to different transverse areas). The
resulting matrices are illustrated for two events in figure 2. The inputs are finally arranged
into a 5× 44× 44 input tensor.

5 Particle identification algorithm

Most muons traversing the calorimeters behave as minimum-ionising particles (MIPs).
However, in rare cases, radiative processes such as bremsstrahlung or pair-production occur,
resulting in signal patterns that mimic those of charged pions. These cases are identified by
the developed algorithms through the shower shape analysis.

The flow of the developed PID algorithm is illustrated in figure 3. The algorithm returns
the probabilities pπ, pµ, pe of the track to be classified as π+, µ+, e+, respectively. Tracks
with LKr energy deposit to momentum ratio E/p < 0.95 are considered, which reduces
the e+ contamination in the π+ and µ+ samples. Tracks with matching MUV3 signals, or
identified as MIPs by a dedicated filter, are assigned pµ = 1. For the remaining tracks, a
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Figure 4. The NA62ResNet architecture. Residual blocks (ResBlock) are stacked in pairs. The
stride S [13] is a parameter of the filter. The output tensor dimensions at each step are indicated.

ML model (either a GBM or a CNN algorithm) is employed to evaluate the probabilities
pπ, pµ, pe. The models are trained for tracks in the momentum range of 15–40GeV/c used
in the K+ → π+νν̄ analysis [1].

Two MIP filter algorithms, which use the same input information as the ML models, are
considered. The filter A identifies MIPs as tracks with at most four geometrically associated
in-time signals in LKr calorimeter cells, at most two hits in each MUV1 view, and at most
one hit in each MUV2 view. The filter B additionally exploits the fact that muons typically
produce narrow calorimeter signal patterns. Both ML models have been tested with each
of the two filters; the corresponding setups are referred to as GBM/A, GBM/B, CNN/A
and CNN/B.

The GBM implementation uses the LightGBM framework, which is efficient for large
datasets and high-dimensional feature spaces. A CNN architecture of the ResNet-18 type [14]
is used. To handle the sparsely populated input matrices (figure 2), the 3× 3 maximum
pooling layer after the first batch normalisation layer is removed. The network is further
simplified by removing the last two residual blocks that include four 512-input convolution
layers. The output of the last of the remaining residual blocks is down-sampled via a global
average pooling layer, which is followed by a fully connected layer producing the final output
subsequently normalised using a softmax function to obtain the probabilities pπ, pµ and pe.
The resulting NA62ResNet architecture is shown in figure 4.

Data augmentation is used to improve the robustness and generalisation of the CNN
model: for each epoch of the training, the five input matrices are mirror-imaged with respect
to the horizontal axis for 50% of the tracks in the training sample chosen at random. The
weights and the bias terms of the fully connected layer are initialised with random numbers
distributed uniformly in the (−1/

√
N, 1/

√
N) range, where N = 256 is the number of input
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Figure 5. Left: pπ distributions for π+ and µ+ tracks in the momentum range of 15–40GeV/c
obtained with the CNN/A setup for the test dataset. Inset: the high-pπ region; the threshold
p0 chosen for π+ identification is indicated with a vertical line. Right: µ+ misidentification
probabilities (ε75

µπ), which are strongly correlated, with their statistical uncertainties. The statistical
uncertainties are measured for each setup using 500 datasets constructed by sampling the test
dataset with replacement.

features. The convolution layers are initialised using the He scheme [16], and the cross
entropy loss function is used. The network parameters are optimised following the Adam
method [17]. To detect potential overfitting, the validation loss is monitored during training.
The PyTorch framework [18] is used to build and train the model. The architecture is
integrated into the NA62 software framework.

The numbers of π+, µ+ and e+ tracks in the training and validation dataset passing
the MIP filter A and used for training (figure 3) are 6.9 × 106, 1.0 × 107 and 7.8 × 104,
respectively. During the model training, 25% of the dataset is randomly set aside to form a
validation sample, and the rest is allocated to the training sample. The cross entropy loss
function [13] is used for training of both GBM and CNN models.

6 Performance of the algorithm

The results presented in this section are obtained using the test dataset. Background
contamination in the π+ and µ+ samples in the dataset is found using Monte Carlo
simulations to be below 10−5 and 10−6, respectively. The pπ distributions for π+ and µ+

tracks obtained with the CNN/A setup for tracks in the momentum range of 15–40GeV/c
are shown in figure 5 (left). A condition pπ > p0 is used for π+ identification, where p0 is
chosen for each setup to obtain a π+ identification efficiency of 75%. The corresponding µ+

misidentification probabilities, ε75
µπ, displayed in figure 5 (right), and pairwise differences

in ε75
µπ among the setups, are measured with the test dataset. The uncertainties on these

quantities are measured using 500 datasets constructed by sampling the test dataset with
replacement [19]. Pairwise difference tests indicate that the variation in ε75

µπ between CNN/A
and CNN/B, as well as between CNN/A and GBM/B, is statistically significant. The
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Figure 6. Left: muon misidentification probability (ε75
µπ) as a function of track momentum, measured

with the CNN/A setup for the test dataset. Right: the ROC curve, i.e. muon misidentification
probability (εµπ) vs pion identification efficiency (εππ) for a set of p0 values, obtained with the
CNN/A setup for the test dataset in the 15–40GeV/c momentum range. The selected operating point,
εππ = 0.75, is indicated by the vertical dotted line. The performance of the BDT algorithm currently
used by NA62 is also shown in both panels. The shaded areas represent the statistical uncertainties.

CNN/A setup is chosen over GBM/A for further analysis as it provides a lower central
ε75
µπ value.

The measured ε75
µπ value as a function of track momentum is shown in figure 6 (left).

Strong µ+ suppression is achieved also in the momentum range 40–50GeV/c not used
for training. The receiver operating characteristic (ROC) curve in the momentum range
15–40GeV/c is shown in figure 6 (right). An improvement in ε75

µπ by a factor of six, from
1.2× 10−5 to 2.0× 10−6, is obtained with respect to the BDT algorithm currently used by
NA62 [15]. Alternatively, the π+ identification efficiency in the above momentum range is
increased from 72% to 91% when the muon misidentification probability εµπ is kept at a
fixed level of 10−5. The e+ misidentification probability (ε75

eπ) is 35% lower in comparison
to the BDT algorithm.

Training the CNN/A model separately in each momentum bin leads to an increase of
ε75
µπ by a factor of two across the momentum bins in comparison with figure 6, which is
attributed to the smaller size and π+/µ+ imbalance of the training and validation datasets
in the individual bins. Training the model in the entire 15–50GeV/c range increases ε75

µπ by
about 20% across the momentum bins in comparison with figure 6, which is attributed to
e+ contamination in the training and validation dataset above 40GeV/c.

7 Summary

A new calorimetric particle identification algorithm based on a convolutional neural network
classifier augmented by a filter has been developed for the NA62 experiment at CERN. With
respect to the BDT algorithm currently used by NA62, muon misidentification probability as
a pion in the momentum range 15–40GeV/c is reduced by a factor of six from 1.2× 10−5 to
2.0× 10−6, for a fixed pion-identification efficiency of 75%. Alternatively, pion identification
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efficiency is improved in the above momentum range from 72% to 91% for a fixed muon
misidentification probability of 10−5. The algorithm is applicable to a wide range of NA62
physics analyses, with best performance achieved after careful parameter tuning.
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