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Inferring individual evaluation 
criteria for reaching trajectories 
with obstacle avoidance from EEG 
signals
Fumiaki Iwane 1,2,3*, Aude Billard 1,6 & José del R. Millán 2,3,4,5,6

During reaching actions, the human central nerve system (CNS) generates the trajectories that 
optimize effort and time. When there is an obstacle in the path, we make sure that our arm passes 
the obstacle with a sufficient margin. This comfort margin varies between individuals. When passing 
a fragile object, risk-averse individuals may adopt a larger margin by following the longer path 
than risk-prone people do. However, it is not known whether this variation is associated with a 
personalized cost function used for the individual optimal control policies and how it is represented 
in our brain activity. This study investigates whether such individual variations in evaluation criteria 
during reaching results from differentiated weighting given to energy minimization versus comfort, 
and monitors brain error-related potentials (ErrPs) evoked when subjects observe a robot moving 
dangerously close to a fragile object. Seventeen healthy participants monitored a robot performing 
safe, daring and unsafe trajectories around a wine glass. Each participant displayed distinct evaluation 
criteria on the energy efficiency and comfort of robot trajectories. The ErrP-BCI outputs successfully 
inferred such individual variation. This study suggests that ErrPs could be used in conjunction with 
an optimal control approach to identify the personalized cost used by CNS. It further opens new 
avenues for the use of brain-evoked potential to train assistive robotic devices through the use of 
neuroprosthetic interfaces.

We use our arm to reach out for objects of all sorts during daily activities. As we do so, we make sure not to 
intersect with obstacles on the way. Research on human motor control aims to understand the factors driving 
reaching motion with a general consensus that the dynamics of these movements is driven by an internal  model1. 
In general, reaching paths are straight with a bell-shaped velocity profile, as the central nervous system (CNS) 
optimizes the effort and time of the reaching  actions2,3. The optimal control view explains a wealth of evidence on 
how the CNS can modulate the trajectory online to adapt to environmental constraints, e.g., obstacle  avoidance4. 
However, experimental evidence suggests that several factors are at play when generating trajectories and that 
these factors vary across  individuals5. Efficiency and comfort are two key factors when computing reaching 
motion, where one aims at a good balance between optimizing for efficiency, by minimizing  effort3,6, and maxi-
mizing (arm) comfort, e.g., by steering away from the joint  limit7,8. These two factors often conflict, such as when 
reaching for a target while avoiding obstacles. Taking the shortest path may require to bring the arm danger-
ously close to the obstacle, and require uncomfortable stiffening of the muscles to prevent inadvertent  contact9.

Reaching trajectories follow a similar pattern, but there exists variability between  individuals5,10. Individuals 
may opt to modify their natural arm trajectory to reduce risks, choosing a longer, and hence less efficient  path11. 
Although a previous  study5 characterized such individual variation in reaching trajectories, it is not known if 
this variation is associated with a personalized cost function used for the individual optimal control  policies4 
and how it is represented in our brain activity. To address this question, we investigate whether such individual 
variations in their desirable reaching trajectories are reflected in the two parameters of the control policy, energy 
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efficiency and comfort, and if it is possible to infer individual evaluation criteria from their electroencephalogram 
(EEG) activity. We therefore hypothesize that the personalized evaluation criteria are revealed in a differentiated 
weighting given to energy minimization versus comfort. To maintain a consistent viewpoint across individuals, 
we generate human-like reaching trajectories and assume that such preferences can be revealed not only when 
producing self-generated reaching movement, but also when observing others’ reaching  movements12,13, even 
when these are generated by artifacts such as  robots14. Furthermore, we monitor brain error-related potentials 
(ErrP)15–17, which may be elicited when subjects observe a robot moving around a fragile object, displaying at 
times daring trajectories around the object.

ErrPs have been used in brain-machine interface (BMI) scenarios to infer the user’s perception of correctness 
of actions executed by the machine. In many cases, the machine was a robotic system: either a robot  arm18–20 
or a  vehicle21. To characterize one’s evaluation criteria with ErrPs, participants need to monitor a vast amount 
of systematically modulated human-like reaching trajectories. For example, Kolkhorst et al showed recorded 
videos of two different robot trajectories to participants and used elicited ErrPs to evaluate these  trajectories22. 
This approach, however, is limited both on the number of trajectories and on the way that the trajectories were 
evaluated —the ErrPs were extracted when the participants listened to statements describing the robot motion 
(e.g., ‘Path 1 is better than Path 2’).

This present study extends the analysis of the data collected in our previous  study23, in which subjects 
observed the motion of a robot arm passing close-by a fragile obstacle, namely a wine glass. Subjects were in 
partial control of the robot as they could initiate the robot’s motion or interrupt it when they deem the robot to 
come too close to the obstacle. Outside these human interventions, the robot was fully autonomous, controlled 
by dynamical systems.

Dynamical systems are sets of ordinary differential equations. They have been shown to account for the 
dynamics of human reaching  movements24–26 and the curvature of reaching movements in 3D and higher 
 dimensions27,28 in constrained  environments29. Coupling across dynamical systems has been used to model 
limb coordination in reaching, such as coordination between the grip aperture and arm  motion30,31, and the 
coordination across the visual and motor systems to avoid  obstacles32.

Avoiding obstacles requires to continuously monitor both the arm posture and its relation to the surround-
ing environment (i.e., position of arm, hand, target, and obstacles). Humans seamlessly adjust the reaching 
trajectories upon perception of potential  collisions10. By setting our robot’s trajectory according to a human-like 
dynamical system, we aimed at increasing the naturalness of the motion and hence the chance to elicit emphatic 
response in the observer. To systematically modulate robot trajectories, we acted on two parameters that could 
modify the trajectory in the vicinity of the obstacles; safety factor and reactivity (Figs. 1 and  2). The safety factor 
controlled the margin between the end-effector of the robot and the obstacle, while the reactivity corresponded 
to the point of the trajectory, with respect to the location of the obstacle, where the robot started to move away 
from the obstacle.

Figure 1.  Experimental protocol. Participants directed the robot by using the joystick in their hand and 
evaluated a variety of robot trajectories with obstacle avoidance while collecting their EEG signals. Robot 
trajectories were generated by a dynamical system and modulated by two parameters, a safety factor s to control 
the distance to the obstacle and a reactivity factor ρ to determine when the robot starts avoiding the obstacle. 
For each robot trajectory, we compute the energy efficiency, measured as the distance travelled by the robot, 
and the comfort, measured as the minimum distance between the end-effector and the obstacle, and relate this 
to individual specific preferences. We assess such personalized evaluation criteria by transferring individually 
calibrated classifier across participants.
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In this work, we revisit the data acquired in our previous  study23 and investigate if the individual evaluation 
criteria can be attributed to different weighting in “energy efficiency” versus “comfort”. We further investigate 
whether ErrPs infer individual weighting of energy efficiency and comfort while evaluating human-like reach-
ing trajectories.

Results
Electrophysiological results
In time-frequency representations, we observed an increase of theta ([4 8] Hz) and mu band ([8 12] Hz) power 
in erroneous trials over the frontocentral areas; i.e., FCz channel (Fig. 3a and b)33–38. Theta band power increased 
from -0.1 s to 0.4 s, while mu band power did from -0.1 and 0.1 s relative to the release of the joystick. In the 
temporal domain, a clear negative deflection,  ERN16,39,40, followed by positive deflection,  Pe41,42, appeared over 
frontocentral areas (e.g., FCz electrode) for erroneous trials (Fig. 3c and Fig. S1)17,43. In contrast, the time-
frequency representations and grand averaged signals of the correct trials remained mostly flat (Fig. S2 and 
Fig. 3c). Our decoding approach successfully classified the ErrPs at 0.86± 0.088 (mean ± SD) as measured by 
the Area Under the ROC Curve (AUC) (Fig. 3d)13,13,44–47. The decoding performance varied across participants 
due to the variability in their individual ErrPs (Fig. S1).

Group-level comparison of behavioral- and inferred evaluation criteria
Participants consistently released the joystick, perceiving the trajectories as erroneous, for robot trajectories 
being energy efficient but of low comfort (Fig. 4a). On the contrary, robot trajectories with high comfort but 
energy inefficient were considered correct. High variability over participants was observed around the bound-
ary of correct and erroneous trajectories (Fig. 4b). Energy efficiency ( 91.9± 3.1% , mean ± std.) better predicted 
behavioral responses compared to comfort ( 90.0± 3.8% , paired Wilcoxon’s signrank test, p = 0.001 ). These 
results illustrate that individual evaluation criteria varied around the border between correct and erroneous 
trajectories. On the other hand, consistent behavioral responses were observed at energy inefficient and large 
comfort, as well as energy efficient and low comfort.

We then inferred individual evaluation criteria using the ErrP-BCI outputs (Fig. 5a and b) and compared them 
with those based on behavioral responses. ErrPs were detected when participants observed that the trajectories 
were energy efficient but of low comfort. On the contrary, ErrPs were not detected for robot trajectories with 
high comfort and energy inefficiency. Energy efficiency ( 76.2± 7.0% , mean ± std.) better predicted ErrP-BCI 
outputs compared to comfort ( 72.7± 7.1% , paired Wilcoxon’s signrank test, p < 0.001 ). The mean and variability 
of inferred evaluation criteria co-varied with those with the behavioral responses (Pearson’s r = 0.966, p < 0.001 
for mean, r = 0.501, p < 0.001 for variability) (Figs. 4a, b and  5a, b). These results indicate that the inferred 
evaluation criteria successfully reproduced the behavioral evaluation criteria at the group level. Importantly, the 
decision boundaries of the inferred evaluation criteria successfully encoded their individual variations between 
risk-prone and risk-averse participants (Figs. 4c,d and  5c,d).

Assessment of individual variations in evaluation criteria
Finally, we asked whether each participant employed individual evaluation criteria, as reflected in their behaviors, 
and if the inferred evaluation criteria, based on the ErrP-BCI outputs, successfully reflected them. To answer it, 
we transferred individually calibrated classifiers across participants that predict correct or erroneous trajectories 
based on the energy efficiency and comfort of the trajectories. Classifiers trained with the behavioral response 
better modelled their evaluation criteria relative to those trained with ErrP-BCI output (a two-way repeated 
measures ANOVA revealed the main effect of teaching labels ( F(1, 16) = 16.2 , p = 0.001 ) (Fig. 6a and Table 1). 
Furthermore, intra-subject data better predicted individual evaluation criteria relative to inter-subject for both 

Figure 2.  Example robot trajectories. Sets of example robot trajectories with (a) low energy efficiency and high 
comfort, and (b, c) high energy efficiency and low comfort.
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behavior and ErrP conditions (a two-way repeated measures ANOVA revealed the main effect of classifier 
transfer ( F(1, 16) = 19.5 , p < 0.001)). This shows that evaluation criteria for robot trajectories were customized 
for each individual, thus intra-subject data better inferred their evaluation criteria than inter-subject condition. 
Furthermore, we computed the similarities between behavioral and inferred evaluation criteria for each pos-
sible pair of subjects without modeling the weighting on the two parameters. Similar to the previous analysis, 
the higher level of similarity was observed for intra-subject data (0.65 ± 0.04) relative to inter-subject (0.51 ± 
0.03) (Fig. 6b), indicating that inferred evaluation criteria successfully reflected individual variation in energy 
efficiency and comfort (Wilcoxon’s signrank test, p < 0.001).

In summary, our results support the fact that the participants employed individually customized evaluation 
criteria in the energy efficiency and comfort space to evaluate robot trajectories. This individual customization of 

Figure 3.  Electrophysiological results. (a) Time-frequency representation of error-related spectral perturbation 
(ERSP) at FCz within the time window of [ −0.5, 1] s with respect to onset of joystick release. (b) Theta band 
([4 8] Hz) and mu band ([8 12] Hz) spectral power of all channels relative to the correct trials. (c) Grand-
averaged event-related potentials of correct and erroneous trials at FCz. 0 s in x axis represents the onset of 
release for erroneous trials, while it corresponds to the individual averaged release time for correct trials. Insets 
illustrate scalp topographical representation of the obtained ErrPs at 0 and 0.25 s. (d) Classification performance 
measured by Area Under the Curve (AUC) for each subject. Each bar corresponds to the averaged AUC, while 
each dot corresponds to the AUC from one testing fold or averaged AUC score of single participants (in red).
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the evaluation criteria was successfully reflected in the inferred criteria (intra-subject: 89.9± 0.98 %, inter-subject: 
88.1± 0.89 %, p = 0.02 ), indicating that ErrPs encode individual weights on “energy efficiency” and “comfort”.

Figure 4.  Evaluation criteria with behavioral responses. (a) Mean and (b) variability of energy efficiency by 
comfort matrices based on behavioral responses. (c, d) Evaluation criteria of risk-prone and -averse subjects, 
respectively. A dashed black line shows the decision boundary between correct and error trials.
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Discussion
We employed the robot arm as the agent that performed continuous movements while participants monitored 
its action to evaluate that the robot successfully avoided the obstacle placed in the middle of the path according 
to one’s evaluation criteria. Robot trajectories were controlled by a dynamical system to generate human-like 
motion dynamics to facilitate participants’ acquisition of a forward model of the  trajectories48,49 and the elicita-
tion of ErrPs when trajectories were deemed undesirable. Our results showed that each participant employed 

Figure 5.  Inferred evaluation criteria based on ErrP. (a) Mean and (b) variability of energy efficiency by 
comfort matrices based on ErrP decoding output. (c, d) Inferred evaluation criteria based on ErrP detection for 
risk-prone and -averse subjects, respectively. A dashed black line shows the decision boundary between correct 
and error trials.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20163  | https://doi.org/10.1038/s41598-023-47136-2

www.nature.com/scientificreports/

individual evaluation criteria, attributed to distinct weighting of energy efficiency and comfort. Furthermore, 
ErrP-BCI output successfully recreated these individual weighting. This provides novel evidence that ErrP decod-
ing can be used for finer grained inference on the neural correlates underpinning control of reaching movements.

Participants deemed trajectories passing too closely by the obstacle undesirable, and thus used criteria similar 
to those at play when one is producing similar reaching movements in the presence of  obstacles32,50. We attribute 
this observation to the fact that the robot’s dynamics of movement shares similarities with the natural dynamics 
of human movements. However, to confirm this hypothesis, further works should compare these findings to the 
use of non-human like dynamics to drive the robot’s movements.

The participants tended to reject the robot’s trajectories that were energy efficient, but offered insufficient 
comfort (Fig. 4a). Individual differences were most visible at the decision boundary between accepted and 
rejected trajectories and were indicative of each participant’s unique weighting of the importance of energy 
efficiency and comfort when judging the trajectories (Fig. 4b). There has been ample evidence that humans’ 
reaching trajectories are influenced by the presence of  obstacles50–52, even when these obstacles are not directly 
in the  way53. Most of these studies focused on identifying common patterns of movements across individuals and 
how these movements were influenced by the obstacle’s positioning or height. Other authors have documented 
that individuals differ in their reaching trajectories when their hand would pass the same static  obstacle5. These 
studies have attributed this individual difference to personal preferences and the cost that a person associates 
with a  collision54. To our knowledge, no previous investigation has delved into the nature of these costs and how 
they may vary. Therefore, our study provides fresh insight into the specific costs that individuals use to guide 

Table 1.  (a) Classification accuracy and (b) the results of the post-hoc comparison.

(a). Classification accuracy

Dataset Behavior Behavior EEG EEG

Classifier transfer condition Intrasubject Intersubject Intrasubject Intersubject

Classification accuracy [%] 92.2 ± 0.74 89.7 ± 0.67 89.9 ± 0.98 88.1 ± 0.89

(b). Post-hoc analysis

Condition 1 Condition 2 Estimated difference Standard error p-value

Behavior-Intrasubject Behavior-Intrasubject 2.51 0.42 p < 0.001

EEG-Intrasubject EEG-Intrasubject 1.86 0.72 p = 0.02

Figure 6.  Individual customization of evaluation criteria. (a) Results of transfering the individually calibrated 
classifier between intra- and inter-subject data for two teaching labels; i.e., behavior and ErrP. ∗ indicates 
p < 0.05 . (b) Correlation coefficient between evaluation criteria and inferred evaluation criteria of intra- and 
intersubject data. ∗∗∗ represents the significant difference between the two groups (Wilcoxon’s signed-rank test, 
p < 0.001).
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their trajectory planning when faced with obstacles. Our study also revealed that the CNS’s use of two well-
established criteria, energy efficiency and comfort, for guiding reaching movements in open space could also 
explain the planning of reaching movements in the presence of obstacles. We found that the weighting of these 
two criteria played an important role.

In previous  works55–57, characterization of the individual evaluation criteria for robot trajectories was carried 
out by participants physically moving the robots. However, the participants’ view point during physical guidance 
and subsequent evaluation may vary, thus causing the same robot trajectories to be perceived differently. As an 
alternative approach to extract individual evaluation criteria for robot actions, our previous work proposed and 
demonstrated the use of ErrPs combined with  IRL23. Extending our previous report, the ErrP decoding outputs 
successfully inferred individual evaluation criteria with high precision (89.9 ± 0. 98%), characterizing individual 
weighting of energy efficiency and comfort (Fig. 6). These new results now suggest that ErrPs could be used in 
conjunction with an optimal control approach to infer individual costs used by the CNS to plan movements.

We transferred an individually calibrated decoder between participants to confirm our modeling of individual 
differences and our modeling of the decision boundary (Fig. 6a). This approach was based on the use of a binary 
classification model. Although this binary classifier has been commonly used to monitor cognitive processes, 
it is only a proxy of the true complexity of human  decision58. Moreover, we considered solely two costs, energy 
efficiency and comfort, but multiple other factors may be at play.

Previous studies showed that ErrPs encode subjective aspects of performance monitoring such as 
 consciousness59,60,  confidence61 and individual ability to perceive  error62. In ErrP-based BMI applications, ErrP 
decoding probabilities were exploited to teach (quasi) optimal policies to external  agents18,23,63,64. Our study 
uncovered another aspect of the individual modulations of ErrP that reflects subjective preferences related to 
motor control during reaching movements (Fig. 5). This novel kind of information, being more informative than 
a simple probability, could accelerate the teaching process and, critically, incorporate explainability in human-
robot interaction. Indeed, as our work shows, optimal control policies acquired through an ErrP-based BMI not 
only reflect individual preferences for the robots humans interact with, but also are grounded on brain activity. 
We speculate that this will facilitate the incorporation of neuroprosthesis in our brain schemas as a natural part 
of our bodies.

Methods
Experimental protocol
Seventeen healthy subjects, 24± 2 years old, participated in the study. All experiments were carried out in 
accordance with the experimental protocol approved by the EPFL local ethics commission (PB_2017-00295). 
Informed consent was obtained from all participants who volunteered to perform the experiments. Figure 1 
shows the experimental setup.

Participants wore an EEG cap and sat in a chair facing a 7-degree-of-freedom robotic arm (KUKA LWR 4) 
moving from left to right and back, while avoiding a wine glass located in the middle of the trajectory (Fig. 2). 
Participants could initiate and interrupt the robot’s motion using a joystick. They were informed of possible 
collisions between the robot’s end-effector and the wine glass, and were instructed to release the joystick each 
time they perceived the undesirable robot trajectory (i.e., it risked colliding with the obstacle). Upon the release 
of the joystick, the robot departed from the trajectory to follow a predefined upward motion, passing above the 
obstacle until reaching its destination. Participants perceived modification of the ongoing robot trajectories by 
change in motor sound.

In this setup, error-related EEG activity was superimposed on motor-related EEG activity as participants had 
to release the joystick to signal their erroneous perception. To verify the null effect of subjects using the joystick 
on the error-related EEG activity, we recruited an additional group of seven participants in our previous  study23. 
The participants performed the task with and without the joystick. In trials without the joystick, the participants 
reported their preference on the completed trajectories after each trial while the robot was controlled by the 
experimenter. We confirmed that error-related EEG activity was comparable between with and without the 
joystick condition. Please refer to our previous study for  details23.

The robot trajectory was generated by a dynamical system designed for obstacle  avoidance65. To what extent 
the trajectory would avoid the obstacle was controlled through two parameters: safety (s) and reactivity ( ρ ). These 
parameters were randomly chosen over the safe region of operation (sampled from homogeneous distributions, 
ρ ∈ [1, 8] , and s ∈ [1.0, 1.5] ) for each trial, allowing the possibility for the arm to hit the obstacle. Collisions 
between the robot’s end effector and the obstacle occurred for eight subjects, 4± 1 times per participant.

A trial was considered complete once the robot reached the opposite side of the table with respect to the initial 
position. Trials were labeled as erroneous or correct depending on whether the participant released the joystick 
or not, respectively. Each participant completed approximately 400 trials in four runs. The experiment lasted 
about two hours. Participants rested a few minutes between runs. The average error rate among subjects was 27 
± 7%. In order to represent examples of single-subject individual evaluation criteria and their individual varia-
tions, we chose two specific participants who had the maximum or minimum rate of rejecting the trajectories. 
Specifically, the participant with the highest probability of rejecting the trajectories was considered risk-averse, 
while the one with the smallest probability was considered risk-prone.

Robot controller for obstacle avoidance
The robot’s trajectories were controlled in Carthesian space by modulating the trajectory of the robot’s end-
effector. Following the established  approach65, the robot’s motion is driven by a nominal first order dynamical 
system ẋ = f (x) , where x ∈ R

3 represents the state of the robot’s end-effector, which dictates the behavior of the 
robot in the absence of the obstacle. Close to the obstacle, the dynamics is modulated as follows (Figs. 1 and 2):
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The columns of M(x) are composed of a basis of the space, with the first column aligned with the normal n(x) 
to the surface to the obstacle.

where e(·) form an orthonormal basis of the tangent plane to the obstacle. Such a decomposition exists, for convex-
shaped obstacles. The approach assumes that a measure of the distance from the obstacle is given by Ŵ(x) , where 
the isoline Ŵ(x) = 1 corresponds to the obstacle’s boundary. D(x) is a diagonal matrix, of which the elements 
increase or decrease the velocity along the direction set by E. We set the eigenvalues to

The deflection is parameterized by the reactivity factor ρ , which controls for how early the robot starts depart-
ing from its nominal trajectory. The safety margin s around the obstacle is determined by the isoline of value 
1

Ŵ(x) . Specifically:

• The reactivity factor ρ controls the magnitude of the modulation. Increasing ρ has the effect of stronger 
modulation of the vector field at every point, and hence a earlier response of the robot to the presence of 
obstacles.

• Ŵ(x) =
d
∑

i=1

(

xi
ai

)2pi
 where a ∈ R

d and p ∈ Z
d
+ are component-wise parameters that represent the scale and 

shape of the object, respectively. A desired safety margin s can be achieved with a simple scalar multiplier for 
a. This increases the virtual size of the object, resulting in a larger margin around the object.

In order to relate the parameters of the control system generating the robot trajectories to energy efficiency and 
comfort, we calculated, respectively, the total distance travelled, given by:

and the minimum distance between the end-effector and obstacle, given by,

Since, for erroneous trajectories, the robot did not complete the entire initial trajectory, we used the expected 
trajectory the robot would have traveled through for this set of parameters for our analysis, assuming that par-
ticipants used a forward model of the entire trajectory to evaluate if the trajectory was deemed erroneous or not.

EEG acquisition and processing
EEG signals were recorded from sixteen active electrodes located at Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, 
C2, C4, CP3, CP1, CPz, CP2 and CP4 (10/10 international system). EOG signals were also collected from three 
active electrodes at above the nasion and below the outer canthi of the  eyes66. The ground electrode was placed 
on the forehead (AFz) and the reference electrode was placed on the left earlobe. These signals were sampled at 
512 Hz and power-line notch filtered at 50 Hz. Participants were asked to refrain from excessive eye movements 
and blinks when the robot was moving. A screening period of around 50 trials was performed to get them used 
to the task and visually inspect the EEG signals.The channel CPz of S11 was removed and spherically interpolated 
because it was identified as a contaminated channel during visual inspection.

Participants underwent 90 s of calibration period in which they were asked to perform the following eye 
movements without moving their head; (i) clockwise and counterclockwise rolling of eye balls for 30 s, (ii) 
horizontal and vertical eye movements for 30 s, and (iii) repeated eye blinks for 30 s. These data were used to 
calculate the coefficients to remove EOG contamination from EEG signals based on an autocovariance  matrix66.

A second-order high-pass non-causal Butterworth filter was applied with the cut-off frequency of 1 Hz to 
remove the baseline drift. EEG signals were then epoched with a time window of [-0.2 0.6] s around the onset. 
We used different onsets for correct and erroneous trials, as the participant did not provide a behavioral response 
in correct trials. For erroneous trials, the onset was defined as the time when the subjects released the joystick. 
For the correct trials, the onset was chosen as the individually averaged release time in erroneous trials during 
the experiment relative to the initiation of robot trajectories; i.e., 1.08 ± 0.14 s (mean ± std). Erroneous trials 
with a reaction time below 0.5 s or above half of the trial length, i.e., when the robot overtook the obstacle, were 
removed from the subsequent analysis, since the evaluation was too early or too late with respect to the onset of 
the trajectory, respectively. This process removed 16.3± 21.7 trials ( 3.54± 4.3% of the total data, mean ± std.).

(1)ẋ = M(x; ρ,Ŵ(x))f (x)

(2)M(x) =E(x)D(x)E(x)−1

(3)E(x) =[n(x) e1(x) .. ed−1(x)]

(4)D(x) =diag
(

�
1
(x), . . . , �d(x)

)

(5)�
1
(x) =1−

1

Ŵ(x; s)1/ρ
�
d
(x) = 1+

1

Ŵ(x; s)1/ρ
.

(6)
∑

t=0

√

(xt − x0)2

(7)min(
√

(xt − xobstaxle)
2
).
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Artifactual epochs were identified and rejected using the established method based on channel-wise joint 
log  probabilities67,68. To estimate the relative probability of each trial for each channel, the observed probability 
density function of the EEG amplitude values ( Dc ) was calculated for all trials for each channel c. Each data-point 
sample was associated with a probability. Based on this associated probability, the joint log probability Jc(i) was 
computed for each trial i and channel c by the following equation:

Trials with a deviant probability of at least one channel were removed from subsequent analysis. The criterion 
was a probability of occurrence above three times the standard deviation from the mean. On average, 23.3± 8.5 
trials were considered spurious ( 5.5± 2.1% of total data, mean ± std.).

Time-frequency analysis
The S-transform was used to decompose the EEG signals into time and frequency domain. The S-transform 
overcomes the minimal resolution of the short-time Fourier transform and the deficiency of phase recommenda-
tion in the Wavelet  transform21,34,69,70. For localizing the complex Fourier signal, the S-transform uses a window 
which is Gaussian in nature whose height and width are controlled by frequency. S-transform Sx(τ , f ) of EEG 
signals x(t) is defined as follows:

where Wx(τ , d) is the wavelet transform of signal x(t) and the mother wavelet w(t, f) is chosen as follows:

The average spectrum of erroneous trials (ERSP(f, t)) was characterized relative to that of correct trials averaged 
within the time window of [-0.1 0.4] s, µ(f ) , as  follows71,72:

The time and frequency range were set to [-0.5 1.0] s and [1 30] Hz, respectively. Relative power change at each 
channel location was also calculated by averaging over ERSP from -0.1 to 0.4 s.

Decoding of ErrPs
EEG signals were low-pass filtered at 16 Hz with a non-causal second-order Butterworth filter (Fig. 3a and 
b)17,73,74, and segmented into epochs within a time window of [-0.1 0.4] s with respect to the onset of  events75. 
To enhance signal-to-noise ratio (SNR), we applied a Canonical Correlation Analysis (CCA) based spatial filter 
and used the first three components for subsequent  analysis76–78. Then the amplitudes downsampled at 64 Hz and 
Welch’s Power Spectral Densities (PSDs) from 4 to 16 Hz with steps of 2 Hz were extracted as features. For each 
trial, we used these two types of features (i.e., amplitude and PSD of the first three CCA components, Fig. S3) 
because, although their combination did not yield a higher decoding performance than each type separately 
during ten-fold cross validation (amplitude: 0.85 ± 0.094, PSD: 0.62± 0.069 , combined: 0.86± 0.088 (mean ± 
SD)), they have been shown to be superior in other  studies21,23,62,79. All computed features were concatenated 
and normalized within the range of [0, 1]. From this feature vector x , we computed the posterior probability of 
having detected an error, p(error|x) using a linear discriminant analysis (LDA) and a ten-fold cross-validation.

Robot trajectories were inferred as correct if the probability was below 0.5, while considered erroneous if the 
probability was above 0.5.

Visualizing individual evaluation criteria
Visualization of the evaluation criteria was performed by creating 40 linearly separated bins for energy efficiency 
and comfort. The min-max ranges were [5.87 5.93] and [0.99 3.10], respectively, based on the simulated robot 
trajectories. For each trajectory, we associated a Boolean variable to account for the presence of a behavioral 
response, namely whether the subject had released or not the joystick to interrupt the trajectory. Similarly, each 
trajectory was associated with the probability of ErrP detection, represented as a scalar value between 0 and 1.

(8)Jc(i) = − log(
∏

x∈Ai

pDc (x))

(9)Wx(τ , d) =
∫ ∞

−∞
x(t)w(t − τ , d)dt

(10)Sx(τ , f ) = expi2π f τ Wx(τ , d)

(11)w(t, f ) =
|f |√
2π

exp−
t2 f 2

2 exp−j2π ft dt

(12)S(τ , f ) =
|f |√
2π

∫ +∞

−∞
exp−

−(τ−t)2 f 2

2 exp−2iπ ft x(t)dt.

(13)ERSP(f , t) = 10 log10(
ERS(f , t)

µ(f )
).

(14)p(error|x) =
1

1+ exp−(w′x+b)
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To investigate which of the two parameters, energy efficiency or comfort, better predicts the behavioral 
response as well as ErrP-BCI output, we performed a logistic regression with only one of the two parameters. 
The classification accuracy was calculated through a ten-fold cross-validation.

Assessment of individual evaluation criteria
In order to assess our hypothesis that participants employed individual evaluation criteria when monitoring 
robot trajectories, we transferred an individually calibrated classifier across participants. Classifiers were trained 
to predict whether a trajectory was deemed correct or erroneous (class label) based on the measure of energy 
efficiency and comfort. To determine whether an individual classifier generalized across participants, we con-
trasted each individual classifier’s accuracy at predicting the intra-subject data versus the inter-subject data. Had 
all subjects employed the same evaluation criteria, regardless of whose classifier was used to predict the evalua-
tion outcome, inter-subject and intra-subject classification performances should be similar. To avoid overfitting 
on intra-subject data, performance was evaluated by a ten-fold cross-validation, using a training set to testing 
set ratio of 90 to 10 %.

This analysis was repeated using the prediction of the ErrP decoder as binary output (class label) relative to 
the theoretical decision threshold (i.e., 0.5). The aim of the analysis is to measure the quality of the inferred evalu-
ation criteria, thus the predicted ErrP output was compared against the behavioral response. The classification 
accuracy is 100% if the classifier trained with the ErrP-BCI output successfully predicted the behavioral responses 
of the participants for observed pairs of energy efficiency and comfort. We contrasted classification performance 
between the intra- and inter-subject to evaluate variability of prediction across participants.

In both analyses, we evaluated the classification performance using a two-by-two conditional matrix. One 
condition is classifier transfer, i.e., intra- or inter-subject, while another is the type of teaching labels, i.e., behavio-
ral response or decoder output. We used a two-way repeated measures analysis of variance (ANOVA) to evaluate 
the variability of classification performance over the two-by-two conditions.

To further determine if inferred individual preferences by ErrP detection were customized for each participant 
and for each pair of energy efficiency and comfort, we computed the Pearson correlation coefficients between 
behavioral and inferred evaluation criteria for intra- and inter-subject data. Computed correlation coefficients 
of the two conditions were then assessed by Wilcoxon’s signed rank test.

Data availability
The datasets generated and/or analyzed during the current study are available in the Zenodo repository, https:// 
zenodo. org/ record/ 36270 15.
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