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ABSTRACT

Galaxy-scale gravitational lenses are often modeled with two-component mass profiles where one component represents the stellar
mass and the second is a Navarro Frenk White (NFW) profile representing the dark matter. Outside of the spherical case, the NFW
profile is costly to implement, and so it is approximated via two different methods; ellipticity can be introduced via the lensing
potential (NFWp) or via the mass by approximating the NFW profile as a sum of analytical profiles (NFWm). While the NFWp
method has been the default for lensing applications, it gives a different prescription of the azimuthal structure, which we show
introduces ubiquitous gradients in ellipticity and boxiness in the mass distribution rather than having a constant elliptical shape.
Because an unmodeled azimuthal structure has been shown to be able to bias lens model results, we explored the degree to which this
azimuthal structure that was introduced can affect the model accuracy. We constructed input profiles using composite models using
both the NFWp and NFWm methods and fit these mocks with a power-law elliptical mass distribution (PEMD) model with external
shear. As a measure of the accuracy of the recovered lensing potential, we calculated the value of the Hubble parameter H0 one would
determine from the lensing fit. We found that the fits to the NFWp input return H0 values that are systematically biased by about
3% lower than the NFWm counterparts. We explored whether such an effect is attributable to the mass sheet transformation (MST)
by using an MST-independent quantity, ξ2. We show that, as expected, the NFWm mocks are degenerate with PEMD through an
MST. For the NFWp, an additional bias was found beyond the MST due to the azimuthal structure exterior to the Einstein radius. We
recommend modelers use an NFWm prescription in the future, such that the azimuthal structure can be introduced explicitly rather
than implicitly.
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1. Introduction

Gravitational lensing allows for a direct measure of the mass
of galaxies, whether or not that mass is visible, and as such
it is a valuable tool to study galaxies and dark matter (DM).
Lensing can also be a tool to study cosmology, because time
delays between multiple images can be compared to those pre-
dicted from a lens model to constrain a time-delay distance
D∆t ∝ 1/H0. These tools are only as accurate as the galaxy mass
distribution models on which they depend (see reviews by e.g.,
Birrer et al. 2022; Shajib et al. 2022).

Galaxy lenses are generally massive elliptical galaxies that
are often described using multiple mass components, with one
tracing the light representing the baryon mass distribution and
the other representing the DM mass distribution. Dark mat-
ter mass distributions are typically described using an Navarro
Frenk White (NFW) profile (Navarro et al. 1996), which takes

? NHFP Einstein fellow.

the following form, parameterized in 3D in terms of a character-
istic density ρs and scale radius rs:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2 · (1)

While the spherical 3D profile has a clean analytical form, the
2D-projected elliptical NFW profile, which is necessary for lens-
ing applications, does not have an analytical form for the deflec-
tion angle or lensing potential. To circumvent this problem,
Golse & Kneib (2002) showed that a general elliptical lensing
mass density profile can be expressed analytically if the elliptic-
ity is introduced in the lensing potential rather than the mass dis-
tribution itself. This allows for analytical calculations of lensing
properties, and so this parameterization has been the established
method to model NFW profiles for various applications, includ-
ing time-delay cosmography (e.g., Wong et al. 2020; Rusu et al.
2020; Shajib et al. 2022). Alternative methods to introduce ellip-
ticity in the surface mass density while keeping the computation
feasible include precalculating the numerical integrals on a grid
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to be interpolated (Schramm 1990; Schneider & Weiss 1991;
Keeton 2001), or expanding the mass profile into a series of ana-
lytically tractable components, such as multi-Gaussian expan-
sion (MGE; van de Ven et al. 2010; Shajib 2019) or the sum of
cored steep ellipsoids (CSE; Oguri 2021). Because these meth-
ods introduce ellipticity directly in the mass distribution, they are
thought to be more physically realistic. In this work we compare
the Golse & Kneib (2002) representation of lens galaxies that
captures the ellipticity in the lens potential, to the CSE-based
method of Oguri (2021), which has the ellipticity in the mass-
density. We refer to these descriptions as the NFWp and NFWm
parameterizations, respectively.

This work aims at quantifying the impact of these differ-
ent parametrizations on the predicted lensing properties, with
a specific interest in galaxy-scale time delay cosmography. The
main feature of interest is that while both parameterizations have
the same radial profile (defined as the 1D profile of conver-
gence within circular annuli), the azimuthal structure is different
because of the different ways in which ellipticity is introduced.
Kochanek (2021) shows the azimuthal freedom of a lens model
must be considered with great care, which encourages us to
be wary of the exact prescription of the azimuthal structure
within lens models. Furthermore, Van de Vyvere et al. (2022a,b)
show in individual lenses how unmodeled azimuthal structures
can bias lens models, even though as a population these effects
appear to average out. Our concern is that the choice of NFW
parameterization could represent a systematic bias in the treat-
ment of the azimuthal structure. As DM is a significant mass
component in galaxies and as it is in many cases represented
with a NFW profile, we focus here on comparing two differ-
ent parametrizations of this profile and quantifying their impact
on lens models. To quantify this comparison, we used the H0
value recovered from the lensing model, as it directly reflects the
capacity of a model to capture differences in the Fermat potential
at the location of the images.

While the azimuthal structure of interest comes from the
NFW prescription, we tested the effect of this prescription in the
case where the profile has two components where only the DM
component is represented by an NFW profile, such that the test
is more applicable to the analysis of observed systems. A sensi-
ble method to evaluate the impact of the choice of parametriza-
tion of the NFW on H0 consists in emulating and modeling
strongly lensed systems that resemble known ones. Gomer et al.
(2022, hereafter TDCVIII) created a population of mock lens
images from analytical profiles designed to match the observed
population of Time-Delay COSMOgraphy (TDCOSMO) lenses.
The profiles used to create these lenses were two-component
profiles, with a Chameleon profile (Dutton & Treu 2014) rep-
resenting the light and an NFWp profile representing the DM.
TDCVIII then fit these systems with a power-law elliptical mass
distribution (PEMD; Barkana 1998) model with external shear.
For this work, we created mocks that are identical to those
used by TDCVIII, except that we changed the NFW parame-
terization to create a systematic comparison between the NFWp
and NFWm implementations. We fit these mocks in the same
manner as TDCVIII and compared the results of the parameter
inferences.

We quantified the impact of these parameterizations in the
context of the mass sheet transformation (MST), detailed in
Sect. 2.2, where lenses with different radial profile shapes can
give the same observables (i.e. image positions and fluxes).
We made use of the MST-independent quantity ξ2 (defined in
Sect. 2.2) to diagnose the degree to which the degeneracies in
this paper can be attributed to the MST. The primary goal of this

work is to evaluate the degree to which the choice NFW parame-
terization can play a role in the determination of H0 and identify
the source of that role in the context of lensing degeneracies.

The paper is structured as follows: Section 2 reviews the
NFW profile parameterizations as well as ξ, Sect. 3 compares the
mock populations and the results of the PEMD fits, Sect. 4 dis-
cusses these results, Sect. 5 expands this discussion to its impli-
cations for other works, and Sect. 6 summarizes and concludes
this work. Appendix A gives an analytical description of the axis
ratio of the mass of the NFWp parameterization and Appendix B
details several subtleties regarding the calculation or ξ in this
work. This work adopts a fiducial flat cold dark matter (ΛCDM)
cosmology with H0 = 70 km s−1 Mpc−1 and ΩM = 0.3.

2. Formalism

In this section, we review the key differences between the NFWp
and NFWm parameterizations of the density profile (Sect. 2.1),
and discuss the quantity ξ which we propose to use as a diagnos-
tic of degeneracies between models beyond the MST (Sect. 2.2).

2.1. NFW parameterization

Mass distributions of gravitational lenses are described in terms
of surface mass density profiles normalized by the critical lens-
ing density (i.e. convergence) κ(r) = Σ(r)/Σcrit. If one wishes to
use the NFW profile for lensing applications, one must be able to
accommodate ellipticity and project into the 2D plane of the sky.
The convergence for a circular NFW profile can be expressed as
(Bartelmann 1996)

κNFW =
2κ0

u2 − 1
[1 − F(u)], (2)

with scaled radius u = r/rs and normalization κ0 = ρsrs/Σcrit,
and where

F(u) =

 1
√

1−u2
arctanh

√
1 − u2 (u < 1)

1
√

u2−1
arctan

√
u2 − 1 (u > 1).

The corresponding lensing potential can then be expressed as
(Meneghetti et al. 2003)

ψNFW = 2κ0θ
2
s h(u), (3)

where θs is the scale radius expressed in arcseconds and

h(u) =

{
ln2 u

2 − arccosh2 1
u (u < 1)

ln2 u
2 + arccos2 1

u (u > 1).

Ellipticity can be added to a given 1D profile by replacing the
r argument with an elliptical radius such as rell =

√
qx2 + y2/q,

where q is the axis ratio of the ellipse. For some profiles such
as the Chameleon profile, this ellipticity is added directly to the
convergence. However, such a substitution is not guaranteed to
result in an analytical form for the lensing potential: the NFW
profile has no such analytical form for the lensing potential aris-
ing from an elliptical 2D-projected mass distribution, instead
requiring expensive numerical integrals to approximate.

The NFWp parameterization solves this problem by instead
adding ellipticity analytically into the lensing potential, a
strategy which can be applied generically for any analyti-
cal lensing potential profile. Golse & Kneib (2002) show that
one can add ellipticity to the potential by replacing r with
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rε = rell

√
2qψ/(1 + q2

ψ) in Eq. (3), giving analytical expressions
for the convergence and shear. To minimize confusion between
ellipticity conventions, we have introduced qψ as the axis ratio
of the potential. Similarly, we use qκ for the convergence, and
reserve q to a general context. Because of the analytical form of
the lensing potential, the lensing calculation is fast to compute.
For low ellipticity values, the mass distribution contours have
an approximately elliptical shape. However, for high ellipticity
values this leads to the mass distribution taking on nonphysical
dumbbell-shaped contours, and so modelers often restrict use
of the NFWp profile to low values of ellipticity, although the
exact definition of “low” may differ depending on the specific
lensing application and is ultimately a choice on the part of the
modeler. This parameterization is the conventional approach to
model NFW profiles in most lensing contexts.

Alternatively, the NFWm parameterization, in which the
ellipticity is directly implemented into the mass distribution of
the NFW profile, is composed of a combination of cored steep
ellipsoid (CSE) profiles with a joint centroid position, each of
which has a core radius Si and amplitude Ai. Each CSE has the
following convergence profile:

κCSE =
Aiκ0

2(S2
i + r2

ell)
3/2
, (4)

where rell is used as the radial element. The CSE profile
has ellipticity introduced in the mass distribution, and has
analytical forms for the lensing potential and its derivatives
(Keeton & Kochanek 1998). Oguri (2021) provided an approxi-
mation of the NFW profile using 44 CSE components such that
the sum emulates the NFW profile to a precision of ∼0.01% in
terms of the lensing potential, deflection, and convergence. Cal-
culation of lensing quantities takes approximately ten times as
long as the NFWp, but with the advantage that the elliptical mass
contour shape is retained for all values of ellipticity.

The input ellipticity for the NFWp profile describes the
potential and as such does not equate to the ellipticity of the
mass distribution. Therefore, in order to make an apt comparison
between the two parameterizations, we modify the input ellip-
ticity to the NFWp profile such that the two parameterizations
have the same mass ellipticity at small radii. In Appendix A, we
describe analytically the relationship between the axis ratio of
the potential and that of the mass for a general profile, and detail
our process to match these ellipticities in the specific case of the
NFWp profile.

After matching the mass ellipticities, we show in Fig. 1 the
shape of the mass distribution for an NFW profile using both the
NFWp (red) and NFWm (gray) parameterizations of ellipticity.
We show three different values of qκ (and corresponding qψ in
the NFWp case) as an input. In the circular case, the two profiles
agree. In the elliptical case, the two profiles are not identically
shaped but both appear physical. As the ellipticity increases, the
NFWp contours become more oval-shaped, and if we were to
further increase the ellipticity, they would become a nonphysi-
cal dumbbell shape (Kassiola & Kovner 1993). This effect was
also discussed in detail by Golse & Kneib (2002), and as such
the NFWp profile is typically restricted in use to low values of
ellipticity.

To quantify the azimuthal structure as a function of semima-
jor axis, we use the photutils software, which uses the method
of Jedrzejewski (1987) to fit the elliptical structure of isophotes.
The method iteratively fits the position angle and ellipticity of an
ellipse. Once this fit is found, departures from ellipticity in terms

of Fourier multipole components are calculated as

I = I0 + an sin(nE) + bn cos(nE), (5)

where n = 3 or 4, I is the intensity of a given contour, I0 is
the intensity of the fit ellipse contour, and E is the eccentric
anomaly. After a fit is achieved, the semimajor axis of the ellipse
in question is increased and the process is repeated, such that
the result is a description of the ellipticity, position angle, and
Fourier amplitudes as a function of semimajor axis. We apply
this fitting procedure to the isodensity contours and measure the
ellipticity of the mass (expressed as 1− q) as a function of semi-
major axis, which we plot in the middle panels. In terms of
the Fourier multipole components, the only component which
returns nonzero values is b4, a parameter of particular interest
because nonzero b4 is often measured in isophotes of real early
type galaxies and is known to have an effect on H0 recovery
in lens systems (Van de Vyvere et al. 2022a). A positive value
of b4 indicates a “disky” shape and a negative value indicates a
“boxy” shape. In the bottom panels, we plot the fit values of b4,
which indicate that the contours systematically become boxier
as a function of semimajor axis.

Setting aside the known q mismatch effect (which we have
accounted for) and the “dumbbell-shaped” effect (which does
not apply in this ellipticity regime), in this work we identify a
third difference in behavior between the two approaches; namely,
there is a significant increase in ellipticity with radius. We refer
to this effect as an “ellipticity gradient” in this work. Addition-
ally, the mass distributions resulting from NFWp profiles present
a nonzero boxiness which increases with radius, even in the
case where the mass contours have physically realistic convex
shapes. The presence of this type of azimuthal structure even in
the low-ellipticity regime (i.e., before the dumbbell shapes arise)
is somewhat overlooked in the literature, as in most use cases of
the NFWp profile the intention is to mock an elliptical shape,
and so an approximately constant elliptical shape is implicitly
assumed in the low-ellipticity regime.

2.2. Mass sheet transformation and H0

It is possible for two different mass distributions to reproduce
the same imaging information. The most well studied of such
degeneracies is the MST (Falco et al. 1985), where the conver-
gence is rescaled by a constant factor of λ and a uniform sheet
of mass1 is correspondingly added:

κλ(r) = λκ(r) + (1 − λ). (6)

In addition, the unobservable source position is rescaled by the
same factor,

βλ = λβ. (7)

Under the MST, image positions and relative fluxes are
unchanged. Meanwhile, time delays are affected by a factor of
λ.

The MST is critical for lensing in a cosmological context,
because the true mass distribution of the lens is unknown and
lensing cannot distinguish between two mass profiles which are
within an MST of one another. Because a given lens could be fit

1 This transformation is purely mathematical in nature. This means
that this sheet of mass does not have to be a real component missed
by the model. Instead, it is possible that the distribution of the “true”
mass profile of the lens and the chosen model are, to a good precision,
mapped to each other via a MST (e.g. Schneider & Sluse 2013).
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Fig. 1. NFW 2D mass isodensity contours of κNFW (top), ellipticity as a function of semimajor axis (middle), and the b4 multipole component as a
function of semimajor axis (bottom), in units of NFW scale radius. The NFWp parameterization introduces ellipticity through the lensing potential
and is shown in red while the CSE-based NFWm parameterization introduces ellipticity directly in the mass and is shown in gray. The panels from
left to right indicate the comparison for three input axis ratios. To match the κNFW ellipticities, we use the procedure in Appendix A, which results
in the NFWp potential having an input qψ as indicated above the top panels.

with more than one possible model (e.g., PEMD or composite),
it is useful to describe lens profiles in a MST-independent way,
meaning to relate only the quantities which lensing directly con-
strains rather than those which come from model choice. One
such MST-independent quantity is the Einstein radius, RE, for
which in this work we adopt the definition of the circular aper-
ture within which the mean integrated surface mass density is
equal to the critical density for lensing. The MST-independent
nature of this quantity makes it one of the few quantities which
lensing directly measures rather than infers from a model, and
so it would be exceedingly useful to find more analogous quan-
tities. The dimensionless quantity ξ, expressible using a combi-
nation of derivatives of the lensing potential ψ, has been devel-
oped for this purpose by Sonnenfeld (2018), Kochanek (2020),
Birrer (2021). Together with the Einstein radius, RE, ξ is an

MST-invariant quantity, and so this work uses it as a metric to
evaluate the degree to which two mass distributions are within
an MST mapping from one to another.

This work primarily uses the Kochanek (2020) ξ2 definition,
which is defined by Taylor expanding deflection for a circular
lens for an image near RE:

ξ2 ≡ RE
α′′E

1 − κE
, (8)

where κE is the mean convergence and α′′E is the second deriva-
tive of the deflection, where the “E” subscript refers to the eval-
uation at r = RE. The “2” subscript on ξ2 refers to being derived
from the second order term in the expansion, which we share in
Appendix B.1. The analogous quantity derived by Sonnenfeld
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(2018) and shown in terms of the radial stretch factor by Birrer
(2021), ξrad, is conceptually equivalent with a difference only of
a factor of 2,

ξrad ≡ RE
ψ′′′E

1 − ψ′′E
= RE

α′′E
1 − α′E

=
1
2
ξ2, (9)

noting that α = ψ′ and using for a circular lens (Bartelmann
2010),

κ =
1
2
∇2ψ =

1
2

[
1
r
∂

∂r

(
r
∂ψ

∂r

)]
=

1
2

(
ψ′′ +

α

r

)
· (10)

Evaluating at the Einstein radius and recognizing that α(RE) =
RE, one can express κE in terms of the local first derivative of
deflection,

κ =
1
2

(
α′E + 1

)
, (11)

reconciling the two definitions of ξ by inserting κE into Eq. (8).
If one mass model is within an MST of another, they will

match the same RE and ξ2. If the fit model is a power law, the ξ2
constraint dictates the radial slope of the profile: γ = 2 + ξ2/2.
The convergence of the power law can easily be derived as

κE,PL =
2 − ξ2

4
· (12)

The accuracy of the Fermat potential,

τ =
(θ − β)2

2
− ψ(θ), (13)

can be shown to be proportional to (1 − κE) (Kochanek 2002).
While Fermat potential is somewhat abstract, the observable
quantity is the relative time delay between images ∆t, which is
given by the Fermat potential, scaled by cosmological distances
such that ∆t = D∆tc−1∆τ ∝ H−1

0 ∆τ. As such, errors in the Fer-
mat potential are compensated by errors in the recovered value
of H0, such that the observable ∆t is correctly matched. There-
fore, one can use H0 as a proxy to represent the accuracy of the
Fermat potential, which we elect to use since it is a more intuitive
quantity with one specific value for a given model (rather than
for each pair of images, which is more cumbersome to express).
Through this relation, the expected fractional error on H0 can
be expressed using a comparison between the true convergence
(which is generally unknown except in simulated lenses) and that
of the power-law model. This error is equivalent to the MST
parameter λ if the difference between the profiles corresponds
to an MST:

1 − κE,PL

1 − κE,true
=

H0,PL

H0,true
= λ. (14)

Finally, one can estimate the width of the recovered H0 posterior,
∆H0,PL, through a propagation of errors on ξ2:

∆H0,PL

H0,true
= λ

∆H0,PL

H0,PL
= λ

∆
(
1 − 2−ξ2

4

)
1 − 2−ξ2

4

= λ
∆ξ2

2 + ξ2
' λ

∆ξ2

2
, (15)

where we have used ξ2 ∼ 0 � 2, noting that galaxy-scale lens
systems have mass profile slopes near isothermal, that is, γ =
2 (e.g., van de Ven et al. 2010; Auger et al. 2010; Shajib et al.
2021). For example, to reach a 1% accuracy on H0, the tar-
get precision for a population of systems, ξ2 must be known to
within an absolute error ∼0.02 (assuming λ ∼ 1). Since ξ2 ∼ 0,

this description using absolute error in ξ2 is more robust than a
description using relative error (such as that of Kochanek 2021).

In practice, the utility of ξ2 has been considered for two
main purposes. First, because it is considered to be model-
independent, a measurement of ξ2 from one model could be
used to help guide another model in the optimization process.
One example of this idea was demonstrated by Shajib et al.
(2021), who included lensing information in a kinematics anal-
ysis by folding the posterior distributions for RE and ξ2 into the
Bayesian framework, rather than jointly modeling the lensing
and kinematic parameters together, thereby under the implicit
assumption that the stars and DM in the composite lens share
the single ellipticity of the lens model. Secondly, ξ2 has been
considered for its application on the simulation side for sys-
tematics testing of time-delay cosmography. In many cases one
wishes to consider the case where the true lens is a more complex
mass distribution than the model, and evaluate the errors intro-
duced by an overly simplistic lens model (e.g., Cao et al. 2022;
Van de Vyvere et al. 2022a,b). Because the process of creating
and fitting mock images is slow, it would be expedient to be
able to estimate what the recovered H0 would be from a given
model directly from the mass distribution (see Xu et al. 2016;
Tagore et al. 2018; Gomer & Williams 2020). We have consid-
ered using ξ2 for this purpose (predicting the would-be PEMD
fit and using Eq. (14)), which would enable one to create much
larger samples of lenses for systematics checks. Our attempt to
confirm this method using the NFWp mocks in TDCVIII did not
match our expectation to the desired precision (approximately
3% discrepancy on H0, see Sect. 3). Several explanations of this
mismatch are possible, such as a possible bias in the estimate
of κE, or higher order terms being required in the Taylor expan-
sion used to define ξ2 (see Appendix B). In the next section, we
show that the main driver of the mismatch unveiled in TDCVIII
is directly attributable to the implicit azimuthal structure intro-
duced through the NFWp profile.

3. Comparing fits to both NFW parameterizations

The experiment in this work is designed to probe the effect of
the choice of NFW ellipticity parameterization in the context of
galaxy-scale strong lensing. The NFW component represents the
DM of a galaxy, but since no galaxy is purely DM, the impact of
the NFW parameterization should be studied in the framework
of a composite model with both baryon and DM mass compo-
nents. TDCVIII created a population of mock systems analogous
to the TDCOSMO lens population using a Chameleon profile
(Dutton & Treu 2014) for the baryon component and a NFWp
profile for the DM component, constructed to have stellar and
DM mass distributions typical of real lenses. The Chameleon
profile has a convergence given as

κCham =
A0

(1 + qκ)

 1√
r2

ell + 4w2
c/(1 + qκ)2

−
1√

r2
ell + 4w2

t /(1 + qκ)2

 ,
(16)

with parameters wc and wt with wt > wc where A0 sets the
mass scale at zero radius. and is tailored to closely mimic a Sér-
sic profile with a given RSersic and nSersic, but with the benefit
that its lensing potential is analytically expressible. We create 20
mocks following the same strategy as TDCVIII, but we replace
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Table 1. Parameters for the mock lenses used in this work.

Input lens profile parameters Comparison quantities

qκ wc [′′] wt [′′] A0 [′′] rs [′′] ρs [M� kpc−3] RSersic [′′] RE [′′] NFW c

0.629 0.0164 1.89 1.72 11.28 4.21 × 106 1.54 1.87 7.74
0.655 0.0200 2.30 1.44 7.76 9.87 × 106 1.87 1.91 11.0
0.733 0.0139 1.60 1.30 4.51 1.36 × 107 1.31 1.37 12.5
0.642 0.0222 2.56 1.30 6.87 6.95 × 106 2.08 1.57 9.52
0.640 0.0182 2.09 2.12 10.62 2.42 × 106 1.70 1.96 6.12
0.826 0.0193 2.22 1.60 5.07 1.04 × 107 1.81 1.58 11.2
0.641 0.0148 1.71 1.38 11.95 3.00 × 106 1.39 1.48 6.71
0.676 0.0135 1.56 1.40 4.31 1.67 × 107 1.27 1.50 13.6
0.644 0.0173 1.99 1.76 13.79 2.40 × 106 1.62 1.81 6.10
0.787 0.0158 1.82 1.32 6.45 6.90 × 106 1.48 1.35 9.50
0.786 0.0209 2.41 1.62 11.09 4.22 × 106 1.96 1.78 7.75
0.729 0.0182 2.10 1.68 10.59 5.00 × 106 1.71 1.86 8.31
0.614 0.0180 2.07 1.16 6.99 8.92 × 106 1.69 1.53 10.5
0.756 0.0204 2.35 1.62 8.37 6.30 × 106 1.91 1.78 9.14
0.705 0.0156 1.79 2.22 8.51 3.18 × 106 1.46 1.86 6.88
0.663 0.0221 2.55 1.41 6.15 7.17 × 106 2.08 1.59 9.64
0.669 0.0202 2.32 1.23 6.14 1.26 × 107 1.89 1.65 12.1
0.625 0.0181 2.08 1.73 5.53 9.82 × 106 1.69 1.83 11.0
0.702 0.0221 2.55 1.43 12.86 2.43 × 106 2.08 1.58 6.13
0.811 0.0207 2.38 1.37 4.15 1.89 × 107 1.94 1.57 14.3

Notes. The parameters left of the under the left heading are used to construct the mock profiles, while those to the right of the under the right
heading are measured from the profile for easier comparison with real systems. Rows in bold indicate the three systems depicted in Fig. 2. All
lens light distributions target nSersic = 4, and all lenses are placed at z = 0.25, where the corresponding physical scale is 3.91 kpc per arcsec. NFW
concentration c is defined as r200/rs.

the NFW component first with an NFWp component and later
with an NFWm component. We note that the ellipticities of the
convergence of the Chameleon and NFW components were not
matched in TDCVIII, so we recreate the NFWp mocks using the
ellipticity matching procedure discussed in Appendix A. This
population of mock lenses and corresponding fits provides an
excellent laboratory to explore the role of the implicit azimuthal
structure embedded within the NFW parameterization.

With fits to both populations, we can compare the resulting
values of H0 and ξ2 to determine if the parameterization plays
a relevant role for time delay cosmography. In both cases, the
composite profile will not recover the fiducial value of H0 due
to the MST, but if the MST is the only effect at play, the two
should recover the same values of H0 and ξ2, biased from the
fiducial H0 by the amount predicted by Eq. (14). We show that
the implicit azimuthal structure in the potential-based parameter-
ization causes a deviation from this prediction, inconsistent with
an MST.

An alternative design for a similar experiment is to use a
Chameleon+NFW profile as the model to fit a lens, and to test if
the NFW parameterization affects the recovery of H0 and other
parameters. Under an ideal setup, such an experiment would be
more akin to how time-delay cosmography modeling is imple-
mented and able to more directly attack the question of whether
or not the NFW parameterization introduces a bias in these con-
ditions. However, such a setup introduces complexities in that
the input azimuthal structure is more difficult to describe and
control. While it is possible to create an input population with a
reasonable approximation of the azimuthal structure of real sys-
tems (see e.g., Van de Vyvere et al. 2022a,b), we instead elect
for this more controlled experiment where lensing degeneracies

can be more directly probed because the azimuthal structure can
be traced exclusively to the NFW parameterization, with the
acknowledgement that this setup is not directly equivalent to the
common practice of using an NFW profile to fit a mock.

3.1. Experiment specifics

We use the same input systems as TDCVIII, which were con-
structed to match the observed lens population. A large number
of two-component profiles were synthesized, and then a subset
was selected which matched several observable quantities such
as the ellipticities, Einstein radii, and effective half-light radii
of real systems. By probing this population of parameters, we
ensure that the results of this experiment hold across a range of
realistic lenses. We share the parameters for our mock lenses in
Table 1. For more details, see Gomer et al. (2022). The result is
a set of input two-component profiles with a realistic distribu-
tion of parameters, including ellipticities ranging roughly from
input q = 0.6 to q = 0.8. TDCVIII simply used this input q
for both components, resulting in a mismatch between the qκ of
the Chameleon stellar component and the qψ of the NFWp DM
component. We instead rescale the qψ of the NFWp component
according to Eq. (A.7) to match the qκ between the two compo-
nents. We synthesize 20 mock lens images using both the NFWp
and NFWm parameterizations.

We show three example composite profiles drawn from our
population in Fig. 2 for both the NFWp and NFWm implementa-
tions. We note that the field of view differs from Fig. 1 to better
view the structure at the Einstein radius, which is significantly
interior to the NFW scale radius. Inside the Einstein radius,
the Chameleon profile dominates, resulting in a nearly perfect
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Fig. 2. Three composite mass profiles drawn from our sample, with the Einstein radius (green, dotted) and NFW scale radius (blue, dotted)
indicated. The implementation of these composite profiles is shown for NFWp (red dashed) and NFWm (gray solid) DM profiles. Top row shows
isodensity contours; second row shows ellipticity as a function of semimajor axis; third row shows b4 as a function of semimajor axis. The bottom
panels show the radial profile over a log scale, defined as the value of κ in a circular annulus at a given radius, rather than with respect to semimajor
axis, expressed relative to the NFWm radial profile. The composite profiles are plotted as well as both components individually. Units of distance
are now in arcseconds.
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Fig. 3. Example image comparison between NFWp and NFWm
ellipticity parameterizations (top), with resulting residuals from the
PEMD+shear fits (bottom). Caustics for both parameterizations are
shown in the bottom right with the source position rescaled as described
in the text and indicated as a cross. This example image comes from
a system with moderately large ellipticity with an input axis ratio of
qκ = 0.64.

elliptical shape. Only in the outer regions does the ellipticity
gradient and nonzero boxiness resulting from the NFWp profile
become apparent. Radially, the two NFW implementations have
essentially identical structure.

Similar to TDCVIII, we use lenstronomy2

(Birrer & Amara 2018; Birrer et al. 2021) to create and fit
our mock lenses. Our NFWp mocks are the same as the set
used in TDCVIII (specifically the TDCOSMO-like set in that
work), except that we rescale the ellipticity so that the mass
components match. Our NFWm mocks simply substitute the
NFW components for the NFWm parameterization. One last
small change we make between our two parameterizations
compared is to set the source position relative to the caustic
in order to maintain the same image configuration; since the
caustic changes slightly between the two parameterizations,
this slightly moves the source position. This effect is further
quantified in Sect. 5.1.

We show a comparison between the two mocks for an exam-
ple image in Fig. 3. The images are quite similar, with the main
differences coming from slightly different point source magni-
fications with no discernible differences in the arcs. The input
Einstein radii and ξ2 values closely match between both param-
eterizations: the Einstein radii match to within our numerical
uncertainty while the input ξ2 values match to better than 0.01
in all cases, with a mean difference of 0.001.

2 https://github.com/lenstronomy/lenstronomy

Fig. 4. Expected H0 in km s−1 Mpc−1 calculated using the ξ2 calculated
from the input mass profiles for 20 mock lenses compared to the value
of H0 recovered from a PEMD fit. The dotted line indicates a 1:1 corre-
spondence.

3.2. Fit results

Like TDCVIII, we fit our mock population with a PEMD+shear
model. All systems are fit well, with typical residuals compa-
rable to Fig. 3 (bottom). We find that the azimuthal structure
attributable to the NFWp parameterization can be absorbed by
the lens model, similar to Van de Vyvere et al. (2022a,b), who
found that nonzero multipole components and ellipticity gradi-
ents can often be absorbed by the lens model so long as the devi-
ations from a constant ellipse shape are not too extreme.

If the MST is the only effect at play, the recovered values
of H0 should match the predictions according to Eq. (14) based
on the ξ2 of the input mass distribution. We plot the fit values
of H0 for both the NFWm population and the NFWp popula-
tion in Fig. 4 alongside the predicted H0. Error bars are esti-
mated via a Markov chain Monte Carlo (MCMC) estimation
using emcee (Goodman & Weare 2010; Foreman-Mackey et al.
2013). The fits to the NFWp systems are systematically biased
relative to the expectation by approximately 2.5%, while the fits
to the NFWm systems lie on the expectation line. This result
indicates that the Fermat potential recovered by the model is
inaccurate by approximately 2.5%. This discrepancy appears to
be directly caused by the systematic azimuthal structure intro-
duced by the NFWp profile. The effect was originally reported
in TDCVIII, although since that work did not match the qκ val-
ues between the baryon and DM components and therefore used
a more elliptical NFWp component, the magnitude of the effect
was slightly larger than seen in this work, quoting a discrepancy
of 3%.

3.3. Numerical checks

For completeness, we consider the hypothetical possibility that
κE could be numerically biased when comparing one parame-
terization to another, resulting in the observed H0 discrepancy
when Eq. (14) is applied. As such, we also plot directly the ξ2
values of the PEMD fits compared to those of the input mass
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Fig. 5. Input ξ2 for the 20 mock lens mass profiles compared to the
recovered ξ2 from the PEMD fits, with a 1:1 relation indicated as the
dotted line.

distributions in Fig. 5. Again the fits using NFWm parameter-
ization fall tightly on the expected 1:1 line, while those of the
NFWp parameterization are systematically biased by approxi-
mately 0.05, consistent with Eq. (15). This result confirms that
the discrepancy arises because of implicit azimuthal structure in
the NFWp parameterization, rather than numerical effects due to
κE estimation.

We have tested several other possibilities to explain this
mismatch. Some sources of error we quantified are detailed in
Appendix B. Namely, we quantify errors due to the truncation of
the Taylor expansion used to define ξ2, the effect of numerical
errors in ξ2 calculation, and the effect of azimuthal averaging.
These effects cannot introduce systematic errors above the per-
cent level, and so we ultimately conclude that the mismatch has
been caused by the ellipticity parameterization within the NFW
profile.

4. Discussion

We have found that the NFWp parameterization of the NFW pro-
file, when fit with a PEMD+shear model, results in a mismatch
between the input ξ2 and that of the fit, ultimately resulting in an
H0 which is systematically underpredicted. Theory predicts that
the fit value of ξ2 will match the input, since it is the only quan-
tity (along with RE) which lensing is able to constrain in an MST-
independent manner. This leads one to wonder what exactly this
mismatch means.

Our interpretation of this result is that the azimuthal struc-
ture in the input was not adequately accounted for by the fit
model, analogous to the example in Kochanek (2021). The
PEMD model, even with external shear, has no ellipticity gra-
dients or nonzero b4 which we now know to be ubiquitous in the
NFWp parameterization, shown in Fig. 1. Lacking the capacity
to include this azimuthal structure, the PEMD recovered a biased
value of ξ2 compared to the value which would have been recov-
ered if the fit had sufficient azimuthal freedom. When the mocks
were replaced with those with constant ellipticity, the expected

value of ξ2 was recovered. The takeaway is that the expected ξ2
of a fit model and the actual ξ2 of a general mass distribution will
not be equivalent unless the azimuthal structure of the model is
able to match the truth.

In other words, this mismatch occurs because the mapping
from the input to the PEMD fit cannot be represented by an
MST alone, as ξ2 is invariant under the MST by construction.
Nonetheless, the resulting image fits are good with no residu-
als, meaning the input mass model with its additional azimuthal
structure is degenerate with a PEMD+shear model to within the
image noise. We state this explicitly to highlight that the degen-
eracies at play in this experiment go beyond the MST.

The Source Position Transformation (SPT;
Schneider & Sluse 2014; Wagner 2018), which generalizes
the MST to more complex transformations of the radial distri-
bution of the lens, but also yields azimuthal change of the mass
(Unruh et al. 2017), may appear to be the degeneracy at work in
the present experiment. One can show from Eqs. (10) and (11)
that ξ2 can be expressed as in terms of ratios of derivatives of κ:

ξ2 = RE
κ′E
κE

+ 1. (17)

As Unruh et al. (2017) show, such ratios of κ derivatives are
invariant under the MST, but can change under the SPT. Through
ξ2, we show that this ratio is unchanged for the fits to the NFWm
parameterization, but changed for those of the NFWp parameter-
ization, meaning that the NFWp profiles are not an MST away
from the fit, but the transformation is consistent with an SPT.
The SPT is an approximate global degeneracy, and so we check
the values of the relative time delays between the input and the
PEMD fit. Under an MST, all three time delays are rescaled by
the same constant λ, but under an SPT, the three relative delays
are not scaled by the same constant value (Wertz et al. 2018). We
find exactly this result, that each individual time delay of the fit
is off by the same constant factor for the NFWm mocks but each
are off by different factors for each delay for the NFWp mocks,
supporting the conclusion that the NFWm mocks are an MST
away from a PEMD, while the NFWp mocks are an SPT away
from a PEMD. However, the SPT is not a complete description
of this degeneracy, because the SPT also transforms the source
shape, while all mocks in this work are created and fit using
a circular source. Therefore we suspect that there is a related
degeneracy at work, likely in the form of a “shape degener-
acy” as discussed by Saha & Williams (2006), who found similar
results using pixelated mass profiles with ellipticity gradients,
albeit limited to point sources. Like the SPT, this degeneracy
does not uniformly affect time delays, consistent with our find-
ings. Although it is difficult to be more quantitative about their
exact form and contribution, it is clear that higher-order lensing
degeneracies beyond the MST are certainly at play in this work.

It may look surprising that while most of the azimuthal
changes in the input profile appear outside the Einstein radius,
(i.e., where the NFW profile starts to dominate), the impact on ξ2
and H0 remains noticeable. This result indirectly shows that mor-
phological assumptions on the density profile beyond the Ein-
stein radius can have a substantial impact on the lensed images.

We find that the discrepancy between the recovered value
of ξ2 for the Chameleon+NFWp and Chameleon+NFWm pro-
files moderately correlates with the input axis ratio, with Pear-
son correlation R = −0.54. The discrepancy also correlates with
the recovered value of external shear, with R = 0.70. We inter-
pret this to mean that the deviation from an MST worsens with
ellipticity, and that external shear can help to absorb this more
complex degeneracy. These results add to the body of evidence
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that external shear can sometimes reflect absorbed degeneracies
rather than a physical quantity (Etherington et al. 2023).

One open question for lensing theory is how one should
describe the effects of these shape degeneracies in order to
include them in lens models. It may be possible to construct a
quantity which is independent of these degeneracies analogous
to the way ξ2 is constructed to be independent of the MST, but we
were unable to derive such a quantity in the confines of this work.
The problem is that outside the circular limit, Eq. (10) requires
an azimuthal ∂2ψ/∂φ2 term, entangling azimuthal dependence in
any global expression of ξ. One should instead use a local quan-
tity such as the stretch differentials discussed by Birrer (2021).
The ultimate goal would be to have a description of how this
local quantity, integrated over the imaging information, changes
with azimuthal structure. General azimuthal structure is difficult
to parameterize, but to test the concept, we created an exper-
iment where we introduced a change in the input qκ, but left
it unmodeled in the fit, then calculated the expected change
in the integrated stretch factor, and found that it corresponds
to the amount by which the PEMD ξ recovery is biased. This
is still an open field of research, but we believe a complete
description of lensing degeneracies requires an exploration along
these lines.

This result puts some limitations on the practical applica-
tions of ξ2. Firstly, the practice of using the recovered value of
ξ2 from a simple model to place a constraint on a more sophis-
ticated model is not precise to more than a few percent in the
general case. If the true mass distribution has azimuthal struc-
ture, the simple fit will recover a biased value of ξ2 which then
places an inaccurate constraint on the more sophisticated model.
This practice can only work if the true mass distribution lacks
azimuthal structure, in which case the simple fit will recover an
unbiased ξ2. Secondly, the use of ξ2 on the simulation side to
estimate the systematic effects of simplistic lens models comes
with limitations as well, because the value of ξ2 from an input
mass distribution describes what would be recovered by a model
that shares the same azimuthal complexity as the data. To per-
form systematic tests for cases where the azimuthal structure of
the mock and of the model differs, the need to create and fit mock
lens systems cannot be circumvented.

5. Connections with other works

In this section we discuss the implications of these results on
several related fields of study: namely, measurements of ellip-
ticity and lensing cross section (Sect. 5.1), flux ratio anomalies
(Sect. 5.2), and H0 determination (Sect. 5.3).

5.1. Ellipticity and lensing cross section

Two-component lens models are often used to provide observa-
tional constraints on the DM components of lens systems. In a
science case where one wishes to know the ellipticities of DM
mass distributions, modelers are already wary not to conflate the
ellipticity ascribed to the lensing potential with that of the mass
(Kassiola & Kovner 1993; Barkana 1998; Golse & Kneib 2002).
However, when two-component mass models are used to fit lens
systems, the NFWp axis ratio qψ, is sometimes quoted alongside
the baryon component qκ with little distinction made between
the quantities, opening the door for confusion if one were to take
the quoted q at face value. Perhaps deemed irrelevant to a given
science case, the distinction between the NFWm and NFWp pro-
file has been largely neglected, and hence the azimuthal struc-

ture introduced in the mass distribution even in the physical low-
ellipticity regime has been somewhat overlooked.

When the NFWp parameterization is used, this slightly
changes the caustic size, which can play a role in selection effects
affecting lensing studies (Baldwin & Schechter 2021). Studies
concerning lensing cross section should be wary about the
NFWp parameterization artificially increasing the cross section.
For the example case in Fig. 3, we find the caustic size changes
by 3% (6% by area) compared to the NFWm case. We note
that this example system has an input qκ of 0.64, which is quite
elliptical for our sample. As such this change in caustic size is
likely somewhere between the average case and the extreme
case. Finally, we also note that quantities defined using 1D pro-
files, such as the DM fraction, are unchanged by the choice of
NFW parametrization in the potential or in the mass.

Through the rescaling of ellipticity implemented in this work
in Appendix A, it is now relatively simple to convert from a
quoted NFWp axis ratio result to what the corresponding mass
axis ratio is in the center of the mass distribution. Rather than
repeating previous work, this conversion may suffice depending
on one’s intended scientific application.

5.2. Flux ratio anomalies

A second important consideration is the consequences of this
work on lensing studies involving calculations of image flux
ratios. For cusp-configuration systems, in which the three coa-
lescing images of the cusp each have a signed magnification µ,
one can define (e.g. Keeton et al. 2003)

Rcusp =
µ1 + µ2 + µ3

|µ1| + |µ2| + |µ3|
, (18)

which approaches zero as the source approaches the caustic.
Similarly for the two coalescing images in fold systems,

Rfold =
µmin + µsaddle

|µmin| + |µsaddle|
, (19)

which also approaches zero as the source approaches the caus-
tic. Deviations from these theoretical cusp and fold relations
can be used to diagnose substructure within a lens mass, which
have been interpreted as DM subhalos (e.g., McKean et al. 2007;
MacLeod et al. 2013; Nierenberg et al. 2014) or as evidence of
galaxy group effects or more complex macro-scale mass distri-
butions (Xu et al. 2015).

Considerate of this, we evaluate if the distribution of Rcusp
and Rfold would be changed by the NFW parameterization, and
so we check this distribution for one of our systems by generat-
ing 500 sources for the caustics in Fig. 3. Lensing these sources,
we designate systems as folds or cusps according to the criteria
of Keeton et al. (2005), based on how many images lie within
∼1 RE of one another. We plot the resulting Rcusp and Rfold distri-
butions in Fig. 6. We find that the distribution of these flux ratios
does not significantly change between the two NFW parame-
terizations. Comparing the distributions using a Kolmogorov–
Smirnov test, we find p-values of 0.16 for Rcusp and 0.72 for Rfold,
far from the threshold for similarity typically set at p < 0.05.
As such, we conclude that the NFW parameterization does not
directly impact such studies.

5.3. H0 determination

Because we used NFW profiles in the input mass, rather than fit-
ting a system using an NFW profile, the experiment in this work
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Fig. 6. Distributions for Rcusp (left) and Rfold (right) for many realized
source positions of an example mock.

cannot prove whether or not this effect biases H0 in real systems,
but only draws attention to the fact that the NFWp and NFWm
make different assumptions. Nonetheless, we believe that the
lessons learned in this work regarding azimuthal structures may
have some implications for this common use of NFW profiles.

When real systems are modeled, the true mass distribution
is unknown. Because the NFWp and NFWm parameterizations
give different azimuthal prescriptions, a modeler must decide
which description of ellipticity they wish to assume. After all,
ellipticity gradients and nonzero b4 exist within real galaxies,
and so a modeler may want to select a model which includes such
azimuthal structure. However, we note that NFWp azimuthal
structure is not the same as what is found in real systems, as
it systematically increases ellipticity and boxiness with radius
as a nonphysical consequence of the lensing potential, rather
than representing the physical tendency of galaxies to have ellip-
ticity which can increase or decrease with radius and struc-
tures which can be disky as well as boxy. Van de Vyvere et al.
(2022a,b) studied the effect of such azimuthal structures in lens
models, broadly concluding that individual lenses can result in
biased parameter recoveries while the population averages out
to an unbiased determination of H0. Modelers should therefore
be wary about the azimuthal structure introduced by the NFWp
model; since this effect always applies in the same direction, it
will not average out over the population of lenses. If the inten-
tion is that a mass profile has a constant elliptical shape, using
the NFWp parameterization is not consistent with this assump-
tion and would introduce a systematic effect in the modeling.

However, this is not the whole story when it comes to mod-
eling the azimuthal structure of real systems. When systems are
modeled with a composite profile, they are done so using more
complex models than we have used here. Centroid positions,
position angles, and ellipticities may be allowed to be offset
between the two components (e.g., Rusu et al. 2020; Shajib et al.
2022). It is entirely possible for choices in this parameter space
to compensate for additional azimuthal structure in the NFWp
component. As a simple example, using a circular NFW com-
ponent would result in an ellipticity gradient going from ellipti-
cal in the center to circular in the outer regions, in the opposite
direction as the NFWp ellipticity gradient, perhaps negating or
reversing its effect.

In addition, nearby perturber galaxies are included in the
model (Wong 2018; Birrer et al. 2019; Shajib et al. 2020) and
pixelated corrections to the lensing potential can be implemented
(Suyu et al. 2010). These numerous considerations add consider-
able azimuthal freedom to the model. This freedom may be suf-
ficient to describe the true mass model, in which case H0 would

not be biased beyond the MST. This possibility has not been
directly tested, but the fact that TDCOSMO recovers consistent
H0 values between their power law models and composite mod-
els supports this hypothesis (see Fig. 6 of Millon et al. 2020).
We do however note that in such a case the particular values of
the individual components may not correspond to the true mass
distributions, instead seeking a compromise which compensates
for the NFWp gradients.

Furthermore, the present work does not include stellar
kinematic constraints, which play a vital role in breaking
lensing degeneracies (Birrer et al. 2020; Yıldırım et al. 2023;
Shajib et al. 2023). Finally, we note any implications of the
systematic effects discussed in this work would only apply
to NFW profiles and therefore only to the composite fits of
TDCOSMO, having no bearing on the power-law fits also
adopted by TDCOSMO.

6. Conclusion

The NFW profile is a key ingredient of realistic models of galax-
ies, but it cannot be described analytically in the elliptical case.
For lensing applications, the ellipticity can either be added in
the potential (NFWp parameterization) or in the mass via an
approximated profile (NFWm parameterization). When elliptic-
ity is introduced in the potential, it introduces an azimuthal struc-
ture in the form of ellipticity gradients and nonzero boxiness
in the mass distribution. We created two populations of com-
posite mocks using each parameterization and fit them with a
PEMD+shear model. The mocks created using the potential-
based parameterization result in fits that recover biased values
of H0 relative to those from the mocks without this introduced
azimuthal structure. This result has several consequences:

– The use of a potential-based parameterization of elliptic-
ity introduces a ubiquitous azimuthal structure in κ in
the form of ellipticity gradients and nonzero b4, even for
low values of ellipticity when the distribution is not yet
dumbbell-shaped. We note that the presence of artificial vari-
ations of ellipticities can be mistakenly absorbed by shear
(Van de Vyvere et al. 2022b; Etherington et al. 2023). We
advise lens modelers who wish to assume an azimuthal shape
with constant ellipticity to use the NFWm parameterization
(which may be based on CSEs as we have used in this
work or another formulation that keeps the ellipticity con-
stant with radius) in order to be consistent with this assump-
tion. Azimuthal structures can still be implemented through
multiple mass components with differing ellipticities or posi-
tion angles, but it would be done so explicitly rather than
unintentionally.

– Our fits to mocks with both NFW parameterizations resulted
in values of H0, which were discrepant with one another by
2.5% (systematic), indicating an inadequacy of the model to
capture the true Fermat potential at this level. However, we
cannot claim that the practice of fitting mocks with NFW
models necessarily introduces a bias on H0 at the same level
due to the additional azimuthal freedom of TDCOSMO-like
models, which may compensate for this effect.

– The MST-independent quantity ξ2 is an accurate predictor of
the recovered mass model in the case where the input and
the fit have the same azimuthal prescription. However, when
the azimuthal structure in the input mock is not captured by
the PEMD model, the value of ξ2 is biased, indicating that
the mapping is not a simple MST, and may in fact be a more
general SPT or even a shape degeneracy. Various tests and
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subtleties in the possible ways to calculate ξ2 are described
in Appendix B.

– The bias introduced by the NFWp parameterization is mostly
caused by a deviation from elliptical isodensity contours
that take place beyond the Einstein radius. This indirectly
shows that morphological assumptions motivated solely by
the shape of the lensing galaxy interior to the Einstein radius
and/or a generic absence of ellipticity of the NFW com-
ponent may introduce a bias as large as several percent in
some lensing-inferred quantities such as H0, q, or the exter-
nal shear magnitude.

– As we have shown that ξ2 differs between two models with
a different azimuthal structure, it can only be used to con-
vert one radial profile to another by keeping the same model
assumption on the azimuthal structure. The use of ξ2 derived
from PEMD modeling has been considered as a proxy for
constraining other models, such as a composite model, with-
out directly optimizing the model on the lensed images. As
an early example of such an application, Shajib et al. (2021)
used the ξ2 from a PEMD lens model to constrain a compos-
ite model’s radial profile in dynamical modeling, although in
this example the model was spherical and as such the treat-
ment of the azimuthal structure is irrelevant. More generally,
the accuracy of this procedure is limited to the amount by
which the original power-law lens model is able to capture
the azimuthal structure: in our case having an inaccuracy of
approximately 0.05 on ξ2. If a high accuracy is required,
we caution against the use of ξ2 as a constraining diag-
nostic when comparing models with a differing azimuthal
structure.

– For a test case with significant ellipticity (input q = 0.64),
the introduced azimuthal structure also changes the cross
section for quad lenses by ∼6%. This is particularly relevant
for understanding the selection function of lensed systems
in existing and upcoming large surveys such as Euclid (e.g.,
Sonnenfeld et al. 2023).

– Flux ratios remain broadly unaffected by the choice of NFW
parameterization of the macro model of the lens.

While the true mass distributions of lenses are not exactly
known, it is important to quantify the effects of implicit assump-
tions inherent in the choice of lens model. The exact prescription
of the NFW ellipticity is one such assumption that we show can
have an effect if a high accuracy is required.
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Appendix A: Ellipticity matching to an elliptical
potential

Given that a lensing potential results in elliptical contours, this
gives rise to a non-elliptical shape of the convergence profile,
including ellipticity gradients. Here we analytically show the ori-
gin of these features, as well as analytically calculate the mass
axis ratio for an NFW potential in the limit of small radius. Start-
ing with a general potential, consider any elliptical potential of
the form

ψ(x, y) = f (a), (A.1)

where

a =

√
x2 +

y2

q2
ψ

(A.2)

is the semimajor axis which captures all the dependence on the
x and y coordinates. We note that the elliptical radii discussed in

this work, rell = a√qψ and rε = rell

√
2qψ/(1 + q2

ψ), both take on
the form g(qψ) ∗ a and as such capture all spatial dependence in
terms of a, resulting in an elliptical shape. The convergence then
takes the form

κ(x, y) =
1
2
∇2ψ(x, y)

=
1
2a

1 +
1
q2
ψ

 f ′(a) +
1

2a2

x2 +
y2

q4
ψ

 ( f ′′(a) −
1
a

f ′(a)
)

(A.3)

A function of this general form

κ(x, y) = A(a) +

x2 +
y2

q4
ψ

 B(a) (A.4)

is no longer a pure function of a, now containing additional x and
y dependence, ergo no longer having purely elliptical contours.
To calculate the axis ratio of this convergence, one can set x or y
equal to zero to calculate the value of κ along the major axis or
minor axis:

κ(x, y = 0) =
1
2

 f ′(a|a = x)
xq2

ψ

+ f ′′(a|a = x)


κ(x = 0, y) =

1
2

qψ
y

f ′
(
a|a =

y
qψ

)
+

1
q2
ψ

f ′′
(
a|a =

y
qψ

) . (A.5)

By setting κ(xc, y = 0) = C and κ(x = 0, yc) = C, one can solve
for the xc and yc values corresponding to a particular isocontour
with value C. This solution cannot be expressed for a general
potential, but one can show that the NFW potential (Eq. (3)) can
be expressed in the limit of small a as

ψNFW ' −a2 log
a
2
, (A.6)

resulting in invertible expressions for Eqs. A.5. Solving for xc
and yc and taking the ratio of yc/xc gives the convergence axis
ratio of a given contour, which in this limit is independent of the
isocontour C,

qκ,a→0 =
yc

xc
= qψ exp

q2
ψ − 1

q2
ψ + 1

. (A.7)

Fig. A.1. Relationship between the mass ellipticity and potential ellip-
ticity for the NFWp profile. Left: ellipticity for different r values. Right:
same relation in terms of axis ratios.

We use this expression to calculate the input qψ for our
NFWp profiles, guaranteeing that they have the same qκ as the
Chameleon profiles at innermost radii.

To more completely illustrate the relationship between qψ
and qκ, for an NFW profile, we recreate Fig. 2 of Golse & Kneib
(2002), which gives the mass ellipticity as a function of the input
potential ellipticity, where ε = (1 − q2)/(1 + q2). The mass axis
ratio is calculated numerically by determining the point along the
y axis which has the same convergence as a point on the x axis
and taking qκ = yc/xc. We plot this in the left panel of Fig. A.1.
This figure shows that the relation between the two ellipticities
is never equality, and the difference between them changes as a
function of r: an ellipticity gradient. We also plot the same rela-
tion in terms of axis ratios qψ and qκ (right panel). Plotted this
way, one can see clearly that qκ goes as Eq. (A.7) in the limit of
small r, which is well approximated as q2

ψ for qψ > 0.6.

Appendix B: Systematics checks

B.1. Taylor expansion

We discuss here the Taylor expansion of Kochanek (2020) used
to define ξ2, and its accuracy as a function of the limiting order
of the expansion. Expanding deflection for a circular lens for an
image near RE:

α(r) = RE +α′E(r−RE)+
1
2
α′′E (r−RE)2 +

1
6
α′′′E (r−RE)3 + . . . (B.1)

From the lens equation (β = θ − α), where θ = r for a given
image, β is given to second order in (r − RE) as

β(r) ' −2(κE − 1)(r − RE) −
1
2
α′′E (r − RE)2. (B.2)

where we have used Eq. 11. Dividing by (1 − κE),

β̂(r) ≡
β(r)

1 − κE
' 2(r − RE) −

1
2

α′′E
1 − κE

(r − RE)2. (B.3)

One can see by substituting Eqs. 6 and 7 that β̂(r) is invariant
under the MST. As such, the right-hand side of the equation
is also MST-invariant. Furthermore, since RE is MST-invariant,
the second-order term is MST-invariant as well. From here, ξ2 is
defined according to Eq. 8 by making the second term unitless
via a factor of RE.

Let us consider the error associated with the truncation of the
Taylor expansion. Using any finite order for a Taylor expansion
will introduce some discrepancy from the truth ∆β̂:

β̂ = β̂Taylor + ∆β̂, (B.4)
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where, for two terms, β̂Taylor is defined by Eq. B.3. Since RE is
measured very precisely, consider that the error due to the trun-
cation of the Taylor expansion will be interpreted as error in ξ2.
Rearranging this equation for a second order β̂Taylor,

β̂ = 2(r − RE) −
1

2RE
(r − RE)2

[
ξ2 −

2RE

(r − RE)2 ∆β̂

]
. (B.5)

We define the error in ξ2 as

∆ξ2 = −
2RE

(r − RE)2 ∆β̂. (B.6)

We construct this quantity this way because we are curious
how much the error associated with the truncation of the Tay-
lor expansion can result directly in an error in ξ2. This implicitly
assumes that there is no error in RE such that all of the truncation
error is applied to ξ2.

Though this quantity is defined using two terms in the Tay-
lor expansion, it can be useful to calculate it using n terms in the
expansion for β̂trunc to estimate the increased accuracy of a higher
order expansion. With three terms, for example, ∆ξ2 under this
construction assumes all error associated with the truncation still
applies to ξ2, which is strictly speaking inaccurate because ξ3
should have error associated with it. Therefore, this representa-
tion serves as a conservative estimation of the maximum possible
error in ξ2, signifying by how much ξ2 would need to change to
compensate for the error in the expansion.

We plot this quantity in Fig. B.1 using a power law for which
the true β̂ can be calculated analytically, using several different
slopes and several values of n. We evaluate this error both in
the case where r = 0.7RE (interior to RE) and when r = 1.3RE
(exterior to RE), such that |r−RE|/RE = 0.3 in both cases. We find
that for slopes between γ = 1.7 and γ = 2.3, the error is centered
on zero with lessening scatter as the number of terms increases.
The error is approximately 5 times larger for images interior to
RE than those exterior to RE, but for n = 2 the error is always
less than 0.04. This makes it unable to explain the systematic
difference of '0.06 discussed in this paper. Furthermore, since
the error is centered on zero, a population with an average slope
of 2 will not have any systematic bias, although a population
with a mean slope significantly different than 2 could result in
a systematic bias of order 0.02, depending on the slope. Using
additional Taylor terms decreases this error as expected, but to
implement higher order terms in practice would require more
careful accounting of errors on ξ3 or ξ4: which is a complexity
that we have neglected. This result is in agreement with that of
Birrer (2021), who quoted better than 1% accuracy on deflection
using the second order expansion under similar conditions.

With a maximum error on H0 ' 1% which is not systematic,
the Taylor truncation cannot explain the 3% systematic discrep-
ancy in this work. Furthermore, we find that the width of the
region probed by the images does not correlate with the value
of the H0 mismatch (as one would expect errors to grow with
|r − RE|). We therefore conclude that the Taylor truncation error
is not the cause of the discrepancy shown in Fig. 5.

B.2. Numerical robustness of ξ2

As this work considers a comparison between similar values
of ξ2, it is important to quantify the effects of numerical pre-
cision. We calculate the ξ2 of the input mass distribution in
lenstronomy, which in its current implementation does so by
sampling a ring of points at the Einstein radius and evaluating
the radial derivatives of the lensing potential at each point, then

Fig. B.1. Error resulting from Taylor expansions of deflection of differ-
ent order, interpreted as error in ξ2, using |r − RE|/RE = 0.3. In the top
panel, |r| < RE, while in the bottom panel, |r| > RE. The ξ2 formalism is
equivalent to using the second order expansion.

taking an average over the set for a single value of ξ2. We quan-
tify the robustness with respect to the choice of the number of
points used to sample the ring.

We first compare the calculation to the analytical power law
case over the range of slope values in this work, which ranges
approximately from ξ2 = −0.3 to 0.3, based on Fig. 5. This cor-
responds to γ ∈ [1.85, 2.15]. In the circular case, lenstronomy
calculates ξ2 exactly, regardless of the number of points. In the
elliptical case (where we set q = 0.6), we find that the numerical
calculation is within 0.002 of the true value of ξ2, with accu-
racy which improves as we increase the number of points up to
1000 points, where it remains constant at approximately 0.001.
Interestingly, we find that for profiles with steeper slopes, the
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accuracy on ξ2 does not continue to improve with an increased
number of points, and has a systematic bias at the <0.001 level.

We also test this effect on the composite profiles, although
we cannot analytically calculate the truth value of ξ2. Testing
with the Chameleon+NFWp profiles, we find that the value is
not robust (changes by approx. 0.02 or more) with fewer than
1000 points, but the robustness improves with more points. In
particular, the change from 3000 points to 10000 points changes
the evaluation of ξ2 by 0.002 (median) with 0.004 standard devi-
ation. We consequently chose to use 3000 points for this work.
The Chameleon+NFWm profiles are even more robust, with a
change of only 4 × 10−5 (median) with 0.0002 standard devia-
tion when increasing from 3000 to 10000 points.

From these tests, we conclude that the numerical calculation
of ξ2 is robust to within at worst 0.004 statistical scatter (0.2% for
H0) with a systematic bias likely less than 0.002 (0.1% for H0).
This effect therefore cannot explain the discrepancy between the
fitted ξ2 values originating from the two profile parameteriza-
tions in this work.

B.3. Other explored effects

The derivation of ξ2 comes from the circular limit, and so we
consider some of the complexities that arise in the elliptical case.
The first main effect we consider is that of propagating the uncer-
tainty on the Einstein radius. The Einstein radius is a circularly
averaged quantity and as such we must confirm that this averag-
ing is robust in our noncircular mocks. Like the Einstein radius,
ξ2 is circularly averaged, although it may be that the regions
where it is most accurately probed are the image locations rather
than a uniform circle. As such, the second main effect we con-
sider is the difference between a circularly averaged ξ2 and that
of an averaging based on the image positions.

An error in the calculation of the Einstein radius would result
in evaluating κE and ξ2 at a different location, which could in
principle bias the result. With elliptical distributions, it is impor-
tant to evaluate the effective Einstein radius, which differs from

the normalization value that describes the Einstein radius for
circular distributions. We evaluate the effective Einstein radius
using a grid and by taking radial steps outward, calculating the
circle within which the average density is equal to the critical
density. We perform some robustness checks by evaluating the
effective Einstein radius for several samples within the MCMC
chain of the fit and find that the fit Einstein radius always lies
within one radial step of the input, in our case approximately
0.013′′, which we adopt as our uncertainty in RE. We then eval-
uate the change in κE by evaluating the local convergence at this
new Einstein radius and find that it changes by approximately
1% for both the input profile and the fit profile. The worst case
scenario would be that the Einstein radius is recovered on the
lower end for one and on the higher end for the other, resulting
in the ratio in Eq. 14 being off by approximately 1%, although
this appears equally likely for the NFWp parameterization com-
pared to the NFWm parameterization and as such it is difficult to
see how this could create a systematic bias. Similarly, we also
evaluate the change in ξ2 of the input profile associated with
this change in evaluation radius. For the Chameleon+NFWm,
the median change is approximately 0.002, with little spread.
For the Chameleon+NFWp, the median change is about half as
much, but with significantly more scatter (approximately 0.007).
Neither of these effects can explain the observed discrepancy.

Another effect we consider is that ξ2 itself is a circularly aver-
aged property, which makes sense because the profile used to fit
the lens to a particular ξ2 is a global description. However, we
were curious if there could be an effect due to the local measure-
ments where the lensing information most directly probes, that
is, at the image positions. As such, we evaluated ξ2 using the
image radial position instead of the Einstein radius for each of
the four images, and took the mean of the four evaluations. We
also tried taking a weighted average based on the brightness of
the images. In either case, the value of ξ2 changes from the tra-
ditional circularly averaged calculation by a median of less than
0.005, with spread of less than 0.025, insufficient to explain the
discrepancy.

A128, page 15 of 15


	Introduction
	Formalism
	NFW parameterization
	Mass sheet transformation and H0

	Comparing fits to both NFW parameterizations
	Experiment specifics
	Fit results
	Numerical checks

	Discussion
	Connections with other works
	Ellipticity and lensing cross section
	Flux ratio anomalies
	H0 determination

	Conclusion
	References
	Ellipticity matching to an elliptical potential
	Systematics checks
	Taylor expansion
	Numerical robustness of 2
	Other explored effects


