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Abstract
Multiple lines of evidence across human functional, lesion, and animal data point to a cerebellar role, in particular of crus 
I, crus II, and lobule VIIB, in cognitive function. However, a mapping of distinct facets of cognitive function to cerebellar 
structure is missing. We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcel-
lation was performed with a validated automated segmentation pipeline (CERES) and stringent visual quality check (n = 662 
subjects retained from initial n = 1452). Canonical correlation analyses (CCA) examined regional gray matter volumetric 
(GMV) differences in association to cognitive function (quantified with NIH Toolbox Cognition domain, NIH-TB), account-
ing for psychopathology severity, age, sex, scan location, and intracranial volume. Multivariate CCA uncovered a significant 
correlation between two components entailing a latent cognitive canonical (NIH-TB subscales) and a brain canonical vari-
ate (cerebellar GMV and intracranial volume, ICV), surviving bootstrapping and permutation procedures. The components 
correspond to partly shared cerebellar-cognitive function relationship with a first map encompassing cognitive flexibility 
(r = 0.89), speed of processing (r = 0.65), and working memory (r = 0.52) associated with regional GMV in crus II (r = 0.57) 
and lobule X (r = 0.59) and a second map including the crus I (r = 0.49) and lobule VI (r = 0.49) associated with working 
memory (r = 0.51). We show evidence for a structural subspecialization of the cerebellum topography for cognitive function 
in a transdiagnostic sample.
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Introduction

The cerebellum is a fascinating infratentorial brain struc-
ture with a pivotal role in human cognition [1]. Research 
on the cerebellum has been traditionally limited to its role 
in motor control, even though the majority of the cerebel-
lar cortex is not involved in motor action planning or exe-
cution [2]. Cerebellar lesions across different diagnostic 
entities are associated with a diverse palette of cognitive 
deficits including disturbances of executive function such 
as planning, set-shifting, working memory, and verbal flu-
ency [3].

A recent study linked cerebellar anatomy to cognitive 
functioning and found that anatomical features predicted 
both general cognitive function and psychopathology [4]. 
However, regional cerebellar morphometry differences 
relating to general cognitive function in psychosis [5] or in 
autism [6] were no different from controls. One reason for 
the discrepancy could be the difference in these studies’ 
approaches (dimensional vs. case–control comparisons). 
These studies looked into general cognitive function which 
may fail to capture anatomy-cognition links in the cerebel-
lum because the relationships possibly concern specific 
cognitive domains. Studies are starting to progressively 
elucidate the functional organization of the cerebellum [2, 
7–9]. Yet, a finer-grained nuanced investigation of the dis-
tinct facets of cognition is currently lacking leaving open 
the question of whether a structural cerebellar subspeciali-
zation exists with respect to cognitive abilities. Previous 
evidence showed that brain lesions in crus I and crus II, 
VIIB [10–12], and to a lower extent VIIIA and VI are 
associated with executive function performance. A semi-
nal study in patients with cerebellar degeneration showed 
that distinct components of cognitive function (e.g., exec-
utive function, working memory, perceptual processing, 
and so on) relate differently to cerebellar topography [10]. 
Nevertheless, even though lesion studies are informative 
they have limitations, and a large-scale examination of 
the cerebellar mapping of distinct cognitive components is 
lacking. Furthermore, it is worth noting that psychopathol-
ogy severity (e.g., levels of anxiety, depression, and so on) 
has not been systematically accounted for in the reviewed 
studies examining associations with cognitive function. 
Psychopathology severity impacts cognitive function [13] 
but also brain structure properties particularly in the devel-
oping brain  [14–16]. Recently, cerebellar structure has 
been shown to be linked to both general cognitive function 
and psychopathology [4]. However, how cognitive map-
ping in cerebellar anatomy is represented independently 
of psychopathology contributions is not fully elucidated. 
Such investigation is of key interest with respect to the 
ensuing potential for clinical (e.g., neuromodulation) 

translation [17]. In sum, a major gap remains in the cur-
rent understanding of cerebellar contributions to cognitive 
function and psychopathology: it is not clear whether sub-
specializations in cerebellar anatomy pertaining to compo-
nents of distinct cognitive function exist and whether such 
differences can be observed independently of psychopa-
thology severity.

In the current investigation, we examined for the first 
time how cerebellar regional anatomy may support cog-
nitive function, capitalizing on a large dataset of transdi-
agnostic population employing a dimensional approach in 
agreement with the Research Domain Criteria framework 
[18]. Our aim was to first outline gray matter volume inter-
individual variability in the cerebellum across distinct fac-
ets of cognitive function (e.g., executive function, working 
memory, cognitive flexibility, processing speed). Consider-
ing we were interested in cohorts with detailed cognitive 
phenotyping, we used the Healthy Brain Network (HBN) 
[19], a landmark transdiagnostic mental health neuroimag-
ing and behavioral dataset in a few thousand children and 
adolescents. This protocol was approved by the Chesapeake 
Institutional Review Board, is conducted following the Dec-
laration of Helsinki for human research, and is described 
elsewhere [19]. The HBN includes predominantly unmedi-
cated children and teenagers allowing us to examine cog-
nitive cerebellar correlates unconfounded by chronic psy-
chotropic consumption. Because spurious results can arise 
from quality control issues regarding neuroimaging scans, 
a rigorous quality assessment with visual inspection of all 
images is key to ensure the robustness of the results [6]. 
We used a data-driven multivariate canonical correlation 
analysis model (CCA) to evaluate the association between 
cerebellar anatomy and cognitive phenotype. Importantly, 
we used both permutation testing and bootstrapping to assess 
the significance and the robustness of our results.

Methods and Materials

Subjects

In the current investigation, we used data coming from an 
openly shared dataset, the Healthy Brain Network (HBN) 
project [19]. The HBN is a transdiagnostic dataset of neuro-
imaging and psychopathological assessments from a cohort 
of psychiatric or at-risk population of children and adoles-
cents (5–21 years) [19]. Participants with severe neurologi-
cal disorder or acute psychotic episodes are excluded in this 
cohort. In our study, considering our focus was on neuro-
cognitive functioning, we excluded subjects with an intel-
lectual deficiency (age-corrected IQ below 70), as measured 
with the Wechsler Adult Intelligence Scale (WASI-II) or the 
Wechsler Intelligence Scale for Children (WISC-V) [20]. 
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The full clinical assessment of the HBN cohort is described 
elsewhere in depth [19].

Assessments

We were motivated to examine distinct contributions of the 
specific cognitive function aspects to the cerebellar anat-
omy. In the HBN database, cognition is quantified via the 
NIH Toolbox Cognition domain [21]. The four subscales of 
the NIH Toolbox Cognition domain used in the HBN are 
detailed as follows. (1) The NIH Flanker assesses inhibitory 
executive control and attention and requires participants to 
focus on a target stimulus and ignore flanking stimuli. (2) 
NIH Card Sort assesses cognitive flexibility and requires 
participants to apply one rule to two target pictures (e.g., 
matching by color) and then another (e.g., matching by 
shape). (3) NIH List assesses working memory function and 
requires participants to sequence visually and orally pre-
sented stimuli, e.g., by size. (4) NIH Pattern Comparison 
Processing Speed Test assesses processing speed by requir-
ing participants to compare two side-by-side pictures (same 
vs. different). In all subscales, higher scores mean better 
ability. We used the standardized normative scores for each 
subscale. Psychopathology severity is quantified with the 
Child Behavior Checklist (CBCL) [22], a widely employed 
scale that measures emotional, behavioral, and social prob-
lems in children and teenagers of 1.5–18 years old. These 
scales have a mean t-score of 50 with a standard deviation of 
10. A t-score ≤ 64 indicates non-clinical symptoms, a t-score 
between 65 and 69 indicates problems rated high enough 
to be of concern but not overtly deviant, and a t-score ≥ 70 
indicates clinical symptoms [22, 23]. Our selection of cogni-
tive measures from the NIH Toolbox and the CBCL aimed 
to capture a relatively comprehensive range of cerebellum-
associated cognitive domains [24–27], which are not only 
theoretically relevant but also practical for clinical assess-
ment [28] and potential translational applications.

MRI Acquisition

Acquisition of MRI scans was done in three sites in New 
York City: Staten Island, Rutgers University, and Cornell 
Brain Imaging Center. The specific details of each acquisition 
protocol are as follows: Staten Island images were acquired 
on a 1.5 T Siemens Avanto (TR = 2730 ms, TE = 1.64 ms, 
f lip angle = 7°, slice number = 176, voxel dimen-
sions = 1.0 × 1.0 × 1.0  mm3). Rutgers University images 
were acquired on a 3 T Siemens Tim Trio (TR = 2500 ms, 
TE = 3.15 ms, flip angle = 8°, slice number = 224, voxel 
dimensions = 0.8 × 0.8 × 0.8  mm3). Cornell Brain Imaging 
Center images were acquired on a Siemens Prisma 3 T MRI 
(TR = 2500 ms, TE = 3.15 ms, flip angle = 8°, slice num-
ber = 224, voxel dimensions = 0.8 × 0.8 × 0.8  mm3).

MRI Processing

All subjects were processed using the CERES pipeline [29]. 
This fully automated method relies on a multi-atlas patch-
based strategy that has been compared with manual tracing 
and performs well compared to other segmentation methods 
[30]. All structural T1 MRIs were processed by PC on a high 
computing performance cluster in Bordeaux, France. The 
CERES pipeline follows the parcellation protocol described 
in Park et al. [31], which provides a parcellation of the cer-
ebellum and gray matter volumes for all cerebellar lobules 
except the cerebellar vermis, which is included in every 
lobule. Moreover, the CERES pipeline provides a mask of 
intracranial volume (ICV) [32].

Quality Control

The quality control procedure was done in two steps: (1) 
visual inspection of the raw T1 images and (2) visual inspec-
tion of the images issued from the parcellation procedure 
in every slice for each spatial plan of the cerebellum by an 
expert rater (YE)—blind to the clinical features of each 
participant. We identified subjects with non-cerebellar 
voxels labeled as voxels belonging to the cerebellum, and 
vice versa, and subjects with parcellation errors within the 
cerebellar lobules. The same procedure has been applied 
previously [6]. No images with parcellation defects were 
included in further analyses. After the preprocessing and 
quality control step, we excluded 602 individuals after visual 
inspection of the raw T1 images (280 individuals), parcel-
lation errors (279 individuals), low IQ (43 individuals), and 
incomplete psychometric scores (60 individuals). A final 
sample of 662 individuals was included in the subsequent 
neuroimaging analyses. A summary of the repartition of the 
excluded subjects can be found in supplementary figure S1.

Statistical Analyses

Canonical Correlation Analysis

We performed our multivariate analyses with scikit-learn 
library [33]. We employed a regularized kernel canonical 
correlation analysis (CCA), using an open-source python 
pyrcca package [34], as a multivariate approach to evaluate 
the association between cerebellar anatomy (component with 
anatomical features “X”) and cognitive phenotype (compo-
nent with clinical scores of interest “Y”). We performed 
Z-scoring on both the behavioral and anatomical matrices 
of our CCA model. We employed a linear regression model 
as implemented in the scikit-learn [35] library to control 
for scan location, age, and sex, calculating the residuals 
for subsequent use in our CCA model. Given evidence of a 
potentially complex relationship between ICV and cerebellar 
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volume [36], we included ICV as a variable in our CCA 
to fully capture its association with cerebellar morphology.

In brief, CCA solves the canonical spaces in which the 
maximal correlation of projected datasets occurs, not pre-
assuming the directionality of the relationship between data-
sets [37]. One documented disadvantage of CCA is overfit-
ting to noise correlation of the datasets. To overcome this 
limitation, we implemented the algorithm used by the pyrcca 
toolbox. This algorithm constrains the number of compo-
nents and find the optimal regularization parameters in a 
data-driven manner using a tenfold cross validation approach 
[34]. Here, we investigated a range of components ([2, 3, 
4]) and a range of parameters ([0.0001, 0.01, 1, 100]). Such 
steps resulted in the best number of components of 2 and 
best regularization parameter of 0.0001 that were used for 
the subsequent analyses.

In our analysis, the anatomical component included our 
regions of interest, namely, the anterior lobe (lobules I–V), 
lobule VI, crus I, crus II, lobule VIIB, VIIIA, IX and X, and 
the ICV, after regressing out the effect of scan location, age, 
and sex. We included in the cognitive component the stand-
ardized scores of the subscales of NIH Toolbox, namely, 
List subscale indexing working memory, Card subscale 
indexing cognitive flexibility, Flanker’s subscale indexing 
cognitive control, and Processing subscale indexing process-
ing speed. Multicollinearity was assessed with the variance 
inflation factor (VIF); values of VIF > 5 were considered 
to show multicollinearity [38] (see supplementary mate-
rial 3). We then computed the correlation between the two 
canonical components for clinical and anatomical features. 
We repeated these analyses by including psychopathology 
severity quantified by the total t-score ofCBCL [28].

Assessment of Statistical Significance and Model Stability

Effect sizes were assessed with Cohen’s d and Pearson’s r 
correlation unless otherwise specified, following common 
statistical guidelines where Pearson’s r value around 0.1 is 
considered small, 0.3 moderate, and 0.5 large [39]. Regard-
ing Cohen’s d, effect sizes were categorized as small (0.2), 
medium (0.5), and large (0.8) [39].

To assess statistical significance of our CCA model, we 
used non-parametric permutation testing [40]. Permutation 
testing involves random rearrangement of samples without 
replacement to estimate the population distribution and in 
turn, test the null hypothesis. Thus, p value would be defined 
as the proportion of permuted samples that test statisti-
cally higher than our observed sample. In this study, unless 
specified otherwise, the threshold of significance was set to 
p = 0.05 corresponding to the r value higher than the r value 
of the 95 percentile in a 10,000 random permutation test.

Crucially, we assessed the model stability through boot-
strapping analysis [41]. Bootstrapping is used to create a 

sampling distribution by repeatedly taking random samples 
with replacement from the original sample. We then per-
formed CCA on each bootstrapped sample and collected 
these results to perform summary statistics (mean and con-
fidence intervals). The average estimated from these multi-
ple random samples may be used to infer results regarding 
the robustness of the CCA results for the original sample. 
Here, we used a bootstrap of 10,000 random samples with 
replacement which showed a normal distribution of canoni-
cal correlations. The results were considered stable if the 
95% confidence interval of the bootstrap distribution would 
not include zero. We assessed the effect of bootstrap rotation 
(supplementary material 4) and computed the bootstrap ratio 
(supplementary material 5) .

Results

Study Sample: Demographics and Psychopathology

The demographic characteristics of our sample can be found 
in Table 1 and supplementary material 1. In sum, the cohort 
included in our study (n = 662) had a mean age of 10.5 years 
[range 5.82–17.74 years old] and were predominantly males 
(58%). Next, we investigated the relationship between cog-
nitive function assessed with the NIH-TB subscales and 
psychopathology severity quantified by the CBCL total 
t-score. The goal of this exploratory analysis was to assess 
the potential influence of psychopathological severity on 
cognitive measures, which could be a confounding factor 
in interpreting neuroimaging results. We focused on effect 
magnitude (defined by the r value), and since no signifi-
cant correlations were found, multiple testing corrections 
were not deemed necessary. We found positive correlations 
between the individual cognitive subscales scores with small 
effect sizes (Fig. 1), indicating that these subscales measure 
little overlapping constructs. However, there were no asso-
ciations of the cognitive subscales with psychopathology 
severity (CBCL) indicating no significant impact of psy-
chopathology on distinct components of cognitive function.

Cerebellar Correlates of Cognitive Function

We then turned to the brain to examine whether we could 
uncover latent neural and behavioral dimensions to our 
data with a multivariate CCA approach (including age, sex, 
scan location, total intracranial volume, cognition (NIH-TB 
subscales)). Such an approach allowed us to identify two 
significant correlation between the first cognitive canoni-
cal variate (the subscales of the NIH Toolbox Cognition 
domain) and the first brain canonical variate (regional 
cerebellar gray matter volume and intracranial volume) at 
r = 0.22 with confidence interval [0.210–0.327], as well as 
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between the second clinical canonical variate (the subscales 
of the NIH Toolbox Cognition domain) and the second brain 
canonical variate (regional cerebellar gray matter volume 
and intracranial volume) at r = 0.16 with confidence interval 
[0.148–0.254]. To assess significance, we conducted permu-
tation testing with 10,000 tests at 95% that revealed that the 
correlation of both components was significant (statistical 
threshold for component 1: r = 0.20, and for component 2: 
r = 0.15) (Fig. 2).

Next, we performed a bootstrapping analysis to examine 
the stability of our multivariate CCA model [42]. Our results 
showed that our CCA results are stable and non-zero within 
the [5:95] confidence interval of the results generated by 
bootstrapping analysis.

Regarding the first component, cognitive flexibility 
(indexed by the NIH Card subscale), processing speed 
(indexed by NIH Processing scale), and working memory 
(indexed by the NIH List subscale) loaded the most on the 
clinical canonical variate at 0.89 (large effect), 0.65, and 
0.52 (moderate effects), respectively. Gray matter volume in 
the crus II and lobule X loaded with a moderate effect size 
on the brain canonical variate at 0.57 and 0.59, respectively 
(Fig. 3). Regarding the second component, working memory 
(indexed by the NIH List subscale) and cognitive control 
(indexed by NIH Flanker subscale) loaded with a moderate 
effect on the cognitive canonical variate at 0.51 and − 0.56, 
respectively. Gray matter volume in the crus I and lobule 
VI loaded also moderately on the brain canonical variate 
at 0.49 each.

We then asked whether the variability in cerebellar vol-
umes observed with cognitive function could be explained 
by clinical psychopathology severity. The goal was to exam-
ine variability in cerebellar volumes using a stratification 

that aligns more readily with clinical practice and possibly 
allows groups with meaningful clinical relevance. To per-
form this, we stratified the total CBCL t-score in the estab-
lished normative cut-offs of the CBCL with a t-score of ≤ 64 
for non-clinical symptoms, a t-score between 65 and 69 for 
borderline individuals with risk for problem behaviors, and 
a t-score ≥ 70 for clinical symptoms [22, 23]. We then com-
puted the effect size (Cohen’s d) of differences in cerebellar 
volume using standardized mean differences accounting for 
age, sex, scan location, and intracranial volume. We found 
no significant differences in cerebellar volumes across these 
categories (Fig. 3D) showing a lack of psychopathology 
effects in cerebellar anatomy. Furthermore, we included the 
CBCL total t-scores and the NIH subscales in the same CCA 
model with permutation and bootstrapping. This analysis 
did not impact our main cognitive-cerebellum CCA results 
remaining both statistically significant and stable (supple-
mentary material, Figure S3). We then asked whether spe-
cific dimensions of psychopathology could drive cerebellar 
variability and performed CCA analyses with the subscales 
of the CBCL. These results were not statistically significant 
and did not survive bootstrapping (Supplementary material, 
Figure S4). In sum, our results indicated that cognitive func-
tion but not psychopathology severity drove the observed 
cerebellar anatomic variability.

Discussion

Cognitive neuroscience is only beginning to unravel the 
role of the cerebellum in higher “supratentorial” cognitive 
functions. Despite historically being framed as a “motor 
control” brain region, extensive human neuroimaging and 

Table 1  Summary of cohort characteristics (age, sex, scan site, and 
intracranial volume) and cognitive characteristics (NIH Toolbox 
subscales) of our cohort (n = 662). Smooth curves obtained using a 
kernel density estimate function. Abbreviations: ICV, intracranial vol-
ume; NIH Toolbox, NIH-TB; NIH List, NIH TB List Sorting Working 
Memory Test; NIH Card, NIH TB Cognition Domain Dimensional 

Change Card Sort Test; NIH Flanker, NIH TB Flanker Inhibitory 
Control and Attention Test; NIH Processing, NIH-TB Pattern Com-
parison Processing Speed Test; CBCL total, total t-score of Child 
Behavior Checklist; CBIC, Cornell Brain Imaging Center; SI, Staten 
Island; RU, Rutgers University; ‘M’, male; ‘F’, female

Variable Count Mean Standard deviation Min Max

Age (in years) 662 10.5 2.91 5.82 17.74
Sex {‘M’: 385, ‘F’: 277}
ICV (in  cm3) 662 1410.59 136.57 1027 1867.81
Scanning site: CBIC 285
Scanning site: RU 315
Scanning site: SI 62
NIH Card 662 93.46 15.49 53 146
NIH Flanker 662 88.61 14.01 60 151
NIH List 662 97.13 14.69 55 169
NIH Processing 662 94.59 23.56 20 169
CBCL total 662 57.54 11.38 24.0 82.0
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lesion evidence has suggested a cerebellar role in cognitive 
function. Furthermore, previous evidence uncovered a cor-
respondence of cerebellar anatomy with general cognition 
and psychopathology. Therefore, we set out to examine the 
cerebellar topography in connection to specific components 
of cognition. Our multivariate analyses (CCA) outlined 
how different components of cognitive function map onto 

cerebellar morphometry independently of psychopathology 
severity in support of the cerebellar cognitive and affec-
tive syndrome [3, 43]. In particular, we showed only partly 
shared cerebellar maps of cognitive function (Fig. 3A–C): 
a first map encompassing cognitive flexibility (large effect 
size) and speed of processing (moderate effect size) associ-
ated with regional gray matter volume in crus II and lobule 

Fig. 1  Scatterplot representation of the pair-wise correlation between 
psychopathology and cognitive characteristics (NIH Toolbox sub-
scales) scores. Histograms of the distribution of each variable with 
smooth curves obtained using a kernel density estimate function. 
Abbreviations: NIH Toolbox, NIH-TB; NIH List, NIH TB List Sort-

ing Working Memory Test; NIH Card, NIH TB Cognition Domain 
Dimensional Change Card Sort Test; NIH Flanker, NIH TB Flanker 
Inhibitory Control and Attention Test; NIH Processing, NIH-TB Pat-
tern Comparison Processing Speed Test; CBCL total, total t-score of 
Child Behavior Checklist
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X and a second map including the crus I and lobule VI asso-
ciated with cognitive control (moderate effect size). Working 
memory associations were similarly present in both these 
maps (crus II, lobule X, crus I, and lobule VI) with similar 
moderate effect sizes. These results account for psychopa-
thology severity and other confounds and suggest that such 
correspondence between cerebellar anatomy may go across 
transdiagnostic boundaries. Crucially, permutation testing 
and bootstrapping analyses showed that these relationships 
are significant and our CCA model is robust and stable [42].

Our findings highlight an association of the cerebellar 
crus II and lobule X structure with cognitive flexibility with 
a large effect size. Importantly, we show that variability in 
cerebellar gray matter volume is linked to cognitive flex-
ibility abilities in a dimensional across-diagnostic catego-
ries manner. While theoretical accounts have posited a role 
for the cerebellum in the flexible coordination of cognitive 
processes (Cognitive Dysmetria theory), strikingly, no large-
scaled evidence for such contribution existed prior to our 
work. Animal research evidence indicated that hemi-cere-
bellectomized animals are unable to flexibly switch to a new 
set of rules, despite having intact motor responses [24, 44]. 
A few small-sample human studies [10, 45–52] have under-
lined a cerebellar role in mediating cognitive flexibility. 

The cerebellar correspondence of cognitive flexibility fits 
well with evidence from cerebellar lesions [11, 12, 16, 53] 
and theoretical accounts of cognitive dysmetria theory [54]. 
According to this theory, the cerebellum plays a key role 
in coordinating different cognitive and affective processes, 
quite similarly to its role in motor coordination. Impairments 
in cognitive flexibility seem to be prevalent in a variety of 
psychiatric disorders across the lifespan [55–59] and they 
represent a potentially important pharmacological [60], psy-
chotherapeutic [61], or neuromodulation [62] target.

Our results point to two cognitive-anatomical maps both 
related to working memory in agreement with previous find-
ings [8, 9, 63–66]. Furthermore, we show a first component 
characterizing the positive association of cognitive flexibility 
and speed of processing with regional gray matter volume in 
crus II and lobule X and a second, separate, component that 
captures the relationship of crus I and lobule VI with work-
ing memory. Speed of processing (the ability to quickly pro-
cess information), working memory (the ability to hold and 
manipulate information during short periods of time), and 
cognitive flexibility (the ability to switch rapidly between 
mental states and tasks) are interconnected cognitive capaci-
ties that are important for flexible behavior. Previous litera-
ture has focused on supratentorial prefronto-striatal networks 

Fig. 2  Canonical correlation analyses. A.1–2 Canonical correla-
tion plots between the cerebellar and clinical variates (1: first pair of 
canonical variables, 2: second pair of canonical variables). B.1–B.2 
Significance testing of the CCA. Distribution of CCA coefficients 
for component 1 (B.1) and component 2 (B.2) obtained by perform-
ing 10,000 permutations. Red line represents a significance threshold 
set for an alpha level of 0.05 (1: first pair of canonical variables, 2: 

second pair of canonical variables). C.1–C.2 Stability testing of the 
CCA. Distribution of canonical correlation coefficients between cer-
ebellar and clinical variates by bootstrapping procedure with 10,000 
tests at an alpha level of 0.05 for component 1 (C.1) and component 2 
(C.2). Lower and upper bound corresponding to ± 1.96 SD in red dot-
ted line (1: first pair of canonical variables, 2: second pair of canoni-
cal variables)
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of working memory and cognitive flexibility [67–69]. In this 
circuitry, cognitive flexibility have been shown to rely on 
dopaminergic signaling in the striatum, as demonstrated in 
human PET neuroimaging [70–72] and task-related studies 
[73, 74], and in the dorsolateral prefrontal cortices [75]. In 
line with these findings, Westbrook and Braver [69] attrib-
uted a key role to dopaminergic neurons in the flexible coor-
dination of cognitive processes for goal-directed behavior. In 
light of our results, we speculatively propose that, similarly, 
dopaminergic signaling may underlie cerebellar participa-
tion in cognitive flexibility or stability either through direct 
local dopaminergic signaling in the cerebellum or via indi-
rect (e.g., distant) cerebellar prefrontal closed loops as part 
of “the rich club” [76]. Indeed, high levels of dopamine have 
been found in postmortem cerebellum of humans, rats, and 

monkeys reviewed in Flace et al. [77]. Further research is 
needed to examine whether and how dopaminergic signaling 
underlies cerebellar correlates of cognitive function.

Our study has several strengths. First, we overcome pre-
vious shortcomings of case–control studies by endorsing a 
dimensional approach that captures phenotypic gradients in 
a large cohort. To our knowledge, this is the largest study to 
date to ever examine cerebellar contributions to distinct cog-
nitive components including cognitive flexibility. Second, 
we employ a validated pipeline (CERES) with careful and 
stringent quality control to ensure optimal preprocessing and 
avoid spurious results. In the current work, we have included 
only high-quality imaging data surviving a stringent visual 
quality check (e.g., only 662 of the images have passed the 
quality check of the initial n = 1452 subjects, Figure S1) 

Fig. 3  Relationship of cerebellar structure with cognition and psycho-
pathology. A–C Canonical correlation analysis: loading of cognitive 
and anatomical variates as well as the correlation between all vari-
ables included in the anatomical and behavioral latent variable, age 
and sex. *Age and sex were regressed out from the brain variable. 
D Effect sizes as standardized mean difference in groups stratified 
by psychopathology severity quantified by CBCL t-score. Annota-
tions: Brain 1, first anatomical component; Brain 2, second anatomi-

cal component; Cognition 1, first cognitive component; Cognition 2, 
second cognitive component; NIH Toolbox, NIH-TB; NIH List, NIH 
TB List Sorting Working Memory Test; NIH Card, NIH TB Cogni-
tion Domain Dimensional Change Card Sort Test; NIH Flanker, NIH 
TB Flanker Inhibitory Control and Attention Test; NIH Processing, 
NIH-TB Pattern Comparison Processing Speed Test; ICV, intracranial 
volume; CBCL, Child Behavior Checklist total t-score
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using the same quality control protocol employed previ-
ously [6]. Third, this study provides statistically significant 
(permutation testing) and stable (bootstrapping) data-driven 
results in the largest transdiagnostic sample to date to ascer-
tain the significance of the results and the stability of the 
CCA model. Permutation testing allowed us to establish that 
the obtained results are statistically significant. However, 
obtaining significant results does not exclude the possibility 
of having a random sampling error (e.g., the sample does 
not represent the general population). Such a possibility can 
be ruled out by bootstrapping: the results of the original 
cohort can be compared with bootstrapped samples, allow-
ing us to examine the robustness of the model. Here, our 
results survived bootstrapping and we can confidently state 
that our results are not due to a random sampling error. Our 
study advances the field by revealing structural correlates 
of cognitive performance within the cerebellum in a large, 
transdiagnostic pediatric sample. We provide novel insights 
into the cerebellum’s contribution to cognitive flexibility, 
employing a rigorous quality control process and a structural 
MRI approach, with a dimensional perspective that aligns 
with the RDoC initiative [18]. This methodology allows for 
the identification of associations that transcend traditional 
diagnostic categories, potentially leading to more nuanced 
understanding and targeted interventions.

Regarding limitations, our cross-sectional design and 
correlational analyses prevent inferences on the causal 
nature of the observed interindividual variability in the 
cerebellum. Additionally, it is important to acknowledge 
that, while our cross-sectional study design offers valuable 
insights into transdiagnostic patterns among pediatric and 
adolescent populations, it inherently limits our capacity to 
capture the dynamic nature of cerebellar maturation [78] 
and its interaction with cognitive development over time. 
Future longitudinal studies are essential to fully delineate 
these developmental trajectories and their implications for 
cerebellar-behavior relationships. Moreover, the cognitive 
subscales used in this cohort are only a subsample of all 
cognitive function processes. In addition, these findings 
may not generalize to older populations considering that 
in this cohort only young developing individuals (mean 
age of 10.5 years) were included. Future follow-up studies 
should examine how these relationships are expressed in 
adult cohorts. Finally, our study does not allow us to directly 
examine the effects of diagnostic categories on cerebel-
lar structure, due to the high rate of comorbidities in this 
transdiagnostic sample that made category-based analyses 
less fitting. We instead opted for a dimensional approach, 
utilizing the CBCL scale. One caveat of our study is the 
absence of a separate validation sample, which could further 
strengthen the reproducibility of our findings and should 
be the focus of future efforts. In addition, we focused on 
structural lobular parcellations of the cerebellum to enable 

strict QC. While applying a functional atlas to structural data 
could provide valuable insights, QC process is considerably 
more challenging with functional parcellations, particularly 
when ensuring the precision needed for valid interpretations 
of our results.

Our work links cerebellar morphometry to distinct com-
ponents of cognitive function including cognitive flexibility. 
These functions are observed to be altered in psychiatric 
disorders such as schizophrenia, depression, autism, and 
obsessive–compulsive disorders  [79], all of which also are 
shown to have cerebellar aberrations [80]. Given the recent 
advance in cerebellar non-invasive brain stimulation and its 
association with neuroimaging [17, 81], our work opens the 
perspective of cerebellar targeting across different psychiat-
ric diagnoses for cognitive improvement. Overall, our results 
elucidate for the first time the cerebellar anatomical circuitry 
supporting interindividual differences in cognitive function 
and highlight a prominent role for the human cerebellum in 
distinct aspects of cognition for flexible adaptive behavior.
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