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ABSTRACT

Let k be a field, and let L be an étale k-algebra of finite rank. If a ∈ k×,

let Xa be the affine variety defined by NL/k(x) = a. Assuming that L

has at least one factor that is a cyclic field extension of k, we give a

combinatorial description of the unramified Brauer group of Xa.
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Introduction

Let k be a field, let L be an étale k-algebra of finite rank, and let NL/k : L → k

be the norm map. Let a ∈ k×, and let Xa be the affine k-variety determined by

NL/k(t) = a.

Let Xc
a be a smooth compactification of Xa (see [CTHSk05]). The aim of

this paper is to describe the group Br(Xc
a)/Im(Br(k)) under the hypothesis

that L has at least one cyclic factor. We first give a combinatorial description

of a group associated to the étale algebra L (see §3), and then give an explicit

isomorphism between this group and Br(Xc
a)/Im(Br(k)) (see §4, in particular

Theorem 4.3).

Let Brur(k(Xa)) be the subgroup of Br(k(Xa)) consisting of all elements

which are unramified at all discrete valuations of k(Xa) with residue fields con-

taining k and with fields of fraction k(Xa); recall that Brur(k(Xa)) is isomorphic

to Br(Xc
a) (see Česnavičius [C19], Theorem 1.2); this group is often called the

unramified Brauer group of Xa (or of k(Xa)).

Let us illustrate our results by a special case. Let p be a prime number and

let n � 1 be an integer; assume that char(k) �= p and let F be a Galois extension

of k with Galois group Z/pnZ×Z/pnZ. Suppose that L is a product of r linearly

disjoint cyclic subfields of F of degree pn. Then we have (see Theorem 4.9):

Theorem:

Br(Xc
a)/Im(Br(k)) � (Z/pnZ)r−2.

We also give explicit generators of this group, as follows. With the above

notation, let K be one of the cyclic subfields of degree pn of F , and let χ be

an injective morphism from Gal(K/k) to Q/Z. Let us write L = K × K ′,
with K ′ =

∏
i∈I Ki, where Ki is a cyclic subfield of F of degree pn of F for

all i ∈ I, and assume that K and the fields Ki are linearly disjoint in F . For

all i ∈ I, set Ni = NKi/k(yi), considered as elements of k(Xa)
×. Assume that

the cardinality of I is r−1, so that L is a product of the r linearly disjoint cyclic

subfields K and Ki of F of degree pn. Let I ′ be a subset of cardinality r − 2

of I.

Let (Ni, χ) denote the class of the cyclic algebra over k(Xa) associated to χ

and the element Ni ∈ k(Xa)
×.
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Theorem: The group Br(Xc
a)/Im(Br(k)) is generated by the elements (Ni, χ)

for i ∈ I ′.

This is also proved in Theorem 4.9. Note that the above results are general-

izations of [BP20], Theorems 12.1 and 12.2. Similar questions are considered in

[CT14], [DW14], [H84], [Lee22], [Ma19], [P14] and [PR13].

The methods combine algebraic and arithmetic arguments. The overall strat-

egy is to give combinatorial constructions of groups, and show that in the case of

global ground fields k, these are isomorphic to Br(T c)/Br(k) (see Theorem 3.10

and Corollary 3.11). The arithmetic results rely on [BLP19]; the new feature

is the construction of the group in algebraic and combinatorial terms. The

second step is to transfer these results to more general fields, using a strat-

egy of [BP20]; note that other methods for proving algebraic results of similar

nature using arithmetic ones are available in earlier papers; see, for instance,

[CK98, §3] and [BDH13, §8].
The paper is organized as follows. Throughout the paper, K is a finite cyclic

extension of k, and L = K ×K ′, where K ′ is an étale k-algebra of finite rank.

Sections 1 and 2 are preliminary: in particular, it is shown in §2 that we may

assume K to be cyclic of prime power degree. Sections 3 and 4 contain the

description of the unramified Brauer group. When k is a global field, we obtain

additional results concerning the “locally trivial” Brauer group (cf. §5). Finally,
in §6 we apply Theorem 4.3 to give an alternative proof of [BLP19] Theorem 7.1

for k a global field with char(k) �= p; we show that the Brauer–Manin map of

[BLP19] is the Brauer–Manin pairing, and hence deduce the Hasse principle

from results of [Sa81] and [DH22].

1. Definitions and notation

Generalities. Let k be a field, let ks be a separable closure of k and

let Gk = Gal(ks/k) be the absolute Galois group of k. We fix once and for

all this separable closure ks, and all separable extensions of k that will ap-

pear in the paper will be contained in ks. We use standard notation in Ga-

lois cohomology; in particular, if M is a discrete Gk-module and i is an inte-

ger ≥ 0, we set Hi(k,M) = Hi(Gk,M). A Gk-lattice will be a torsion free
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Z-module of finite rank on which Gk acts continuously. For a k-torus T , we

denote by T̂ = Hom(T,Gm) its character group; it is a Gk-lattice.

Let G be a finite group. A G-lattice is by definition a Z-torsion free Z[G]-

module of finite rank. If g ∈ G, we denote by 〈g〉 the cyclic subgroup of G

generated by g. Let M be a G-lattice. Set

X2
cycl(G,M) = Ker

[
H2(G,M) →

∏
g∈G

H2(〈g〉,M)

]
.

We recall a result of Colliot-Thélène and Sansuc (cf. [CTS87, Prop. 9.5]).

Theorem 1.1: Let G be a finite group, let T be a k-torus, and assume that

the character group of T is a G-lattice via a surjection Gk → G. Let T c be a

smooth compactification of T . We have

Br(T c)/Br(k) � X2
cycl(G, T̂ ).

Proof. See [BP20, Theorem 2.3].

Norm equations. Let L be an étale k-algebra of finite rank; in other words, a

product of a finite number of separable extensions of k. Let TL/k = R
(1)
L/k(Gm)

be the k-torus defined by

1 → TL/k → RL/k(Gm)
NL/k−−−→ Gm → 1.

Let a ∈ k×. Let Xa be the affine k-variety associated to the norm equation

NL/k(t) = a.

The variety Xa is a torsor under TL/k; let X
c
a be a smooth compactification

of Xa. We have a natural map Br(k) → Br(Xc
a); if a = 1 then X1 = TL/k, and

the map Br(k) → Br(T c
L/k) is injective, and moreover we have an injection

Br(Xc)/Im(Br(k)) → Br(T c)/Br(k)

(see, for instance, [BP20, §6]). Recall a result from [BP20, Theorem 7.1]:

Theorem 1.2: Assume that L = K × K ′, where K/k is a cyclic extension

and K ′ an étale k-algebra. Then the map Br(Xc)/Im(Br(k)) → Br(T c)/Br(k)

is an isomorphism.
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Global fields. If k is a global field, we denote by Vk the set of all places of k;

if v ∈ Vk, we denote by kv the completion of k at v.

For any k-torus T , set

Xi(k, T ) = Ker

(
H i(k, T ) →

∏
v∈Vk

Hi(kv, T )

)
.

If M is a Gk-module, set

Xi(k,M) = Ker

(
H i(k,M) →

∏
v∈Vk

Hi(kv,M)

)
,

and let Xi
ω(k,M) be the set of x ∈ Hi(k,M) that map to 0 in Hi(kv,M) for

almost all v ∈ Vk.

2. Norm equations and étale algebras

In the sequel, we consider norm equations of étale algebras having at least one

cyclic factor. The aim of this section is to introduce some notation and prove

some results that will be used throughout the paper.

Let K be a cyclic extension of k, and let K ′ be an étale k-algebra of finite

rank; set L = K × K ′. We first show that it is enough to consider the case

when K/k is cyclic of prime power degree.

Reduction to the prime power degree case. Let P be the set of prime

numbers dividing [K : k]. For all p ∈ P , let K[p] be the largest subfield of K

such that [K[p] : k] is a power of p, and set L[p] = K[p] × K ′. Recall from

[BLP19] the following result.

Proposition 2.1: Assume that k is a global field. We have

X2(k, T̂L/k) �
⊕
p∈P

X2(k, T̂L[p]/k).

Proof. This follows from [BLP19], Lemma 3.1 and Proposition 5.16.

Let k′/k be a Galois extension of minimal degree splitting TL/k, and

let G = Gal(k′/k).

Proposition 2.2: We have X2
cycl(G, T̂L/k) �

⊕
p∈P X2

cycl(G, T̂L[p]/k).
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Proof. Let us write K ′ =
∏

i∈I Ki, where the Ki are finite field extensions of k.

Let H be the subgroup of G such that K = (k′)H , and for all i ∈ I, let Hi be

the subgroup of G such that Ki = (k′)Hi . Set M = T̂L/k. We have the exact

sequence of G-modules

0 → Z → Z[G/H ]⊕
⊕
i∈I

Z[G/Hi] → M → 0.

For all p ∈ P , let H [p] be the subgroup of G such that K[p] = (k′)H[p].

Set M [p] = T̂L[p]/k. We have the exact sequence of G-modules

0 → Z → Z[G/H [p]]⊕
⊕
i∈I

Z[G/Hi] → M [p] → 0.

Let �′/� be an unramified extension of number fields with Galois group G

(cf. [F62]). Set L0 = (�′)H , L0[p] = (�′)H[p], and Li = (�′)Hi . Let

E = L0 ×
∏
i∈I

Li and E[p] = L0[p]×
∏
i∈I

Li.

We have

T̂E/� � M and T̂E[p]/� � M [p].

By Proposition 2.1 we have X2(�,M) � ⊕
p∈P X2(�,M [p]). Since �′/� is un-

ramified, we haveX2
cycl(G,M) � X2(�,M) andX2

cycl(G,M [p]) � X2(�,M [p])

(see [BP20, Proposition 3.1]), hence X2
cycl(G,M)�⊕

p∈P ⊕X2
cycl(G,M [p]).

Proposition 2.3: Assume that k is a global field. We have

X2
ω(k, T̂L/k) �

⊕
p∈P

X2
ω(k, T̂L[p]/k).

Proof. This follows from Proposition 2.2 and [BP20, Corollary 3.4].

The prime power degree case. Let p be a prime number, and assume

that K/k is cyclic of degree a power of p. Let us write K ′ =
∏

i∈I Ki, where

the Ki are finite field extensions of k, and let [K : k] = pn.

Notation 2.4: For all integers 1 ≤ m ≤ n, let K(m) be the unique sub-

field of K of degree pm over k. The Ki-algebra K(m) ⊗k Ki is a product

of cyclic extensions of Ki; let pei(m) be the degree of these extensions, and

set E(m) = {ei(m) | i ∈ I}. For all i ∈ I, let us choose one of the cyclic fac-

tors Ei/Ki of K ⊗k Ki. For all m let Ei(m) be the subfield of Ei which corre-

sponds to a cyclic factor of K(m)⊗k Ki.
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Let K be a Galois extension of k containing K and all the fields Ki, and

let G = Gal(K/k). If F is a subfield of K, we denote by GF the subgroup of G

such that F = KGF .

For all integers 0 ≤ m ≤ n, let Γm
i be the set of conjugacy classes of ele-

ments g ∈ G such that 〈g〉 ∩ (GEi(n−m) \GEi(n−m+1)) �= ∅.
Notation 2.5: Assume moreover that k is a global field. Let V m

i be the set of

places v of k such that there exists a place w of Ki above v having the property

that K ⊗k (Ki)w is a product of field extensions of degree at least pm of (Ki)w.

Proposition 2.6: Assume that k is a global field. Let Vrm be the set of

places of k which are ramified in K. For all integers 0 ≤ m ≤ n, sending a

place v ∈ V m
i \Vrm to the conjugacy class of its Frobenius element fv ∈ G gives

rise to a surjection from V m
i \ Vrm onto Γm

i .

In order to prove the Proposition, we need the following lemma.

Lemma 2.7: Let F be a field, and let E be a cyclic extension of F of prime

degree. Let M be an extension of E, and assume that M is a Galois extension

of F . Set GF = Gal(M/F ) and GE = Gal(M/E). Let v : M× → Z be a

discrete valuation of M ; assume that the restriction vF of v to F× is surjective,

and that the residue field of v is perfect.

Let DM/F be the decomposition group of v. Then vF is inert in E if and only

if

DM/F ∩ (GF \GE) �= ∅.

Proof. Let GE/F be the Galois group of the extension E/F , and let DE/F

be the decomposition group of vF ; note that vF is inert in E if and only

if DE/F = GE/F . Since E/F is cyclic of prime degree, this amounts to say-

ing that DE/F is not trivial.

We have the exact sequence

1 → GE → GF → GE/F → 1.

The image of DM/F by the homomorphism GF → GE/F is equal to DE/F (see

for instance [Se79], Chap. I, Proposition 22). Hence DE/F is non trivial if and

only if DM/F ∩ (GF \GE) �= ∅.

Proposition 2.8: Let F , E and M be as in Lemma 2.7. Assume more-

over that k is a subfield of F , and that M is a Galois extension of k. Let
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G = Gal(M/k). Let vk : k× → Z be a discrete valuation such that the exten-

sions of vk toM are unramified; let D be the set of corresponding decomposition

groups. The following are equivalent:

(a) There exists an extension of vk to F that is inert in E.

(b) There exists D ∈ D such that D ∩ (GF \GE) �= ∅.

Proof. Let us prove that (a) implies (b). Let vF be an extension of vk to F that

is inert in E, let v be an extension of vF to M , and let D be the decomposition

group of v. By Lemma 2.7, we have (b). Conversely, assume that (b) holds.

Let D ∈ D be as in (b), and let v be the corresponding valuation. Let vF be

the restriction of v to F . By Lemma 2.7, we see that vF is inert in E, hence (a)

holds.

Proof of Proposition 2.6. If v ∈ Vm
i \Vrm, then by definition there exists a place

of Ei(n − m) that is inert in the extension Ei(n)/Ei(n − m), and hence also

in Ei(n −m+ 1)/Ei(n −m); therefore by Proposition 2.8 the conjugacy class

of its Frobenius element fv belongs to Γm
i .

Conversely, if the conjugacy class of g ∈ G belongs to Γm
i , then by Cheb-

otarev’s density theorem there exists an unramified place v such that its Frobe-

nius element fv is the conjugacy class of g. Since the conjugacy class of g

belongs to Γm
i , there is a place w of Ei(n − m) above v such that w is inert

in Ei(n − m + 1)/Ei(n − m). Therefore w is also inert in Ei(n)/Ei(n − m)

as Ei(n)/Ei(n − m) is cyclic of p-power degree and is unramified at w. This

implies that v ∈ V m
i \ Vrm.

We get immediately the following corollary.

Corollary 2.9: For i, j ∈ I, the map defined in Proposition 2.6 induces a

surjection from V m
i ∩ V m

j \ Vrm to Γm
i ∩ Γm

j .

Remark 2.10: Keep the notation in Proposition 2.6. For each conjugacy class

in Γm
i , by Chebotarev’s density theorem there are infinitely many unramified

places v ∈ V m
i mapped to it.

3. Norm equations—unramified Brauer group

We keep the notation of the previous section. In particular, k is a field, K is a

cyclic extension of k, and L = K ×K ′ where K ′ is an étale k-algebra of finite
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rank. Let TL/k = R
(1)
L/k(Gm) be the k-torus defined by

1 → TL/k → RL/k(Gm)
NL/k−−−→ Gm → 1.

Let a ∈ k×, and let Xa be the affine k-variety associated to the norm equa-

tion NL/k(t) = a. The variety Xa is a torsor under TL/k. Let T
c
L/k be a smooth

compactification of TL/k, and let Xc
a be a smooth compactification of Xa.

The aim of this section is to describe the group Br(Xc
a)/Im(Br(k)). Using

the results of §2, we can assume that K/k is of degree pn, where p is a prime

number.

We use the notation of §2 (see Notation 2.4). In addition, we need the fol-

lowing.

Notation 3.1: For all integers n ≥ 1, we denote by C(I,Z/pnZ) the set of

maps I → Z/pnZ.

If 1 ≤ m ≤ n, let πn,m be the projection C(I,Z/pnZ) → C(I,Z/pmZ).

For x ∈ Z/pmZ and y ∈ Z/prZ, we denote by δ(x, y) the maximum inte-

ger d ≤ min{m, r} such that x = y (mod pdZ).

We start with some special cases, in which the results are especially simple.

K/k cyclic of degree p. Assume first that [K : k] = p, and that K is not

contained in any of the fields Ki. Then for all i ∈ I, Ei is a cyclic field extension

of degree p of Ki. Let Γi = Γ1
i be the set of conjugacy classes of elements g ∈ G

such that 〈g〉 ∩ (GKi \GEi) �= ∅ (cf. Notation 2.4).

Let C(L) be the group

{c ∈ C(I,Z/pZ) | c(i) = c(j) if Γi ∩ Γj �= ∅},
and D be the subgroup of constant maps I → Z/pZ.

As a consequence of Theorem 3.8, we’ll show the following.

Proposition 3.2: Assume that K/k is cyclic of degree p, and that K is not

contained in any of the fields Ki. Then we have

X2
cycl(G, T̂L/k) � C(L)/D.

By Theorem 1.1, this implies the following.

Corollary 3.3: Assume that K/k is cyclic of degree p, and that K is not

contained in any of the fields Ki. Then we have

Br(T c)/Br(k) � C(L)/D.
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K/k of degree pn and K linearly disjoint of all the Ki. For all inte-

gers m with 1 ≤ m ≤ n set

Cm = {c ∈ C(I,Z/pmZ) |c(i) = c(j) if Γm
i ∩ Γm

j �= ∅}.
Set

C(L) = {c ∈ Cn | πn,m(c) ∈ Cm for all m ≤ n},
and denote by D the subgroup of constant maps I → Z/pnZ.

Proposition 3.4: Assume that K/k is cyclic of degree pn, and that K is

linearly disjoint of all the fields Ki. Then we have

X2
cycl(G, T̂L/k) � C(L)/D.

As in the case where K/k is of degree p, this follows from Theorem 3.8, and

has the immediate corollary

Corollary 3.5: Assume thatK/k is cyclic of degree pn, and that K is linearly

disjoint of all the fields Ki. Then we have

Br(T c)/Br(k) � C(L)/D.

The general case. Recall that K/k is cyclic of degree pn, and that we use

Notation 2.4. Recall that E = E(n).
Notation 3.6: For all e ∈ E , set Ie = {i ∈ I | ei(n) = e}. Denote by ê

the maximum element in E . Note that the index i belongs to Ie if and only

if K ∩Ki is an extension of degree pn−e of k. As K is a cyclic extension, this

means that given 0 ≤ m ≤ n, the ei(m) are the same for all i ∈ Ie and we

denote it by e(m).

For all integers m with 1 ≤ m ≤ n set

Cm =

{
c ∈

⊕
e∈E

C(Ie,Z/p
e−e(n−m)Z) | c(i) = c(j) if Γm

i ∩ Γm
j �= ∅

}
.

We still denote by πn,m the map from
⊕

e∈E C(Ie,Z/p
eZ) to

⊕
e∈E

C(Ie,Z/p
e−e(n−m)Z)

induced by the natural projection.

Set

C(L) = {c ∈ Cn | πn,m(c) ∈ Cm for all m ≤ n},
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and denote by D the image of constant maps I → Z/pnZ in Cn under the

natural projection .

Remark 3.7: If Ei(n−m+ 1) � Ei(n−m), then K(n−m) ⊇ K ∩Ki. In this

case ei(n) ≥ m and ei(n)− ei(n−m) = m.

The main results of this section are:

Theorem 3.8: Assume that K/k is cyclic of degree pn. Then we have

X2
cycl(G, T̂L/k) � C(L)/D.

By Theorem 1.1, this implies the following:

Corollary 3.9: Assume that K/k is cyclic of degree pn. Then we have

Br(T c)/Br(k) � C(L)/D.

The proof of Theorem 3.8 will be given below, using some arithmetic results

of [BLP19]. We start by recalling and developing some results concerning global

fields.

Global fields. Assume that k is a global field. Recall that K/k is cyclic of

degree pn, and that we use Notations 2.4 as well as 3.6. In addition, for global

fields, we also use Notation 2.5.

For all integers m with 1 ≤ m ≤ n set

Cm
arith =

{
c ∈

⊕
e∈E

C(Ie,Z/p
e−e(n−m)Z) |c(i) = c(j) if V m

i ∩ V m
j �= ∅

}

and

Cm
ω =

{
c ∈

⊕
e∈E

C(Ie,Z/p
e−e(n−m)Z) |c(i) = c(j) if V m

i ∩ V m
j is infinite

}
.

Set

Carith(L) = {c ∈ Cn
arith | πn,m(c) ∈ Cm

arith for all m ≤ n}
and

Cω(L) = {c ∈ Cn
ω | πn,m(c) ∈ Cm

ω for all m ≤ n}.
Theorem 3.10: Assume that K/k is cyclic of degree pn. Then we have

(1) X2(k, T̂L/k) � Carith(L)/D,

(2) X2
ω(k, T̂L/k) � Cω(L)/D.
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Proof. Recall some notation of [BLP19].

For a = (ai) ∈
⊕

e∈E
⊕

i∈Ie
(Z/peZ) and r ∈ Z/pêZ, set

Ir(a) = {i ∈ I | ai = r (mod pei(n)Z)}.
Set

G(K,K ′) =
{
a = (ai) ∈

⊕
e∈E

⊕
i∈Ie

(Z/peZ) |
⋂

r∈Z/pêZ

⋃
i/∈Ir(a)

V
δ(r,ai)+1
i = ∅

}
;

Gω(K,K ′) =
{
a = (ai) ∈

⊕
e∈E

⊕
i∈Ie

(Z/peZ) |
⋂

r∈Z/pêZ

⋃
i/∈Ir(a)

V
δ(r,ai)+1
i is finite

}
.

With the notation of [BLP19], we have

X2(k, T̂L/k) � X(K,K ′) = G(K,K ′)/D′,

where D′ is the subgroup generated by (1, 1, . . . , 1) (see [BLP19, Theorem 5.3

and Lemma 3.1]). Similarly, it is shown in [Lee22, Theorem 2.5] that

X2
ω(k, T̂L/k) � Gω(K,K ′)/D′.

Hence it suffices to show thatG(K,K ′)�Carith(L) and thatGω(K,K ′)�Cω(L).

We show that G(K,K ′) � Carith(L); the proof of Gω(K,K ′) � Cω(L) is the

same.

Let

f :
⊕
e∈E

⊕
i∈Ie

(Z/peZ) →
⊕
e∈E

C(Ie,Z/p
eZ)

be the map sending (ai) ∈
⊕

i∈Ie
(Z/peZ) to c : Ie → Z/peZ such that c(i) = ai.

We claim that the isomorphism f gives rise to an isomorphism

G(K,K ′) → Carith(L).

For c ∈ ⊕
e∈E C(Ie,Z/p

eZ), we denote πn,m(c) by cm.

Let a = (ai) ∈ G(K,K ′) and c = f(a). We show that cm ∈ Cm for 1≤m≤n.

Suppose that V m
i ∩ V m

j �= ∅. By Remark 3.7, we have

ei − ei(n−m) = ej − ej(n−m) = m.

Let v ∈ V m
i ∩ V m

j . As a ∈ G(K,K ′), there is r ∈ Z/pêZ such that

v /∈ ⋃
l/∈Ir(a)

V
δ(r,al)+1
l . If i /∈ Ir(a), then δ(r, ai) + 1 > m since v /∈ V

δ(r,ai)+1
i .

Hence c(i) = r (mod pmZ). If i ∈ Ir(a), then c(i) = r (mod pei(n)Z). In both

cases we have cm(i) = r (mod pmZ). The same argument works for j. Therefore

cm(i) = cm(j) and cm ∈ Cm.
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Let c ∈ Cn be such that cm ∈ Cm for 1 ≤ m ≤ n. Let a = f−1(c). If c ∈ D′,
then clearly a ∈ D′. Suppose that c /∈ D′. We claim that

⋂
r∈Z/pêZ

⋃
i/∈Ir(a)

V
δ(r,ai)+1
i = ∅.

Suppose not. Let v ∈ ⋂
r∈Z/pêZ

⋃
i/∈Ir(a)

V
δ(r,ai)+1
i . Choose r0 ∈ Z/pêZ.

Since c /∈D′, there exist r1∈Z/pêZ and i∈Ir1(a)\Ir0(a) such that v∈V
δ(r0,ai)+1
i .

For the same reason, there is r2 ∈ Z/pêZ and j ∈ Ir2(a) \ Ir1(a) such that

v ∈ V
δ(r1,aj)+1
j .

By the choice of i and j, we have δ(r0, ai) = δ(r0, r1) and δ(r1, aj) = δ(r1, r2).

Suppose that δ(r0, r1) ≥ δ(r1, r2). Then v ∈ V m
i ∩V m

j , where m = δ(r1, r2)+1.

Hence cm(i) = cm(j) and δ(ai, aj) ≥ m = δ(r1, r2) + 1, which contradicts that

δ(r1, r2) ≥ δ(ai, aj). Therefore δ(r0, r1) < δ(r1, r2).

We can continue the above process to get an infinite sequence of rl ∈ Z/pêZ

such that δ(rl, rl+1) < δ(rl+1, rl+2). It is a contradiction as δ(rl, rl+1) ranges

from 0 to ê. Hence
⋂

r∈Z/pêZ

⋃
i/∈Ir(a)

V
δ(r,ai)+1
i = ∅ and a ∈ G(K,K ′). As a

consequence f induces an isomorphism G(K,K ′) → Carith(L).

Corollary 3.11: Let k be a global field. Then X2
ω(k, T̂L/k) � C(L)/D.

Proof. By Corollary 2.9 and Remark 2.10, the two sets Cm and Cm
ω are the

same. Our claim then follows from Theorem 3.10.

Proof of Theorem 3.8. Recall that K is a Galois extension of k containing K

and all the fields Ki, and that G = Gal(K/k); if F is a subfield of K, we denote

by GF the subgroup of G such that F = KGF .

Note that k is not necessarily a global field here. However, there is always an

unramified extension �′/� with Galois group Gal(�′/�) � G ([F62]). Hence we

can regard T̂L/K as a Gal(�′/�)-module.

To be precise, set F = (�′)GK , Li = (�′)GKi and E = F × ∏
i∈I Li. By

construction, the G-lattices T̂E/� and T̂L/k are isomorphic.

Since the extension �′/� is unramified, we have

X2(�, T̂E/�) � X2
ω(�, T̂E/�) � X2

cycl(G, T̂E/�).

By Corollary 3.11 the group X2
cycl(G, T̂E/�) is isomorphic to C(E)/D. How-

ever, C(L) only depends on the group G. Hence C(L) � C(E). Therefore

X2
cycl(G, T̂L/k) � X2

cycl(G, T̂E/�) � C(L)/D.
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4. Unramified Brauer groups and generators

We keep the notation of the previous sections. Recall that p is a prime number,

K/k a cyclic field extension of degree pn, and L = K×K ′, where K ′ is an étale

k-algebra of finite rank. In the previous section, we introduced a group C(L)

and proved that

Br(Xc
a)/Im(Br(k)) � C(L)/D.

The aim of this section is to give more precise information about the isomor-

phism C(L)/D → Br(Xc
a)/Im(Br(k)) when char(k) �= p.

Let Brur(k(Xa)) be the subgroup of Br(k(Xa)) consisting of all elements

which are unramified at all discrete valuations of k(Xa) with residue fields con-

taining k and with fields of fraction k(Xa); recall that Brur(k(Xa)) is isomorphic

to Br(Xc
a) when char(k) �= p (see [Po17, Theorem 6.8.3]).

As in the previous sections, let us write K ′ =
∏

i∈I Ki, where the Ki are

finite separable field extensions of k.

Notation 4.1: We denote by Gk the absolute Galois group of k, Gk(Xa) the

absolute Galois group of k(Xa). Let R be a discrete valuation ring of k(Xa)

with residue field κR containing k and with field of fractions k(Xa). We denote

by GR the absolute Galois group of κR.

Notation 4.2: For all i ∈ I, let {βij} be a basis of Ki over k. Let

yi =
∑
j

βijxij ,

where xij are variables. Set

Ni = NKi⊗k(Xa)/k(Xa)(yi)

considered as an element of k(Xa)
×. We define

N = NK⊗k(Xa)/k(Xa)(y)

in a similar way. Fix an isomorphism χ :Gal(K/k)→Z/pnZ. Then χ gives rise

to a homomorphism χ̃ :Gk(Xa)→Z/pnZ and a homomorphism χR :GR→Z/pnZ.

Let (Ni, χ̃) denote the class of the cyclic algebra over k(Xa) associated to χ̃ and

the element Ni ∈ k(Xa)
× ([GS06, Prop. 4.7.3] ).

The main result of this section is
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Theorem 4.3: Assume char(k) �= p. Then the map

u : C(L) → Br(k(Xa))

given by

u(c) =
∑
i∈I

c(i)(Ni, χ̃)

induces an isomorphism

C(L)/D → Br(Xc
a)/Im(Br(k)).

Remark 4.4: Note that (Ni,χ̃)∈Br(k(Xa)) has order at most pei(n), so c(i)(Ni,χ̃)

is well-defined for c(i) ∈ Z/pei(n)Z (ref. [BLP19, Lemma 6.1]).

We start with the following lemmas.

Lemma 4.5: The group u(D) is contained in the image of Br(k) in Br(k(Xc)).

Proof. Since N ·∏i∈I Ni = c, we have
∑

i∈I(Ni, χ̃) = (c/N, χ̃) = (c, χ̃), which

is the image of (c, χ) in Br(k(Xa)). Hence u(D) ⊆ Im(Br(k)).

The following lemma can be found in [Lee22] §3. Here we use the notation

C(L) to simplify the proof.

Lemma 4.6: (1) Let c ∈ C(L)\D. Pick i0 ∈ Iê. Let ĉ ∈ D be the image of

the constant map from I to c(i0). Set m to be the maximal integer such

that πn,m(c) = πn,m(ĉ). Choose r ∈ Z/pêZ such that δ(r, c(i0)) = m.

Consider the element c′ ∈ ⊕
e∈E C(Ie,Z/p

eZ) defined as follows:

(4.1) c′(i) =

⎧⎨
⎩
πê,ei(n)(r), if ei(n) > m and m = δ(c(i), c(i0));

πê,ei(n)(c(i0)), otherwise.

Then c′ ∈ C(L) \D.

(2) Suppose that k is a global field and c ∈ Carith(L) \ D. Then the ele-

ment c′ defined above is in Carith(L) \D.

Proof. As c is not inD, by the choice ofm there is some i ∈ I such that ei(n)>m

and δ(c(i), c(i0)) = m. Hence c′(i) �= c′(i0) (mod pei(n)Z) by our construction

and c′ /∈ D.

Now we show that πn,l(c
′) ∈ Cl(L) for 0 ≤ l ≤ n. If l ≤ m, then by the

choice of r we have πn,l(c(i0)) = πn,l(r). Clearly πn,l(c
′) ∈ Cl(L).
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Suppose l > m. If Γl
i ∩ Γl

j �= ∅, then by Remark 3.7 ei(n) and ej(n) are

at least l and c(i) = c(j) (mod plZ). Hence δ(c(i0), c(i)) = m if and only

if δ(c(i0), c(j)) = m. By construction c′(i)=c′(j) (mod plZ) and πn,l(c
′)∈Cl(L).

The proof of statement (2) is similar.

Lemma 4.7: Assume that char(k) �= p. Let R be a discrete valuation ring as in

Notation 4.1. Denote by ∂R the residue map from Br(k(Xa)) to H1(κR,Q/Z).

Suppose that the order of ∂R(Ni, χ̃) and the order of ∂R(Nj , χ̃) are both at

least pm. Then Γm
i ∩ Γm

j is nonempty.

Proof. Let νR be the discrete valuation associated to R. Denote the completion

of k(Xa) with respect to νR by k(Xa)R. Choose an extension ωR of νR to a

separable closure of k(Xa)R. By the construction of χ̃, ∂R(Ni, χ̃) = νR(Ni)χR.

(See [GS06, 6.8.4 and 6.8.5.]) Write νR(Ni) as pmiqi where p � qi. Let pnR be

the order of χR. As the order of ∂R(Ni, χ̃) ≥ pm, we have nR −mi ≥ m.

Since νR(Ni)=pmiqi, there is some factorMi ofKi⊗kk(Xa)R such that pmi+1

does not divide νR(NMi/k(Xa)R(yMi)), where yMi is the projection of yi in Mi.

Let ωi,R be the restriction of ωR to Mi. Write the inertia degree of ωi,R over νR

as pfiq′i where p � q′i. As pmi+1 does not divide νR(NMi/k(Xa)R(yMi)), we

have fi ≤ mi.

Choose a factor M of K⊗k k(Xa)R and let M be its residue field. Let M i be

the residue field of ωi,R. Both fields are considered as subfields of a separable

closure κs
R of κR.

As fi ≤ mi and nR − mi ≥ m, the cyclic extension MM i/Mi is of degree

at least pm. Choose gR ∈ GR such that χR(gR) generates the image of χR

in Q/Z. Let Hi be the subgroup of GR which fixes M i. We claim that there

are some hi ∈ GR and some σR ∈ 〈h−1
i gRhi〉 ∩ Hi such that χR(σR) is of order

at least pm.

Consider the group action of 〈gR〉 on the set of left cosets of Hi in GR.

As |GR/Hi|= pfiq′i with p � q′i , there is some hi ∈ GR such that pfi+1 does not

divide the length of the orbit of hiHi. Hence the stabilizer of hiHi is 〈gpf′
i ri

R 〉
for some f ′

i ≤ fi and some ri coprime to p. Let σR = h−1
i gp

f′
iri

R hi. Then

χR(σR) = χR(g
pf′

i ri
R ),

which is of order pnR−f ′
i . Since f ′

i ≤ fi ≤ mi and nR − mi ≥ m, the order

of χR(σR) is at least p
m.
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Let g and σ be the image of gR and σR in G. Then σ fixes Ki and σ is

an element of order at least pm in Gal(K/k). Hence the conjugacy class of g

belongs to Γm
i . The same argument proves that the conjugacy class of g belongs

to Γm
j . Hence Γm

i ∩ Γm
j is nonempty.

Next we prove that for all c ∈ C(L), the element
∑

i∈I c(i)(Ni, χ̃) is unrami-

fied.

Proposition 4.8: Suppose that char(k) �= p. The image of u is an unramified

subgroup of Br(k(Xa)).

Proof. By Lemma 4.5 we can assume that c(i) = 0 for some i ∈ Iê.

Let R be a discrete valuation ring of k with residue field κR containing k and

with field of fractions k(Xa). Let νR be the discrete valuation associated to R.

Denote by ∂R the residue map from Br(k(Xa)) to H1(κ,Q/Z). We claim that

u(c) =
∑

i∈I c(i)(Ni, χ̃) is unramified at R.

Let J(c) = {i ∈ I | c(i) �= 0 in Z/pei(n)Z)}. Let m be the maximum integer

such that πn,m(c) = 0 and set Jm(c) = {i ∈ J(c) | m = δ(0, c(i))}. We prove by

induction on |J(c)|. If |J(c)| = 0, then c = 0 and our claim is trivial. Suppose

that our claim is true for |J(c)| ≤ h.

Let |J(c)| = h+ 1. Then c /∈ D and Jm(c) is nonempty. Pick j ∈ Jm(c) and

choose r ∈ Z/pêZ such that c(j) = r (mod pej(n)Z). Let c′ be defined as in

Lemma 4.6. We first prove that u(c′) is unramified at R, i.e., ∂R(u(c
′)) = 0.

Since c(i) = 0, by the definition of c′ we have u(c′) =
∑

s∈Jm(c) r(Ns, χ̃).

Hence

∂R(u(c
′)) =

∑
s∈Jm(c)

r · νR(Ns)χR.

Suppose that ∂R(u(c
′)) is not zero. Then there is some s ∈ Jm(c) such

that r · νR(Ns)χR �= 0. As δ(0, r) = m, the order of νR(Ns)χR is at least pm+1.

By Lemma 4.5, there is some t ∈ I \Jm(c) such that r ·νR(Nt)χR(g) �= 0 and

the order of νR(Nt)χR is at least pm+1. By Lemma 4.7 the set Γm+1
s ∩ Γm+1

t is

nonempty. As δ(0, r) = m, we have c′(s) �= c′(t) (mod pm+1Z). This contradicts

that c′ ∈ C(L). Therefore ∂R(u(c
′)) = 0 and u(c′) is unramified.

Consider the element c−c′ ∈ C(L). By our construction of c′, the cardinality
of J(c − c′) decreases by at least one. By induction hypothesis u(c − c′) is

unramified. Hence u(c) is unramified.
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Proof of Theorem 4.3. By Lemma 4.5 and Proposition 4.8, the map

u : C(L)/D → Br(Xc
a)/Im(Br(k))

is well-defined.

A similar argument as in [BP20, Thm. 12.2] proves the injectivity of u. Con-

sider the projection from Xa to the affine space Ad, where d =
∑

i∈I [Ki : k]

and the coordinates are given by xij defined in Notation 4.2.

Let M be the function field of Ad. Denote by χM the image of χ in

H1(M,Q/Z). Suppose that u(c) = α ∈ Im(Br(k)). Then u(c)−α is in the ker-

nel of Br(M) → Br(k(Xa)), which is generated by (a
∏

i∈I N
−1
i , χ) (see [BP20,

Lemma 12.3]). Therefore

u(c)− α = r

(
a
∏
i∈I

N−1
i , χ

)
.

Consider the discrete valuation vNi on M and let κNi be its residue field.

Denote by χNi the image of χ in H1(κNi ,Q/Z). We claim that χNi is of or-

der pei(n). Let Mi be the function field of the subvariety of A[Ki:k] defined

by Ni. Then κNi = Mi(xjl) where xjl are defined as in Notation 4.2 with j �= i.

Hence κNi is purely transcendental over Mi. Let χMi be the image of χ in

H1(Mi,Q/Z). It suffices to prove the order of χMi is p
ei(n). Note thatMi ⊗k Ki

is isomorphic to a product of extensions Fi� of Ki with one factor purely tran-

scendental over Ki. Denote this factor by Fi1. Then

K ⊗k Mi ⊗k Ki � K ⊗k

(∏
�

Fi�

)

and K⊗k Fi1 is isomorphic to a product of extensions of Fi1 with degree pei(n).

On the other hand

K ⊗k Mi ⊗k Ki �
(∏

M̃i

)
⊗k Ki,

where M̃i is a factor of K ⊗k Mi. If [M̃i : Mi] < pei(n), then

M̃i ⊗k Ki = M̃i ⊗Mi Mi ⊗k Ki

is isomorphic to a product of extensions of Fi�, and each factor is of degree less

than pei(n). This contradicts that there are factors of K⊗kMi⊗kKi isomorphic

to extensions of Fi1 with degree pei(n). Hence [M̃i : Mi] = pei(n) and χMi is of

order pei(n).
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As χNi is of order pei(n), after taking residue of u(c) − α at vNi , we see

that c(i) = −r (mod pei(n)Z). Hence c ∈ D and u is injective.

Since u is injective, |C(L)/D| ≤ |Br(Xc
a)/Im(Br(k))|. By Theorem 3.8 and

Theorem 1.1, the order of C(L)/D is equal to the order of Br(T c
L/k)/Br(k).

By Theorem 1.2, the map u is surjective and hence is an isomorphism. This

concludes the proof of the theorem.

We now prove the results announced in the introduction:

Theorem 4.9: Let k be a field of char(k) �= p. Let F be a bicyclic extension of

k with Galois group Z/pnZ× Z/pnZ. Let K and Ki be linearly disjoint cyclic

subfields of F with degree pn for i = 1, . . . ,m. Then

Br(Xc
a)/Im(Br(k)) � (Z/pnZ)m−1,

and is generated by (Ni, χ) for i = 1, . . . ,m− 1.

Proof. There exist a number field � and an unramified Galois extension �′/�
such that Gal(�′/�) � Gal(F/k) ([F62]). Set

F = (�′)GK , Li = (�′)GKi and E = F ×
∏
i∈I

Li.

By construction, the G-lattices T̂E/� and T̂L/k are isomorphic.

By [Lee22, Proposition 7.3], the group X2
ω(�, T̂E/�) � (Z/pnZ)m−1.

Since X2
ω(�, T̂E/�) � X2

cycl(G, T̂E/�) � X2
cycl(G, T̂L/k), we have

C(L)/D � (Z/pnZ)m−1

by Theorem 3.8. The assertion then follows from Theorem 4.3.

5. Global fields

We keep the notation of the previous section, and in addition we assume that k

is a global field. Denote by B(Xc
a) the subgroup of Br(Xc

a)/Im(Br(k)) consisting

of locally trivial elements, and by Bω(X
c
a) the subgroup consisting of elements

which are trivial at almost all places of k.

Theorem 5.1: Suppose that k is a global field with char(k) �= p. Then

(1) u induces an isomorphism between C(L)/D and Bω(X
c
a).

(2) u induces an isomorphism between Carith(L)/D and B(Xc
a).
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Proof. First note that [Sa81, 6.1.4] remains true over global fields.

Hence Bω(X
c
a) � Bω(Xa) and B(Xc

a) � B(Xa).

By [Sa81, 6.8 and 6.9 (ii)], we have B(Xa) � X2(k, T̂L/k) (respectively

Bω(Xa) � X2
ω(k, T̂L/k)). By Theorem 3.10 and Corollary 3.11, we conclude

that C(L)/D � Bω(X
c
a) and Carith(L)/D � B(Xc

a).

As Bω(X
c
a) is a subgroup of Br(Xc

a)/Im(Br(k)) with the same cardinality, the

first statement follows from Theorem 4.3.

To see that u gives rise to the desired isomorphism in (2), it is sufficient to

show that u(c)v ∈ Br(Xc
a ×k kv) is in the image of Br(kv) for c ∈ Carith(L) and

for v ∈ Vk.

By Lemma 4.5 we can assume that c(i0) = 0 for some i0 ∈ Iê. Let

J(c) = {i ∈ I | c(i) �= 0 in Z/pei(n)Z)}.

Set m to be the maximum integer such that πn,m(c) = 0 and set

Jm(c) = {i ∈ J(c) | m = δ(0, c(i))}.

We prove by induction on |J(c)|. If |J(c)| = 0, then c = 0 and our claim is

trivial. Suppose that our claim is true for |J(c)| ≤ h.

Let |J(c)| = h+ 1. Then c /∈ D and Jm(c) is nonempty. Pick j ∈ Jm(c) and

choose r ∈ Z/pêZ such that c(j) = r (mod pej(n)Z). Let c′ be defined as in

Lemma 4.6.

For v ∈ Vk, let χv be the image of χ in H1(kv,Q/Z), and χi,w be the image

of χ in H1((Ki)w,Q/Z) where w is a place of Ki.

By the definition of Carith(L), the set V
m+1
i ∩V m+1

j is empty for any i ∈ Jm(c)

and for any j /∈ Jm(c).

Let v ∈ Vk. Suppose that v /∈ ⋃
i∈Jm(c) V

m+1
i . Then for all i ∈ Jm(c), χi,w is

of order at most m for all w | v. By the projection formula, (Ni, χ)v has order

at most pm. Hence c′(i)(Ni, χ)v = 0 and u(c′)v = 0 in this case.

Suppose that v ∈ V m+1
i for some i ∈ Jm(c). Let d ∈ D be the image of the

constant map from I to r. Set c = d− c′. As the set V m+1
i ∩V m+1

j is empty for

any j /∈ Jm(c), v /∈ ⋃
j /∈Jm(c) V

m+1
j . The same argument shows that u(c)v = 0.

Hence u(c′)v is in the image of Br(kv).

Since the cardinality of J(c − c′) decreases by at least one, by induction

hypothesis u(c− c′) ∈ B(Xc
a). In combination with u(c′) ∈ B(Xc

a), we see that

u(c) is in B(Xc
a).
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Example 5.2: Let k = Q(i). Let

K = k(
4
√
17), K1 = k( 4

√
17× 13) and K2 = k(

4
√
13).

By [Lee22, Example 7.4],

X2
ω(k, T̂L/k) � Z/4Z and X2(k, T̂L/k) � Z/2Z.

By Theorem 4.3 and Theorem 5.1, the element (N2, χ) generates the group

Br(Xc
a)/Im(Br(k)) and 2(N2, χ) generates B(Xc

a).

More generally we have the following.

Proposition 5.3: Let k be a global field of char(k) �= p. Let F be a bicyclic

extension of k with Galois group Z/pnZ × Z/pnZ. Let K and Ki be linearly

disjoint cyclic subfields of F with degree pn for i = 1, . . . ,m. Assume moreover

that F ⊗k kv is a product of cyclic extensions for all v ∈ Vk. Then (Ni, χ)

generates B(Xc
a).

Proof. By [Lee22, Prop. 7.3], we have X2(k, T̂L/k) � (Z/pnZ)m−1. We apply

Theorem 3.10 (1) and Theorem 5.1 (2) to conclude.

6. An application to Hasse principles

In this section we apply Theorem 4.3 to give an alternative proof of [BLP19]

Theorem 7.1 for k a global field and K/k a cyclic extension of degree prime to

char(k). Moreover, we can assume that K/k is a cyclic extension of p-power

degree where p �= char(k). (See §2 and [BLP19, 6.3.])

We use the notation of the previous sections. In particular, Xa is the affine

variety defined in the introduction, K/k is a cyclic extension of p-power degree

with p �= char(k), and Ki/k is a finite separable extension for all i ∈ I. Recall

that χ is an injective homomorphism from Gal(K/k) to Q/Z.

Let χv be the image of χ in H1(kv,Q/Z). Let inv be the Hasse invariant

map inv : Br(kv) → Q/Z.

Denote by Kv
i the algebra Ki ⊗k kv. Suppose that there is a local point

(xv
i ) ∈

∏
v∈Vk

Xa(kv), where xv
i ∈ Kv

i for i ∈ I and xv
0 ∈ K ⊗k kv. Define

αa : Carith(L)/D → Q/Z as

αa(c) =
∑
v∈Vk

∑
i∈I

c(i)inv(NKv
i /kv

(xv
i ), χv).
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Theorem 6.1: Suppose that there is a local point (xv
i ) ∈

∏
v∈Vk

Xa(kv). Then

the map αa is the Brauer–Manin pairing and Xa has a k-point if and only

if αa = 0.

Proof. First we consider the case where k is a number field. By Theorem 5.1

and [Sa81, Lemma 6.2], the map αa is the Brauer–Manin pairing of Xc
a. Our

claim then follows from Sansuc’s result [Sa81, Cor. 8.7].

For k a global function field, we apply Theorem 5.1 and [DH22, Theorem 2.5]

to conclude.
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