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1 Introduction

de Sitter (dS) spacetime is the simplest model of an expanding universe. Therefore,
understanding Quantum Field Theory (QFT) in dS spacetime is the first step towards a
description of quantum effects in Cosmology.

The main ingredients of QFT are states in the Hilbert space and local operators labeled
by points in spacetime. We have recently given a systematic account of the Hilbert space
of free QFTs and Conformal Field Theories (CFTs) in dS [1] and its decomposition in
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Unitary Irreducible Representations (UIRs) of the isometry group SO(d+1, 1) of dSd+1 (see
section 2.1 for a brief review). In general, this leads to the decomposition of the identity as
a sum/integral over projectors into UIRs,

1 =
∑
ℓ=0

∫
R
dλ 1P∆,ℓ

+ · · · (1.1)

where we show explicitly the contribution from principal series with dimension ∆ = d
2 + iλ

and SO(d) spin ℓ and the dots stand for other UIRs.
In this article, we continue the groundwork and derive the Källén-Lehmannrepresentation

of two-point functions of bulk local operators in the Bunch-Davies vacuum of dS. We
systematize and extend the results of previous works [2–10]. In particular, we employ
the embedding space formalism to efficiently treat the case of bosonic traceless symmetric
operators in arbitrary spacetime dimensions.

The Källén-Lehmanndecomposition of a two-point function is simply obtained by
inserting the resolution of the identity (1.1) in the middle of a Wightman two-point function.
For example, for a two-point function of operators of spin J in d ≥ 2 we find

⟨O(J)(Y1,W1)O(J)(Y2,W2)⟩=
J∑

ℓ=0

∫
R
dλ⟨O(J)(Y1,W1)1P∆= d

2 +iλ,ℓ
O(J)(Y2,W2)⟩+· · · (1.2)

=
J∑

ℓ=0

∫
R
dλρP,ℓ

O(J)(λ) [(W1 ·∇1)(W2 ·∇2)]J−ℓ
Gλ,ℓ(Y1,Y2;W1,W2)+· · ·

As explained in section 2.2, Y encodes the position in dS and W encodes the indices of a
tensor field. In section 3, we show that ⟨O(J)(Y1,W1)1P∆= d

2 +iλ,ℓ
O(J)(Y2,W2)⟩ can be written

in terms of the propagator Gλ,ℓ(Y1, Y2;W1,W2) of a free field of spin ℓ and mass squared

m2R2 = λ2 +
(
d

2 + ℓ− 2 + 2δℓ,0
)2

, (1.3)

with R the curvature radius of dS and δℓ,0 is a Kronecker delta. Therefore, all the dynamical
information is encoded in the spectral densities ρP,ℓO(J)(λ) associated to intermediate states
in principal series UIRs. The dots in (1.2) stand for the contribution of other UIRs. In
particular, we also determine the contributions from the complementary series1 and the
discrete series in the case of dS2. This completes the picture in dS2 and dS3,2 where we
have derived all the contributions to the Källén-Lehmann representation. In section 3, we
prove the positivity of the dS spectral densities and show how they morph into the standard
flat space spectral densities in the limit R→ ∞.

In section 4, we present explicit inversion formulae that give the spectral densities
ρP,ℓO(J)(λ) as integrals over the associated two-point functions. To derive these formulae we
analytically continue the two-point functions to Euclidean Anti-de Sitter (EAdS) space and
then use harmonic analysis. The inversion formulae imply a strip of analyticity in the λ

1A practical way to think about the contribution from complementary series states is as poles of ρP,ℓ

O(J) (λ)
that crossed the integration contour. We give several examples of this phenomena in section 5.

2In dS3 there are no non-trivial UIRs beyond the principal and complementary series.
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complex plane centered around the integration contour in (1.2).3 In addition, we predict
the presence of spurious (or kinematical) poles with fixed residues in the spectral densities.
Assuming meromorphicity in λ, we derive the late time expansion of two-point functions
and interpret it as a Boundary Operator Expansion (BOE). It would be interesting to
understand the convergence properties of this BOE, and whether the same BOE can be
used inside all correlation functions.

In section 5, we study many examples (CFTs, free and weakly coupled QFTs) and always
find spectral densities that are meromorphic functions of λ ∈ C and have the predicted
spurious poles. For weakly coupled QFTs, we show how the Källén-Lehmanndecomposition
can be used to compute anomalous dimensions of late time boundary operators.

In section 6, we discuss possible future directions, and in the appendices we elaborate
on many technical details.

Throughout the paper, we will guide the eye of the reader by highlighting important
equations. Here we list some of them as a summary of our main results:

• Källén-Lehmann decomposition of spin J operators in
– dS2 (3.51),
– dSd+1 with d ≥ 2 (3.26);

• Flat space limit of the spectral densities (3.57);
• Inversion formula for the spectral densities of

– principal and discrete series in dS2 (4.62),
– principal series in dSd+1 with d ≥ 2 (4.21);

• Boundary operator expansion (4.52).

This work fits within the recent efforts to constrain QFT observables in dS by using general
principles such as unitarity and symmetries [5, 6, 11–20].

2 Preliminaries

In this section, we review two mathematical tools that will be very useful in the derivation
of the Källén-Lehmann decomposition and the computation of spectral densities. The first
topic concerns UIRs of the de Sitter isometry group SO(d+ 1, 1), and the second topic is
the embedding space formalism.

2.1 Representation theory of de Sitter isometry group

The (d+1) dimensional de Sitter spacetime is a hypersurface in the embedding space Rd+1,1

−Y 2
0 + Y 2

1 + · · ·+ Y 2
d+1 = R2, (2.1)

where R is the de Sitter radius. The embedding (2.1) manifests the isometry group
SO(d + 1, 1) of dSd+1, which is generated by LAB = −LBA, 0 ≤ A,B ≤ d + 1 satisfying
commutation relations

[LAB, LCD] = ηBCLAD − ηACLBD + ηADLBC − ηBDLAC , (2.2)
3The width of the strip is fixed by the asymptotic behavior of the two-point function or, equivalently, by

the leading boundary operator in the late time expansion. See sections 4.3 and 4.4.
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where ηAB = diag(−1, 1, · · · , 1) is the metric on Rd+1,1. In a unitary representation, LAB
are realized as anti-hermitian operators on some Hilbert space. The isomorphism between
so(d+ 1, 1) and the d-dimensional Euclidean conformal algebra is realized as

Lij =Mij , L0,d+1 = D , Ld+1,i =
1
2(Pi +Ki) , L0,i =

1
2(Pi −Ki) (2.3)

where D is the dilatation, Pi (i = 1, 2, · · · d) are translations, Ki are special conformal
transformations and Mij = −Mji are rotations. The commutation relations of the conformal
algebra following from (2.2) and (2.3) are

[D,Pi] = Pi , [D,Ki] = −Ki , [Ki, Pj ] = 2δijD − 2Mij ,

[Mij , Pk] = δjkPi − δikPj , [Mij ,Kk] = δjkKi − δikKj ,

[Mij ,Mkℓ] = δjkMiℓ − δikMjℓ + δiℓMjk − δjℓMik . (2.4)

The quadratic Casimir of SO(d+ 1, 1), which commutes with all LAB, is chosen to be

CSO(d+1,1) = 1
2LABL

AB = D(d−D) + PiKi +
1
2M

2
ij . (2.5)

Here 1
2M

2
ij ≡ 1

2MijM
ij is the quadratic Casimir of SO(d) and it is negative-definite for a

unitary representation since Mij are anti-hermitian. For example, for a spin-s representation
of SO(d), it takes the value of −s(s+ d− 2).

2.1.1 Classification of UIRs

An irreducible infinite dimensional representation of SO(d + 1, 1) is fixed by a complex
parameter ∆,4 and a highest-weight vector S of SO(d). Throughout the paper, we will
only consider S = (s, 0, · · · , 0), i.e. spin s representation of SO(d). Such representations
corresponds to the single-particle Hilbert space of a free spin s field in dSd+1. More general
S describes fields of mixed symmetry, including form fields, spinors, tensor spinors, etc.
See [21–24] for recent discussions on these fields. Fixing ∆ and s, the quadratic Casimir is
equal to ∆(d−∆)− s(d+ s− 2). For any d ≥ 3, there are four types of UIRs apart from
the trivial representation [21, 25, 26]:

• Principal series P∆,s: ∆ ∈ d
2 + iR and s ≥ 0.

• Complementary series C∆,s: 0 < ∆ < d when s = 0 and 1 < ∆ < d− 1 when s ≥ 1.
Both principal and complementary series describe free massive particles in dSd+1.

• Type I exceptional series Vp,0: ∆ = d + p − 1 and s = 0 for p ∈ Z>0. They
correspond to shift symmetric scalars in dSd+1 [27].

• Type II exceptional series Us,t: ∆ = d+ t− 1 and s ≥ 1 with t = 0, 1, 2 · · · , s− 1.
The single-particle Hilbert space of a partially massless field of spin s and depth t in
dSd+1 furnishes the representation Us,t.

4We will often call this parameter a scaling dimension. But it does not have the same group theoretical
meaning as scaling dimensions in unitary CFT, since it is not associated to any operator bounded from below.
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When d = 2, there are only principal series and complementary series up to isomorphism [28–
31], and the complementary series representations always have s = 0. When d = 1, since
the SO(d) group becomes degenerate, the Casimir of SO(2, 1) can always be written as
∆(1−∆). The classification of UIRs is as follows:

• Principal series P∆: ∆ ∈ 1
2 + iR. Its restriction to SO(2) yields [32, 33]

P∆|SO(2) =
⊕
n∈Z

(n) (2.6)

where (n) denotes the (one-dimensional) spin n representation of SO(2).

• Complementary series C∆: 0 < ∆ < 1. It has the same SO(2) content as P∆.

• Lowest-weight discrete series D+
p : CSO(2,1) = p(1−p), p ∈ Z+. Its SO(2) spectrum

has a lower bound p.

• Highest-weight discrete series D−
p : CSO(2,1) = p(1 − p), p ∈ Z+. Its SO(2)

spectrum has an upper bound −p.

There is an isomorphism between representations of scaling dimension ∆ and ∆̄ = d−∆ in
the principal and complementary series, which is established by the shadow transformation.
To remove such redundancy, one can further impose, for example, Im (∆) ≥ 0 in the
principal series and ∆ > d

2 in the complementary series.

2.1.2 Hilbert spaces of the UIRs

As we will see in section 3, the derivation of the Källén-Lehmann representation in de Sitter
spacetime requires a detailed knowledge of the Hilbert space of each UIR listed above. The
complementary series can be treated as a simple analytical continuation of the principal
series in the derivation of the Källén-Lehmann representation (see appendix B for more
details). The two exceptional series are absent in all examples considered in this paper.
So we will only briefly review the Hilbert space of the principal series representation P∆,s
in any dimension (including d = 1), and the discrete series representation D±

p in dS2, by
following [26]. Given a principal series representation P∆,s, its Hilbert space is spanned by
a continuous family of δ function normalized kets |∆,y ⟩i1···is . Here y labels a point in Rd,
and the indices {i1, i2, · · · is}, being symmetric and traceless, carry the spin s representation
of SO(d). The action of the so(d+ 1, 1) algebra on these states is realized by

Pi|∆,y ⟩i1···is = ∂i|∆,y ⟩i1···is ,

D|∆,y ⟩i1···is = (y · ∂y +∆)|∆,y ⟩i1···is ,

Mkℓ|∆,y ⟩i1···is =
(
yℓ∂k − yk∂ℓ +M(s)

kℓ

)
|∆,y ⟩i1···is ,

Kk|∆,y ⟩i1···is =
(
2yk(y · ∂y +∆)− y2∂k − 2yℓM(s)

kℓ

)
|∆,y ⟩i1···is ,

(2.7)

where M(s)
kℓ denotes the spin-s representation of so(d)

M(s)
kℓ |∆,y ⟩i1···is =

s∑
j=1

|∆,y ⟩i1···ij−1k ij+1···isδℓij − |∆,y ⟩i1···ij−1ℓ ij+1···isδkij . (2.8)

– 5 –
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By introducing an auxiliary null vector zi ∈ Cd, we define |y, z ⟩∆,s ≡ |∆,y ⟩i1···is zi1 · · · zis ,
which packages all the tensor components of |∆,y ⟩i1···is into a generating function and also
allows us to state the normalization condition of |∆,y ⟩i1···i2 concisely

∆,s⟨y1, z1|y2, z2⟩∆,s = δd(y1 − y2)(z1 · z2)s . (2.9)

Fixing this normalization, the resolution of the identity of P∆,s is given by

1P∆,s
=
∫
ddy |∆,y ⟩i1···is i1···is⟨∆,y | = 1(

d
2 − 1

)
s

∫
ddy |y, Dz⟩∆,s ∆,s⟨y, z| , (2.10)

where Dz is the analogue of the ordinary derivative while preserving the nullness condition
of z

Dzi ≡
(
d

2 − 1 + z · ∂z

)
∂zi −

1
2zi ∂

2
z . (2.11)

A generic normalizable state in the Hilbert space of P∆,s can be expressed as a linear
combination of |∆,y ⟩i1···is

|ψ⟩ ≡
∫
Rd
ddyψi1···is(y) |∆,y ⟩i1···is , (2.12)

where ψi1···is(y ) is a smooth tensor valued wavefunction on Rd, satisfying a certain fall-off
condition at ∞ [26].

In the d = 1 case, it is easier to describe the UIRs by using the following basis of
SO(2, 1)

L0 = − i

2(P +K), L± = − i

2(P −K)∓D , (2.13)

where L0 is the (hermitian) generator of the SO(2) subgroup, and hence has integer
eigenvalues in any single-valued representation of SO(2, 1). The new basis satisfy the
commutation relations

[L0, L±] = ±L±, [L−, L+] = 2L0 , (2.14)

and reality conditions L†
0 = L0, L

†
± = L∓. The principal series representation P∆ is spanned

by eigenstates {|n⟩∆, n ∈ Z} of L0, on which L± act as

L±|n⟩∆ = (n±∆)|n± 1⟩∆ . (2.15)

The inner product compatible with the reality conditions and the action (2.15) is of the
form ∆⟨n|m⟩∆ = c δnm, where c is a positive constant. We can simply choose c = 1. With
this choice fixed, the continuous |y⟩ basis reviewed above is related to the discrete |n⟩∆
basis via the wavefunction ψn(y) =

(
1−iy
1+iy

)n
π− 1

2
(1+y2)∆ .

When ∆ is a positive integer, say ∆ = p, the action of L± is truncated at n = ∓p,
leading to two irreducible representations. These two representations are actually D±

p :

D+
p = Span{|n⟩p, n ≥ p}, D−

p = Span{|n⟩p, n ≤ −p} . (2.16)

– 6 –
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In this case, with the action (2.15) being fixed, the simple normalization p⟨n|m⟩p = δnm is
not consistent with the reality condition L†

± = L∓. Instead, we need to use

p⟨n|m⟩p =
Γ(|n|+ 1− p)
Γ(|n|+ p) δn,m (2.17)

So the resolution of the identity of D±
k becomes

1D±
p
=
∑

±n≥p

Γ(|n|+ p)
Γ(|n|+ 1− p) |n⟩p p⟨n| (2.18)

2.2 Embedding space formalism

In this paper, we study symmetric traceless tensor fields in dS. The embedding space
formalism turns out to be very useful in the derivation of the Källén-Lehmannrepresentation
in section 3 and the inversion formula for the spectral densities in section 4 and 5. In this
section, we briefly describe the embedding space formalism for tensor fields in dSd+1 [7, 23]
following the similar construction in EAdSd+1 [34], and for the principal series representations
of SO(d + 1, 1) adapting a similar construction in CFTd [35]. We also notice that the
construction in [34] is degenerate when d = 1. So we will give a separate and self-contained
discussion about the embedding space formalism in this case.

2.2.1 Coordinate systems

As mentioned in eq. (2.1), de Sitter spacetime can be seen as a hypersurface in embedding
space Rd+1,1. Among the different slicings and coordinate systems, we will use (conformal)
global coordinates and planar coordinates throughout this paper. Global coordinates are
defined as

Y 0 = R sinh t , Y a = RΩa cosh t (2.19)

in which t ∈ R, a = 1, . . . , d + 1 and Ωa ∈ Sd ⊂ Rd+1 is a unit vector (ΩaΩa = 1). The
induced metric in global coordinates is given by

ds2 = R2
(
−dt2 + cosh2 t dΩ2

d

)
(2.20)

where dΩ2
d denotes the standard metric of the unit Sd. With a change of coordinate

sinh t = tan τ , the metric eq. (2.20) becomes

ds2 = R2−dτ2 + dΩ2
d

cos2 τ (2.21)

which is conformally equivalent to a finite cylinder (−π
2 ,

π
2 )× Sd. The coordinates (τ,Ωa)

are called conformal global coordinates.
The planar coordinates yµ = (η,y) ∈ R− × Rd, cover the causal future of an observer

at the south pole of the global Sd (i.e. Y i = 0 for i = 1, 2, · · · , d with Y d+1 < 0). They are
given by

Y 0 = R
η2 − y2 − 1

2η , Y i = −R yi

η
, Y d+1 = R

η2 − y2 + 1
2η (2.22)

– 7 –
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SN

θ = π
τ = −π

2

τ = π
2

θ = 0

η
=
constant

Figure 1. Penrose diagram of de Sitter spacetime. We represent global conformal time τ on the
vertical axis and the azimuthal angle θ on the horizontal axis. We indicate with S the south pole
and N the north pole of the Cauchy slices of constant τ , which are spheres. We represent Cauchy
slices of constant planar time η ∈ (−∞, 0) in dark gray. Planar coordinates only cover the top right
half of global de Sitter.

for which the induced metric is

ds2 = R2−dη2 + dy2

η2
. (2.23)

At η → 0−, where the metric blows up, is the future boundary of dSd+1. The region covered
by yµ corresponds to Y − ≡ Y 0 − Y d+1 > 0, and hence it covers half of de Sitter spacetime,
also called the Expanding Poincaré Patch (EPP). In figure 1, we draw the Penrose diagram
of de Sitter space with Cauchy slices of constant η.

From now on, we set the de Sitter radius to R = 1, and will restore it when discussing
the flat space limit in section 3.3. Let us emphasize that the results presented in this paper
apply in any coordinate patch one chooses to work with.

2.2.2 Fields in embedding space

Consider a spin-J symmetric traceless tensor5 TA1···AJ
(Y) in the embedding space Rd+1,1.

Asking Y 2 = 1 and the tangential condition

Y A1TA1···AJ
(Y ) = 0 (2.24)

5Let us emphasize that we use ℓ for the SO(d) spin and J for the SO(d + 1, 1) spin. States carry SO(d)
spin while operators have SO(d + 1, 1) indices.
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defines a traceless symmetric tensor in de Sitter. The projection

Tµ1···µJ (y) =
∂Y A1

∂yµ1
· · · ∂Y

AJ

∂yµJ
TA1···AJ

(Y ) (2.25)

pulls back this tensor to the desired local coordinates yµ. Moreover, we can represent a
symmetric and traceless tensor in the index free formalism as a polynomial by contracting
its indices with a null vector WA

T (Y,W ) =WA1 . . .WAJTA1···AJ
(Y ) . (2.26)

Due to the tangential condition (2.24), we can restrict to WA such that Y · W = 0.
Altogether, a spin J tensor Tµ1···µJ (y) is uniquely encoded in a degree J homogeneous
polynomial T (Y,W ), with WA satisfying W 2 = Y ·W = 0. The above discussion extends
to differential operators. For example, the embedding space realization of the Levi-Civita
connection ∇µ is given by

∇A = ∂Y A − YA Y · ∂Y −WA Y · ∂W . (2.27)

To recover the tensor TA1···AJ
with indices in d ≥ 2, one needs to act with the

differential operator

KA=
(
d−1
2

)[
∂

∂WA
−YA

(
Y · ∂

∂W

)]
+
(
W · ∂

∂W

)
∂

∂WA

−YA
(
Y · ∂

∂W

)(
W · ∂

∂W

)
− 1
2WA

[
∂2

∂W ·∂W
−
(
Y · ∂

∂W

)(
Y · ∂

∂W

)] (2.28)

on the polynomial T (Y,W ), which is defined to be interior to the submanifold Y 2 − 1 =
W · Y = W 2 = 0. Given this definition, it is straightforward to check that K[AKB] =
K ·K = Y ·K = 0, and hence its action induces a symmetric and traceless tensor on dSd+1.
More precisely, it acts on any monomial of WA as

KA1 · · ·KAJ
WB1 · · ·WBJ = J !

(
d− 1
2

)
J

[
1
J !
∑
π

G B1
Aπ1

· · ·G BJ
AπJ

− traces
]

(2.29)

where GAB = ηAB − YAYB , and the sum is over all permutations π of the indices Aj . As a
simple application of KA, the divergence of a tensor is implemented by ∇ ·K.

Treating T (Y,W ) as quantum fields, then the action of so(d+ 1, 1) is defined as

[LAB, T (Y,W )] = − (YA∂YB
− YB∂YA

+WA∂WB
−WB∂WA

)T (Y,W ) (2.30)

where the overall minus sign is introduced to ensure it to be a left action.

When d = 1, the differential operator KA becomes purely second-order, and thus anni-
hilates any vector fields in dS2. The failure of KA to recover tensor indices in this case, is
related to some subtleties of SO(2) representations in contrast to higher dimensional SO(d).
We will discuss such subtleties and show how to modify the embedding space formalism
of dS2 accordingly. First, it is well-known that the spin s representation of SO(n) with
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n ≥ 3, carried by a symmetric and traceless tensor Fi1···is , can be encoded in a degree s
polynomial F (z) ≡ Fi1···isz

i1 · · · zis , where zi is a null vector in Cn. When n = 2, proceeding
as in higher dimensions, the nullness condition yields (z1 + iz2)(z1 − iz2) = 0. So there are
two different types of z, namely z± = (1,±i), which are related by O(2) but not SO(2).
F (z±) capture the only independent components of Fi1···is . Altogether, a symmetric and
traceless tensor T in 2D carries a two dimensional representation of O(2), corresponding to
the two chiral components of F . Each chirality furnishes an irreducible representation of
SO(2). In the index free formalism, the two chiralities are encoded in F (z±), where z± are
two SO(2)-inequivalent null vectors. Similarly in dS2, a spin J tensor Tµ1···µJ (y) also has
two independent components, which should correspond to two SO(2, 1)-inequivalent WA in
embedding space. Indeed, we find that when d = 1, the conditions Y ·W = W 2 = 0 are
equivalent to ϵABCY BWC ±WA = 0, where ϵABC is the totally antisymmetric tensor in
R2,1 normalized as ϵ012 = 1. Define WA

± such that

ϵABCY
BWC

± ±WA
± = 0 . (2.31)

They are the analogue of z± defined above, in the sense that the two chiral componetns of
Tµ1···µJ (y) are encoded in T (Y,W±) respectively. To prove this statement more precisely,
let’s consider the tensor Tµ1···µJ (y) in conformal global coordinates Y A = (tan τ, cosφcos τ ,

sinφ
cos τ ).

Define lightcone coordinates y± = τ ±φ, and then the two linearly independent components
of Tµ1···µJ are

T±···± = ∂±Y
A1 · · · ∂±Y AJTA1···AJ

(Y ) = T (Y, ∂±Y ) . (2.32)

It can be checked by direct computation that WA
± = ∂±Y

A solves eq. (2.31), which verifies
our statement. Altogether, the tensor Tµ1···µJ in dS2 is encoded in T (Y,W±), with WA

±
satisfying (2.31). The pull-back to the conformal global coordinates is easily implemented
by the substitution WA

± → ∂±Y
A.

Eq. (2.31) can lead to some useful identities. For example, given two distinct points Y1
and Y2 in R2,1, it implies(

Y1 ·W±
2

) (
Y2 ·W±

1

)
= (Y1 · Y2 + 1)

(
W±

1 ·W±
2

)
,(

Y1 ·W∓
2

) (
Y2 ·W±

1

)
= (Y1 · Y2 − 1)

(
W±

1 ·W∓
2

)
. (2.33)

2.2.3 States in embedding space

Now let us proceed to describe the embedding space definition of the states |∆,y ⟩i1···is ,
which are defined in section 2.1.2 as a basis of the principal series representation P∆,s.
For this purpose, we’d like to make a detour and review the physical realization of these
abstractly defined states, focusing on the s = 0 and s = 1 cases [26].

First consider a free scalar ϕ of mass m2 = ∆(d−∆) in dSd+1 in planar coordinates.
Its leading late time behavior is given by

ϕ(η,y ) η→0−∼ (−η)∆O(y ) + (−η)∆̄Õ(y ) , (2.34)
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where O(y ) and Õ(y ) are different linear combinations of the bulk creation and annihilation
operators. More importantly, they are primary operators in the sense that

[Ki,O(0)] = [Ki, Õ(0)] = 0, [D,O(0)] = ∆O(0), [D, Õ(0)] = ∆̄Õ(0) . (2.35)

These facts allow us to identify |∆,y⟩ as the (single-particle) state created by O(y ) on the
free Bunch-Davies vacuum |0⟩, i.e. |∆,y ⟩ = O(y )|0⟩. Indeed, the action (2.7) is consistent
with this identification. Similarly, for a free spin 1 field Vµ of mass m2 = (∆− 1)(∆̄− 1),
the late time behavior of its spatial components Vi is

Vi(η,y ) η→0−∼ (−η)∆−1Ai(y ) + (−η)∆̄−1Ãi(y ) . (2.36)

It can be checked that Ai(y ) and Ãi(y ) are spin 1 primary operators of scaling dimension ∆
and ∆̄ respectively. In addition, Ai(y )|0⟩ can be identified as |∆,y ⟩i, whose transformation
under the dS isometry group is given by (2.7).

Altogether, the physical picture discussed here implies that the embedding space
formalism for |∆,y ⟩i1···is is essentially the same as that of primary operators in conformal
field theory [35]. Based on this observation, we define |∆, P ⟩A1···As , the embedding space
realization of |∆,y ⟩i1···is as follows:

• Nullness: PA ∈ Rd+1,1 is a null vector, i.e. PAPA = 0. We will focus on the P 0 > 0
part of the lightcone.

• Spin s condition: |∆, P ⟩A1···As is a symmetric and traceless tensor of SO(d+ 1, 1), on
which SO(d+ 1, 1) acts as Lie derivatives.6

• Homogeneity: |∆, λP ⟩A1···As = λ−∆|∆, P ⟩A1···As with λ > 0 .

• Tangential condition: PA1 |∆, P ⟩A1···As = 0.

Due to the homogeneity condition, |∆, P ⟩A1···As is completely fixed by its value on a section
of the lightcone. We choose this section to be the future boundary of de Sitter (in planar
coordinates)

P 0
y = 1

2
(
1 + y2

)
, P iy = yi, P d+1

y = 1
2
(
y2 − 1

)
, (2.37)

since it realizes the state |∆,y ⟩i1···is as the pull-back of |∆, P ⟩A1···As

|∆,y ⟩i1···is =
∂PA1

y
∂yi1

· · ·
∂PAs

y
∂yis

|∆, Py ⟩A1···As . (2.38)

In particular, the SO(d+ 1, 1) action on |∆, P ⟩A1···As induces eq. (2.7) via this pull-back.
Because of the nullness of PA, there is a class of states that satisfy all the requirements

of |∆, P ⟩A1···A2 but vanish when pulled back to the local coordinates y. They are of the
form P(A1 |∆+ 1, P ⟩A2···As). We can kill these states, and implement the spin s condition at

6More explicitly, LAB |∆, P ⟩A1···As ≡ −LAB |∆, P ⟩A1···As , where LAB denotes the derivative along the
vector PA∂P B − PB∂P A .
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the same time, by introducing an auxiliary vector ZA ∈ Rd+1,1 satisfying Z2 = Z · P = 0.
Given such a vector ZA, the state |∆, P ⟩A1···As is encoded in a degree s polynomial in Z

|P,Z⟩∆,s ≡ ZA1 · · ·ZAs |∆, P ⟩A1···As
. (2.39)

In this index-free formalism, the tangential condition takes the form

P · ∂Z |P,Z⟩∆,s = 0 (2.40)

The resolution of the identity of P∆,s, cf. (2.10), can be rewritten as a conformal integral
defined in [36]

1P∆,s
= 2
s!
(
d
2 − 1

)
s

Vol GL(1,R)+

∫
P 0>0

dd+2P δ(P 2) |P,DZ⟩∆,s∆,s ⟨P,Z| , (2.41)

where
DA
Z =

(
d

2 − 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2Z
A ∂2

∂Z · ∂Z
(2.42)

is the interior derivative used to strip off ZA. We will use the shorthand notation “
∫
P ” to

denote the integral measure∫
P
(. . . ) ≡ 2

Vol GL(1,R)+
∫
P 0>0

dd+2P δ(P 2)(. . . ) (2.43)

in the remainder of this paper.
We also want to mention that although the states |∆,y⟩ or equivalently |∆, P ⟩ are

introduced as boundary excitations in this section, they do not have to “live” on the future
boundary. Given a generic interacting theory, it is sometimes more convenient to think of
them as special states in the Hilbert space which transform in a particular way under the
isometry group, with y being an abstract label of the states that does not necessarily have
the meaning of boundary coordinates.

3 The Källén-Lehmanndecomposition in de Sitter

In this section, we give a derivation of the Källén-Lehmann representation in de Sitter
spacetime for two-point functions in the Bunch-Davies vacuum. Before starting, let us
emphasize our starting assumptions.

The choice of state. In de Sitter, there is a one complex parameter family of states (the
so-called α-vacua) that are invariant under all the isometries [37–44]. In a free theory, among
all these states only the Bunch-Davies vacuum leads to two-point functions which satisfy
the Hadamard condition (commutators of fields inserted at space-like separation vanish).
When interactions are turned on, it was shown [42, 43] that only the Bunch-Davies vacuum
|Ω⟩ leads to sensible results in perturbation theory, while α-vacua require the introduction
of nonlocal counterterms. For these reasons we exclude α-vacua from our discussions.
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In contrast to α-vacua, there exists a family of potentially interesting states called
α-states |α⟩,7 [43, 44]. These states are squeezed excitations on top of the Bunch-Davies
vacuum, and are thus not de Sitter invariant. They live in the same Hilbert space as |Ω⟩,
and in particular they decompose into the same UIRs we reviewed in section 2, and so
they should not be independently included in the resolution of the identity. In contrast
to α-vacua, |α⟩ are well behaved in perturbation theory. Phenomenologically, α-states are
interesting because they leave an imprint on the late-time power spectrum. The universe
might have indeed started in |α⟩ rather than in |Ω⟩, and only observations will allow us to
prefer one over the other. Nevertheless, in this paper we focus on two-point functions on
the Bunch-Davies vacuum |Ω⟩.

Let us summarize some properties of |Ω⟩:

• Starting from a Euclidean field theory on the sphere in which correlation functions
are regular at non-coincident points, SO(d+ 2) invariant and reflection positive, their
continuation to de Sitter yields expectation values in the Bunch-Davies vacuum. This
is the definition of the Bunch-Davies vacuum for a general interacting QFT in de
Sitter.

• |Ω⟩ is a strong late-time attractor, meaning that excitations on top of it get quickly
washed out as the universe expands [44].

• Free propagators in the Bunch-Davies vacuum reduce to the canonically normalized
flat space propagators (as we review in appendix A.4) when taking R→ ∞.

Completeness of the Hilbert space. We assume that the full Hilbert space H of a
unitary quantum field theory in a fixed dSd+1 background can be decomposed into a direct
sum/integral of SO(d+ 1, 1) UIRs. In other words, we assume that there is a resolution of
the identity in H, which takes the following form schematically8

1H = |Ω⟩⟨Ω|+
∑
ℓ≥0

∫
d
2+iR

[d∆]ℓ
∫
P
|∆, P ⟩A1···Aℓ

A1···Aℓ⟨∆, P |+ other UIRs , (3.1)

where |Ω⟩ is the interacting BD vacuum and
∫
P |∆, P ⟩A1···Aℓ

A1···Aℓ⟨∆, P | gives the identity
operator 1P∆,ℓ

in P∆,ℓ as discussed in section 2.2.3. The symbol [d∆]ℓ denotes some unknown
measure over the principal series, which roughly speaking, counts the “multiplicity” of P∆,ℓ
in H. Of course, this is still an oversimplification because there can be multiple copies of
P∆,ℓ, that are distinguished by other quantum numbers. Then, in principle, we should
integrate or sum over these quantum numbers. To avoid cluttering, we suppress labels of
such quantum numbers, since it is easy to adapt our derivation to include them and the
final expression of the Källén-Lehmann decomposition will not be changed.

7The notation in the literature is unfortunate: sometimes |α⟩ indicates an α-vacuum, and sometimes an
α-state. We use it to indicate the latter.

8In principle, the direct integral over ∆ should only be defined on the fundamental domain d
2 + iR≥0,

since there is an isomorphism of between P∆,ℓ and P∆̄,ℓ. Here, the equation (3.1) can be understood as a
doubling trick. With that being said, 1P∆,ℓ

and 1P∆̄,ℓ
are identified, and the overcounting is absorbed into

the measure [d∆]ℓ, which is also invariant under the shadow symmetry by construction.
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With this assumption in mind, we start in d ≥ 2, where we will mainly focus on the con-
tribution of the principal series to the Källén-Lehmannrepresentation. The complementary
series part can be derived similarly, as is discussed in appendix B. In particular, for dS3, prin-
cipal and complementary series representations lead to a full Källén-Lehmanndecomposition
since they are the only UIRs of SO(3, 1). In higher dimensional de Sitter, there are many
more UIRs, apart from the principal and complementary series, as reviewed in section 2.1.
For two-point functions of scalar operators, we conjecture that such representations do
not contribute. For two-point functions of spinning operators, we do not have a general
formula to incorporate all these representations, but we do not see them contributing to
any example of two-point functions considered in this work.

3.1 Dimension d ≥ 2

Consider the Wightman two-point function GO(J) of a generic spin J operator O(J) in dSd+1
(d ≥ 2) in the embedding space formalism

GO(J)(Y1, Y2;W1,W2) = ⟨Ω|O(J)(Y1,W1)O(J)(Y2,W2)|Ω⟩ . (3.2)

Inserting the resolution of the identity (3.1) into (3.2) yields

GO(J)(Y1,Y2;W1,W2)= ⟨Ω|O(J)(Y1,W1)|Ω⟩⟨Ω|O(J)(Y2,W2)|Ω⟩

+
∑
ℓ≥0

∫
d
2+iR

[d∆]ℓ
∫

P

⟨Ω|O(J)(Y1,W1)|∆,P ⟩A1···Aℓ

A1···Aℓ⟨∆,P |O(J)(Y2,W2)|Ω⟩

+possible contributions from other UIRs . (3.3)

Since |Ω⟩ is a dS invariant vacuum, the one-point function ⟨Ω|O(J)(Y,W )|Ω⟩ has to be
an SO(d + 1, 1) scalar. Using Y 2 − 1 = W 2 = Y ·W , one can easily conclude that the
one-point function vanishes when J ≥ 1, and has to be a constant when J = 0. In
the latter case, we redefine the operator O by a constant shift such that its vacuum
expectation value vanishes. Altogether, we always consider the case ⟨Ω|O(J)(Y,W )|Ω⟩ =
0. For the second line in eq. (3.3), the problem is reduced to computing the matrix
elements ⟨Ω|O(J)(Y,W )|∆, P ⟩A1···Aℓ

, or equivalently ⟨Ω|O(J)(Y,W )|P,Z⟩∆,ℓ in the index-
free formalism. We will show that such matrix elements are fixed by symmetry up to a
normalization constant, and then use them to derive the Källén-Lehmann decomposition.
Let us start with the J = 0 case.

3.1.1 Scalar operators

First we show that for a scalar operator O(Y ), the matrix element ⟨Ω|O(Y )|P,Z⟩∆,ℓ
vanishes when ℓ ≥ 1. Because of its SO(d+ 1, 1) invariance, ⟨Ω|O(Y )|P,Z⟩∆,ℓ has to be a
function of scalar bilinears of the three vectors Y A, PA and ZA. On the other hand, since
P · Z = P 2 = Z2 = 0 and Y 2 = 1, it can only depend on Y · P and Y · Z. The dependence
is fixed by the homogeneity of |P,Z⟩∆,ℓ up to a constant

⟨Ω|O(Y )|P,Z⟩∆,ℓ ∝
(Y · Z)ℓ

(−2Y · P )∆ . (3.4)

– 14 –



J
H
E
P
1
2
(
2
0
2
3
)
1
5
9

We then impose the tangential condition (2.40) of the state |P,Z⟩∆,ℓ. Noticing that
P · ∂Z(Y ·Z)ℓ ̸= 0 for any ℓ ≥ 1, the proportional constant has to be zero for the tangential
condition to be satisfied. Therefore, ⟨Ω|O(Y )|P,Z⟩∆,ℓ vanishes identically when ℓ ≥ 1.

When ℓ = 0, by a similar argument, we find that

⟨Ω|O(Y )|P ⟩ = cO(∆)K∆(Y, P ), K∆(Y, P ) =
Γ(∆)
2π d+1

2

1
(−2Y · P )∆ , (3.5)

where cO(∆) is a ∆-dependent constant. Plugging (3.5) into (3.3) yields

GO(Y1, Y2) =
∫
R
dλ ρP,0O (λ)

∫
P
K d

2+iλ
(Y1, P )K d

2−iλ
(Y2, P ) + · · · (3.6)

where ρP,0O (λ) is a nonnegative function defined by absorbing |cO(∆)|2 into the measure
[d∆]0, i.e. [d∆]0|cO(∆)|2 ≡ dλ ρP,0O (λ), with ∆ = d

2 + iλ. It is also an even function of λ by
construction, because of the reason mentioned in footnote 8. The function K∆(Y, P ) is the
analogue of the bulk-to-boundary propagator in EAdS, but with a singularity at Y · P = 0.
Therefore, we have to specify an iϵ prescription to make sense of the P -integral in (3.6). The
iϵ prescription is chosen such that GO given by (3.6) reproduces the standard Wightman
two-point function of a free field ϕ when O = ϕ, which is reviewed in appendix A:

Gλ,0 (Y1, Y2) = (η1η2)
d
2

∫
ddk
(2π)d e

−ik·(y1−y2 )h̄iλ(|k|η1)hiλ(|k|η2) (3.7)

To match (3.7), we first write K∆ in local coordinates

K∆(η1,y1;y ) = Γ(∆)
2π d+1

2

(−η1)∆(
(y1 − y)2 − η21

)∆ . (3.8)

Then add a small imaginary part to the planar patch time η1, i.e. η1 → e±iϵη1, and perform
a Fourier transformation for the boundary coordinates y. This Fourier transformation
for both ±iϵ can be obtained by analytic continuation of the corresponding Wick rotated
integral9 ∫

ddy z∆ e−ik·y

(z2 + y2)∆ = 2(πz) d
2

Γ(∆)

(2
k

)−iλ
Kiλ(kz) , (3.9)

where K is the Bessel K function. Put z = −eiθη1, and analytically continue from θ = 0 to
θ = ϵ− π

2 , i.e. z = ieiϵη1. Using the relation Kν(−iξ) = iν+1π
2 H

(1)
ν (ξ) between the Bessel K

functions and Hankel functions, this gives∫
ddy e−ik·y K∆(eiϵη1,y1;y) = e−i

π(d−2)
4 (−η1)

d
2

(
k

2

)iλ
h̄iλ(|k|η1)e−ik·y1 . (3.10)

Similarly, by the Wick rotation z = −ie−iϵη1, we obtain∫
ddy e−ik·y K∆(e−iϵη1,y1;y) = ei

π(d−2)
4 (−η1)

d
2

(
k

2

)iλ
hiλ(|k|η1)e−ik·y1 . (3.11)

9Here we assume z > 0. It can be thought as the radial component of the Poincaré coordinates of EAdS.
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Thus, the only iϵ prescription consistent with (3.7) is η1 → eiϵη1 and η2 → e−iϵη2, which
in embedding space is equivalent to Y1 ∈ T− and Y2 ∈ T+ for ϵ ∈ (0, π2 ]. This choice of
iϵ prescription should be understood in any Wightman function in this paper, although
we will suppress iϵ most of the time to avoid clutter of notations. As a byproduct of
the discussion of the iϵ prescription, eq. (3.10) and eq. (3.11) also lead to the dS split
representation [45, 46], namely∫

P
K d

2+iλ
(Y1, P )K d

2−iλ
(Y2, P ) = Gλ,0(Y1, Y2) , (3.12)

where we have used the fact that
∫
P reduces to the flat measure

∫
ddy on Rd. Altogether,

plugging eq. (3.12) into eq. (3.6), we obtain the Källén-Lehmann decomposition of the
scalar operator O(Y )

GO(Y1, Y2) =
∫
R
dλ ρPO(λ)Gλ,0(Y1, Y2) + · · · , (3.13)

where ρP,0O (λ) is a nonnegative (even) function, and “· · · ” denotes possible contributions
from other UIRs. For example, the contribution of the complementary series is computed
explicitly in appendix B. For the two exceptional series, we can argue that they do not
contribute to scalar two-point functions. In the Us,t case, it suffices to use the fact that the
SO(d+ 1) content of Us,t is [25, 26]

Us,t|SO(d+1) =
⊕
n≥s

⊕
t+1≤m≤s

Yn,m , (3.14)

where Yn,m denotes the two-row Young diagram with n boxes in the first row and m boxes
in the second row. For example, Y2,1 = . On the other hand, it is clear that a scalar
operator O in dSd+1 cannot generate any such two-row representation of SO(d+ 1) when
acting on the vacuum. It means that the matrix element of O(Y ) between |Ω⟩ and an
arbitrary state in Us,t vanishes. This excludes all Us,t.

For Vp, let’s consider Gp(Y1, Y2) = ⟨Ω|O(Y1)|1Vp |O(Y2)|Ω⟩. Because 1Vp commutes with
SO(d + 1, 1) actions, Gp(Y1, Y2) is a function of σ ≡ Y1 · Y2. For the same reason, the
SO(d+ 1, 1) Casimir operator which is equal to (1− p)(d+ p− 1) acting on Vp, yields a
second order differential equation of Gp(σ):

(1− σ2)∂2σGp(σ)− (d+ 1)σ∂σGp(σ) = (1− p)(d+ p− 1)Gp(σ) (3.15)

The two linearly independent solutions of this equation are

fp(σ) = F

(
d+ p− 1, 1− p,

d+ 1
2 ,

1− σ

2

)
gp(σ) =

( 2
1− σ

)d+p−1
F

(
d+ p− 1, p+ d− 1

2 , 2p+ d− 1, 2
1− σ

)
(3.16)

Since p ∈ Z>0, the first solution fp is a polynomial of degree p− 1 in σ, and hence it blows
up as σ → −∞ (or remains a constant when p = 1). Notice that σ < 1 corresponds to
spacelike separated points, and the limit σ → −∞ means that the two points are very far
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away separated. However, any physical two-point function should decay in this limit. The
other solution gp decays like (−σ)−(d+p−1) for large negative σ. But it has a singularity at
σ = −1, i.e. when Y1 and Y2 are antipodal points. Such antipodal singularities would violate
our assumption of the Bunch-Davies vacuum since their continuation to the sphere would
not be regular in the whole Euclidean domain with coincident points excluded −1 ≤ σ < 1.
Therefore, eq. (3.15) does not have a nontrivial solution that is free of singularity at both
σ = −∞ and σ = −1. At the same time, the sign of the antipodal singularity depends on p.
There is thus a possibility that contributions associated to different values of p conspire to
cancel the singularity, resulting in a physically admissible two-point function. In the rest of
this work, we adopt the conjecture phrased in appendix A of [47] and assume no state in
Vp,0 can appear in the Källén-Lehmman decomposition of a scalar two-point function.

The full Källén-Lehmann decomposition of the scalar operator O in d ≥ 2 is thus

GO(Y1, Y2) =
∫
R
dλ ρP,0O (λ)Gλ,0(Y1, Y2) +

∫ d
2

− d
2

dλ ρC,0O (λ)Giλ,0(Y1, Y2) , (3.17)

where ρP,0O (λ) and ρC,0O (λ) are the spectral densities corresponding to principal series and
complementary series contributions respectively. They are nonnegative by construction.

In total generality, we thus expect the appearance of a continuum of states in the
principal series and in the complementary series in the Källén-Lehmann decomposition of a
scalar two-point function. What instead we observe in practice, in every example we have
explored in section 5, is that the complementary series appears as a discrete sum of states
corresponding to specific values of λ. Group theory arguments point to the fact that this is
the case in free theories and CFTs [1], but we do not have a proof to exclude a continuum
of complementary series states in scalar two-point functions of generic interacting QFTs.

As a final comment, let us mention that special constructions of the two-point function
of a free massless scalar (p = 1 in (3.15)) with the zero mode removed are present in the
literature (see for example [48–51]), but these are not true gauge invariant observables.10

In other words, the operators constructed in these examples do not correspond to physical
observables and thus we do not expect them to appear in the Källén-Lehmann decomposition
of a physical scalar operator. This is in analogy with the case of free massless scalars in
2D flat space. Just like in that scenario, the two-point function of the derivatives of a free
massless scalar in dS is instead a good observable. In fact, we expect it to contribute to the
spinning version of the Källén-Lehmann decomposition in higher dimensions (3.26), and we
explicitly see it contributing to the spinning Källén-Lehmann decomposition in 2D (3.51).

3.1.2 Spinning operators

Given a spin J bulk operator O(J)(Y,W ), the main step towards its Källén-Lehmann
representation is computing the matrix element FJ,ℓ(Y, P ;W,Z) ≡ ⟨Ω|O(J)(Y,W )|P,Z⟩∆,ℓ,
for any ℓ ≥ 0. Due to the various constraints imposed on the four vectors {Y A,WA, PA, ZA},

10Here the gauge symmetry is the shift symmetry of the free massless scalar.
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the most general form of FJ,ℓ is

FJ,ℓ(Y, P ;W,Z) =
min(J,ℓ)∑
b=0

f bO(J)(∆, ℓ)
(Y · Z)ℓ−b(2P ·W )J−b(W · Z)b

(−2Y · P )∆+J−b . (3.18)

To find the coefficients f bO(J) , we use the tangential condition of P · ∂ZFJ,ℓ = 0, which yields
the following recurrence relation

(b+ 1)f b+1
O(J) = (ℓ− b)f bO(J) , (ℓ−min(J, ℓ))fmin(J,ℓ)

O(J) = 0 . (3.19)

When ℓ > J , the initial condition (ℓ− J)fJO(J) = 0 gives fJO(J) = 0, which further implies
that all the rest f bO(J) vanish because ℓ− b ≥ ℓ− J is always nonzero. So principal series
of spin larger than J cannot contribute to the two-point function of O(J).11 When ℓ ≤ J ,
eq. (3.19) has a nontrivial solution instead

f bO(J)(∆, ℓ)=
(∆+ℓ−1)Γ(∆)(∆+ℓ)J−ℓ cO(J)(∆, ℓ)

2π d+1
2 (∆−1)

(
ℓ

b

)
, b=0,1, · · · , ℓ , (3.20)

where the complicated normalization factor is inserted for later convenience. Plugging this
solution into eq. (3.18) gives

FJ,ℓ(Y, P ;W,Z) =
(∆ + ℓ− 1)Γ(∆)(∆ + ℓ)J−ℓ cO(J)(∆, ℓ)

2π d+1
2 (∆− 1)

Φℓ (2W · P )J−ℓ
(−2Y · P )∆+J , (3.21)

where

Φ(Y, P ;W,Z) ≡ 2(Y · Z)(W · P )− 2(Y · P )(W · Z) . (3.22)

For J = ℓ, FJ,J reduces to cO(J)(∆, J)K∆,J , with K∆,J(Y, P ;W,Z) being the bulk-to-
boundary propagator of a spin J field, given by

K∆,J(Y, P ;W,Z) =
(∆ + J − 1)Γ(∆)
2π d+1

2 (∆− 1)
ΦJ

(−2Y · P )∆+J . (3.23)

For ℓ < J , noticing that Φ is annihilated by W · ∇Y = W · ∂Y , we can realize FJ,ℓ as
derivatives of K∆,ℓ:

FJ,ℓ = cO(J)(∆, ℓ) (W · ∇Y )J−ℓK∆,ℓ . (3.24)

Finally, using the de Sitter split representation of a spin ℓ Wightman function Gλ,ℓ,12 [46]

Gλ,ℓ(Y1,Y2;W1,W2)=
1

ℓ!
(
d
2−1

)
ℓ

∫
P
K∆,ℓ(Y1,P ;W1,DZ)K∆̄,ℓ(Y2,P ;W2,Z) , (3.25)

11The same argument also works for complementary series.
12It is defined as the symmetric, traceless and transverse Green’s function, satisfying(

−∇2 + d2

4 + λ2 − ℓ

)
G(Y1, Y2; W1, W2) = δ(Y1, Y2)(W1 · W2)ℓ .
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we obtain the Källén-Lehmann decomposition of O(J):

GO(J)(Y1,Y2;W1,W2) =
J∑
ℓ=0

∫
R
dλ ρP,ℓO(J)(λ) [(W1 · ∇1) (W2 · ∇2)]J−ℓGλ,ℓ(Y1, Y2;W1,W2)

+ · · · (3.26)

where ρP,ℓO(J)(λ) is a nonnegative function of λ and dλ ρP,ℓO(J)(λ) is a product of the mea-
sure [d∆]ℓ and the factor |cO(J)(∆, ℓ)|2 and the dots stand for contributions coming from
exceptional and complementary series.

3.2 dS2

We have derived the Källén-Lehmann decomposition for generic operators in higher dimen-
sional dS, focusing on the contribution of the principal series. The derivation is based on
the resolution of the identity (3.1) in the full Hilbert space. In two dimensional dS, we need
to modify (3.1) in several ways. First, because the principal series of SO(2, 1) has only one
label, namely the scaling dimension ∆, the sum over ℓ in eq. (3.1) cannot appear when
d = 1. The second modification is closely related to the discussion regarding the embedding
space formalism of dS2 in section 2.2. A spin J tensor operator O(J)

µ1···µJ in dS2 has two
independent components, i.e. chiralities. The two chiralities can be mapped to each other
by parity, denoted by Θ, which belongs to O(2, 1) instead of SO(2, 1). More precisely, Θ
is defined to flip the sign of Y 1 in embedding space, or y in planar coordinates. We will
focus on parity invariant QFTs. From the representation side, it means that we should
decompose the full Hilbert space into UIRs of O(2, 1). It is very easy to describe such UIRs.
Given a fixed ∆, there are two principal series (or complementary series depending on the
value of ∆) representations P±

∆ , distinguished by the intrinsic parity under Θ, i.e.

Θ|∆, y⟩± ≡ ±|∆,−y⟩± (3.27)

where |∆, y⟩± is a basis of P±
∆ . For the discrete series, D−

p is the image of D+
p under Θ,

because Θ flips the sign of L0. So the direct sum Dp ≡ D+
p ⊕ D−

p furnishes an O(2, 1)
representation, while each summand does not. Altogether, the resolution of the identity in
dS2 can be formulated as

1H = |Ω⟩⟨Ω|+
∑
±

∫
1
2+iR

[d∆]±
∫
P
|∆, P ⟩± ±⟨∆, P |+

∑
p≥1

1Dp + · · · (3.28)

Before using it to derive the Källén-Lehmann decomposition in dS2, let us make some
remarks on this formula.

• 1Dp is the identity operator in the representation Dp:

1Dp =
∑
|n|≥p

Γ(|n|+ 1− p)
Γ(|n|+ p) |n⟩p p⟨n| , (3.29)

where the states |n⟩p are introduced in section 2.1.
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• “∑p≥1” is a formal sum of discrete series. It is possible that there are several copies of
each Dp distinguished by other quantum numbers. Sums over such quantum numbers
are also implicitly included in ∑p≥1.

• The dots correspond to the contribution from the complementary series. It can be
derived using the same approach as the principal series, see appendix B.

• We always shift the operator under consideration such that its vacuum one-point
function vanishes. It means that the first term |Ω⟩⟨Ω| of (3.28) does not contribute.

3.2.1 Scalar operators

Let O(Y ) be a scalar operator in dS2. The derivation of the principal and complementary
series part of its Källén-Lehmann decomposition is exactly the same as in higher dimensions,
except for an extra sum over two chiralities. For discrete series states, we can show that
they do not contribute and the argument is exactly the one we used for the exceptional
series Vp in higher dimensions. So the full Källén-Lehmann decomposition of the scalar
operator O in dS2 is

GO(Y1, Y2) =
∫
R
dλ ρPO(λ)Gλ,0(Y1, Y2) +

∫ 1
2

− 1
2

dλ ρCO(λ)Giλ,0(Y1, Y2) (3.30)

The functions ρPO(λ) and ρCO(λ) are nonnegative by construction.

3.2.2 Spinning operators

The distinction between |∆, P ⟩± becomes crucial when the bulk operator carries a nonzero
spin. For example, let us consider a vector operator VA(Y ). In higher dimensions, the matrix
element ⟨Ω|VA(Y )|∆, P ⟩ is a linear combination of YA and PA, and the former is killed in
the index-free formalism. When d = 1, there can be one more type of tensor structure in this
matrix element, namely ϵABCY BPC , where ϵABC is the totally antisymmetric tensor in R2,1,
normalized as ϵ012 = 1. It is a pseudo vector in contrast to YA and PA. So ϵABCY BPC can
only appear in ⟨Ω|VA(Y )|∆, P ⟩−, while YA and PA can only appear in ⟨Ω|VA(Y )|∆, P ⟩+.13

Next, we will generalize this simple example to any spinning operators in dS2.

Principal series part. Let O(J) be a spin J operator in dS2. Deriving its Källén-
Lehmann decomposition amounts to computing the matrix elements FJ,±(Y, P ;W ) ≡
⟨Ω|O(J)(Y,W )|∆, P ⟩±. FJ,+ is a scalar and hence its W dependence can only be (P ·W )J .
In contrast, F− is a pseudo scalar, so its W dependence should be (P ·W )J−1ϵ(W,Y, P ),

13Here we have assumed VA to be a vector instead of pseudo vector. In latter case, ϵABCY BP C is in
⟨Ω|VA(Y )|∆, P ⟩+, while YA and PA are in ⟨Ω|VA(Y )|∆, P ⟩−. We will always consider tensors instead of
pseudo tensors in the following discussion. It is easy to check that their Källén-Lehmann representations
take the same form.
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where ϵ(W,Y, P ) ≡ ϵABCW
AY BPC . Altogether, the most general form of F± is

F+(Y, P ;W ) = c+O(J)(∆) (W · ∇Y )J K∆(Y, P )

F−(Y, P ;W ) =
c−O(J)(∆)

∆ (W · ∇Y )J−1 ϵ(W,Y,∇Y )K∆(Y, P ) , (3.31)

where we have replaced any P in the numerator by derivatives of Y . Then, using the d = 1
version of the split representation (3.12), we obtain∫

P
⟨Ω|O(J)(Y1,W1)|∆,P ⟩+ +⟨∆,P |O(J)(Y2,W2)|Ω⟩= |c+

O(J) |2(W1 ·∇1)J(W2 ·∇2)JGλ,0(Y1,Y2) ,

(3.32)

and ∫
P
⟨Ω|O(J)(Y1,W1)|∆, P ⟩− −⟨∆, P |O(J)(Y2,W2)|Ω⟩

= |c−O(J) |2(W1 ·∇1)J−1(W2 ·∇2)J−1Gλ,1(Y1, Y2;W1,W2) , (3.33)

where Gλ,1 is the free two-point function of a Proca field of mass m2 = ∆∆̄ = 1
4 + λ2, and

it is related to the scalar two-point function by eq. (A.17). Altogether, the principal series
part of the Källén-Lehmann decomposition of O(J) is

GO(J)(Y1, Y2;W1,W2) =
∫
R
dλ ρP,0O(J)(λ)(W1 · ∇1)J(W2 · ∇2)JGλ,0(Y1, Y2)

+
∫
R
dλ ρP,1O(J)(λ)(W1 · ∇1)J−1(W2 · ∇2)J−1Gλ,1(Y1, Y2;W1,W2) + · · ·

(3.34)

In this equation, ρP,0O(J)(λ) and ρP,1O(J)(λ) are two nonnegative (even) functions of λ, defined by

|c+O(J)(∆)|2[d∆]+ = ρP,0O(J)(λ) dλ, |c−O(J)(∆)|2[d∆]− = ρP,1O(J)(λ) dλ . (3.35)

The contribution of the complementary series takes the same form as eq. (3.34), except that
the integral domain should be −1

2 < iλ < 1
2 .

Discrete series part. For scalar operators in dS2, we have shown that the discrete
series cannot appear in the Källén-Lehmann decomposition. The argument is based
on some second order differential equation of ⟨Ω|O(Y1)|1Dp |O(Y2)|Ω⟩, induced by the
SO(2, 1) Casimir. Nontrivial solutions of such differential equations always have unphysical
singularities, and hence ⟨Ω|O(Y1)|1Dp |O(Y2)|Ω⟩ has to vanish. In the spin J case, by
leveraging this Casimir method, we are able to exclude all Dp with p > J in the Källén-
Lehmann decomposition of O(J) in a similar way. We leave details of this argument
to appendix E. For p ≤ J , the Casimir equations have physical solutions, so Dp does
contribute to the two-point function of O(J). However, to prove the positivity of this
contribution requires some extra input, for example, reflection positivity after a Wick
rotation to the sphere [5]. We will not give this type of arguments. Instead, we adopt
the same strategy as in the principal series case, i.e. using the resolution of the identity
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operator 1D±
p
=∑

ψ |ψ⟩⟨ψ| in D±
p and computing the matrix elements of O(J) between the

BD vacuum and |ψ⟩. This method guarantees the positivity automatically, but meanwhile
it also leads to certain technical difficulties compared to the principal series case because
discrete series representations do not admit (δ-function) normalizable continuous basis
such as |y⟩ or |P ⟩. Instead, its resolution of the identity is formulated in terms of the
discrete basis |n⟩p, cf. eq. (2.18). This basis diagonalizes L0, so unlike |P ⟩, it is not SO(2, 1)
covariant. Due to the loss of the manifest covariance, the embedding space formalism stops
being an efficient computational tool, so it is much more difficult to calculate the matrix
elements, e.g. ⟨Ω|O(J)(Y,W )|n⟩p. With that being said, we choose to directly work in the
conformal global coordinates (τ, φ) (2.21), since they admit L0 ∼ ∂φ as a Killing vector.
As mentioned in section 2.2.2, we also introduce lightcone coordinates y± = τ ± φ. Then
the two nonvanishing components of O(J) are O(J)

++···+ and O(J)
−−···−. The matrix elements of

interest are F (n,±)
J,p (y+, y−) ≡ ⟨Ω|O(J)

±···±(y±)|n⟩p.
Let’s start with F (p,±)

p,p which corresponds to J = n = p. It should satisfy two first
order differential equations induced by the conditions L0|p⟩p = p|p⟩p and L−|p⟩p = 0, since
|p⟩p is the lowest-weight state in the representation D+

p . To find such differential equations,
we need to know how so(2, 1) generators act on bulk operators. Recall that {L0, L±} are
defined by eq. (2.13) and their associated Killing vectors are computed in [26]

V0 = i∂φ, V+ = −i
(
e−iy

+
∂+ + eiy

−
∂−
)
, V− = −i

(
eiy

+
∂+ + e−iy

−
∂−
)
,

(3.36)

where ∂± = ∂y± = 1
2(∂τ ± ∂φ). Because of the convention (2.30), the action of −Lα on O(p)

is realized by the Lie derivative along Vα, i.e. [Lα,O(p)
µ1···µp ] = −LVαO

(p)
µ1···µp , where α = 0,±.

For example, for α = 0, it implies

i∂φF (p,±)
p,p = −⟨Ω|[L0,O(p)

+···+(y±)]|p⟩p = pF (p,±)
p,p . (3.37)

So the φ dependence in F (p,±)
p,p is simply e−ipφ. Similarly, for α = −, we obtain ∂∓F (p,±)

p,p = 0.
Therefore, F (p,±)

J,p are determined up to normalization constants F (p,±)
J,p (y±) = c±p,pe

∓ipy± .
With this lowest-weight mode known, any F (n,±)

p,p with n ≥ p can be obtained by acting
n− p times with LV+ since Ln−p+ |p⟩p = (2p)n−p|n⟩p (cf. eq. (2.15)):

F (n,±)
p,p (y±) = 1

(2p)n−p
Ln−pV+

F (p,±)
p,p (y±) = (∓)n−p c±p,p e∓iny

±
, (3.38)

which allows us to compute the contribution of D+
p in the two-point function of O(p). For

example, for the (+,+) component, we have

⟨Ω|O(p)
+···+(y1)|1D+

p
|O(p)

+···+(y2)|Ω⟩ = |c+p,p|2
∑
n≥p

Γ(n+ p)
Γ(n− p+ 1)e

−iny+
12 , (3.39)

where y+12 = y+1 − y+2 . The infinite sum over n in (3.39) looks divergent because we have
suppressed the explicit iϵ prescription. Using eiy

+
j = i−(yj+ηj)

i+(yj+ηj) , which relates the planar
coordinates (η, y) and conformal global coordinates (τ, φ) or equivalently (y+, y−), and
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restoring the iϵ prescription (η1 → eiϵη1, η2 → e−iϵη2), then e−iy
+
12 in eq. (3.39) should be

replaced by

r(ϵ) ≡ i− (y2 + e−iϵη2)
i+ (y2 + e−iϵη2)

i+ (y1 + eiϵη1)
i− (y1 + eiϵη1)

. (3.40)

It is straightforward to check that |r(ϵ)| < 1 for small ϵ, and hence the sum in (3.39) is
convergent given the iϵ prescription (η1 → eiϵη1, η2 → e−iϵη2). Evaluating the sum yields

⟨Ω|O(p)
+···+(y1)|1D+

p
|O(p)

+···+(y2)|Ω⟩ =
Γ(2p)|c+p,p|2

(−4)p

(
sin y

+
12
2

)−2p

. (3.41)

Similarly, for other components, we have

⟨Ω|O(p)
+···+(y1)|1D+

p
|O(p)

−···−(y2)|Ω⟩ =
Γ(2p)c+p,p(c−p,p)∗

4p

(
cos y

+
1 + y−2

2

)−2p

⟨Ω|O(p)
−···−(y1)|1D+

p
|O(p)

+···+(y2)|Ω⟩ =
Γ(2p)c−p,p(c+p,p)∗

4p

(
sin y

−
1 + y+2

2

)−2p

⟨Ω|O(p)
−···−(y1)|1D+

p
|O(p)

−···−(y2)|Ω⟩ =
Γ(2p)|c−p,p|2

(−4)p

(
sin y

−
12
2

)−2p

. (3.42)

The contribution of D−
p does not require any extra computation since it is the image of D+

p

under the parity Θ. Noticing that Θ also flips chiralities, it is easy to obtain relations like

⟨Ω|O(p)
+···+(y+1 , y−1 )|1D−

p
|O(p)

+···+(y+2 , y−2 )|Ω⟩ = ⟨Ω|O(p)
−···−(y−1 , y+1 )|1D+

p
|O(p)

−···−(y−2 , y+2 )|Ω⟩ .
(3.43)

Altogether, the contribution of Dp = D+
p ⊕ D−

p to the O(p) two-point function can be
summarized as

⟨Ω|O(p)
±···±(y1)|1Dp |O

(p)
±···±(y2)|Ω⟩ =

Γ(2p)
(
|c+p,p|2 + |c−p,p|2

)
(−4)p

(
sin y

±
12
2

)−2p

⟨Ω|O(p)
±···±(y1)|1Dp |O

(p)
∓···∓(y2)|Ω⟩ =

Γ(2p)
(
c±p,p

(
c∓p,p

)∗
+
(
c±p,p

)∗
c∓p,p

)
4p

(
cos y

±
1 + y∓2

2

)−2p

.

(3.44)

The (±,∓) component blows up when cos y
±
1 +y∓2
2 vanishes. On the other hand, we have

1 + Y1 · Y2 ∝
∏

± cos y
±
1 +y∓2
2 , which implies that the (+, -) and (-, +) components in (3.44)

have an antipodal singularity. So these components have to vanish, and this requirement
imposes a nontrivial constraint on the coefficients c±p,p, namely c+p,p(c−p,p)∗ + c−p,p(c+p,p)∗ = 0.
Comparing eq. (3.44) with (A.29) and (A.30), we can make the following identification

⟨Ω|O(p)
α···α(y1)|1Dp |O

(p)
β···β(y2)|Ω⟩ = 4π

(
|c+p,p|2 + |c−p,p|2

) (
∇(1)
α

)p (
∇(2)
β

)p
G−i(p− 1

2)(y1, y2)
(3.45)

where α, β ∈ {+,−}, and in embedding space it means

⟨Ω|O(p)(Y1,W1)|1Dp
|O(p)(Y2,W2)|Ω⟩=4π

(
|c+

p,p|2+|c−p,p|2
)
(W1 ·∇1)p (W2 ·∇2)p

G−i(p− 1
2 )(Y1,Y2)

(3.46)
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The remaining task is to generalize the computation above to the case of J > p.
As before, we start with building the lowest-weight modes F (p,±)

J,p , which is fixed up to
normalization by the defining properties of |p⟩p. With a short computation, we find

F (p,+)
J,p = (2p)J−p c+J,p

e−iJt−ipφ

(2i cos t)J−p , F (p,−)
J,p = (2p)J−p c−J,p

eiJt−ipφ

(−2i cos t)J−p , (3.47)

where c±J,p are unknown normalization factors. Unlike in the J = p case, F (p,±)
J,p are not

chiral or anti-chiral functions. This fact makes it hard to compute the repeated action of
LV+ on these modes. How we deal with this technical difficulty is based on several important
observations. First we notice that F (p,±)

J,p can be realized as covariant derivatives of F (p,±)
p,p .

F (p,+)
J,p = c+J,p (∂+ − (J − 1) tan t) · · · (∂+ − p tan t) e−ipy+ = c+J,p∇

J−p
+ e−ipy

+

F (p,−)
J,p = c−J,p (∂− − (J − 1) tan t) · · · (∂− − p tan t) eipy− = c−J,p∇

J−p
− eipy

−
, (3.48)

where the Christoffel symbols Γ+
++ = Γ−

−− = tan t have been used. Here we want to
emphasize that e−ipy+ and eipy

− are not normal functions. They should be treated as the
two lightcone components of a symmetric and traceless spin p tensor. The next observation
is that [LV+ ,∇±]ξ±···± = 0, for any symmetric and traceless ξ. It allows us to commute
the Lie derivatives and covariant derivatives when computing Fn,±

J,p . In the end, the Lie
derivatives effectively act on e∓iy

± , and this action has already been figured out in the
J = p case:

F (n,±)
J,p = c±J,p∇

J−p
± (∓)n−p e∓iny± . (3.49)

Compared to the J = p case, the only difference is the extra covariant derivative ∇J−p
± . So

the previous analysis can be applied here in the exactly same way, which yields

⟨0|O(J)(Y1,W1)|1Dp |O(J)(Y2,W2)|Ω⟩

= 4π
(
|c+J,p|

2 + |c−J,p|
2
)
(W1 · ∇1)J (W2 · ∇2)J G−i(p− 1

2 )
(Y1, Y2) . (3.50)

Altogether, combining (3.28), (3.34) and (3.50), we obtain the full Källén-Lehmann decom-
position of O(J) in dS2:

GO(J)(Y1,Y2;W1,W2)=
∫
R
dλρP,0O(J)(λ)(W1 ·∇1)J(W2 ·∇2)JGλ,0(Y1,Y2)

+
∫
R
dλρP,1O(J)(λ)(W1 ·∇1)J−1(W2 ·∇2)J−1Gλ,1(Y1,Y2;W1,W2)

+
∫ 1

2

− 1
2

dλρC,0O(J)(λ)(W1 ·∇1)J(W2 ·∇2)JGiλ,0(Y1,Y2)

+
∫ 1

2

− 1
2

dλρC,1O(J)(λ)(W1 ·∇1)J−1(W2 ·∇2)J−1Giλ,1(Y1,Y2;W1,W2)

+
J∑
p=1

ρ
Dp

O(J) (W1 ·∇1)J (W2 ·∇2)JG−i(p− 1
2)(Y1,Y2) , (3.51)
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where the nonnegative function ρDp

O(J) is obtained by absorbing 4π
(
|c+J,p|2 + |c−J,p|2

)
into the

formal sum over the discrete series in (3.28). It is worth mentioning that the term with
p = J in the sum in the last line of (3.51) is actually proportional to the CFT two-point
function of a spin p conserved current in a dS2 background.

3.3 Flat space limit

We have derived the Källén-Lehmann decomposition for de Sitter spinning two-point
functions in d ≥ 2 and d = 1. Now, let us consider how (3.26) and (3.51) reduce to
the Källén-Lehmann decomposition in Minkowski space when taking the radius of de
Sitter to infinity. What we expect to happen is that, given that free scalar fields with
∆ in the principal series correspond to the range of masses m2 > d2

4R2 , in the flat space
limit the principal series range will be extended to account for all massive representations.
The complementary series, accounting for 0 < m2 < d2

4R2 , is reduced to only massless
representations. The same is true for the discrete series, because keeping m2R2 fixed
to some discrete value in the flat space limit necessarily implies m → 0. Apart from
these distinctions between the various dS unitary irreps, taking the flat space limit of the
Källén-Lehmann decomposition in dS is analogous to how it is done in AdS [52].

In d + 1 dimensional Minkowski spacetime, the Källén-Lehmann decomposition of
Wightman two-point functions of traceless symmetric spin J operators organizes itself in
blocks that are labeled by the eigenvalue of PµPµ ≡ −m2 and the spin of the little group
SO(d), denoted by ℓ [53]

⟨Ω|O(J)(x1,w1)O(J)(x2,w2)|Ω⟩=
J∑
ℓ=0

∫ ∞

0
dm2 ρM,ℓ

O(J)(m2)∆(J)
m2,ℓ(x1,x2;w1,w2), (3.52)

where wi, xi ∈ Rd,1, wi are some null vectors to contract all indices, and ρM,ℓ
O(J)(m2) are

the positive flat space spectral densities. ∆(J)
m2,ℓ(x1, x2;w1, w2) are the free Wightman

propagators with Lorentz spin J , little group spin ℓ and mass squared m2

∆(J)
m2,ℓ(x1, x2;w1, w2) = (−)J−ℓm2J

∫
ddp

(2π)d e
ip·x(2π)θ(p0)δ(p2+m2)Π(J)

ℓ (p, w1, w2) , (3.53)

where Π(J)
ℓ (p, w1, w2) are the projectors on the little group irrep of spin ℓ. The prefactor

m2J is inserted following [53], such that ∆(J)
m2,ℓ does not diverge in the massless limit when

d ≥ 2. This way, massless representations are smoothly connected to massive ones, and they
appear with spectral densities that are proportional to δ(m2). In contrast to [53], we also
include a spin-dependent sign (−)J−ℓ in ∆(J)

m2,ℓ. This choice is consistent with the positivity
of ρM,ℓ

O(J)(m2).
In the large R limit, the conformal dimension ∆ = d

2 + iλ is connected to the mass m
(which is kept fixed) as λ2 ≈ m2R2. In appendix A.4 we argue that, when taking R→ ∞
while keeping Y1 · Y2 −R2 fixed, the free propagators become

[(W1 · ∇1)(W2 · ∇2)]J−ℓGRm,ℓ(Y1, Y2;W1,W2) ≈ βJ,ℓm
−2ℓ∆(J)

m2,ℓ(x1, x2;w1, w2) , (3.54)
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where βJ,ℓ are normalization factors, known for 0 ≤ ℓ ≤ J ≤ 2. For example, it is equal
to 1 when 0 ≤ J ≤ 1, and is given by eq. (A.47) when J = 2. Now consider the principal
series contribution to the Källén-Lehmann decomposition after performing the change of
variables λ = Rm,14

J∑
ℓ=0

∫ ∞

0
dm2R

m
ρP,ℓO(J)(Rm)[(W1 · ∇1)(W2 · ∇2)]J−ℓGRm,ℓ(Y1, Y2;W1,W2) . (3.55)

If the two-point function we are decomposing does not diverge as R→ ∞, (3.55) becomes
under this limit

(3.55) ≈
J∑
ℓ=0

∫ ∞

0
dm2 ρM,ℓ

O(J)(m2)∆(J)
m2,ℓ(x1, x2;w1, w2) , (3.56)

where we read off the connection between de Sitter principal series and flat space spec-
tral densities

ρM,ℓ
O(J)(m2) = lim

R→∞

βJ,ℓR

m2ℓ+1 ρ
P,ℓ
O(J)(Rm) + · · · (3.57)

where the dots stand for contributions coming from other UIRs. In practice this means
that, in the large R limit, de Sitter spectral densities grow with a power of R which is fixed
by dimensional analysis, and its coefficient is the associated flat space spectral density. We
check that (3.57) is true for our CFT examples in section 5.2 by comparing with the flat
space CFT spectral densities computed in [53], and find perfect agreement. Let us also
discuss the discrete series contributions in d = 1:

J∑
p=0

ρ
Dp

O(J)(W1 · ∇1)J(W2 · ∇2)JG−i(p− 1
2)(Y1, Y2) . (3.58)

To restore dimensions correctly, we need to redefine ρDp

O(J) with a factor of R−2∆+2J where
2∆ is the mass dimension of the two-point function we are decomposing. But then, under
the flat space limit, the only way for this quantity to survive is if ∆ = J . Then, these
contributions can be incorporated in (3.57) as

ρM,0
O(J)(m2) = δ(m2)

J∑
p=0

ρ
Dp

O(J) , if d = 1 and ∆ = J . (3.59)

We find agreement between these statements and the massless representations that appear
in d = 1 in the CFT spectral densities in [53] when the CFT primary being decomposed is
a conserved current. We show this explicitly in the examples in section 5.2.

14Notice that, assuming the two-point function we are decomposing has mass dimensions 2∆, and given
that the mass dimensions of the free propagators are

[[(W1 · ∇1)(W2 · ∇2)]J−ℓGRm,ℓ(Y1, Y2; W1, W2)] = d − 1 + 2(J − ℓ) ,

the correct way to restore dimensions to the spectral densities is to reintroduce an extra factor of
Rd−1+2(J−ℓ)−2∆ in ρP,ℓ

O(J) (Rm).
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4 Inversion formulae

In this section, we find inversion formulae that extract the spectral densities from the
Källén-Lehmanndecompositions (3.26) and (3.51). For the scalar two-point function, using
the analytic continuation from the sphere, an inversion formula was found in [6]. There,
it was shown that the spectral density can be computed by carrying out an integral over
the discontinuity of the two-point function in the region where the two points are timelike
separated. In this section, we propose an alternative and more convenient procedure to
derive the spectral densities for spinning de Sitter two-point functions using harmonic
analysis in Euclidean Anti de Sitter (EAdS). We will first derive an inversion formula for
the principal series spectral densities in d ≥ 2 and then one for the principal series and
discrete series contributions in d = 1. The main idea is to continue the Källén-Lehmann
decomposition (3.26) from dS to EAdS and to exploit the orthogonality of harmonic
functions under integrals over EAdS. We emphasize that this method is a mathematical
trick, and that all spectral densities we derive in this way lead to Källén-Lehmann integral
representations which we numerically test directly in de Sitter. In section 4.3, we argue
that, for two-point functions satisfying certain criteria, there are no more contributions to
the Källén-Lehmann decomposition other than principal series contributions.

Our derivation of the inversion formula relies on a specific assumption on the analytic
structure of spinning two-point functions.

Analyticity of spinning two-point functions. In [47], it was shown that scalar two-
point functions with a convergent Källén-Lehmann decomposition on the sphere are analytic
within the “maximal analyticity” domain σ ≡ Y1 · Y2 ∈ C/[1,∞). In [4], it was shown that
this domain also follows from assuming a smaller domain of analyticity, within the “forward
tube” domain, defined as

ηABY
A
1 Y

B
1 = ηABY

A
2 Y

B
2 = 1, Im(Y21) ∈ V+, (4.1)

where we are considering complexified Y A ∈ Cd+2, Yij ≡ Yi − Yj for convenience, and V+
represents the forward lightcone, defined as:

V+ :=

Y ∈ R1,d+1
∣∣∣ Y 0 >

√√√√d+1∑
a=1

(Y a)2
 . (4.2)

We are not aware of any generalization of either of these two statements to spinning two-
point functions. In general, we can say that spinning two-point functions only depend on a
few dot products

GO(J)(Y1, Y2;W1,W2) = GO(J)(σ, (Y1 ·W2)(Y2 ·W1),W1 ·W2) , (4.3)

where the dependance on ((Y1 ·W2)(Y2 ·W1),W1 ·W2) is by construction purely polynomial.
We are then going to phrase the following conjecture

Conjecture: Let GO(J) be the two-point function of a spin J traceless symmetric operator
with a positive and convergent Källén-Lehmann decomposition of the form (3.26) with
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dS timelike
separation

dS spacelike
separation

σ

1−1

SphereEAdS

ε → π
2

Figure 2. The maximal analyticity domain in the complex σ ≡ Y1 ·Y2 plane. We indicate the range
of values taken by σ in EAdS and on the sphere. In de Sitter, σ can take all real values, with σ > 1
for timelike separation, σ < 1 for spacelike separation and σ = 1 for null separation. On the sphere,
σ = 1 for coincident points and σ = −1 for antipodal points. In EAdS, σ = −1 for coincident points.
The Wick rotation from dS to EAdS which we implement in this paper (see section 4.1), maps points
in σ = R ± iϵ to points in σ ∈ (−∞,−1] through rotations which avoid the cut at σ ∈ [1,∞).

principal and complementary series contributions only. Then, GO(J) is analytic in σ ∈
C/[1,∞). We will call this domain of analyticity “maximal analyticity” like in the scalar
case. Notice that this domain includes two-point configurations on the Euclidean sphere
Sd+1 and the Euclidean Anti de Sitter space EAdSd+1. The range that σ takes in these
Euclidean spaces is reported in figure 2. Importantly, the Wick rotation which we will make
use of in this paper, discussed in section 4.1, moves points in the complex σ plane from de
Sitter to EAdS without crossing the cut.

For in depth discussions on the analyticity of two-point functions in complexified de
Sitter, we refer the reader to [3, 4, 45–47, 54–56].

4.1 Wick rotation to EAdS

As mentioned above, the first step to invert the Källén-Lehmann decomposition is con-
tinuing (3.26) to Euclidean Anti de Sitter space, of which we review various coordinate
systems and for which we set up notation in appendix F.1. Here we describe the precise way
in which we realize this continuation, inspired by what was done in [5, 45, 46, 55–57].By
SO(d+ 1, 1) invariance, Wightman functions only depend on the following dot products

GO(J)(Y1, Y2;W1,W2) = GO(J)(Y1 · Y2, (Y1 ·W2)(Y2 ·W1),W1 ·W2) (4.4)
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As discussed in 3.1.1, Wightman functions in de Sitter are defined with an iϵ prescription
which is realized in planar coordinates (2.22) as

Y1 = Y1(η1eiϵ,y1) , Y2 = Y2(η2e−iϵ,y2) . (4.5)

We Wick rotate to EAdS by simply taking ϵ → π
2 and identifying the EAdS Poincaré

coordinates z = |η| and x = y, so that the dot products transform as

Y1 · Y2 −→
ϵ→π

2

X1 ·X2 , (Y1 ·W2)(Y2 ·W1) −→
ϵ→π

2

(X1 ·W2)(X2 ·W1) , (4.6)

where X ∈ EAdSd+1 and X ·W = 0 as is reviewed in F.1. It can be checked that, under
this particular Wick rotation, Y1 · Y2 will move through the domain of analyticity discussed
in section 3 and will not cross the cut at Y1 · Y2 ∈ [1,∞). In figure 2 we show an example of
how Y1 · Y2 moves in the complex plane under this rotation. Moreover, this Wick rotation
maps Wightman functions in dS for free traceless symmetric tensor fields to harmonic
functions in EAdS (eq. (2.70) in [46]):

Gλ,ℓ(Y1, Y2;W1,W2) −→
ϵ→π

2

Γ(±iλ) Ωλ,ℓ(X1, X2;W1,W2) , (4.7)

where throughout this paper we use the shorthand convention that, inside gamma functions
and Pochhammer symbols, Γ(a± b) ≡ Γ(a+ b)Γ(a− b).

In appendix F, we review some of the useful properties of harmonic functions. Among
them, the orthogonality relation (F.12) will play a crucial role in the derivation of our
inversion formula.

4.2 Inversion formula for d ≥ 2

We start with the spinning Källén-Lehmann decomposition in d ≥ 2 that we proved in
section 3. After the Wick rotation to EAdS, it reads

GO(J)(X1,X2;W1,W2)=
J∑

ℓ=0

∫
R
dλ ρP,ℓ

O(J)(λ) [(W1 ·∇1)(W2 ·∇2)]J−ℓΓ(±iλ)Ωλ,ℓ(X1,W1;X2,W2)

+possible contributions from other UIRs (4.8)

As we will discuss in section 4.3, the harmonic functions form a complete and orthogonal basis
of square-integrable two-point functions [34]. In other words, if a two-point function is square-
integrable, its Källén-Lehmann decomposition only includes principal series contributions.
In d ≥ 2, we find that the two-point functions we considered in our examples in section 5
can always be studied in a regime where the principal series contributions reproduce the
full two-point function, and then by analytic continuation away from that regime we could
recover any complementary series part as poles that cross the contour of integration in (4.8).
We have not encountered exceptional series contributions in any of our examples. Given
these facts, let us for now focus on inverting the decomposition over the principal series. To
exploit the orthogonality of the harmonic functions, we act on both sides of (4.8) with the
integro-differential operator∫

X1
Ωλ′,m(X3, X1,W3,K1)[(K1 · ∇1)(K2 · ∇2)]J−m , (4.9)
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where we use the shorthand notation for integrating X1 over EAdS defined in (F.13). The
right hand side of (4.8) becomes

J∑
ℓ=0

∫
dλ Γ(±iλ)ρP,ℓO(J)(λ)

∫
X1

Ωλ′,m[(K1 · ∇1)(K2 · ∇2)]J−m[(W1 · ∇1)(W2 · ∇2)]J−ℓΩλ,ℓ ,

(4.10)
where we are omitting the arguments of the harmonic functions to avoid clutter. Let us
focus on the quantity

(K1 · ∇1)J−m(W1 · ∇1)J−ℓΩλ,ℓ(X1, X2;W1,W2) . (4.11)

The fact that divergences of harmonic functions vanish, implies that we can express (4.11)
in terms of commutators

[(K1 · ∇1)J−m, (W1 · ∇1)J−ℓ]Ωλ,ℓ(X1, X2;W1,W2) . (4.12)

Using basic properties of commutators together with the divergenceless condition, we can
write this as

(K1 · ∇1)J−m−1[(K1 · ∇1), (W1 · ∇1)J−ℓ]Ωλ,ℓ(X1, X2;W1,W2) . (4.13)

Evaluating this commutator (F.19), we get that (4.10) can be written as
J∑

ℓ=0
κ2

J−ℓ,ℓ

∫
dλ Γ(±iλ)ρP,ℓ

O(J)(λ)
∫

X1

Ωλ′,m[(K1 ·∇1)(K2 ·∇2)]J−m−1[(W1 ·∇1)(W2 ·∇2)]J−ℓ−1Ωλ,ℓ ,

(4.14)
with

κn,m ≡ −n2 (d+ n+ 2m− 2)
((

d

2 +m+ n− 1
)2

+ λ2
)
. (4.15)

By iteration, we find three possible scenarios that can happen to the integral over X1:

• If ℓ > m, the spatial integral would eventually be proportional to∫
X1

Ωλ′,m(X3, X1;W3,K1)(K1 · ∇1)(K2 · ∇2)Ωλ,ℓ(X1, X2;W1,W2) = 0 (4.16)

• If ℓ < m, instead, one eventually obtains∫
X1

Ωλ′,m(X3, X1;W3,K1)(W1 · ∇1)(W2 · ∇2)Ωλ,ℓ(X1, X2;W1,W2) = 0 , (4.17)

which vanishes because integrating by parts the derivative ∇1, the integrand becomes
a divergence on Ωλ′,m .

• The case ℓ = m is the only one that does not vanish. Instead, it gives for the
spatial integral∫

X1
Ωλ′,m[(K1 · ∇1)(K2 · ∇2)]J−m[(W1 · ∇1)(W2 · ∇2)]J−ℓΩλ,ℓ

= δℓ,mδ(λ− λ′)
(
J−ℓ∏
n=1

κ2n,ℓ

)
Ωλ,ℓ(X1, X3;W1,W3) .

(4.18)
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This procedure allows us to isolate the ℓ-th contribution in the sum in (4.8)

ÑJ,ℓ Ωλ,ℓ(X2, X3,W2,W3)ρP,ℓO(J)(λ)

=
∫
X1

Ωλ,ℓ(X3, X1;W3,K1)[(K1 · ∇1)(K2 · ∇2)]J−ℓGO(J)(X1, X2;W1,W2) ,
(4.19)

where

ÑJ,ℓ≡Γ(±iλ)
J−ℓ∏
n=1

κ2n,ℓ=
ℓ!Γ(±iλ)
22(J−ℓ)

(
d−1
2

)
ℓ

(
(J−ℓ)!(d+2ℓ−1)J−ℓ

(
d

2±iλ+ℓ
)
J−ℓ

)2

.

(4.20)
Equation (4.19) is valid for all X2 and X3 in EAdS as well as any null W2 and W3 that
satisfy the tangential condition. We therefore pick the convenient choice of X2 = X3. Note
that, unlike bulk-to-bulk propagators, harmonic functions are regular at coincident points
in EAdS. In addition, we take a trace over the free indices by performing the substitution
W3 → K2 . After all these operations, we find an inversion formula for the principal series
spectral densities appearing in the Källén-Lehmann decomposition of spinning two-point
functions in dS

ρP,ℓO(J)(λ) =
1

NJ,ℓ

∫
X1

Ωλ,ℓ(X2, X1;K2,K1)[(K1 · ∇1)(K2 · ∇2)]J−ℓGO(J)(X1, X2;W1,W2) ,

(4.21)
with

NJ,ℓ ≡ ÑJ,ℓ Ωλ,ℓ(X,X;K,W ) . (4.22)

The trace and coincident point limit of Ωλ,ℓ was computed in [34]. Here, we report the result

Ωλ,J(X,X;K,W ) =
J !
(
d−1
2

)
J
g(J)

(4π) d+1
2 Γ

(
d+1
2

)
Γ(±iλ)

(
d

2 + J − 1± iλ

)
Γ
(
d

2 − 1± iλ

)
(4.23)

with
g(J) = (2J + d− 2)(J + d− 3)!

(d− 2)!J ! , d ≥ 3 ,

g(0) = 1 , g(J ̸= 0) = 2 , d = 2 .
(4.24)

Altogether, the overall normalization factor NJ,ℓ is equal to

NJ,ℓ =
g(ℓ)

[
ℓ! (J − ℓ)!

(
d−1
2

)
ℓ
(d+ 2ℓ− 1)J−ℓ Γ

(
d
2 + J ± iλ

)]2
4J−ℓ(4π) d+1

2 Γ
(
d+1
2

)
Γ
(
d
2 + ℓ± iλ

)∏ℓ−1
t=0

(
d
2 ± iλ+ t− 1

) . (4.25)

In practice, one might conveniently evaluate (4.21) by placing X2 at the origin of EAdS.
This choice makes the angular part of the integral trivial after carrying out all derivatives
and index contractions. Therefore, we will be left with a one-dimensional integral over
the EAdS chordal distance. We spell out the explicit formulae of these one dimensional
integrals for J = 0, 1 in appendix G.
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4.2.1 Spurious poles

The inversion formula (4.21) implies that the spectral density ρP,ℓO(J)(λ) may contain O(J)-
independent poles in the complex λ plane coming from the normalization factor N−1

J,ℓ and
the harmonic function Ωλ,ℓ, which we will refer to as spurious poles. First, we claim that
the poles of Ωλ,ℓ actually do not lead to poles in ρP,ℓO(J) . More precisely, focusing on the
λ-dependent part of NJ,ℓ, cf. eq. (4.25)

N−1
J,ℓ ∼

Γ
(
d
2 ± iλ+ ℓ

)
Γ
(
d
2 ± iλ+ J

)2 ℓ−1∏
t=0

((
d

2 − 1 + t

)2
+ λ2

)
, (4.26)

one can show that the factors in the product cancel out all the poles of Ωλ,ℓ. To illustrate
this cancellation, we write down the poles and residues of Ωλ,ℓ for ℓ up to 2, using the
explicit expressions of the harmonic functions given in appendix F.3

id Res
λ=−i d−2

2

[Ωλ,1(X1, X2;W1,W2)] = (W1 · ∇1)(W2 · ∇2)Ω−i d
2 ,0

(X1, X2) , (4.27)

i
d+ 2
2 Res

λ=−i d
2

[Ωλ,2(X1, X2;W1,W2)] = (W1 · ∇1)(W2 · ∇2)Ω−i d+2
2 ,1(X1, X2;W1,W2) ,

− id(d+ 2) Res
λ=−i d−2

2

[Ωλ,2(X1, X2;W1,W2)] = (W1 · ∇1)2(W2 · ∇2)2Ω−i d+2
2 ,0(X1, X2) .

These relations have very clear physical meanings. For example, in the first line of (4.27),
evaluating the residue of Ωλ,1 at λ = −id−2

2 amounts to approaching the massless limit of
the free two-point function of a Proca field, recalling that the Proca mass in dSd+1 is given
by
√
(d2 − 1)2 + λ2.15 The same as in flat space, the longitudinal part of a Proca two-point

function diverges in the massless limit and can be removed by a gauge transformation, with
the ghost field being a massless scalar. This explains the appearance of (W1 · ∇1)(W2 ·
∇2)Ω−i d

2 ,0
. Similarly, the second and third lines of (4.27) correspond to taking the massless

and partially massless limit [58–62] of a free spin 2 field respectively. In the latter case,
the ghost field is a tachyonic scalar of mass square m2 = −(d + 1) and that is why we
have (W1 · ∇1)2(W2 · ∇2)2Ω−i d+2

2 ,0. More generally, Ωλ,ℓ has a simple pole at the partially
massless point of depth t ∈ {0, 1, · · · , ℓ− 1}, i.e. λ = −i(d2 + t− 1), and at this point the
residue is proportional to (W1 · ∇1)ℓ−t(W2 · ∇2)ℓ−tΩ−i( d

2+ℓ−1),t:

Res
λ=−i( d

2+t−1)
Ωλ,ℓ =

1
αℓ,t

(W1 · ∇1)ℓ−t(W2 · ∇2)ℓ−tΩ−i( d
2+ℓ−1),t , (4.28)

where αℓ,t is a constant, e.g. α1,0 = id, α2,1 = id+2
2 , α2,0 = −id(d + 2). Apparently, such

poles are precisely cancelled by the corresponding zeros in N−1
J,ℓ . Before proceeding to

discuss the poles of N−1
J,ℓ , we’d like to make a conjecture about the explicit form of αℓ,t for

15Although we state the relations (4.27) in terms of EAdS harmonic functions, it apparently also holds
(up to the proportional constant) for de Sitter free two-point function Gλ,ℓ, as a direct result of the Wick
rotation (4.7). We will use the dS version of (4.27) when explaining the underlying physical picture.
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generic ℓ and t:

αℓ,t = −i(−2)ℓ−t
(
ℓ

t

)−1 Γ
(
d
2 + ℓ

)
Γ(ℓ− t)

Γ
(
d
2 + t

) . (4.29)

It matches the known results of αℓ,t for ℓ ≤ 2.
The remaining ratio of gamma functions in N−1

J,ℓ has poles at

λ = ±i
(
d

2 + ℓ+ q − 1
)
, q ∈ {1, 2, · · · , J − ℓ} . (4.30)

Combing the conjecture (4.29) and the inversion formula (4.21), we can derive a relation
between the residue of ρP,ℓO(J) at these spurious poles and the value of ρP,ℓ+qO(J) at λ =
−i
(
d
2 + ℓ− 1

)
:

ρP,ℓ+qO(J)

(
−i
(
d

2 + ℓ− 1
))

= i 2q Γ(q)
(
ℓ+ q

ℓ

)−1 (
d

2 + ℓ− 1
)
q

Res
λ=−i( d

2+ℓ+q−1)
ρP,ℓO(J)(λ)

(4.31)

We note that these identities are very similar to relations between conformal blocks and
partial amplitudes of different spins and conformal dimension found in the AdS and CFT
literature [34, 63, 64]. In all the examples we have tested in section 5, the relations (4.31)
are verified to hold.

In section 4.4, we will argue that closing the contour of integration over the principal
series in (3.26) and taking the late time limit, turns the Källén-Lehmann decomposition
into a sum over boundary operators. The identities (4.28) and (4.31) ensure

Res
λ=−i( d

2+ℓ+q−1)

[
ρP,ℓO(J)(λ)(W1 · ∇1W2 · ∇2)J−ℓGλ,ℓ

]
= − Res

λ=−i( d
2+ℓ−1)

[
ρP,ℓ+qO(J) (λ)(W1 · ∇1W2 · ∇2)J−ℓ−qGλ,ℓ+q

]
, (4.32)

where the residue on the L.H.S comes from ρP,ℓO(J)(λ), and the residue on the R.H.S comes
from Gλ,ℓ+q. This relation ensures that the spurious poles picked up when closing the
contour of integration do not contribute to the two-point function of O(J), implying the
absence of boundary operators with the spurious conformal dimensions ∆ = d+ ℓ+ q − 1
in the Boundary Operator Expansion of O(J).

4.2.2 Relation to the inversion formula from the sphere

In this section, we compare the explicit form of (4.21) in J = 0 case with the inversion
formula obtained from analytical continuation from the sphere in [6]. In appendix G, we
show that the inversion formula (4.21) for some scalar operator O simplifies to

ρP,0O (λ) = 2π d+1
2

Γ(±iλ)

∫ −1

−∞
dσ (σ2 − 1)

d−1
2 F

(
d

2 + iλ,
d

2 − iλ,
d+ 1
2 ,

1 + σ

2

)
GO(σ) , (4.33)

where GO(σ) is the two-point function of O and by symmetry it can only depend on the
SO(d+1, 1) invariant σ ≡ Y1 ·Y2. The spectral density can thus be derived from an integral
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σ

1−1 ε

Contour in (4.31)Contour in (4.32)

Figure 3. The contour deformation that illustrates the equivalence of the two inversion formulae —
eq. (4.34) from the sphere and eq. (4.33) from EAdS. In orange, we represent the contour which
in the inversion formula derived from the sphere is around the cut at σ ∈ [1,∞), represented by
the red zigzag line. We deform the contour as indicated by the gray arrows to the σ ∈ (−∞,−1]
interval where there is the cut of the hypergeometric in eq. (4.34) represented by the blue zigzag
line. We assume the two-point function satisfies the analyticity properties discussed in section 3.

over a range of σ that corresponds to a part of the spacelike separated region in de Sitter.
This means one would be able to reconstruct the whole two-point function just having
access to its value in the region σ ∈ (−∞,−1).16

Equation (4.33) is another version of the inversion formula [6]

ρP,0O (λ)=
(4π) d−1

2 Γ(1− d
2±iλ)

iΓ(±iλ)

∫ ∞

1
dσF

(
1− d

2+iλ,1−
d

2−iλ,
3−d
2 ,

1−σ
2

)
Disc [GO(σ)]

(4.34)
which was found by analytical continuation from the sphere. Here the discontinuity is
defined as Disc [GO(σ)] = limϵ→0GO(σ + iϵ)−GO(σ − iϵ). The integral in (4.34) is over
the timelike separated region (σ ∈ [1,∞)) where the two-point function has a branch cut
and the integration is over its discontinuity.

We now argue that these two formulae are simply equivalent assuming that the Wight-
man two-point function GO satisfies the analyticity properties discussed at the beginning of
section 4. Consider the integral (4.34). It can be written as a contour integral that goes
around the branch cut σ ∈ [1,∞). One can deform this contour until it surrounds the
region σ ∈ (−∞,−1], as is illustrated in figure 3.

In this contour deforming process we assumed GO(σ) is analytic everywhere except for
the mentioned branch cut and it decays sufficiently fast so that the contribution from the

16Here we assume the two-point function is well-defined and single-valued and satisfies the appropriate
conditions for the completeness of the principal series discussed in section 4.3.
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arc at infinity vanishes.17 This new contour surrounds the branch cut of the regularized
hypergeometric function in (4.34), which is precisely in the region σ ∈ (−∞,−1):

ρP,0O (λ)=
(4π) d−1

2 Γ(1− d
2±iλ)

iΓ(±iλ)

∫ −1

−∞
dσDisc

[
F
(
1− d

2+iλ,1−
d

2−iλ,
3−d
2 ,

1−σ
2

)]
GO(σ) .

(4.35)
The discontinuity of the hypergeometric function around its branch cut is given by

Disc
[

F
(
1− d

2 + iλ, 1− d

2 − iλ,
3− d

2 ,
1− σ

2

)]
=

22−dπi
Γ(1− d

2 ± iλ)
(σ2 − 1)

d−1
2 F

(
d

2 + iλ,
d

2 − iλ,
d+ 1
2 ,

1 + σ

2

)
. (4.36)

Using this, one finds that (4.33) and (4.34) are equivalent.

4.3 Completeness of principal series and analyticity of the spectral densities

In this section, we will spell out the conditions under which the Källén-Lehmann decom-
position of a spinning two-point function in EAdSd+1 with d ≥ 2 only contains principal
series representations. Moreover, by analytical continuation of the inversion formula derived
in (4.21), we study analytic properties of the spectral densities.

Let us start from the fact that harmonic functions Ωλ,ℓ(X1, X2;W1,W2) with λ ∈ R are
a complete basis for square-integrable two-point functions in EAdSd+1 with d ≥ 2 [34, 65].
In other words any square-integrable spin-J two-point function in EAdS can be written as

GO(J)(X1, X2;W1,W2) =
J∑
ℓ=0

∫
R
dλ cℓ,J(λ) ((W1 · ∇1)(W2 · ∇2))J−ℓΩλ,ℓ(X1, X2;W1,W2)

(4.37)
for some coefficients cℓ,J(λ) that do not depend on X1 and X2. The right hand side has
exactly the form of the principal series contributions in the Källén-Lehmann decomposition
in de Sitter (3.26). Therefore, if a de Sitter two-point function after the Wick rotation to
EAdS is square-integrable, we expect that only contributions from representations in the
principal series appear in its Källén-Lehmanndecomposition.

Let us see how square-integrability in EAdS translates into specific conditions on
two-point functions in de Sitter. A generic spin-J two-point function in the index-free
formalism can be organized as a polynomial in W1 and W2 as follows

GO(J)(X1, X2;W1,W2) =
J∑
n=0

(W1 ·W2)J−n ((W1 ·X2)(W2 ·X1))n G(n)
O(J)(σ) . (4.38)

17The hypergeometric in (4.34) falls like σ−1+ d
2 , so GO(σ) has to fall faster than σ− d

2 for this contribution
to vanish. This is the same condition for the completeness of the principal series discussed in section 4.3.
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Its square-integrability can be phrased in terms of the convergence of the following integral18∫
X1
GO(J)(X1, X2;K1,K2)GO(J)(X1, X2;W1,W2) <∞ . (4.39)

Substituting (4.38) into this condition, assuming that G(n)
O(J)(σ) are regular on the interval

σ ∈ (−∞,−1) (which corresponds to spacelike separation in de Sitter), we can keep the
leading terms in the large σ limit and obtain the following inequality19∫ −1

−∞
dσ |σ|d−1+2J+m+nG(n)

O(J)(σ)G
(m)
O(J)(σ) <∞ , ∀m,n = 0, . . . , J. (4.40)

Now let us assume that, in the large distance limit, these functions decay as power-law:20

G(n)
O(J)(σ) ∼

σ→−∞
|σ|−ωJ,n−n . (4.41)

Then, the square-integrability of a spinning two-point function and therefore the complete-
ness of the principal series in its Källén-Lehmann decomposition is ensured if

min
n

[Re(ωJ,n)] >
d

2 + J , completeness of principal series (4.42)

where by min
n

[xn] we mean the minimum value of the set {xn}. When the fall-offs of a
two-point function violate this condition, other representations than the principal series
might appear in its Källén-Lehmann decomposition. In the examples in section 5, we
observe that in the limit cases in which this inequality is saturated, the principal series is
still enough to reconstruct the full two-point function.

Now let us consider a two-point function which satisfies the condition (4.42), so that only
the principal series contributes to its Källén-Lehmann decomposition. Given the inversion
formula (4.21), we can analytically continue in λ and study the analyticity properties of
the principal series spectral densities by studying the convergence of the inversion integrals.
For instance, consider the scalar case, in which the only spectral density is given by the
inversion formula (4.33). If we analytically continue this equation in the complex ∆ = d

2 + iλ
plane, we would see that the integral in (4.33) is convergent if

d− Re(ω0,0) < Re(∆) < Re(ω0,0) , (4.43)

where we used the fact that the hypergeometric in (4.33) has large distance fall-offs with
powers ∆ and d−∆. We thus expect the spectral density ρPO(0)(λ) to be fully analytic in
the strip defined in (4.43).

18For instance, in the case of a scalar two-point function (J = 0) this condition simplifies to∫
X1

|GO(X1, X2)|2 =
∫ ∞

0
dr sinhd r |G(0)

O (− cosh r)|2 =
∫ −1

−∞
dσ (σ2 − 1)

d−1
2 |G(0)

O (σ)|2 < ∞ .

19This comes from (F.17) and counting powers of X1 and X2 in

(K1 · K2)J−n((K1 · X2)(K2 · X1))n(W1 · W2)J−m((W1 · X2)(W2 · X1))m .

20As discussed in section 4.4, this statement follows from the existence of the bulk-to-boundary opera-
tor expansion.
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d
2

Re(ω)− d
2

∆

Figure 4. The analytic structure of the spectral density of a scalar two-point function with a
power-law large distance behavior GO(0)(σ) ∼

σ→−∞
|σ|−ω. There is a strip of analyticity (the blue

shaded region) if Re (ω) > d
2 . Because of the shadow symmetry of the spectral density, the position

of the possible poles (grey crosses) are also shadow symmetric. Moreover if the operator in the
two-point function is Hermitian, the poles come in complex conjugate pairs i.e. reflection symmetric
with respect to the x-axis.

In the spin 1 case, the explicit inversion formulae for ρP,1O(1) and ρP,0O(1) are given by (G.5).
In the large σ limit the inversion integrals converge if

ℓ = 1 : d−min
n

Re(ω1,n) < Re(∆) < min
n

Re(ω1,n)

ℓ = 0 : d+ 1−min
n

Re(ω1,n) < Re(∆) < min
n

Re(ω1,n)− 1
(4.44)

For arbitrary spin, we conjecture that ρP,ℓO(J)(λ) is analytic in

d− (min
n

Re(ωJ,n) + ℓ− J) < Re (∆) < min
n

Re(ωJ,n) + ℓ− J . (4.45)

We have explicitly checked this conjecture for J = 2.
Let us now discuss the appearance of other UIRs than the principal series. If one has

control over the fall-offs ωJ,n of the two-point function GO(J) by tuning some parameters
of the theory, then one can reach a regime where (4.42) is violated. In the process of this
analytic continuation, poles or branch points of the spectral densities cross the principal
series integrals in the Källén-Lehmann decomposition, resulting in additional sums and
integrals over other UIRs. Group theory results in [1] as well as the examples in section 5
suggest that additional representations contributing solely as isolated points rather than as
a continuum of states, but at the moment we cannot rule out their presence as a continuum
in a generic interacting QFT.

In some examples in section 5, we tune ωJ,n by tuning the masses in the theories we
are considering and we see how, when (4.42) is violated, poles in the spectral densities cross
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the contour of integration over the principal series at Im(∆) = 0, so that they lead to the
appearance of complementary series states. Before the continuation, these poles appear in
the complex ∆ plane in symmetric pairs with respect to the ∆-real axis. So either they are
on the real line or they come in pairs when they are off of the real-line cf. figure 4. In the
latter case, considering that the complementary series corresponds to real ∆, when we are
performing the analytic continuation in ωJ,n by first decreasing its imaginary part, in the
examples in section 5, the complex conjugate pairs of poles merge on the real line where they
meet a simple zero. Then, one of them moves towards the contour and ultimately crosses it,
introducing a complementary series contribution in the Källén-Lehmann decomposition,
while the other typically moves in the opposite direction.

Let us finally remark that the boundary of the strip of analyticity mentioned above
is not necessarily saturated by poles. In other words, (4.45) is just the minimum region
of analyticity of ρP,ℓO(J)(λ). Moreover, for a fixed J , the thinnest strip is for ℓ = 0. In this
case the strip of analyticity disappears when min

n
Re (ωJ,n) = d

2 + J , which is exactly in
agreement with the completeness condition.

4.4 Boundary operator expansion

In this section we assume the following about the spectral densities ρP,ℓO(J)(λ) of a two-
point function:

1. Meromorphicity in λ.

2. Growth that is at most exponential in the limit Im(λ) → −∞.

3. Presence of zeroes at λ = −in for n ∈ N.

Then, we can show that the spinning operator O(J) appearing in the two-point function
can be expanded around the late time surface in terms of boundary operators. These
boundary operators transform as primaries and descendants under the d-dimensional
Euclidean conformal group. They will in general have complex scaling dimensions, and
as such, the putative Euclidean CFT on the boundary that they define is non-unitary.
The discussion in this section is analogous to what was argued in [6] for the scalar Källén-
Lehmann decomposition, we just generalize it to higher spins. We do not claim these are
necessary conditions, but they are sufficient. Some of these conditions might be relaxed
while maintaining the existence of the Boundary Operator Expansion, but all of them are
satisfied by the spectral densities in the examples we studied in section 5. Let us start from
the following identity, which should be understood with the iϵ prescription

Gλ,ℓ(Y1, Y2;W1,W2) = Γ(±iλ)Ωλ,ℓ(Y1, Y2;W1,W2) . (4.46)

At the same time, harmonic functions can be expressed in terms of EAdS bulk-to-bulk
propagators [34]

Ωλ,ℓ(Y1, Y2;W1,W2) =
iλ

2π (Πλ,ℓ(Y1, Y2;W1,W2)−Π−λ,ℓ(Y1, Y2;W1,W2)) . (4.47)

We stress that these are just functional relations and that we are still in de Sitter space.
Using these relations we can write the principal series contributions to the Källén-Lehmann
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decomposition (3.26) as

GO(J) =
J∑
ℓ=0

∫
R
dλ ρP,ℓO(J)(λ)

iλ

π
Γ(±iλ)((W1 ·∇1)(W2 ·∇2))J−ℓΠλ,ℓ(Y1,Y2;W1,W2) ,

(4.48)
where we are omitting the arguments of GO(J) to avoid clutter. This representation is
convenient for our purposes because the Πλ,ℓ become bulk-to-boundary propagators when
we send one of their coordinates to the boundary [34]

Πλ,ℓ(Y,−P/η;W,−Z/η) ≈
η→0−

(−η)∆−ℓΠλ,ℓ(Y, P ;W,Z) +O(η∆−ℓ+1) (4.49)

where the explicit expression of the bulk-to-boundary propagator is (F.15), ∆ ≡ d
2 + iλ as

usual and P and Z are the embedding space realization of boundary vectors; we introduced
them in section 2.2.3. Moreover, by using the recursion relations in [34], it is possible to
show that the bulk-to-bulk propagators Πλ,ℓ have the following large Re(∆) behavior

Πλ,ℓ(Y1, Y2;W1,W2) ∼
Re(∆)→∞

ℓ∑
n=0

cn(σ)
2∆∆ d

2−1

(1− σ)∆

[
1 +

√
σ + 1
σ − 1

]−2∆

× (W1 ·W2)ℓ−n((Y1 ·W2)(Y2 ·W1))n ,

(4.50)

for some coefficients cn(σ) which are independent of ∆.
Now consider the fact that taking one of the time coordinates to late times η → 0−

corresponds to |σ| → ∞ (cf. eq. (F.6)). Assuming the spectral densities satisfy the properties
which we have listed at the beginning of this section, we can consider the two sides of (4.48)
at some fixed 0 < |σ|−1 ≪ 1 and close the contour of integration in the lower side of the
complex λ plane and the contribution from the arc at infinity will vanish.21 Spurious poles
will give contributions that cancel with each other as discussed in section 4.2.1. The poles
at λ = −in in the gamma function appearing in (4.48) are canceled by the zeroes in the
spectral density. We are thus left with the contributions of the non-spurious (let us call
them physical) poles of the spectral densities

GO(J) = 2
J∑
ℓ=0

∑
λ∗

Res
λ=λ∗

[
ρP,ℓO(J)(λ)

]
λ∗Γ(±iλ∗)((W1 · ∇1)(W2 · ∇2))J−ℓΠλ∗,ℓ(Y1, Y2;W1,W2) .

(4.51)
Now, we take Y2 to a point P on the late time boundary and W to a null vector Z such that
P ·Z = 0, as in (4.49). On the right hand side of (4.51), we obtain a sum of bulk-to-boundary
propagators and their derivatives. By comparison with the left hand side, this suggests
that a spin J operator O(J)(Y,W ) in de Sitter satisfies the following late time expansion in
terms of boundary operators

O(J)(−P/η,−Z/η) ≈
η→0−

J∑
ℓ=0

∑
∆∗

cO(J)O
(ℓ)
∆∗

(−η)∆∗−ℓ(Z ·∂P )J−ℓO(ℓ)
∆∗

(P,Z)+· · · , (4.52)

where O(ℓ)
∆∗

(P,Z) are boundary CFT primaries of spin ℓ and we call cO(J)O
(ℓ)
∆∗

the Boundary

21Even if the spectral densities grow exponentially with λ, we will always be able to pick a σ that is large
enough such that the contribution of the arc at infinity vanishes.
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Operator Expansion (BOE) coefficients. The dots stand for descendants, and ∆∗ ≡ d
2 + iλ∗

with λ∗ being the position of the physical poles of the spectral density ρP,ℓO(J)(λ). By
comparing with (4.51), we relate the BOE coefficients to the residues of the spectral density

cO(J)O
(ℓ)
∆∗

= 2Res
λ=λ∗

[
ρP,ℓO(J)(λ)

]
λ∗Γ(±iλ∗) . (4.53)

Let us stress that the existence of this BOE is dependant on the assumptions we stated at
the beginning of this section. It would be interesting to understand what are its convergence
properties and whether any of our assumptions can be relaxed while maintaining its validity.
We leave these for future work. In the examples in section 5, where these assumptions
are verified, we will draw precise connections between the poles of the spectral densities
we will be studying and the associated boundary operators. When extra representations
other than the principal series appear in our examples, their contributions are canceled
when closing the contour of integration and landing on the sum in (4.51). In practice this
means that the BOE, once derived by closing the contour of integration over the principal
series, can be trusted even if we continue the two-point function beyond the regime in which
it decomposes in principal series representations only. If more representations than the
principal series appeared in the Källén-Lehmann decomposition, then we expect to find
boundary operators with Re(∆) < d

2 .
Let us also note that, if this BOE exists, then the bulk two-point function of O(J) has

to have a power law decay at late times, justifying the discussion in section 4.3. Moreover,
given (4.52), the power of this decay corresponds to the conformal dimension of the lowest
lying primary in the BOE of O(J).

Finally, an important open question is whether the same BOE (4.52) of a bulk local
operator can be used inside different correlation functions.

4.5 Inversion formula in dS2

In this section, we will derive an inversion formula to extract the spectral densities in the
dS2 Källén-Lehmann decomposition (3.51). For simplicity, we first assume that the spectral
density associated with the complementary series is vanishing, and we will later discuss
under what conditions such an assumption is valid.

In general dimensions, the tensor structure of GO(J)(Y1, Y2;W1,W2) has two building
blocks, namely W1 ·W2 and (Y1 ·W2)(Y2 ·W1). In dS2, because of the relations in eq. (2.33),
GO(J) is actually a scalar function of σ = Y1 · Y2, multiplied by (W1 ·W2)J , and the scalar
function depends on whether W1 and W2 have the same chirality. Without loss of generality,
fixing W1 =W+

1 , GO(J) is encoded in two scalar functions G±
O(J)(σ), defined by

GO(J)(Y1, Y2;W+
1 ,W

±
2 ) = (W+

1 ·W±
2 )J G±

O(J)(σ) . (4.54)

Plugging it into (3.51), we should have

(W+
1 ·W±

2 )JG±
O(J)(σ)=

∫
R
dλρP,0O(J)(λ)(W+

1 ·∇1)J(W±
2 ·∇2)JGλ,0(Y1,Y2)

+
∫
R
dλρP,1O(J)(λ)(W+

1 ·∇1)J−1(W±
2 ·∇2)J−1Gλ,1(Y1,Y2;W+

1 ,W
±
2 )

+
J∑
p=0

ρ
Dp

O(J)

(
W+

1 ·∇1
)J (

W±
2 ·∇2

)J
G−i(p− 1

2)(Y1,Y2) . (4.55)
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The next task is to reduce the tensor structure on the R.H.S. For the first line, it is actually
solved in appendix A, cf. eq. (A.22) and eq. (A.26)

(W+
1 · ∇1)J(W±

2 · ∇2)JGλ,0(Y1, Y2) = (W+
1 ·W±

2 )J ϕ±λ,J(σ) , (4.56)

where

ϕ±λ,J(σ) ≡ ∂Jσ ((σ ± 1)J∂Jσ )Gλ,0(σ), Gλ,0(σ) =
Γ
(
1
2 ± iλ

)
4π F

(1
2 + iλ,

1
2 − iλ, 1, 1 + σ

2

)
.

(4.57)

For the second line, using the definition of Gλ,1 given by eq. (A.17), we have(1
4 + λ2

)
Gλ,1(Y1, Y2;W+

1 ,W
±
2 ) = ±(W+

1 · ∇1)(W±
2 · ∇2)Gλ,0(σ) . (4.58)

So it is equivalent to the first line. The reduction of the third line is given by eq. (A.27)
and eq. (A.24). Altogether, the spin J Källén-Lehmann decomposition (3.51) is equivalent
to the following two scalar equations:

G+
O(J)(σ) =

∫
R
dλ ρP,+O(J)(λ)ϕ+λ,J(σ) +

J∑
p=0

ρ
Dp

O(J)ψp,J(σ), ρP,+O(J) = ρP,0O(J) +
1

1
4 + λ2

ρP,1O(J) ,

(4.59)

and

G−
O(J)(σ) =

∫
R
dλ ρP,−O(J)(λ)ϕ−λ,J(σ), ρP,−O(J) = ρP,0O(J) −

1
1
4 + λ2

ρP,1O(J) , (4.60)

where ψp,J(σ) is defined in eq. (A.24). To invert these two equations, we introduce J-
dependent inner products for real functions defined on (−∞,−1):

(f, g)±J =
∫ −1

−∞
dσ(σ ∓ 1)2Jf(σ)g(σ) . (4.61)

In appendix D, we show that {ϕ+λ,J} ∪ {ψp,J} is an orthogonal basis with respect to ( , )+J ,
and {ϕ−λ,J} is an orthogonal basis with respect to ( , )−J . Using the orthogonality relations,
cf. eq. (D.6), (D.13) and (D.15), we obtain the following inversion formulae for dS2

ρP,±O(J)(λ) =
4λ sinh(2πλ)(

1
2 + iλ

)2
J

(
1
2 − iλ

)2
J

∫ −1

−∞
dσ(σ ∓ 1)2JG±

O(J)(σ)ϕ±λ,J(σ)

ρ
Dp

O(J) =
8π2 (2p− 1)

Γ(J + p)2Γ(1 + J − p)2
∫ −1

−∞
dσ(σ − 1)2JG+

O(J)(σ)ψp,J(σ) (4.62)

and ρP,0O(J)(λ), ρP,1O(J)(λ) can be recovered by taking linear combinations of ρP,±O(J)(λ).
The expansions (4.59) and (4.60) are valid and unique when G±

O(J) is integrable with
respect to ( , )±J . Alternatively, it means that complementary series does not contribute to
the two-point function of O(J) if G±

O(J)(σ) decays faster than (−σ)−J− 1
2 at large −σ.
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5 Applications

In this section, we apply the inversion formulae (4.21) and (4.62) to compute the Källén-
Lehmann decomposition of a variety of two-point functions. We study two-point functions
of composite operators in free theories, primary operators in de Sitter Conformal Field
Theories and composite operators in a weakly coupled Quantum Field Theory. In the free
theory case, studying which terms appear in the Källén-Lehmann decomposition informs
us on the decomposition of tensor products of UIRs of the de Sitter group. In the CFT
case, we study how SO(d+ 1, 2) UIRs decompose into SO(d+ 1, 1) UIRs. In the weakly
coupled case, we use the Källén-Lehmann representation to compute anomalous dimensions
of boundary operators. All throughout, we compare the decomposition in d > 1 with the
one in d = 1, where the discrete series states contribute up to ∆ = J for spin J two-point
functions. The two exceptional series never appear in our examples.

5.1 Free QFTs

One of the uses of the Källén-Lehmann decomposition is to study the decomposition of
multi-particle states into single particle UIRs. By studying the contents of the Källén-
Lehmann decomposition of a two-point function of a composite operator made of products
of elementary fields, we infer the complete set of UIRs that is generated by the action of that
operator on the Bunch-Davies vacuum. As shown in [1], the totality of UIRs that appears
in such a decomposition is almost exclusively composed of the principal series, except for a
few isolated complementary series states that we recover by analytic continuation. In this
section, to avoid clutter, we will write

⟨O(Y1)O(Y2)⟩ ≡ ⟨Ω|O(Y1)O(Y2)|Ω⟩ . (5.1)

5.1.1 Spin 0 examples

Let us start with the simplest possible case: the two-point function of a free elementary
massive scalar field ϕ with ∆ϕ = d

2 + iλϕ in the principal series

⟨ϕ(Y1)ϕ(Y2)⟩ = Gλϕ,0(Y1, Y2) . (5.2)

The Källén-Lehmann decomposition of this two-point function should read

⟨ϕ(Y1)ϕ(Y2)⟩ =
∫
R
dλ ρP,0ϕ (λ)Gλ,0(Y1, Y2) . (5.3)

It is then immediate to see that, necessarily,

ρP,0ϕ (λ) = 1
2(δ(λ+ λϕ) + δ(λ− λϕ))

= lim
ϵ→0

ϵ

2π(ϵ2 + (λ2 − λ2ϕ)2)
,

(5.4)

which is a manifestly real and positive quantity. It has two poles in the lower half of the
complex λ plane, signaling the presence of two primary boundary operators in the BOE
of ϕ

ϕ(−P/η) ≈
η→0−

(−η)∆ϕO(P ) + (−η)∆̄ϕÕ(P ) + . . . (5.5)
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where O(P ) and Õ(P ) are CFTd primaries with scaling dimensions ∆ϕ and d − ∆ϕ

respectively, and the dots stand for descendants. The fact that the spectral density is a
delta function in this case makes sense, since a free field already falls into a single particle
UIR. To see more interesting features, like a decomposition into a continuum of states, one
has to instead consider two-point functions of composite operators, such as ϕ1ϕ2(Y ) in a
free theory of two massive scalars

⟨ϕ1ϕ2(Y1)ϕ1ϕ2(Y2)⟩ = ⟨ϕ1(Y1)ϕ1(Y2)⟩⟨ϕ2(Y1)ϕ2(Y2)⟩ = Gλ1(Y1, Y2)Gλ2(Y1, Y2) (5.6)

where we take the two fields to have scaling dimensions ∆1 = d
2 + iλ1 and ∆2 = d

2 + iλ2 in
the principal series, so λ1, λ2 ∈ R. This two-point function is free of antipodal singularities
and decays at large distances as

|Gϕ1ϕ2(σ)| ∼
σ→−∞

|σ|−d , σ ≡ Y1 · Y2 (5.7)

Given the discussion in section 4.3, this means the Källén-Lehmann decomposition of this
two-point function will only include states in the principal series, as long as d > 2. We
observe through numerical checks of (5.12) that even in the limit case d = 2 this two-point
function decomposes into principal series representations only. To apply the inversion
formula (4.21) to this two-point function, we analytically continue it to EAdS as discussed
in section 4.1. Under this continuation, (5.6) becomes a product of two harmonic functions

⟨ϕ1ϕ2(X1)ϕ1ϕ2(X2)⟩ = Γ(±iλ1)Γ(±iλ2)Ωλ1,0(X1, X2)Ωλ2,0(X1, X2) . (5.8)

Then, the inversion formula reads

ρP,0ϕ1ϕ2
(λ) = Γ(±iλ1)Γ(±iλ2)

N0,0

∫
X1

Ωλ,0(X1, X2)Ωλ1,0(X1, X2)Ωλ2,0(X1, X2) , (5.9)

where NJ,ℓ is defined in (4.22). To make progress, we use the split representation (F.14) on
the three harmonic functions, following what was first done in [2]. Defining ∆3 ≡ d

2 + iλ,
we have

ρP,0ϕ1ϕ2
(λ) = λ2λ21λ

2
2Γ(±iλ1)Γ(±iλ2)
π3N0,0

∫
X1

3∏
k=1

∫
Pi

Π∆k,0(X1, Pk)Π∆̄k,0(X2, Pk) , (5.10)

where Π∆,0(X,P ) is a EAdS scalar bulk-to-boundary propagator, of which we report the
definition in (F.15). The integral over X1 leads to a CFT three point function

ρP,0ϕ1ϕ2
(λ) = λ2λ21λ

2
2Γ(±iλ1)Γ(±iλ2)b(∆1,∆2,∆, 0)

π3N0,0

∫
P1,P2,P3

∏3
k=1Π∆̄k,0(X2, Pk)

(P12)∆123(P13)∆132(P23)∆231
,

(5.11)
where the notation and all the coefficients are explicit in the appendix H.1. There, we
also show how to solve the remaining integrals over the three boundary points P1, P2 and
P3. Importantly, the spectral density of every free QFT two-point function of composite
operators made of two fundamental fields with spin can be reduced to linear combinations
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d
2

d

∆

Figure 5. The analytic structure of ρP,0
ϕ1ϕ2

(λ), the spectral density for ⟨ϕ1ϕ2(Y1)ϕ1ϕ2(Y2)⟩. Here we
represent the poles at λ = ±(λ1 + λ2)± i(d

2 + 2n) for each combination of signs. As we continue
λ1 and λ2 to the complementary series, we indicate with colored arrows how the leading poles
corresponding to n = 0 move in the complex ∆ = d

2 + iλ plane. Eventually, some of these poles can
cross the integration contour at Re(∆) = d

2 (we highlight their path in orange). Their residues need
to be summed, leading to the discrete sum of complementary series states in (5.16).

of this specific integral, so that in the spinning examples we will make extensive use of it.
In appendix H.1 we show how to eventually obtain

ρP,0ϕ1ϕ2
(λ) = λ sinh(πλ)

32π d
2+3Γ

(
d
2

)
Γ
(
d
2 ± iλ

) ∏
±,±,±

Γ
(
d
2 ± iλ± iλ1 ± iλ2

2

)
. (5.12)

It can be checked numerically that if λ1, λ2 ∈ R, the integral of (5.12) fully reproduces (5.6)

⟨ϕ1ϕ2(Y1)ϕ1ϕ2(Y2)⟩ =
∫
R
dλ ρP,0ϕ1ϕ2

(λ)Gλ,0(Y1, Y2) , if λ1, λ2 ∈ R . (5.13)

Analytically continuing λ1 and λ2 to the complementary series such that iλ1 ∈ (0, d2) and
iλ2 ∈ (0, d2 ), poles of ρP,0ϕ1ϕ2

(λ) can cross the contour of integration over the principal series,
so that their residues need to be added by hand, introducing some complementary series
contributions to the Källén-Lehmann decomposition of this two-point function. This is in
agreement with what is discussed in section 4.3. By studying the gamma functions in (5.12)
we see that poles cross the contour if there exists some n ∈ N such that

d

2 + 2n < iλ1 + iλ2 < d , (5.14)

where the second inequality comes from the fact that λ1 and λ2 are constrained to be on
the complementary series. Let us assume more specifically that

d

2 + 2N < iλ1 + iλ2 <
d

2 + 2(N + 1) , (5.15)
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for some N < d
4 . Then, the full decomposition reads

⟨ϕ1ϕ2(Y1)ϕ1ϕ2(Y2)⟩ =
∫
R
dλ ρP,0ϕ1ϕ2

(λ)Gλ,0(Y1, Y2) +
N∑
n=0

ρC,0ϕ1ϕ2
(n)Gλ1+λ2+i( d

2+2n),0(Y1, Y2)

(5.16)
where

ρC,0ϕ1ϕ2
(n)=

(−1)n
(
d
2

)
n
Γ(−n+iλ12)Γ

(
d
2+n−iλ12

)∏
j=1,2Γ(−n+iλj)Γ

(
d
2+n−iλj

)
4π1+ d

2n!Γ(−2n+iλ12)Γ
(
−d

2−2n+iλ12
)
Γ(d+2n−iλ12)Γ

(
d
2+2n−iλ12

)
(5.17)

with λ12 ≡ λ1 + λ2. The complementary series densities are simply the residues on the
poles of ρP,0ϕ1ϕ2

(λ)
ρC,0ϕ1ϕ2

(n) = 4πi Res
λ=λ1+λ2+i( d

2+2n)
ρP,0ϕ1ϕ2

(λ) . (5.18)

As expected from the proof of the Källén-Lehmann decomposition, by studying the sign of
ρC,0ϕ1ϕ2

(n), it can be verified that these functions are positive as long as λ1 and λ2 are in the
complementary series and lie in the interval (5.14). The appearance of this discrete sum of
complementary series UIRs is in agreement with [1], see table 1.3 there. Moreover, this sum
was derived before in [66] and we checked that our ρC,0ϕ1ϕ2

(n) matches their equation (48).22

The sum over n runs up to N < ⌊d4⌋ because only in this range the interval (d2 + 2n, d) is
non-vanishing.

Boundary Operator Expansion. The spectral density (5.12) satisfies all the assump-
tions of section 4.4. From its poles in the lower half of the complex λ plane we can thus
read off the primary operators which appear in the BOE of ϕ1ϕ2, namely

ϕ1ϕ2(−P/η) ≈
η→0−

∞∑
n=0

[
c∆1∆2(−η)∆1+∆2+2n[O1O2]n(P )

+ c∆1∆̄2
(−η)∆1+∆̄2+2n[O1Õ2]n(P ) + · · ·

]
+ · · ·

(5.19)

where notation like [O1O2]n should be understood to stand for all the boundary scalar
primaries that can be constructed with O1,O2 and 2n contracted derivatives while being
symmetric under 1 ↔ 2. The dots in the square brackets stand for contributions from
primaries like [Õ1O2]n and [Õ1Õ2]n, while the dots outside of the brackets stand for
descendants. The operators Oi(P ) are defined as the leading late time behavior of the free
fields ϕ1(Y ) and ϕ2(Y )

ϕ1,2(−P/η) ∼
η→0−

(−η)∆1,2O1,2(P ) + (−η)∆̄1,2Õ1,2(P ) . (5.20)

so that O1(P ) and Õ1(P ) transform as CFT scalar primaries with scaling dimensions
∆1 = d

2 + iλ1 and ∆̄1 = d
2 − iλ1 respectively (and analogously O2(P ) and Õ2(P )). An extra

comment: when λ1 and λ2 satisfy (5.14), the poles of (5.12) at λ = λ1 + λ2 + i(d2 + 2n)
22To verify the matching one needs to substitute λ1 → −iα, λ2 → −iβ and d → D − 1.
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can be picked up when closing the contour of integration to find the boundary operators
in the late time limit. One could thus expect there to be operators on the boundary with
∆ = d − ∆1 − ∆2 − 2n. But the residues on these poles are precisely canceled by the
complementary series sum in (5.16), and thus such operators are actually not appearing in
the bulk-boundary OPE of ϕ1ϕ2(Y ).

5.1.2 Spin 1 examples

Consider the correlator

⟨V ϕ(Y1;W1)V ϕ(Y2;W2)⟩ = ⟨V (Y1;W1)V (Y2;W2)⟩⟨ϕ(Y1)ϕ(Y2)⟩ (5.21)

in a free theory of a massive vector with ∆V = d
2 + iλV and a massive scalar ∆ϕ = d

2 + iλϕ ,
both on the principal series. This two-point function has two scalar components

GV ϕ(Y1, Y2;W1,W2) = G(0)
V ϕ(σ)(W1 ·W2) + G(1)

V ϕ(σ)(W1 · Y2)(W2 · Y1) , (5.22)

which decay at large distances as

|G(0)
V ϕ(σ)| ∼

σ→−∞
|σ|−d , |G(1)

V ϕ(σ)| ∼
σ→−∞

|σ|−d−1 . (5.23)

Following the discussion in section 4.3, we can thus state that the Källén-Lehmann decom-
position of this two-point function will only include principal series contributions, as long
as d > 2. We verified that this is true also in the limit case d = 2. These will be organized
in two terms, related to transverse and longitudinal degrees of freedom. In appendix H.1
we show in detail how to apply the inversion formula to this case and how to express the
two spectral densities as linear combinations of (5.9). Here we report the result

ρP,0V ϕ (λ)=
2−1π−3− d

2λsinh(πλ)
(∆V−1)(∆̄V−1)(d2+4λ2)Γ

(
d
2

)
Γ
(
d
2±iλ+1

) ∏
±,±,±

Γ
(
d
2+1±iλ±iλV ±iλϕ

2

)

ρP,1V ϕ (λ)=
2−12π−3− d

2λsinh(πλ)fλ,λV ,λϕ

Γ
(
d+2
2

)
(∆V −1)(∆̄V −1)Γ

(
d
2±iλ+1

) ∏
±,±,±

Γ
(
d
2±iλ±iλϕ±iλV

2

)
, (5.24)

with

fλ,λV ,λϕ
= 16

(
λ2ϕ − (λ2 + λ2V )

)2
+ 64(d− 1)λ2λ2V

+ 8d(3d− 4)λ2ϕ + 8d
(
2d2 − 5d+ 4

) (
λ2 + λ2V

)
+ d3

(
4d2 − 11d+ 8

)
,

(5.25)

where we see the appearance of the spurious pole predicted in section 4.2.1. When ϕ and
V have scaling dimensions in the principal series, the integrals over the principal series
reproduce the full two-point function. We elaborate on how exactly to carry out numerical
checks in section F.3. Continuing their scaling dimensions to the complementary series,
iλV ∈

(
0, d2 − 1

)
and iλϕ ∈ (0, d2), instead leads to different poles of ρP,0V ϕ (λ) and ρP,1V ϕ (λ)

– 46 –



J
H
E
P
1
2
(
2
0
2
3
)
1
5
9

crossing the contour of integration. This happens when the following conditions are satisfied
for some integers N0 and N1:

ρP,0V ϕ : d

2 + 2N0 + 1 < iλϕ + iλV <
d

2 + 2(N0 + 1) + 1 ,

ρP,1V ϕ : d

2 + 2N1 < iλϕ + iλV <
d

2 + 2(N1 + 1) ,
(5.26)

where the unitarity bounds for the complementary series impose N0 <
d−4
4 and N1 <

d−2
4 .

The complementary series contributions to this two-point function when (5.26) are satisfied,
then, are given by the sum over the residues of ρP,0V ϕ (λ) and ρP,1V ϕ (λ) on those poles. Moreover,
in d = 1 the discrete series contributes as well. We can explicitly derive this extra
contribution by analytically continuing in the dimension until d = 1, and keeping track of
any poles that cross the contour of integration over the principal series. Specifically, what
happens is that the poles at λ = ±id−2

2 in the spin-1 free propagator (see section 4.2.1 for a
discussion about these poles) cross the contour of integration. At the precise value d = 2
these poles at λ = ±id−2

2 are canceled by zeroes of the form λ sinh(πλ) which are present
in the propagator, but when continuing all the way to d = 1, the poles need to be taken
into account. The complete decomposition thus reads

⟨V ϕ(Y1;W1)V ϕ(Y2;W2)⟩ =
1∑
ℓ=0

∫
R
dλ ρP,ℓV ϕ(λ)[(W1 · ∇1)(W2 · ∇2)]1−ℓGλ,ℓ(Y1, Y2;W1,W2)

+
N0∑
n=0

ρC,0V ϕ,n(W1 · ∇1)(W2 · ∇2)Gλϕ+λV +i( d
2+2n+1),0(Y1, Y2)

+
N1∑
n=0

ρC,1V ϕ,nGλϕ+λV +i( d
2+2n),1(Y1, Y2;W1,W2) (5.27)

+ δd,1ρ
D1
V ϕ (W1 · ∇1) (W2 · ∇2)G− i

2 ,0
(Y1, Y2) ,

where δd,1 is a Kronecker delta, because the discrete series term only contributes in d = 1.
We stress that the complementary series contributions appear only if (5.26) are satisfied for
some N0 and N1, and are absent otherwise. The spectral densities of the complementary
series contributions are, specifically,

ρC,0V ϕ,n = 4πi Res
λ=λϕ+λV +i( d

2+2n+1)
ρPV ϕ,0(λ) ,

ρC,1V ϕ,n = 4πi Res
λ=λϕ+λV +i( d

2+2n)
ρPV ϕ,1(λ) ,

(5.28)

and we verify that they are positive functions for λV and λϕ in (5.26). The discrete series
density is instead given by

ρD1
V ϕ =

π(λ2V − λ2ϕ)
(1 + 4λ2V ) sinh(π(λV − λϕ)) sinh(π(λV + λϕ))

. (5.29)

Now let us discuss the spectrum of boundary operators that we can infer from this
two-point function. As reviewed in [26] and discussed in section 2.2.3, bulk free vector fields
have the following asymptotic behavior

Vi(η,y) ∼
η→0−

(−η)∆V −1Ai(y) + (−η)∆̄V −1Ãi(y) , (5.30)
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with Ai(y) and Ãi(y) transforming as CFT primaries with scaling dimensions ∆V and ∆̄V .
Using the fact that ∇µV

µ = 0 we can fix the asymptotic behavior of Vη(η,y)

Vη(η,y) ∼
η→0−

1
∆̄V − 1

(−η)∆V ∂ · A(y) + 1
∆V − 1(−η)

∆̄V ∂ · Ã(y) . (5.31)

We recognize the appearance of these boundary operators in the poles of the two spectral
densities. Specifically, we can write the following BOE (cf. eq. (4.52))

V ϕ(−P/η,−Z/η) ≈
η→0−

∞∑
n=0

[
c
(0)
∆ϕ∆V

(−η)∆V +∆ϕ+1+2n(Z · ∂P )[(DZ · ∂P )AO]n(P,Z)

c
(1)
∆ϕ∆V

(−η)∆V +∆ϕ−1+2n[AO]n(P,Z) + · · ·
]
+ · · · , (5.32)

where we see both spin 0 and spin 1 boundary operators appearing and the dots stand
for double trace primaries like [ÃO]n(P,Z) and descendants. The boundary operator O is
defined through the late time limit of the free field

ϕ(−P/η) ≈
η→0−

(−η)∆ϕO(P ) + (−η)∆̄ϕÕ(P ) . (5.33)

Finally, we verify that the contributions from the spurious poles at λ = −id2 and λ = −id−2
2

in (5.27) exactly cancel when closing the contour of integration due to the identities in 4.2.1.
That means they are not associated to any boundary operator. We also computed the
decomposition of the correlator

⟨ϕ1∇ϕ2(Y1;W1)ϕ1∇ϕ2(Y2;W2)⟩ = ⟨ϕ1(Y1)ϕ1(Y2)⟩(W1 · ∇1)(W2 · ∇2)⟨ϕ2(Y1)ϕ2(Y2)⟩ .
(5.34)

When λ1, λ2 ∈ R, the following principal series spectral densities account for the full
Källén-Lehmann decomposition of this two-point function (see appendix H.1 for more
details)

ρP,0ϕ1∇ϕ2
(λ) =

(d2 + 4(λ2 − λ21 + λ22))2Γ
(
d+1
2

)
λ sinh(πλ)

210−dπ d+7
2 (d2 + 4λ2)Γ(d)Γ

(
d
2 + 1± iλ

) ∏
±,±,±

Γ
(
d
2 ± iλ± iλ1 ± iλ2

2

)

ρP,1ϕ1∇ϕ2
(λ) = λ sinh(πλ)

24π3+ d
2 Γ
(
d+2
2

)
Γ
(
d
2 + 1± iλ

) ∏
±,±,±

Γ
(
d
2 + 1± iλ± iλ1 ± iλ2

2

)
(5.35)

When analytically continuing the conformal weights of ϕ1 and ϕ2 to the complementary
series iλ1 ∈ (0, d2) and iλ2 ∈ (0, d2), poles of ρP,0ϕ1∇ϕ2

(λ) and ρP,1ϕ1∇ϕ2
(λ) cross the integration

contour when the following conditions are satisfied for some N0 <
d−2
4 and N1 <

d−4
4

ρP,0ϕ1∇ϕ2
: d

2 + 2N0 < iλ1 + iλ2 <
d

2 + 2(N0 + 1) ,

ρP,1ϕ1∇ϕ2
: d

2 + 2N1 + 1 < iλ1 + iλ2 <
d

2 + 2(N1 + 1) + 1 .
(5.36)

Notice that these are slightly different poles than (5.26). Moreover, in d = 1 there is a
discrete series state appearing corresponding to a massless scalar, with ∆ = 1. The full
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decomposition reads

⟨ϕ1∇ϕ2(Y1;W1)ϕ1∇ϕ2(Y2;W2)⟩=
1∑

ℓ=0

∫
R
dλ ρP,ℓ

ϕ1∇ϕ2
(λ)[(W1 ·∇1)(W2 ·∇2)]1−ℓGλ,ℓ(Y1,Y2;W1,W2)

+
N0∑

n=0
ρC,0

ϕ1∇ϕ2,n(W1 ·∇1)(W2 ·∇2)Gλϕ+λV +i( d
2 +2n),0(Y1,Y2)

+
N1∑

n=0
ρC,1

ϕ1∇ϕ2,nGλϕ+λV +i( d
2 +2n+1),1(Y1,Y2;W1,W2)

+δd,1ρ
D1
ϕ1∇ϕ2

(W1 ·∇1)(W2 ·∇2)G− i
2 ,0(Y1,Y2) . (5.37)

The complementary series densities are once again positive functions, given by the residues
of the principal series densities on the poles that cross the contour

ρC,0ϕ1∇ϕ2,n
= 4πi Res

λ=λ1+λ2+i( d
2+2n)

ρP,0ϕ1∇ϕ2
(λ) ,

ρC,1ϕ1∇ϕ2,n
= 4πi Res

λ=λ1+λ2+i( d
2+2n+1)

ρP,1ϕ1∇ϕ2
(λ) ,

(5.38)

and their contribution is instead absent when λϕ and λV are real or imaginary but outside of
the intervals (5.36). The discrete series density is again obtainable by analytically continuing
in the spacetime dimension and adding the residue on the pole that crosses the contour of
integration

ρD1
ϕ1∇ϕ2

= π(λ21 − λ22)
4 sinh(π(λ1 − λ2)) sinh(π(λ1 + λ2))

. (5.39)

The difference in the pole structure of (5.35) compared to (5.24) is explained when we
consider the boundary operators appearing in the BOE of ϕ1∇ϕ2(Y )

ϕ1(Z · ∂P )ϕ2(−P/η) ≈
η→0−

∞∑
n=0

[
c
(0)
∆1∆2

(−η)∆1+∆2+2n(Z · ∂P )[O1O2]n(P )

c
(1)
∆1∆2

(−η)∆1+∆2+2n[O1(Z · ∂P )O2]n(P )
] (5.40)

To form a boundary scalar, in fact, V ϕ needs the action of a derivative, such that the
scalar boundary operators with the lowest scaling dimension have ∆ = ∆V +∆ϕ + 1. The
operator ϕ1∇ϕ2, instead, can form a boundary scalar operator without the use of derivatives
and with scaling dimension ∆ = ∆1 +∆2. Vice versa for the boundary vector operators.
Finally, we verify that the contributions of the spurious poles exactly cancel also in this
case, because of the identities in 4.2.1.

5.2 Conformal Field Theories

We have shown some examples of Källén-Lehmann decompositions of two-point functions of
composite operators in free QFTs. In this section, we use the Källén-Lehmann decomposition
to study how states generated by the action of bulk CFT primaries on the Euclidean vacuum
decompose into UIRs of the de Sitter group. That corresponds to decomposing irreps of
SO(d+ 1, 2) into irreps of SO(d+ 1, 1) . We test examples up to spin 2 and recover the fact
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that for general d > 1, CFT states decompose into principal series states and complementary
series states, while for d = 1 there is the appearance of discrete series states up to ∆ = J ,
as in the free theory case. We verify the validity of our results by comparing their flat space
limit as described in section 3.3 to the results presented in [53].

Spinning CFT two-point functions in de Sitter. To start, let us review the form of
CFT two-point functions of traceless symmetric primary operators with spin in the bulk of
de Sitter. The relevant group of symmetries of these correlators is SO(d+ 1, 2). We thus
embed the d+1 dimensional de Sitter CFT in Rd+1,2 with metric η = diag(−1, 1, . . . , 1,−1).
We denote points in this embedding space Y ∈ Rd+1,2, and the invariance under SO(d+1, 2)
is enforced by Y2 = 0. Explicitly,

Y2 = Y 2 − (Yd+2)2 = 0 , (5.41)

where Y ∈ Rd+1,1. The de Sitter hyperboloid constraint is enforced by (Yd+2)2 = 1. That is
the section of the lightcone in Rd+1,2 on which we will focus. We also embed the polarization
tensors as Z = (W, 0), so that Y1 · Z2 = Y1 ·W2 . In [35] it is shown that CFT two-point
functions of a spin J primary operator of conformal dimension ∆ is, in embedding space,

⟨O(J)(Y1,Z1)O(J)(Y2,Z2)⟩= cO(J)
(−2[(Z1 ·Z2)(Y1 ·Y2)−(Y1 ·Z2)(Y2 ·Z1)])J

(−2Y1 ·Y2)∆+J . (5.42)

Projecting to de Sitter by using the lightcone constraint

Y1 · Y2 = Y1 · Y2 − 1 , (5.43)

we obtain the general form of a spin J CFT two-point function in de Sitter expressed in
the embedding space formalism

⟨O(J)(Y1,W1)O(J)(Y2,W2)⟩= cO(J)
[(W1 ·W2)(1−Y1 ·Y2)+(Y1 ·W2)(Y2 ·W1)]J

2∆(1−Y1 ·Y2)∆+J , (5.44)

5.2.1 Spin 0 example

Let us start by reviewing the Källén-Lehmann decomposition of the CFT two-point function
of a scalar primary operator O of conformal dimension ∆ in de Sitter, which was computed
before in [6]. The two-point function has the form

⟨O(Y1)O(Y2)⟩ =
cO

2∆(1− Y1 · Y2)∆ . (5.45)

It has been argued in section 3 that only scalar principal series and complementary series
can contribute to such a two-point function. In addition, using the criterion found in
section 4.3, we know that complementary series is also absent when ∆ > d

2 . In this case,
the inversion formula for the principal series contribution reads

ρP,0O (λ) = cO
2∆N0,0

∫
X1

Ωλ,0(X1, X2)(1−X1 ·X2)−∆ . (5.46)
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This integral can be solved by using the Mellin-Barnes representation of the hypergeometric
function and Barnes’ first lemma, as explained in appendix H.2. We obtain

ρP,0O (λ) = cO
21+d−2∆π

d−1
2 Γ

(
−d

2 + ∆ ± iλ
)

Γ(∆)Γ
(
1−d
2 + ∆

) λ sinh(πλ) . (5.47)

We numerically verified that the Källén-Lehmann integral over the principal series of this
spectral density fully reproduces the two-point function, if ∆ > d

2 . When instead ∆ < d
2 ,

the poles at
λ = ±i

(
∆ − d

2

)
(5.48)

cross the contour of integration and need to be added. This corresponds to a complementary
series state since λ is imaginary. The contribution of this state when ∆ < d

2 is in agreement
with the decomposition of SO(d+ 1, 2) irreps into SO(d+ 1, 1) as shown in table 1.4 of [1].
Unitarity fixes ρPO(λ) to be positive, and from this fact we can infer the usual unitarity
bound on ∆

∆ >
d− 1
2 . (5.49)

In general, we can write the full decomposition of a CFT scalar two-point function as

⟨O(Y1)O(Y2)⟩=
∫
R
dλ ρP,0O (λ)Gλ,0(Y1,Y2)+θ

(
d

2−∆
)
ρC,0O Gi(∆− d

2 ),0(Y1,Y2) , (5.50)

where θ(x) is a Heaviside theta, and

ρC,0O = cO
4π d

2 Γ
(
1− d

2 + ∆
)
sin
(
π
2 (d− 2∆)

)
Γ(∆) = 4πi Res

λ=i(∆− d
2 )
ρPO(λ) . (5.51)

Notice that the complementary series contribution is the two-point function of a free field
with ∆ = d− ∆. Furthermore, if ∆ = d−1

2 , we have that ρP,0O (λ) = 0 and

⟨O(Y1)O(Y2)⟩ = ρC,0O Gi(∆− d
2 ),0(Y1, Y2)

∣∣∣
∆= d−1

2

. (5.52)

This is the two-point function of a conformally coupled scalar in dSd+1. Finally, we comment
on boundary operators. The poles in ρP,0O (λ) are at ∆ = ∆+N, signaling the appearance
of boundary operators with these weights in the Boundary Operator Expansion of the bulk
CFT primary O. Let us explain their origin by considering a d+ 1 dimensional Lorentzian
CFT on the Minkowski cylinder. The discussion is entirely analogous in de Sitter because
they are conformally equivalent spacetimes. Consider a scalar primary O(t,x) in this CFT
with conformal dimension ∆ and let us focus on the timeslice at t = 0, where the primaries
of the smaller SO(d+ 1, 1) group at that timeslice are those operators On(x) which satisfy

[D,On(0)] = ∆nOn(0) , [Ki,On(0)] = 0 i = 1, . . . , d . (5.53)

It can be checked that particular linear combinations of operators like (∂2)m∂nt O(0,x) for
different m and n such that m

2 + n is constant, satisfy this condition. For example, the
operator O0(x) ≡ O(0,x) trivially satisfies (5.53) with ∆0 = ∆. But also

[Ki, [P0,O(0, 0)]] = −2[Mi0,O(0, 0)] = 0 (5.54)

– 51 –



J
H
E
P
1
2
(
2
0
2
3
)
1
5
9

so that O1(x) ≡ ∂tO(0,x) at the timeslice t = 0 is a boundary primary with ∆1 = ∆ + 1.
If we go further, we find

[Ki, [P 2
0 ,O(0, 0)]] = 2[Pi,O(0, 0)] , (5.55)

but also
[Ki, [PjP j ,O(0, 0)]] = 2(2(∆ + 1)− d)[Pi,O(0, 0)] (5.56)

so that a good boundary primary is

O2(x) ≡ ∂2tO(0,x)− 1
2(∆ + 1)− d

∂2O(0,x) , (5.57)

with ∆2 = ∆+2. This can be iterated to find higher and higher primaries with ∆ = ∆+N.
By Weyl equivalence, the discussion in de Sitter space is entirely analogous and we can thus
explain the presence of the poles at ∆ = ∆ + N in the spectral density (5.47).

Flat space limit. To compute the flat space limit of the Källén-Lehmann decomposition
of this two-point function, we follow the discussion in section 3.3 by first restoring the
dimensions of the spectral densities by adding the appropriate factors of the de Sitter
radius R: ρP,0O (λ) → R−2∆+d−1ρP,0O (λ). Then, after changing variables to λ = Rm, we take
the limit

lim
R→∞

R

m
ρP,0O (Rm) = cO

2d+1−2∆π
d+1

2

Γ(∆)Γ
(
1−d
2 + ∆

)m2∆−d−1 , (5.58)

which precisely matches the flat space CFT scalar spectral density (eq. (4.3) in [53]).23

Once adjusted for dimensions, the complementary series spectral density instead reads

ρC,0O = cO
4π d

2 Γ
(
1− d

2 + ∆
)
sin
(
π
2 (d− 2∆)

)
R2∆−d+1Γ(∆) . (5.59)

In the large R limit it survives only if ∆ = d−1
2 . That is in agreement with the fact that in

flat space, a free massless scalar is a CFT primary operator. We can thus write that in flat
space we have

ρM,0
O (m2) = cO

2d+1−2∆π
d+1

2

Γ(∆)Γ
(
1−d
2 + ∆

)m2∆−d−1 , (5.60)

and instead, if ∆ = d−1
2 ,

ρM,0
O (m2) = cOδ(m2) 4π d+1

2

Γ
(
d−1
2

) . (5.61)

5.2.2 Spin 1 example

For a spin-1 primary operator J of conformal weight ∆, the two-point function is

⟨J(Y1;W1)J(Y2;W2)⟩ =
cJ
2∆

[
W1 ·W2

(1− Y1 · Y2)∆ + (Y1 ·W2)(Y2 ·W1)
(1− Y1 · Y2)∆+1

]
. (5.62)

23To match conventions dhere = (d − 1)there and ∆here = ∆Othere.
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In appendix H.2 we show explicitly how to invert this two-point function and find the
principal series spectral densities:

ρP,0J (λ) = cJ
23+d−2∆π

d−1
2 (∆ − d)Γ

(
−d

2 + ∆ ± iλ
)

(d2 + 4λ2)Γ(∆ + 1)Γ
(
1−d
2 + ∆

) λ sinh(πλ) ,

ρP,1J (λ) = cJ
21+d−2∆π

d−1
2 (∆ − 1)Γ

(
−d

2 + ∆ ± iλ
)

Γ(∆ + 1)Γ
(
1−d
2 + ∆

) λ sinh(πλ) .

(5.63)

For d ≥ 2, this is the complete Källén-Lehmann decomposition of this two-point function,
as can be verified numerically by performing the integral over the principal series. In d = 1,
instead, we see the appearance of discrete series states. We can either compute those directly
from the inversion formula in d = 1, or just derive them by analytically continuing the
higher dimensional result all the way to d = 1 while keeping track of any poles that cross
the principal series integration contour. The results one obtains in these two ways agree.
The full Källén-Lehmann decomposition for the two-point function of a spin 1 primary CFT
operator is thus

⟨J(Y1;W1)J(Y2;W2)⟩ =
1∑
ℓ=0

∫
R
dλ ρP,ℓJ (λ)[(W1 · ∇1)(W2 · ∇2)]1−ℓGλ,ℓ(Y1, Y2;W1,W2)

+ δd,1ρ
D1
J (W1 · ∇1)(W2 · ∇2)G−i/2,0(Y1, Y2) (5.64)

where
ρD1
J = cJ

23−2∆π

∆ . (5.65)

When d = 1 and ∆ = 1, we have that ρP,0J = ρP,1J = 0 and the left hand side matches
exactly the extra contribution from the discrete series. The discrete series term is in fact the
two-point function of the operator W · ∇φ with φ being the massless scalar, corresponding
to the ∆ = 1 operator in the discrete series

(W1 · ∇1)(W2 · ∇2)⟨φ(Y1)φ(Y2)⟩ . (5.66)

In two-dimensional Minkowski space, the operator ∂µφ with φ being a free massless scalar
is a CFT primary. It should not surprise us then that the same is true in de Sitter, by Weyl
equivalence. One last observation is that from (5.63) we can recover unitarity bounds for
spin 1 CFT primaries

∆ ≥ d . (5.67)

Moreover, we observe the expected feature that for a conserved current ∆ = d, only
transverse states propagate, since ρP,0J (λ) vanishes. Finally, we study the boundary operators
appearing in the Boundary Operator Expansion of the bulk CFT primary J(Y ;W ). The
pole structure of the two spectral densities (5.63), after verifying that the contributions
of the spurious poles cancel as expected, signals the appearance of scalar and vector
boundary operators with conformal dimensions ∆ + N. Analogously to the scalar case,
these come from the late time expansion of the bulk operator and of linear combinations
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of ∂nt (∂2)mJµ(0,x). Scalar boundary primary operators then come from particular linear
combinations of ∂nt (∂2)mJ0(0,x) and ∂nt (∂2)m∂ · J(0,x). Vector operators come from
∂nt (∂2)mJ i(0,x).

Flat space limit. We start by restoring the dimensions ρP,0J (λ) → R2∆−d−1ρP,0J (λ) and
ρP,1J (λ) → R2∆−d+1ρP,1J (λ). Then, we have

lim
R→∞

R

m
ρP,0J (Rm) = cJ

2d+1−2∆π
d+1

2 (∆ − d)
Γ(1 + ∆)Γ

(
1−d
2 + ∆

)m2∆−d−3 ,

lim
R→∞

R

m3 ρ
P,1
J (Rm) = cJ

2d+1−2∆π
d+1

2 (∆ − 1)
Γ(1 + ∆)Γ

(
1−d
2 + ∆

)m2∆−d−3 .

(5.68)

which match equations (4.10) in [53]. The discrete series contribution with dimensions
restored reads

ρD1
J = cJ

23−2∆π

R2∆−2∆ . (5.69)

In the flat space limit, this survives only if ∆ = 1, corresponding to the case in which we
are decomposing a two-point function of a conserved current in d = 1. We can thus write,
for ∆ > 1

ρM,0
J (m2) = cJ

2d+1−2∆π
d+1

2 (∆ − d)
Γ(1 + ∆)Γ

(
1−d
2 + ∆

)m2∆−d−3 ,

ρM,1
J (m2) = cJ

2d+1−2∆π
d+1

2 (∆ − 1)
Γ(1 + ∆)Γ

(
1−d
2 + ∆

)m2∆−d−3 ,

(5.70)

which precisely match eq. (4.10) in [53]. In the d = 1 and ∆ = 1 case, instead, the
Källén-Lehmann decomposition is given by a massless state

ρM,0
J (m2) = 2πcJδ(m2) , ρM,1

J (m2) = 0 . (5.71)

5.2.3 Spin 2 example
The two-point function of a spin-2 traceless and symmetric CFT primary with conformal
weight ∆ is

⟨T (Y1;W1)T (Y2;W2)⟩=
cT

2∆

[ (W1 ·W2)2

(1−Y1 ·Y2)∆ +2(W1 ·W2)(Y1 ·W2)(Y2 ·W1)
(1−Y1 ·Y2)∆+1 +[(Y1 ·W2)(Y2 ·W1)]2

(1−Y1 ·Y2)∆+2

]
(5.72)

In appendix H.2 we show how to apply the inversion formula to this case. The resulting
principal series contributions to the Källén-Lehmann decomposition are

ρP,0T (λ) = cT
25+d−2∆(d+ 1)π d−1

2 (d− ∆)(d+ 1− ∆)Γ
(
−d

2 + ∆ ± iλ
)

d(d2 + 4λ2)((d+ 2)2 + 4λ2)Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) ,

ρP,1T (λ) = cT
24+d−2∆π

d−1
2 (1− ∆)(d+ 1− ∆)Γ

(
−d

2 + ∆ ± iλ
)

((d+ 2)2 + 4λ2)Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) ,

ρP,2T (λ) = cT
21+d−2∆π

d−1
2 (∆ − 1)∆Γ

(
−d

2 + ∆ ± iλ
)

Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) .

(5.73)
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Once again, for d > 1 the Källén-Lehmann integral over the principal series fully reproduces
the two-point function, and the structure of spurious poles matches the predictions made
in section 4.2.1. In d = 1, through the inversion formula for the discrete series we find
contributions from ∆ = 1 and ∆ = 2 states.

⟨T (Y1;W1)T (Y2;W2)⟩ =
2∑
ℓ=0

∫
R
dλ ρP,ℓT (λ)[(W1 · ∇1)(W2 · ∇2)]2−ℓGλ,ℓ(Y1, Y2;W1,W2)

+ δd,1

2∑
p=1

ρ
Dp

T (W1 · ∇1)2(W2 · ∇2)2Gi( 1
2−p),0(Y1, Y2) (5.74)

with
ρD2
T = cT

23−2∆π

∆ + 1 , ρD1
T = cT

23−2∆π(∆ − 2)
∆(∆ + 1) . (5.75)

The positivity of (5.73) implies the expected unitarity bound for a spin 2 CFT primary

∆ ≥ d+ 1 , (5.76)

and when T is a conserved stress tensor, ∆ = d+1, both ρP,0T and ρP,1T vanish. When d = 1,
Gλ,2 vanishes and the decomposition matches (3.51) with vanishing complementary series
contributions. The two discrete series contributions correspond to the two-point functions

(W1 ·∇1)2(W2 ·∇2)2⟨φ(Y1)φ(Y2)⟩ , (W1 ·∇1)2(W2 ·∇2)2⟨φ′(Y1)φ′(Y2)⟩ , (5.77)

with φ being a massless scalar, corresponding to ∆ = 1, and φ′ being the first tachyon in
the discrete series, the ∆ = 2 representation. When d = 1 and ∆ = 2, all spectral densities
vanish except for ρD2

T , and then

⟨T (Y1;W1)T (Y2;W2)⟩
∣∣∣
d=1,∆=2

= ρD2
T

∣∣∣
∆=2

(W1 ·∇1)2(W2 ·∇2)2G− 3i
2 ,0

(Y1,Y2) , (5.78)

meaning that in d = 1 the operator (W · ∇)2φ′ with φ′ being a tachyonic free field with
∆φ′ = 2 is a CFT primary. Now let us comment on the boundary operators. First of all,
we verify that the contributions from the spurious poles cancel. Then, we observe that
the physical poles imply the appearance of boundary operators with spins ℓ = 0, 1, 2 and
conformal weight ∆+N in the BOE of T (Y,W ). These again come from the late time limit
of linear combinations of ∂nt (∂2)mTµν(0,x). The spin 2 boundary operators are of the form
∂nt (∂2)mT ij(0,x), the spin 1 operators are combinations of derivatives and µ, ν = 0, i and
the scalars are combinations of the trace and of divergences.

Flat space limit. As done for the previous examples, we restore the factors of R in the
spectral densities and then we take the large R limit

lim
R→∞

d

d+ 1
R

m
ρP,0T (Rm) = cT

2d+1−2∆π
d+1

2 (∆ − d)(∆ − d− 1)
Γ(2 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

lim
R→∞

1
2
R

m3 ρ
P,1
T (Rm) = cT

2d+1−2∆π
d+1

2 (∆ − 1)(∆ − d− 1)
Γ(2 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

lim
R→∞

R

m5 ρ
P,2
T (Rm) = cT

2d+1−2∆π
d+1

2 (∆ − 1)∆
Γ(2 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

(5.79)
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where we have used β2,0 = d
d+1 , β2,1 = 1

2 and β2,2 = 1. These results match equations (4.13)
in [53]. Restoring the dimensions in the discrete series densities, instead, gives

ρD2
T = cT

23−2∆π

R2∆−4(∆ + 1) , ρD1
T = cT

23−2∆π(∆ − 2)
R2∆−4∆(∆ + 1) . (5.80)

Under the flat space limit, only when ∆ = 2 they have a chance of surviving. The p = 1
density vanishes even in this case, because of the factor of ∆ − 2 in the numerator, and so
we are left with the following flat space densities for ∆ > 2

ρM,0
T (m2) = cT

2d+1−2∆π
d+1

2 (∆ − d)(∆ − d− 1)
Γ(2 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

ρM,1
T (m2) = cT

2d+1−2∆π
d+1

2 (∆ − 1)(∆ − d− 1)
Γ(1 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

ρM,2
T (m2) = cT

2d+1−2∆π
d+1

2 (∆ − 1)∆
Γ(2 + ∆)Γ

(
1−d
2 + ∆

) m2∆−d−5 ,

(5.81)

and the special case ∆ = 2 and d = 1 instead being

ρM,0
T (m2) = π

12cT δ(m
2) , ρM,1

T (m2) = 0 . (5.82)

Equations (5.81) and (5.82) match (4.13) in [53].24

5.2.4 Higher spin examples in dS2

So far, we have derived the spectral densities for spin J ∈ {0, 1, 2} CFT operators O(J) in
dS2 by an analytical continuation from higher d. This can also be done systematically using
the dS2 inversion formula developed in section 4.5. In general, the two-point function of a
spin J primary is given by eq. (5.44), and its corresponding chiral components as defined in
eq. (4.54) are

G+
O(J)(σ) =

2J−∆cO(J)

(1− σ)∆+J , G−
O(J)(σ) = 0 . (5.83)

Assuming the unitarity bound ∆ ≥ J , the asymptotic behavior G±
O(J)(σ) ∼ (−σ)−(∆+J)

ensures the absence of complementary series in the Källén-Lehmann decomposition of O(J).
In addition, as a direct result of eq. (4.60), the vanishing of G−

O(J)(σ) implies

ρP,1O(J)(λ) =
(1
4 + λ2

)
ρP,0O(J)(λ) . (5.84)

Then we apply the inversion formula (4.62) to G(+)
O(J) given by eq. (5.83)

ρP,0O(J)(λ) =
2J−∆+1cO(J)λ sinh(2πλ)(

1
2 + iλ

)2
J

(
1
2 − iλ

)2
J

∫ −1

−∞
dσ

ϕ+λ,J(σ)
(1− σ)∆−J

ρ
Dp

O(J) =
2J−∆+3cO(J)π2 (2p− 1)
Γ(J + p)2Γ(1 + J − p)2

∫ −1

−∞
dσ

ψp,J(σ)
(1− σ)∆−J . (5.85)

24The placement of the massless state in ρM,0
T or ρM,1

T is arbitrary since the Wightman propagators ∆(2)
0,1

and ∆(2)
0,0 are the same in d = 1 in the massless limit.
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The evaluation of this type of integral is extensively discussed in appendix H.2. Here we
just report the final results

ρP,0O(J)(λ) =
(1
4 + λ2

)−1
ρP,1O(J)(λ) =

cO(J)Γ
(
±iλ+ ∆ − 1

2

)
22∆−J−1

(
1
2 ± iλ

)
J
Γ(∆ + J)Γ(∆ − J)

λ sinh(πλ)

ρ
Dp

O(J) =
cO(J)π(2p− 1)Γ(∆ − p)Γ(p+ ∆ − 1)

22∆−J−2Γ(∆ − J)Γ(∆ + J)Γ(J − p+ 1)Γ(J + p) . (5.86)

When ∆ = J , i.e. saturation of unitarity bound, only discrete series with p = J contributes.

Flat space limit. The spectral densities we have just derived allow us to make a prediction
about flat space two dimensional CFTs. After restoring the correct dimensions, under the
flat space limit we get

lim
R→∞

RβJ,0
m

ρP,0O(J)(Rm) = cO(J)
22−2∆π

Γ(∆ − J)Γ(∆ + J)m
2(∆−J−1) ,

lim
R→∞

RβJ,1
m3 ρP,1O(J)(Rm) = cO(J)

22−2∆π

Γ(∆ − J)Γ(∆ + J)m
2(∆−J−1) ,

(5.87)

where we have used βJ,0 = βJ,1 = 21−J , which can be easily read off from eq. (A.52). For
the discrete series contribution, since R2(J−∆) has to be inserted in ρ

Dp

O(J) before taking
R→ ∞, it can survive in the flat space limit only if ∆ = J , which itself forces p = J .

In total we thus have that in 2 spacetime dimensions, the flat space spectral densities
of a CFT primary of spin J and conformal dimension ∆ are, for ∆ > J ,

ρM,0
O(J)(m2) = ρM,1

O(J)(m2) = cO(J)
22−2∆π

Γ(∆ − J)Γ(∆ + J)m
2(∆−J−1) . (5.88)

and for the special case ∆ = J ,

ρM,0
O(J)(m2) = δ(m2)cO(J)

23−2Jπ

Γ(2J) , ρM,1
O(J)(m2) = 0 . (5.89)

5.3 Weakly coupled QFT

The Källén-Lehmann decomposition is a non-perturbative representation of two-point
functions in de Sitter. At the same time, it can be used to decompose two-point functions
order by order in a perturbative expansion, when the QFT is weakly coupled. Since
poles in the spectral densities can be related to the conformal dimensions of boundary
operators [6] (see discussion in section 4.4), we will observe their position shifting as we
turn on interactions in the bulk. From this shift, we can read off anomalous dimensions for
the boundary operators. At the same time, the fact that we will stop to a definite order
in the coupling expansion, means we will lose the positivity of the spectral densities as
a side effect. This is just an artifact of perturbation theory and does not mean that the
theory is not unitary. We will now review how to derive anomalous dimensions of boundary
operators from the spectral densities and then show a practical example in a scalar weakly
interacting theory.
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Consider the Källén-Lehmann decomposition of a two-point function of a scalar operator
Φ (which for simplicity we take to include only principal series contributions) in an interacting
theory governed by a coupling g. It will present simple poles on the nonperturbative value
of the conformal dimension of each boundary operator that appears in the bulk-boundary
OPE of Φ [6]. Near a pole at ∆∗(g), it will behave as

ρ(∆, g) ≈
Res

∆=∆∗(g)
[ρ(∆, g)]

∆−∆∗(g)
. (5.90)

For a weakly coupled theory, we can expand this formula in g and obtain to first order

ρ(∆,g)≈
Res

∆=∆∗(0)
[ρ(∆,0)]

∆−∆∗(0)
+g

∂g Res
∆=∆∗(0)

[ρ(∆,0)]

∆−∆∗(0)
+

Res
∆=∆∗(0)

[ρ(∆,0)]∂g∆∗(0)

(∆−∆∗(0))2

+O(g2)

≡ c0
∆−∆∗(0)

+g
(

c1
∆−∆∗(0)

+ c2
(∆−∆∗(0))2

)
+O(g2) , (5.91)

where in the second line we simply set up notation. If we consider the series expansion of
∆∗(g),

∆∗(g) = ∆∗(0) + g∂g∆∗(0) +O(g2) , (5.92)

we recognize that the anomalous dimension of the boundary operator with ∆ = ∆∗(g) at
order g is given by

γ∗ = g
c2
c0
. (5.93)

Simply put, the anomalous shift in the dimension ∆∗(0) at first order in g is given by
the ratio between the coefficient of the double pole in ρ(∆, g) at the position ∆ = ∆∗(0)
appearing at order g and the coefficient of the simple pole at the same position but in the
free theory. Let us now consider a concrete example.

5.3.1 Anomalous dimensions from quartic interactions

Consider the following weakly coupled theory for a massive real scalar in de Sitter

L = −1
2g

µν∂µϕ∂νϕ− 1
2m

2ϕ2 − g

4!ϕ
4 , (5.94)

with ∆ = d
2 + iλϕ and λϕ ∈ R. We are going to be interested in this theory when the

interaction is relevant or marginal, so d = 1, 2, 3. We compute the correction to the free
two-point function of the composite operator ϕ2 by using the in-in formalism, which we
review in appendix I. We choose to consider the Wightman function

⟨Ω|ϕ2(Y1)ϕ2(Y2)|Ω⟩ , (5.95)

with Y1 and Y2 in the Expanding Poincaré Patch, |Ω⟩ is the interacting Bunch-Davies
vacuum and, as we discussed in 4.1, we are avoiding the branch cut by taking η1 → eiϵη1
and η2 → e−iϵη2 . In the notation from [5], which we are going to adopt for the rest of
this subsection, it means we are selecting Y2 ∈ r and Y1 ∈ l (see appendix I for more
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ϕ2(Y l
1 ) ϕ2(Y r

2 ) +
∑
α=l,r

ϕ2(Y l
1 ) ϕ2(Y r

2 )ϕ4(Y α)

Figure 6. The free theory and order g contributions to the Wightman two-point function ⟨ϕ2ϕ2⟩.

details). When the coupling g is turned off, the two-point function is given by the free
theory contribution, which has the Källén-Lehmann representation shown in 5.1.1, with
λ1 = λ2 = λϕ and a factor of 2 accounting for symmetry

ρP,0ϕ2,free(λ) =
λ sinh(πλ)

16π3+ d
2 Γ
(
d
2

)
Γ
(
d
2 ± iλ

)Γ( d
2 ± iλ

2

)2 ∏
±,±

Γ
(
d
2 ± iλ± 2iλϕ

2

)
. (5.96)

Importantly, this spectral density has simple poles at

λ = 2λϕ − i

(
d

2 + 2n
)
−→ ∆ = 2∆ϕ + 2n ,

λ = −2λϕ − i

(
d

2 + 2n
)
−→ ∆ = 2∆̄ϕ + 2n ,

(5.97)

due to the fact that boundary operators of the form [OO]n and [ÕÕ]n,25 appear in the
bulk-boundary OPE of ϕ2. We expect these operators to inherit anomalous dimensions
once we turn on interactions. At leading order in the coupling, the two-point function is
corrected by the diagram shown in figure 6, which following the in-in formalism, corresponds
to the following integrals

⟨ϕ2(Y1)ϕ2(Y2)⟩lr(g) = ig

[∫
Y l
(Gllλϕ

(Y1, Y )Glrλϕ
(Y, Y2))2 −

∫
Y r

(Glrλϕ
(Y1, Y )Grrλϕ

(Y, Y2))2
]

(5.98)
In appendix I we analytically continue these integrals to EAdS and solve them. We obtain
that the order g contribution to the two-point function has the following spectral density

ρP,0ϕ2,g(λ) = g
ρP,0ϕ2,free(λ)

4 sinh2(πλϕ)

[
sin
(
π

(
d

2 + 2iλϕ
))

B∆ϕ,∆ϕ
(λ)

+ sin
(
π

(
d

2 − 2iλϕ
))

B∆̄ϕ,∆̄ϕ
(λ)− 2 sin

(
dπ

2

)
B∆ϕ,∆̄ϕ

(λ)
]
,

(5.99)

with B∆1∆2(λ) defined as an infinite series in (I.21). This function is well-defined when
d < 3 and suffers from a UV divergence when d ≥ 3. In d = 3, as discussed in appendix I.3,
we can make sense of B∆1∆2(λ) by dimensional regularization, i.e. d = 3− ϵ, and absorbing

25We remind the reader that [O1O2]n is a schematic notation to indicate all the scalar double trace
operators one can form with O1, O2 and 2n derivatives, and ϕ(η, x) ∼

η→0−
(−η)∆ϕO(x) + (−η)∆̄ϕÕ(x).
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0 1 2 3 4 5 6
λφ

−0.010

−0.005

0.000

0.005

0.010

γ
g

Re[γO2] =Re[γÕ2]

Im[γO2]

Im[γÕ2]

Figure 7. Anomalous dimensions of the boundary operators Õ2 and O2 in g
4!ϕ

4 theory in dS4
for a field ϕ which, in the absence of interactions, has ∆ϕ = d

2 + iλϕ in the principal series. O
and Õ are the leading boundary operators in the BOE of ϕ, and in the absence of interactions
they transform as CFT scalar primaries with conformal dimensions ∆ϕ and d −∆ϕ respectively.
Notice that (γO2)∗ = γÕ2 . The divergence at λϕ = 0 is due to the mixing of O2 and Õ2 in that
degenerate case.

the divergence into the wavefunction renormalization of ϕ2. In the same appendix, we
also show how to extract the anomalous dimensions of [OO]n and [ÕÕ]n from eq. (5.99),
following the prescription outlined above. More precisely, we did that for λϕ ∈ R with the
final expressions given by eq. (I.26):

γ[OO]n = −g

(
d
2

)
n
Γ
(
1
2 + n+ iλϕ

)
Γ
(
d
2 + n+ iλϕ

)
Γ
(
d
2 + n+ 2iλϕ

)
sin
(
π
2 (d+ 4iλϕ)

)
2d+3π

d
2n! sinh2(πλϕ)Γ(1 + n+ iλϕ)Γ

(
d+1
2 + n+ iλϕ

)
Γ(1 + n+ 2iλϕ)

,

γ[ÕÕ]n
= −g

(
d
2

)
n
Γ
(
1
2 + n− iλϕ

)
Γ
(
d
2 + n− iλϕ

)
Γ
(
d
2 + n− 2iλϕ

)
sin
(
π
2 (d− 4iλϕ)

)
2d+3π

d
2n! sinh2(πλϕ)Γ(1 + n− iλϕ)Γ

(
d+1
2 + n− iλϕ

)
Γ(1 + n− 2iλϕ)

.

(5.100)
For an elementary field that in the absence of interactions is in the principal series (λϕ ∈ R),
these anomalous dimensions are complex, satisfying (γ[OO]n)∗ = γ[ÕÕ]n

and with a positive
real part. The late time boundary operators associated to ϕ2 will thus decay faster once
interactions are turned on (assuming that g > 0, or in other words that the Hamiltonian is
bounded from below). In [2, 12, 67, 68], a similar phenomenon was observed for the boundary
operators O and Õ themselves. In figure 7 we plot γ[OO]n and γ[ÕÕ]n

for λϕ ∈ (0, 10) in
d = 3 and with n = 0. If we naively continue (5.100) to imaginary values of λϕ to study
the case in which ϕ is in the complementary series, we can match with known results in
the literature [69] on the anomalous dimension of [ÕÕ]0 in dS4, as shown in figure 8. We

– 60 –



J
H
E
P
1
2
(
2
0
2
3
)
1
5
9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
iλφ

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

γÕ2

g

Anomalous dimensions in d = 3 and with n = 0

Premkumar, 2021

Figure 8. Anomalous dimensions of Õ2 in g
4!ϕ

4 theory in dS4, where Õ is the slowest decaying
boundary operator associated to ϕ and ϕ is a field that, in the absence of interactions, has ∆ϕ = 3

2+iλϕ

in the complementary series. The dots are from figure 8 of [69].

believe this analytic continuation should be done with care, since many of the steps in
appendix I.3 do not trivially generalize to the complementary series, but simply making
λϕ imaginary seems to work, at least in this case. One can further compare (5.100) with
the anomalous dimensions of the corresponding boundary operators in AdS in a quartic
theory [70–73]:

γdS
[OO]n = −1

2csch2(πλϕ) sin
(
π

(
d

2 + 2iλϕ
))

γAdS
[OO]n . (5.101)

The trigonometric factors appearing in front have two separate origins. The hyperbolic
cosecant factor comes from the different normalizations for bulk-to-boundary propagators in
dS and AdS, while the sine factor originates from the interference of the two branches of the
in-in contour. Interestingly, its role is to cancel unphysical singularities that are otherwise
present in the AdS result when analytically continued to the complementary series (which
is partly outside of the unitarity bounds in AdS). These facts were already pointed out
in [55, 56].

The anomalous dimensions of Õ2 in dS diverge as one approaches the two endpoints of
the complementary series. The divergence as iλϕ → d

2 is a symptom of the breaking down of
perturbation theory due to the IR divergences associated to massless fields. The divergence
as iλϕ → 0 instead corresponds to the degeneracy between the boundary operators O2 and
Õ2 when ∆ϕ = d

2 .

6 Outlook

In this paper we have derived the Källén-Lehmann decomposition for spinning traceless
symmetric bulk operators in dS (see section 3), and applied it to many examples in section 5.
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Here we outline potential future applications that we can imagine for this technology.

• In the context of bootstrapping QFT in de Sitter [11], it may be useful to study a
mixed system involving boundary and bulk correlation functions analogous to what
was recently done in flat space [74, 75] and AdS [52]. In particular, it should be
possible to generalize [76, 77] and derive a sum rule for the spectral density of the trace
of the stress tensor that gives the central charge of the UV CFT in a two dimensional
de Sitter background.

• In this work, we mostly focused on the contributions of principal and complementary
series UIRs (except in dS2 where we also considered the discrete series systematically).
It would be interesting to study the effect of the type II exceptional series UIRs,
which include photons and gravitons in d > 2. For example, in upcoming work [78]
we show that computing the leading order correction to the two-point function of the
conserved current in scalar QED in de Sitter leads to the appearance of a photon in
the Källén-Lehmann decomposition.
Understanding the Ward identities of the boundary operators associated to photons
and gravitons is the natural next step towards understanding quantum gravity in de
Sitter.

• It would be interesting to establish the convergence properties of the Boundary
Operator Expansion (BOE) non-perturbatively for QFT in dS. It is likely that the
connection between boundary operators and quasi-normal modes of the static patch
of de Sitter [79–84] will be useful in this context.
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A Various properties of Green’s functions in de Sitter

A.1 Canonical quantization of a free scalar

Let Φ be a free massive scalar of mass m ≥ d
2 in dSd+1. We parametrize the mass by

m2 = d2

4 + λ2, with λ ∈ R (principal series) or −d
2 < iλ < d

2 (complementary series). The
standard bulk mode expansion of ϕ in planar coordinates is

Φ(η,y ) =
∫

ddy
(2π) d

2

(
ak ϕk(η)eik·y + a†k ϕk(η)∗e−ik·y

)
, (A.1)
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where ϕk(η) satisfies the equations of motion(
(−η)d+1∂η(−η)1−d∂η + |k|2η2 +m2

)
ϕk(η) = 0 , (A.2)

and the Klein-Gordon normalization condition (needed to ensure the canonical commutation
relation between Φ and ΠΦ = (−η)1−d∂ηΦ)

i(−η)1−d (ϕ∗k∂ηϕk − ∂ηϕ
∗
kϕk) = 1 (A.3)

This is solved by

ϕk(η) = (−η)
d
2 h̄iλ(|k|η), ϕk(η)∗ = (−η)

d
2hiλ(|k|η) , (A.4)

where

hiλ(ξ) =
√
π

2 e
πλ
2 H

(2)
iλ (−ξ), h̄iλ(ξ) =

√
π

2 e−
πλ
2 H

(1)
iλ (−ξ) . (A.5)

The functions hiλ and h̄iλ are invariant under λ↔ −λ. This is consistent with the fact that
m is independent of the sign of λ. For light scalars, i.e. 0 < m < d

2 , λ is purely imaginary,
and e±

πλ
2 becomes a phase.

The solution of eq. (A.2) and eq. (A.3) is not unique. Different linear combinations of the
Hankel functions also satisfy the equation of motion and the Klein-Gordon normalization
condition. This is related to the usual ambiguity of choosing the vacuum in a curved
spacetime. What singles out the above choice is the early time η → −∞ asymptotic behavior

ϕk(η) ≈ e−i
π
4 (−η)

d−1
2
e−i|k|η√
2|k|

. (A.6)

It means that at early time, the corresponding choice of vacuum looks like the canonical
Minkowski vacuum. The vacuum selected in this way is called the Bunch-Davies vacuum.

Given the mode functions (A.4), the Wightman two-point function of Φ in the Bunch-
Davies vacuum can be expressed as

Gλ,0(η1, y1; η2,y2 ) ≡ ⟨Ω|Φ(η1,y1 )Φ(η2,y2 )|Ω⟩

= (η1η2)
d
2

∫
ddk
(2π)d e

−ik·(y1−y2 )h̄iλ(|k|η1)hiλ(|k|η2) . (A.7)

Evaluating the Fourier transformation in eq. (A.7) yields the hypergeometric representation
of Gλ,0:

Gλ,0(η1,y1; η2,y2 ) =
Γ(∆)Γ(∆̄)
(4π) d+1

2
F
(
∆, ∆̄, d+ 1

2 ,
1 + σ

2

)
, (A.8)

where ∆ = 1
2 + iλ, σ is the chordal distance between (η1,y1) and (η2,y2)

σ = Y1 · Y2 =
η21 + η22 − y 2

12
2η1η2

, y12 = y1 − y2 , (A.9)

and F(a, b, c, z) ≡ 1
Γ(c)F (a, b, c, z) is the regularized hypergeometric function.
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A.2 Proca fields in dS2

In dS2, the mode expansion of a Proca field Aµ is closely related to that of Φ. More precisely,
consider the Proca Lagrangian

L = −1
4FµνF

µν − 1
2m

2AµA
µ , (A.10)

where m2 = 1
4 + λ2. In planar coordinates, the equation of motion of Aµ is satisfied by

Aη = α∂yΦ, Ay = α∂ηΦ , (A.11)

where α is a normalization constant and Φ is a canonically normalized scalar field of the
same mass m. We fix α by requiring Ay and its conjugate momentum Πy satisfy the
standard commutation relation. The canonical momentum Πy is given by

Πy = η2Fηy = αη2(∂2η − ∂2y)Φ = −αm2Φ , (A.12)

where in the last step we have used the equation of motion of Φ. Using the fact that
∂ηΦ = ΠΦ is the canonical momentum of Φ, we get

[Πy, Ay] = −α2m2[Φ,ΠΦ] = −iα2m2 , (A.13)

which implies α2 = 1
m2 for canonical quantization. Thus the Green’s function of Aµ can be

summarized as

d = 1 : ⟨Ω|Aµ(η1, y1)Aν(η2, y2)|Ω⟩ =
1
m2 ϵ

α
µ ∂yα

1
ϵ β
ν ∂

yβ
2
Gλ,0(σ) , (A.14)

where ϵµα and ϵνβ are totally antisymmetric tensors at (η1, y1) and (η2, y2) respectively.
To write the two-point function ⟨Ω|Aµ(η1, y1)Aν(η2, y2)|Ω⟩ in terms of embedding space
coordinates, we need the following relation

ϵABC
∂Y A

∂yµ
∂Y B

∂yν
Y C = −ϵµν , (A.15)

which can be directly checked in any local coordinates yµ. It implies that the embedding
space counterpart of ϵµν is −ϵABCY C . Then the uplift of ϵ α

µ ∂yα to embedding space
should be

ϵ α
µ ∂yα =⇒ −ϵABCY C(∂Y B − YB Y · ∂Y ) = ϵABCY

B∂Y C . (A.16)

Altogether, the two-point function Gλ,1(Y1, Y2;W1,W2) of A(Y,W ) is

Gλ,1(Y1, Y2;W1,W2) ≡ ⟨Ω|A(Y1,W1)A(Y2,W2)|Ω⟩

=
(1
4 + λ2

)−1
ϵ (W1, Y1, ∂Y1) ϵ (W2, Y2, ∂Y2)Gλ,0(Y1, Y2) , (A.17)

where ϵ(U1, U2, U3) ≡ ϵABCU
A
1 U

B
2 U

C
3 .
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A.3 Analytical continuation of Gλ,0 in dS2

In dS2, the Green’s function Gλ,0 in eq. (A.8) becomes divergent when ∆ ≡ 1
2 + iλ = p ∈ Z+.

Such divergences can be removed by acting with derivatives. More precisely, let’s first apply
the series expansion of hypergeometric functions to Gλ,0

Gλ,0(σ) =
∑
n≥0

Γ(∆ + n)Γ(∆̄ + n)
(n!)2

(1 + σ

2

)n
. (A.18)

Then we take the limit ∆ → p. The problematic terms in this limit correspond to n ≤ p− 1,
which means that the divergent part is a polynomial in σ = Y1 · Y2 of degree p − 1.
This polynomial is obviously annihilated by the differential operator (W1 · ∇1)p(W2 · ∇2)p.
Therefore, the following function has a well-defined ∆ → p limit

Ψp,∆(Y1, Y2;W1,W2) ≡ (W1 · ∇1)p(W2 · ∇2)pG−i(∆− 1
2),0(σ) . (A.19)

In the remaining part of the section, we are going to compute Ψp,q ≡ lim∆→q Ψp,∆ for any
1 ≤ q ≤ p. As discussed in section 2.2.2, it amounts to computing the matrix(

Ψp,q(Y1, Y2;W+
1 ,W

+
2 ) Ψp,q(Y1, Y2;W+

1 ,W
−
2 )

Ψp,q(Y1, Y2;W−
1 ,W

+
2 ) Ψp,q(Y1, Y2;W−

1 ,W
−
2 )

)
, (A.20)

where W± are defined by eq. (2.31) to encode the two chiral components of a symmetric
and traceless tensor in dS2. Let’s start with the diagonal entries Ψp,∆(Y1, Y2;W±

1 ,W
±
2 )

Ψp,∆(Y1,Y2;W±
1 ,W

±
2 )=

p∑
n=0

(
p

n

)
(W±

1 ·∇1)p−n(W±
2 ·Y1)p(W±

1 ·∇1)n∂pσG−i(∆− 1
2),0(σ)

=
p∑

n=0

(
p

n

)
p!
n! (W

±
1 ·W±

2 )p−n(W±
1 ·Y2)n(W±

2 ·Y1)n∂p+nσ G−i(∆− 1
2),0(σ) .

(A.21)

Using the relation (W±
1 · Y2)(W±

2 · Y1) = (σ + 1)W±
1 ·W±

2 established in eq. (2.33), we get

Ψp,∆(Y1, Y2;W±
1 ,W

±
2 ) = (W±

1 ·W±
2 )p

p∑
n=0

(
p

n

)
p!
n! (σ + 1)n∂J+nσ G−i(∆− 1

2),0(σ)

= Γ(∆)Γ(∆̄)
4π (W±

1 ·W±
2 )p∂pσ((σ + 1)p∂pσ)F

(
∆, ∆̄, 1, 1 + σ

2

)
,

(A.22)

where the 2p-th order differential operator ∂pσ((σ+ 1)p∂pσ) acting on F
(
∆, ∆̄, 1, 1+σ2

)
yields

another hypergeometric function:

Ψp,∆(Y1, Y2;W±
1 ,W

±
2 ) = Γ(∆ + p)Γ(∆̄ + p)

2p+2π
(W±

1 ·W±
2 )pF

(
∆+ p, ∆̄ + p, 1, 1 + σ

2

)
.

(A.23)
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It clearly has a finite limit when ∆ hits any positive integer q that is not larger than p:

Ψp,q(Y1, Y2;W±
1 ,W

±
2 ) = (W±

1 ·W±
2 )p ψp,q(Y1, Y2) , (A.24)

where

ψp,q(Y1, Y2) =
Γ(p+ q)Γ(p+ 1− q)

2p+2π
F

(
p+ q, p+ 1− q, 1, 1 + Y1 · Y2

2

)
. (A.25)

The off-diagonal matrix elements in (A.20) can be computed similarly

Ψp,∆(Y1, Y2;W±
1 ,W

∓
2 ) = Γ(∆)Γ(∆̄)

4π (W±
1 ·W∓

2 )p∂pσ((σ − 1)p∂pσ)F
(
∆, ∆̄, 1, 1 + σ

2

)
= Γ(∆+p)2Γ(∆̄+p)2(W±

1 ·W∓
2 )p

(−2)p+2(2p)!πΓ(∆)Γ(∆̄)
F

(
∆+p, ∆̄+p, 2p+1, 1+σ2

)
.

(A.26)

They vanish when ∆ approaches at positive integer q ∈ {1, 2, · · · , p}, because lim∆→q(∆̄)p =
0. Altogether, we have

(W±
1 · ∇1)p(W±

2 · ∇2)pG−i(q− 1
2),0(Y1, Y2) = (W±

1 ·W±
2 )p ψp,q(Y1, Y2) ,

(W±
1 · ∇1)p(W∓

2 · ∇2)pG−i(q− 1
2),0(Y1, Y2) = 0 . (A.27)

When q = p, ψp,p(Y1, Y2) becomes particularly simple

ψp,p(Y1, Y2) =
2p−2Γ(2p)

π(1− Y1 · Y2)2p
. (A.28)

To end this section, we show the pull-back of Ψp,p(Y1, Y2;W1,W2) to conformal global
coordinates. According to the discussion in section 2.2.2, it amounts to replacing WA

±
by ∂±Y

A (where ∂± denotes the ordinary derivative with respect to the local lightcone
coordinates y± = τ ± φ), for example,(

∇(1)
+

)p (
∇(2)

+

)p
G−i(p− 1

2)(Y1, Y2) = Ψp,p(Y1, Y2; ∂+Y1, ∂+Y2) ,

= 2p−2Γ(2p)
π

(
∂y+

1
∂y+

2
σ

(1− σ)2

)p
= Γ(2p)

4π
(
−4 sin2 y

+
12
2

)p ,
(A.29)

where ∇± denotes covariant derivative along y±. Similarly, the other rest components are

(
∇(1)

−

)p (
∇(2)

−

)p
G−i(p− 1

2)(Y1, Y2) =
Γ(2p)

4π
(
−4 sin2 y

−
12
2

)p ,
(
∇(1)

+

)p (
∇(2)

−

)p
G−i(p− 1

2)(Y1, Y2) =
(
∇(1)

−

)p (
∇(2)

+

)p
G−i(p+ 1

2)(Y1, Y2) = 0 . (A.30)
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A.4 Flat space limit of Gλ,ℓ

In this subsection, we elaborate on the discussion in section 3.3 and show that the canonically
normalized de Sitter Green’s functions [(W1 ·∇1)(W2 ·∇2)]J−ℓGλ,ℓ(Y1, Y2;W1,W2) reduce to
the flat space Wightman functions m−2ℓ∆(J)

m2,ℓ(x1, x2;w1, w2) (which are introduced in [53]
for 0 ≤ ℓ ≤ J ≤ 2), up to numerical normalization factors. For example, in the J = 0 case,
we expect the flat space limit of the scalar Green’s function Gλ,0 in dS to reproduce ∆(0)

m2,0,
which is given by [53]

∆(0)
m2,0(x1, x2) =

1
(2π) d+1

2
md−1

K d−1
2

(
m
√
x212

)
(
m
√
x212

) d−1
2

, (A.31)

where xµ1 , x
µ
2 are flat space coordinates of Rd,1, and iϵ is suppressed in

√
x212.

Let’s start with discussing the flat space limit of the coordinates and the metric of dS.
The dS metric in planar coordinate is ds2 = R2−dη2+dy 2

η2 , where the dS radius R is restored.
We consider the large R limit, with R(η + 1) ≡ x0 and Ryi ≡ xi being fixed. Then the
dS metric reduces to the flat space metric ds2 = ηµνdx

µdxν . It is also useful to show how
σ = Y1 · Y2 is related to the flat space distance x212 in this limit. For this purpose, we define
a new variable

ρ ≡ 1
2

(
1− σ

R2

)
= −η212 + y 2

12
4η1η2

= −(x012)2 + x 2
12

4η1η2R2 . (A.32)

In the flat space limit, we can simply replace 4η1η2 by 4, and hence obtain ρ ≈ x2
12

4R2 . In
other words, ρ → 0 in the flat space limit, but 4ρR2 is finite and equal to the flat space
distance x212. Using the large R relation λ = mR, we can also write 4ρλ2 ≈ m2x212.

Next, we consider the de Sitter scalar propagator

Gλ,0(σ) =
Γ
(
d
2 ± iλ

)
2d+1π

d+1
2 Rd−1

F
(
d

2 − iλ,
d

2 + iλ,
d+ 1
2 , 1− ρ

)
, (A.33)

which is expressed in terms of the new variable ρ. To retrieve the flat space propagator we
will thus have to take λ2 → ∞ and ρ→ 0 while keeping the product fixed. This limit can
be easily implemented if we rewrite Gλ,0 by using the following Mellin representation of the
hypergeometric function

F(a, b, c, z) =
∫
R dtΓ(a+ it)Γ(b+ it)Γ(c− a− b− it)Γ(−it)(1− z)it

2πΓ(a)Γ(b)Γ(c− a)Γ(c− b) , (A.34)

which yields

Gλ,0(σ) =
∫
R dtΓ

(
d
2 + it± iλ

)
Γ
(
1−d
2 − it

)
Γ(−it)ρit

2d+2π
d+3

2 Γ
(
1
2 ± iλ

)
Rd−1

. (A.35)
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Taking the large λ limit in eq. (A.35):

1
Γ
(
1
2 ± iλ

) ≈ 1
2π e

πλ, Γ
(
d

2 + it± iλ

)
≈ 2πe−πλλd−1+2it , (A.36)

it is then easy to see that Gλ,0(σ) becomes

Gλ,0(σ) ≈
md−1

2d+2π
d+3

2

∫
R
dtΓ

(1− d

2 − it

)
Γ (−it) (λ2ρ)it , (A.37)

where we have used λ/R = m. The remaining integral can be evaluated by using the
integral representation of Γ functions

Gλ,0(σ) ≈
md−1

2d+2π
d+3

2

∫ ∞

0

du

u
u

1−d
2 e−u

∫ ∞

0

dv

v
e−v

∫
R
dt

(
λ2ρ

uv

)it
. (A.38)

Performing the t integral gives a delta function supported on uv = λ2ρ, so (A.38) reduces
to a familiar form

Gλ,0(σ) ≈
md−1

2d+1π
d+1

2

∫ ∞

0

du

u
u

1−d
2 e−u−

λ2ρ
u = md−1

(2π) d+1
2

K d−1
2

(
2λ√ρ

)
(
2λ√ρ

) d−1
2

. (A.39)

This is exactly (A.31) after using the relation 4ρλ2 ≈ m2x212. We want to mention that a
EAdS version of this story was discussed in [85].

The second example is J = ℓ = 1. On the flat space side, we have [53]

m−2∆(1)
m2,1(x1, x2;w1, w2) = (w1 · w2 +m−2(w1 · ∂1)(w2 · ∂2))∆(0)

m2,0(x1, x2) (A.40)

where wµ1 , w
µ
2 are auxiliary null vectors. On the dS side, the spin 1 Green’s function Gλ,1

can be obtained by evaluating the split representation (3.25) for ℓ = 1:26

Gλ,1(Y1,Y2;W1,W2)=

[(
d2

4 +λ2
)
(W1 ·W2)+σ(W1 ·∂Y1)(W2 ·∂Y2)+d(W1 ·Y2)(W2 ·∂Y2)

]
Gλ,0(σ)

(d−2)2

4 +λ2

(A.41)

where the R dependence is implicitly restored in Gλ,0(σ). To take the flat space limit of
Gλ,1, we should pull WA back to local coordinates, which is realized by the relation WA =
wµ

R
∂Y A

∂yµ .27 Here yµ = (η,y) denotes the planar coordinates. Applying this pull-back rule to
W1 ·W2 yields W1 ·W2 = wµ

1w
ν
2

R2 ∂yµ
1
∂yµ

2
σ. Because of the identification xµ = (R(η + 1), Ryi),

we can replace R−1∂yµ by ∂xµ and then in the flat space limit we get

W1 ·W2 = (w1 · ∂1)(w2 · ∂2)(−2ρR2) ≈ w1 · w2 (A.42)
26One can check that when d = 1, eq. (A.41) is actually equivalent to eq. (A.17) by using the equation of

motion (1 − σ2)∂2
σGλ,0 − 2σ∂σGλ,0 = ( 1

4 + λ2)Gλ,0.
27In general, the null vector wµ here are different from the one used in the flat space two-point func-

tion (A.40), because wµ is null respect to the dS metric gµν . In this case, as we choose the planar coordinates,
gµν is conformally equivalent to ηµν and hence wµ is also null with repsect to the flat metric.
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where the substitution σ = R2−2ρR2 is made in the first step, and the relation ρR2 = 1
4x

2
12 is

used in the second step. Similarly, the term σ(W1 ·∂Y1)(W2 ·∂Y2) reduces to σ(w1 ·∂1)(w2 ·∂2).
Although σ itself diverges in the flat space limit, the combination σ/λ2 is actually finite
and equal to m−2 because of the large R relations σ

R2 = 1 and mR = λ. It is also easy to
check that the remaining term in Gλ,1(Y1, Y2;W1,W2) does not survive in the flat space
limit. Altogether, the flat space limit of Gλ,1 should be

Gλ,1 ≈
(
w1 · w2 +m−2(w1 · ∂1)(w2 · ∂2)

)
∆(0)
m2,0(x1, x2) = m−2∆(1)

m2,1(x1, x2;w1, w2).
(A.43)

Let’s also consider the case J = 1, ℓ = 0. In flat space, ∆(1)
m2,0 is given by

∆(1)
m2,0(x1, x2;w1, w2) = (w1 · ∂1)(w2 · ∂2)∆(0)

m2,0(x1, x2) , (A.44)

and its de Sitter counterpart is (W1 · ∇1)(W2 · ∇2)Gλ,0(σ). Since W · ∇ =W · ∂Y reduces
to w · ∂x in the flat space limit, we have

(W1 · ∇1)(W2 · ∇2)Gλ,0(σ) ≈ ∆(1)
m2,0(x1, x2;w1, w2) . (A.45)

We report the flat space limit in the J = 2 case without showing details. On the flat
space side, all ∆(2)

m2,ℓ with 0 ≤ ℓ ≤ 2 are given by [53]

∆(2)
m2,0(x1,x2;w1,w2)=

d+1
d

(w1 ·∂1)2(w2 ·∂2)2∆(0)
m2,0(x1,x2)

∆(2)
m2,1(x1,x2;w1,w2)=2((w1 ·∂1)2(w2 ·∂2)2+m2(w1 ·w2)(w1 ·∂1)(w2 ·∂2))∆(0)

m2,0(x1,x2)

∆(2)
m2,2(x1,x2;w1,w2)=

(
(m2w1 ·w2+w1 ·∂1w2 ·∂2)2−

1
d
(w1·∂1)2(w2·∂2)2

)
∆(0)
m2,0(x1,x2) .

(A.46)

and on the de Sitter side we find

(W1 · ∇1)2(W2 · ∇2)2Gλ,0(Y1, Y2) ≈
d

d+ 1∆
(2)
m2,0(x1, x2;w1, w2)

(W1 · ∇1)(W2 · ∇2)Gλ,1(Y1, Y2;W1,W2) ≈
1

2m2∆
(2)
m2,1(x1, x2;w1, w2)

Gλ,2(Y1, Y2;W1,W2) ≈
1
m4∆

(2)
m2,2(x1, x2;w1, w2) . (A.47)

For generic J , the construction of ∆(J)
m2,ℓ is much more involved since it requires J + 1

projections operators ΠJℓ that effectively implement the branching rule from the spin J

representation of SO(d, 1) to spin ℓ representations of SO(d). The explicit expressions
of ΠJℓ have been solved in [25] but they are very complicated. We will not give these
expressions. Instead, we will discuss ∆(J)

m2,ℓ when d = 1. This is a very degenerate case,
because all ΠJℓ with ℓ ≥ 2 vanish. To find ΠJ0 and ΠJ1, let’s pick a vector pµ in R1,1.
ΠJ0 should only have longitudinal components along pµ, which in the index free formalism
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means ΠJ0 ∝ p−2J(p · w1)J(p · w2)J . The proportional constant can be fixed by using the
fact that ΠJ0 is a projector. Indeed, we find

ΠJ0(p, w1, w2) = 2J−1 (p · w1)J(p · w2)J
p2J

. (A.48)

By the completeness of ΠJ0 and ΠJ1, we know immediately that ΠJ1 = (w1 · w2)J −ΠJ0,
with ΠJ0 given by eq. (A.48). In R1,1, there exists an interesting relation (w1 · w2)(p2w1 ·
w2 − 2p · w1 p · w2) = 0, which allows us to rewrite ΠJ1 as

ΠJ1(p, w1, w2) = 2J−1 (p · w1)J−1(p · w2)J−1

p2J

(
p2w1 · w2 − p · w1 p · w2

)
. (A.49)

With these projectors known, we can define ∆(J)
m2,ℓ following the general recipe given in [53]:

∆(J)
m2,0 = (−)Jm2JΠJ0

(
p2 → −m2, pα → i∂xα

1

)
∆(0)
m2,0(x1, x2)

= 2J−1(w1 · ∂1)J(w2 · ∂2)J∆(0)
m2,0(x1, x2) , (A.50)

and

∆(J)
m2,1 = (−)J−1m2JΠJ1

(
p2 → −m2, pα → i∂xα

1

)
∆(0)
m2,0(x1, x2)

= 2J−1(w1 · ∂1)J−1(w2 · ∂2)J−1
(
m2w1 · w2 + w1 · ∂1w2 · ∂2

)
∆(0)
m2,0(x1, x2) , (A.51)

where the extra signs (−)J and (−)J−1 have been explained in section 3.3. On the de Sitter
side, we thus find

(W1 · ∇1)J(W2 · ∇2)JGλ,0(Y1, Y2) ≈ 21−J∆(J)
m2,0(x1, x2;w1, w2) ,

(W1 · ∇1)J−1(W2 · ∇2)J−1Gλ,1(Y1, Y2;W1,W2) ≈
21−J
m2 ∆(J)

m2,1(x1, x2;w1, w2) . (A.52)

For d = 1 and J = 2, eq. (A.47) and eq. (A.52) are consistent.

B Complementary series in the Källén-Lehmann decompositions

In this appendix, we show how complementary series contributes to the two-point function of
a scalar operator O(Y ). We will only focus on C∆,0 since C∆,ℓ with ℓ > 0 cannot contribute
to ⟨Ω|O(Y1)O(Y2)|Ω⟩.

Compared to the principal series, the main difference is the resolution of the identity.
For a principal series representation P∆,0, the identity operator in its Hilbert space can be
expressed as

1P∆,0 =
∫
ddy |∆,y ⟩⟨∆,y | =

∫
P
|∆, P ⟩⟨∆, P | , (B.1)

which follows from the inner product ⟨∆,y1|∆,y2 ⟩ = δd(y1 − y2 ). However, for com-
plementary series, we are not allowed to choose such an inner product since it does not
respect the reality condition of so(d+1, 1) generators [26]. Instead, ⟨∆,y1|∆,y2 ⟩ has to be
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proportional to the CFT two-point function of a scalar primary of scaling dimension ∆, i.e.
⟨∆,y1|∆,y2 ⟩ ∝ |y1 − y2 |−2∆. From the embedding space point of view, it is obvious that
⟨∆, P1|∆, P2⟩ ∝ (−2P1 · P2)−∆ is the only choice that is compatible with the SO(d+ 1, 1)
invariance and the scaling property imposed on |∆, P ⟩, when ∆ is real. Also because of
−2P1 · P2 = |y1 − y2|2, it is consistent with the expression in local coordinates.

We fix the normalization of inner products in C∆,0 by choosing

⟨∆, P1|∆, P2⟩ =
N∆

(−2P1 · P2)∆
, N∆ = Γ(∆)

π
d
2 Γ

(
d
2 −∆

) . (B.2)

It fully determines the resolution of identity

1C∆,0 =
∫
P1,P2

|∆, P1⟩
N∆̄

(−2P1 · P2)∆̄
⟨∆, P2| . (B.3)

For example, it is straightforward to check ⟨∆, P1|1C∆,0 |∆, P2⟩ = ⟨∆, P1|∆, P2⟩ by using∫
P1

1
(−2P0 ·P1)∆

1
(−2P1 ·P2)∆̄

=
∫
ddy1

1
|y0−y1|2∆

1
|y1−y2|2∆̄

= δd(y0,y2 )
N∆N∆̄

. (B.4)

We insert 1C∆,0 into the two-point function of O(Y )

⟨Ω|O(Y1)|1C∆,0 |O(Y2)|Ω⟩=
∫
P3,P4

⟨Ω|O(Y1)|∆,P3⟩
N∆̄

(−2P3 ·P4)∆̄
⟨∆,P4|O(Y2)|Ω⟩ ,

(B.5)

where ⟨0|O(Y )|∆, P ⟩ = cO(∆)K∆(Y, P ). Next, we write the remaining double integral in
local coordinates and use the Fourier transformation

N∆̄
x2∆̄

=
∫

ddk
(2π)d

(
k

2

)d−2∆
eik·x , (B.6)

which leads to

⟨Ω|O(η1,y1)|1C∆,0 |O(η2,y2)|Ω⟩= |cO(∆)|2
∫

ddk
(2π)d

(
k

2

)d−2∆

×
∫
ddy3K∆(η1,y1;y3)eik·y3

∫
ddy4K∆(η2,y2;y4)e−ik·y4 .

(B.7)

For the integral over y3 and y4, we use eq. (3.10) and eq. (3.11) respectively. In the end,
we obtain the mode expansion of the free Green’s function G−i(∆− 1

2 )
, cf. eq. (A.7):

⟨Ω|O(η1,y1)|1C∆,0 |O(η2,y2)|Ω⟩ = |cO(∆)|2G−i(∆− 1
2)(η1,y1; η2,y2) . (B.8)

Therefore the complementary series part of the O Källén-Lehmann decomposition takes
the form ∫ d

2

− d
2

dλ ρC,0O (λ)Giλ(Y1, Y2), (B.9)

where ρC,0O (λ) is a nonnegative function by construction. For spinning operators, there is a
similar result.
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C Discrete series in free scalar theory in dS2

Let Φ(Y ) be a free scalar field of scaling dimension ∆ = 1
2 + iν. We have argued that

discrete series representations cannot contribute to the two-point function of Φ2(Y ) because
it would always lead to antipodal singularity while ⟨Ω|Φ2(Y1)Φ2(Y2)|Ω⟩ is clearly free of
such a singularity given that |Ω⟩ is the BD vacuum. On the other hand, according to the
group theoretical analysis in [1], the two-particle Hilbert space H2 of Φ should contain all
D±
k for k = 2, 4, 6, · · · . To reconcile this contradiction, we will explicitly compute the matrix

elements of Φ2 between the vacuum |Ω⟩ and discrete series states in H2. More precisely,
we will focus on the lowest-weight state |k⟩k in each D+

k , because all ⟨Ω|Φ2(Y )|ℓ⟩k should
vanish once ⟨Ω|Φ2(Y )|k⟩k vanishes as a simple result of the SO(2, 1) symmetry. For D−

k ,
the argument is exactly the same.

Let’s first describe the single-particle states of Φ in conformally global coordinates,
using the following mode expansion in BD vacuum [26]:

Φ =
∑
n∈Z

ϕnan + ϕ∗na
†
n, ϕn = gn(τ)

e−inφ√
2π

, (C.1)

where28

gn(τ) =
Γ(n+ ∆̄)√

2
e−inτF

(
∆, ∆̄, n+ 1, 1

1 + e2iτ

)
. (C.2)

The canonically normalized single-particle states are |n⟩∆ ≡ a†n|Ω⟩, and the action of so(2, 1)
on these states is computed in [26]

L±|n⟩∆ = (n±∆)|n± 1⟩∆, L0|n⟩∆ = n|n⟩∆ . (C.3)

The two-particle Hilbert space H2 is spanned by |n,m⟩∆ ≡ a†na
†
m|Ω⟩, and the lowest-weight

state |k⟩k of D+
k in H2 can be written as [1]

|k⟩k = c
∑
ℓ∈Z

Γ(∆ + ℓ− k)
Γ(∆̄ + ℓ)

|ℓ, k − ℓ⟩∆ , (C.4)

where c is some unimportant normalization constant. With all these ingredients, we can
now compute the matrix element of Φ2 between ⟨Ω| and |k⟩k:

⟨0|Φ2(τ,φ)|k⟩k=2c
∑
ℓ

Γ(∆+ℓ−k)
Γ(∆̄+ℓ)

ϕℓ(τ,φ)ϕk−ℓ(τ,φ)

= ce−ik(τ+φ)

2cosh(πν)
∑
ℓ

(−)ℓF
(
∆,∆̄, ℓ+1, 1

1+e2iτ
)

F
(
∆,∆̄,k−ℓ+1, 1

1+e2iτ
)
.

(C.5)

To evaluate the sum over ℓ in eq. (C.5), we use the series expansion of the regularized
hypergeometric function

⟨0|Φ2(τ, φ)|k⟩k = c e−ik(τ+φ)

2 cosh(πν)
∑

n,m≥0

(1
2 ± iν

)
n

(1
2 ± iν

)
m

n!m! T (n+1,m+k+1)
(
1+e2iτ

)−n−m
,

(C.6)
28We remind the reader that F is our notation for the regularized hypergeometric function.
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where

T (a, b) ≡
∑
ℓ∈Z

(−)ℓ
Γ(a+ ℓ)Γ(b− ℓ) , a, b ∈ Z . (C.7)

Since a, b are integers, T (a, b) is actually a finite sum supported on 1− a ≤ ℓ ≤ b− 1, which
implies that T vanishes when a+ b < 2. When a+ b ≥ 2, the function f(z) ≡ 1

Γ(a+z)Γ(b−z)
decays fast enough at large |z| such that we can use the Sommerfeld-Watson transformation
to claim that −T (a, b) is equivalent to summing over residues of πf(z)

sin(πz) at the poles of f(z).
On the other hand, it is clear that f(z) is an entire function, and hence T (a, b) should
vanish when a + b ≥ 2. Altogether, T (a, b) vanishes identically for any integer a and b,
implying that ⟨0|Φ2(τ, φ)|k⟩k = 0. This simple computation shows explicitly why discrete
series states do not appear in the two-point function of Φ2. In other words, although the
two-particle Hilbert space of Φ contains irreducible components that furnish discrete series
representations, it is impossible to excite states with such symmetry by acting with Φ2 on
the BD vacuum |Ω⟩.

Instead, if we consider two Φ fields that are separated in spacetime, it can be checked
similarly that ⟨Ω|Φ(τ1, φ1)Φ(τ2, φ2)|k⟩k does not vanish, which means that discrete series
can have nonzero contribution to the four-point function of Φ. This is consistent with the
analysis of the four-point function of late time operators in [6].

D Properties of ϕ±
λ,J and ψp,J

In this appendix, we give various details of the functions ϕ±λ,J and ψp,J , focusing on their
inner products with respect to ( , )±J . We list the definitions of these functions

ϕ+λ,J(σ) = ∂Jσ ((σ + 1)J∂Jσ )Gλ,0(σ) =
Γ
(
1
2 ± iλ+ J

)
2J+2π

F

(1
2 + iλ+ J,

1
2 − iλ+ J, 1, 1 + σ

2

)
,

ϕ−λ,J(σ) = ∂Jσ ((σ − 1)J∂Jσ )Gλ,0(σ) =
Γ
(
1
2 ± iλ+ J

)2
F
(
1
2+iλ+J,

1
2−iλ+J, 2J + 1, 1+σ2

)
(−2)J+2(2J)!πΓ

(
1
2 ± iλ

) ,

ψp,J(σ) =
Γ(J + p)Γ(J + 1− p)

2J+2π
F

(
J + p, J + 1− p, 1, 1 + σ

2

)
, (D.1)

and the two inner products ( , )±J (for real functions defined on (−∞,−1))

(f, g)±J =
∫ −1

−∞
dσ (1∓ σ)2J f(σ)g(σ) . (D.2)

ϕ±λ,J share the same large −σ behavior at the leading order:

ϕ±λ,J(σ)≈
1

(−2)J+2π

Γ(−2iλ)Γ
(
1
2+iλ

)(
1
2+iλ

)2
J

Γ
(
1
2−iλ

) (
−1+σ

2

)−( 1
2+iλ+J)

+c.c

 . (D.3)
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The asymptotic behavior of ψp,J(σ) can be easily obtained by using the relation

ψp,J(σ) =
(1− σ

2

)−2J
F

(
1− J − p, p− J, 1, 1 + σ

2

)
(D.4)

Noticing that F
(
1− J − p, p− J, 1, 1+σ2

)
is a polynomial of degree J − p in 1+σ

2 , we find
that ψp,J(σ) decays as (−σ)−J−p for large −σ.

For each fixed J , define a second order differential operator D
(J)
+ ≡ (1− σ2)∂2σ + 2(1−

(J + 1)(σ + 1))∂σ, which is hermitian with respect to the inner product ( , )+J . It admits
ϕ+λ,J and ψp,J as eigenfunctions, i.e.

D
(J)
+ ϕ+λ,J =

[(1
2 + J

)2
+ λ2

]
ϕ+λ,J , D

(J)
+ ψp,J = (J + p)(J + 1− p)ψp,J , (D.5)

which follows from the hypergeometric nature of these functions. {ϕ+λ,J} consist of the
continuous spectrum of D(J)

+ . They are δ function normalizable and their inner product
can be easily extracted from the asymptotic behavior (D.3)

(ϕ+λ,J , ϕ
+
λ′,J)

+
J =

(
1
2 ± iλ

)2
J

8λ sinh(2πλ)
(
δ(λ− λ′) + δ(λ+ λ′)

)
. (D.6)

Similarly, {ψp,J} is an orthogonal basis of the discrete spectrum of D(J)
+ . We can compute

their norm (ψp,J , ψp,J)+J by using eq. (D.4) for one of the two ψp,J :

(ψp,J , ψp,J)+J = N

∫ −1

−∞
dσ(1− σ)2JF

(
1 + J − p, J + p, 1, 1 + σ

2

)2

= 4JN
∫ −1

−∞
dσF

(
1 + J − p, J + p, 1, 1 + σ

2

)
F

(
1− J − p, p− J, 1, 1 + σ

2

)
= 22J+1N

∫ ∞

0
dsF (1 + J − p, J + p, 1,−s)F (1− J − p, p− J, 1,−s) ,

(D.7)

where s = −1+σ
2 , and

N = 1
42+Jπ2Γ(J + p)2Γ(1 + J − p)2 . (D.8)

As we have mentioned above, F (1− J − p, p− J, 1,−s) is a polynomial of degree J − p in
s. One crucial point is that only the leading term of this polynomial contributes to the
integral (D.7), as a result of the Mellin transformation of hypergeometric functions∫ ∞

0
dxxt−1F (a, b, c,−x) = Γ(c)Γ(a− t)Γ(b− t)

Γ(a)Γ(b)Γ(c− t) Γ(t) , (D.9)

which holds when min(Re (a),Re (b)) > Re s > 0. More precisely, performing the s integral
against the monomial sm in F (1− J − p, p− J, 1,−s) would lead to (−m)J−p, and hence
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the integral vanishes when m < J − p. The leading term of F (1− J − p, p− J, 1,−s) can
be easily extracted by the series expansion of hypergeometric function

F (1− J − p, p− J, 1,−s) = Γ(J + p)
Γ(2p)Γ(J − p+ 1)(−s)

J−p + · · · (D.10)

Therefore, the integral (D.7) reduces to

(ψp,J , ψp,J)+J = (−)J−p22J+1Γ(J + p)
Γ(2p)Γ(J − p+ 1) N

∫ ∞

0
dsF (1 + J − p, J + p, 1,−s) sJ−p , (D.11)

which can be evaluated as the analytical continuation of (D.9)∫ ∞

0
dsF (1 + J − p, J + p, 1,−s) sJ−p = lim

t→J−p+1

Γ(J + p− t)Γ(J − p+ 1− t)
Γ(J + k)Γ(J − p+ 1)Γ(1− t)Γ(t)

= (−)J−pΓ(2p− 1)Γ(J − p+ 1)
Γ(J + p) . (D.12)

Altogether, we obtain the norm of ψp,J with respect to ( , )+J

(ψp,J , ψp,J)+J = 22J+1

2p− 1N = Γ(J + p)2Γ(1 + J − p)2
8π2(2p− 1) . (D.13)

For ϕ−λ,J , it is easy to see that they are eigenfunctions of the differential operator
D

(J)
− ≡ (1−σ2)∂2σ+2((2J +1)− (J +1)(σ+1))∂σ, which is hermitian with respect to ( , )−J :

D
(J)
− ϕ−λ,J =

[(1
2 + J

)2
+ λ2

]
ϕ−λ,J . (D.14)

They are δ function normalizable. Because of eq. (D.3), their normalization should be the
same as ϕ+λ,J

(ϕ−λ,J , ϕ
−
λ′,J)

−
J =

(
1
2 ± iλ

)2
J

8λ sinh(2πλ)
(
δ(λ− λ′) + δ(λ+ λ′)

)
. (D.15)

Unlike D
(J)
+ , D(J)

− does not have a discrete spectrum.

E Discrete series Dp in the two-point function of O(J) when p < J

In this appendix, we prove that including Dp in the two-point function of O(J) in dS2 will
lead to antipodal singularities when p ≥ J . More precisely, we are considering

G(J)
p (Y1, Y2;W1,W2) ≡ ⟨Ω|O(J)(Y1,W1)|1Dp |O(J)(Y2,W2)|Ω⟩ (E.1)

which has two independent chiral components

G(J)
p (Y1, Y2;W+

1 ,W
±
2 ) = (W+

1 ·W±
2 )J G(J,±)

p (σ), σ = Y1 · Y2 . (E.2)
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After a short computation, one can show that29

∇2
1G(J)

p (Y1, Y2;W1,W2) =
(
C

SO(2,1)
2 + J2

)
G(J)
p (Y1, Y2;W1,W2) , (E.3)

where ∇2
1 = ∇1A∇A

1 , with ∇1A = ∂Y A
1

− Y1A Y1 · ∂Y1 −W1A(Y1 · ∂W1) given by eq. (2.27).
Due to the SO(2, 1) invariance of ⟨Ω|, the Casimir CSO(2,1)

2 effectively acts on the projection
operator 1Dp and yields p(1 − p). Therefore, G(J)

p (Y1, Y2;W1,W2) is an eigenmode of ∇2
1

with eigenvalue p(1− p) + J2. Using the explicit expression of ∇2
1, we can further obtain a

second order differential equation for G(J,±)
p (σ)

(1− σ2)∂2σG(J,±)
p − 2 ((1 + J)σ ± J) ∂σG(J,±)

p (σ) = (1 + J − p)(J + p)G(J,±)
p (σ) (E.4)

For each fixed sign, i.e. chiral component, the ODE (E.4) has two linearly independent
solutions, one of which has growing behavior for large −σ. Such solutions are clearly
unphysical. The other decaying solution is given by

G(J,±)
p (σ) =

( 2
1− σ

)J+p
F

(
p∓ J, p+ J, 2p, 2

1− σ

)
(E.5)

They have power law decay (−σ)−J−p for two points with large spacelike separation.
However, they are not regular when the two points are antipodal. Their leading singular
behaviors around σ = −1 are

G(J,+)
p (σ) σ→−1≈ − Γ(2p)

Γ(p− J)Γ(p+ J) log
(
−σ + 1

2

)
,

G(J,−)
p (σ) σ→−1≈ − Γ(2p)Γ(2J)

Γ(p− J)Γ(p+ J)

( 2
1 + σ

)2J
. (E.6)

Therefore, the discrete series Dp should not contribute to ⟨Ω|O(J)(Y1,W1)O(J)(Y2,W2)|Ω⟩
when p > J .

F Harmonic analysis in EAdS

In this appendix, we review some facts about Euclidean Anti de Sitter. We mostly follow
the notations in [34].

F.1 Coordinates in Euclidean anti de Sitter

(d+ 1)-dimensional Euclidean Anti de Sitter spacetime can be defined as a set of points
embedded in Minkowski space Rd+1,1:

EAdSd+1 : −(X0)2 + (X1)2 + . . .+ (Xd+1)2 = −R2 , (F.1)

which defines two disconnected hypersurfaces. In our convention, we pick EAdS to be the
one with X0 > 0. This definition makes it manifest that EAdS is invariant under SO(d+1, 1)
rotation and boosts and hence its (d + 1)(d + 2)/2 generators satisfy the commutation

29A similar result has been obtained in AdS [86].
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relations of SO(d+ 1, 1) algebra in (2.4). Let us present two coordinate systems that are
useful for us in this paper. One is the global coordinate system that is given by

X0 = R cosh r cosh ζ , X i = R sinh rΩi , Xd+1 = R cosh r sinh ζ , (F.2)

where i = 1, . . . , d, Euclidean time ζ ∈ R, r ∈ R+,30 and Ωi ∈ Sd−1 ⊂ Rd is a unit vector
(ΩiΩi = 1). This coordinate system leads to the induced metric of

ds2 = R2(cosh2 r dζ2 + dr2 + sinh2 r dΩ2
d−1) (F.3)

Other useful coordinates are Poincaré coordinates, defined as

X0 = R
z2 + x2 + 1

2z , X i = R
xi

z
, Xd+1 = R

z2 + x2 − 1
2z , (F.4)

with metric
ds2 = R2dz

2 + dx2

z2
(F.5)

where x ∈ Rd with i = 1, · · · , d make a flat d-dimensional Euclidean spatial slice and z > 0
to satisfy the X0 > 0 condition.

Let us also define the two-point invariants σ in both dS and EAdS as

σdS = Y1 · Y2
R2 , σEAdS = X1 ·X2

R2 (F.6)

which for instance in planar coordinates and Poincaré coordinates are given by respectively

σdS = η21 + η22 − |y12|2

2η1η2
, σEAdS = −z

2
1 + z22 + |x12|2

2z1z2
. (F.7)

This shows that the range of the two-point function invariants are σdS ∈ R and σEAdS ∈
(−∞,−1). In the main text, we drop the superscript of σdS as we are focusing on de Sitter
spacetime. The Wick rotation in 4.1 transforms σdS → σEAdS.

Similarly to de Sitter we use the index-free notation to represent the traceless symmetric
tensors in EAdS by contracting the spin J tensor indicies with J auxiliary vectors: WA.
They satisfy tangential and null conditions in EAdS:

W ·X =W 2 = 0 . (F.8)

In embedding space, the lightcone in Rd+1,1 is the boundary of both EAdS and of dS. We
thus use the same symbol P to indicate null rays:

P 2 = 0 , P ∼ αP (F.9)

for α ∈ R. In Poincaré coordinates, this corresponds to the z = 0 plane where the EAdS
generators reduce to generators of a d-dimensional conformal theory on a Eudclidean plane
spanned by x.

30This is true for d ≥ 2. In d = 1 the range is instead r ∈ R.
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F.2 Harmonic functions

Here we summarize some facts about Euclidean AdS harmonic functions in embedding
space, following the notation of [34], e.g. taking R = 1. Harmonic functions are defined as
the regular divergence-free eigenfunctions of the Laplacian operator in EAdS:(

∇2
1 +

d2

4 + λ2 + ℓ

)
Ωλ,ℓ(X1, X2;W1,W2) = 0

∇1 ·K1 Ωλ,ℓ(X1, X2;W1,W2) = 0 .
(F.10)

They are proportional to a difference of two EAdS propagators Π∆,J (X1, X2;W1,W2) with
an overall factor

Ωλ,ℓ(X1,X2;W1,W2)=
iλ

2π
(
Π d

2+iλ,ℓ
(X1,X2;W1,W2)−Π d

2−iλ,ℓ
(X1,X2;W1,W2)

)
(F.11)

One can explicitly check from the short distance limit of the bulk-to-bulk propagators that
the harmonic functions are regular at coincident points. They also satisfy the orthogonality
relation

1
ℓ!
(
d−1
2

)
ℓ

∫
X
Ωλ,ℓ(X1, X;W1,K)Ωλ′,ℓ(X,X2;W,W2)

= 1
2
[
δ(λ− λ′) + δ(λ+ λ′)

]
Ωλ,ℓ(X1, X2;W1,W2)

(F.12)

where we introduce the short hand notation for integrating over EAdS defined as∫
X

≡
∫
dd+2X δ(X2 + 1)θ(X0) , (F.13)

where the term θ(X0) encodes that we picked the upper hyperboloid (X0 > 0) in our
definition for EAdS. Harmonic functions can equivalently be defined as a product of
bulk-to-boundary propagators integrated over the boundary point

Ωλ,ℓ(X1, X2;W1,W2) =
λ2

πℓ!(d2 − 1)ℓ

∫
P

Π d
2+iλ,ℓ

(X1, P ;W1, DZ)Π d
2−iλ,ℓ

(P,X2;Z,W2) .

(F.14)
We refer to this as the split representation. Bulk-to-boundary propagators are defined and
normalized through

Π∆,ℓ(X,P ;W,Z) = C∆,ℓ
((−2P ·X)(W · Z) + 2(W · P )(Z ·X))ℓ

(−2P ·X)∆+ℓ ,

C∆,ℓ =
(ℓ+∆− 1)Γ(∆)

2π d
2 (∆− 1)Γ

(
∆+ 1− d

2

) , (F.15)

and the action of the differential operator DZ that contracts the boundary indices is defined
in (2.42). In EAdS, the action of the K operators which contract the bulk indices is similar
to the one in dS (2.28), up to some signs which are necessary to keep its action internal to
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the manifold defined by X2 = −1,

KA = d− 1
2

[
∂

∂WA
+XA

(
X · ∂

∂W

)]
+
(
W · ∂

∂W

)
∂

∂WA

+XA

(
X · ∂

∂W

)(
W · ∂

∂W

)
− 1

2WA

[
∂2

∂W · ∂W
+
(
X · ∂

∂W

)(
X · ∂

∂W

)]
.

(F.16)
The action on W vectors is analogous to (2.29):

1
J !
(
d−1
2

)
J

KA1 · · ·KAJ
WB1 · · ·WBJ = 1

J !
∑
π

G B1
Aπ1

· · ·G BJ
AπJ

− traces , (F.17)

with
GAB = ηAB +XAXB . (F.18)

The following commutator will be useful for our computations

[K · ∇, (W · ∇)n] = n

2 (W · ∇)n−1(d+ n+ 2DW − 2)

× (1− n− (n+DW − 1)(d+ n+DW − 2) +∇2) .
(F.19)

where DW =W · ∂W . Importantly, ∇ ·K = K · ∇.
From the embedding space point of view, the harmonic functions in EAdS and the

bulk-to-bulk propagators in dS satisfy the same Laplacian equation up to the Wick rotation
discussed in section 4.1. They are also divergence-free and regular at σ → −1. This is
another way to see that they have to be proportional to each other as mentioned in (4.7).

F.3 Explicit form of harmonic functions up to J = 2

We have reviewed the definition of the harmonic functions and how they can be expressed
through a split representation. But to carry out numerical checks of the Källén-Lehmann
decomposition, it is useful to have their explicit expressions. Consider the fact that, for
SO(d+ 1, 1) invariance, any two-point function in the index free formalism has to organize
itself in terms of polynomials of W1 ·W2 and (W1 ·X2)(W2 ·X1) as follows

GO(J)(X1, X2;W1,W2) =
J∑
n=0

(W1 ·W2)J−n((W1 ·X2)(W2 ·X1))nG(n)
O(J)(σ) , (F.20)

with G(n)
O(J)(σ) being scalar functions of σ = X1 ·X2 . This is true also for derivatives of

harmonic functions

((W1·∇1)(W2·∇2))J−ℓΩλ,ℓ(X1, X2;W1,W2) =
J∑
n=0

(W1·W2)J−n((W1·X2)(W2·X1))nh(J)ℓ,n (σ) ,

(F.21)
for some scalar functions h(J)ℓ,n (σ). If we plug (F.20) and (F.21) into the formula for the
Källén-Lehmann decomposition analytically continued to EAdS (4.8), we can match the
coefficients of the tensor structures on both sides and obtain some scalar equations

G(n)
O(J)(σ) =

J∑
ℓ=0

∫
R
dλ Γ(±iλ)ρP,ℓO(J)(λ)h

(J)
ℓ,n (σ) , (F.22)
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where we only wrote the principal series part for simplicity. These are the integrals which we
carry out numerically and with which we check the validity of the various spectral densities
we have derived. Notice that under the Wick rotation described in 4.1, σdS → σEAdS

so that (F.22) are valid both in EAdS (σ ∈ (−∞,−1)) and in de Sitter (σ ∈ (−∞,∞))
provided one gives a small imaginary part to σ when going above the cut at timelike
separation. For example, consider the case of a spin 2 CFT primary of conformal weight ∆.
As argued in section 5.2.3, we have G(2)

T (σ) = cT (1− σ)−∆. (F.22) then reads

cT (1−σ)−∆ =
∫
R
dλ Γ(±iλ)

(
ρP,0T (λ)h(2)0,0(σ)+ρ

P,1
T (λ)h(2)1,0(σ)+ρ

P,2
T (λ)h(2)2,0(σ)

)
, (F.23)

with the spectral densities in (5.73), and we choose d ≥ 2. In the rest of this subsection, we
report the explicit expression of the h(J)ℓ,n (σ) functions for J = 0, 1, 2 and n, ℓ ∈ [0, J ], so
that all these kinds of integrals can be checked to hold by numerical evaluation. For J = 0,
we have the well known expression of the scalar harmonic function

Ωλ,0(X1, X2) = h
(0)
0,0(σ) =

Γ
(
d
2 ± iλ

)
2d+1π

d+1
2 Γ(±iλ)

F
(
d

2 − iλ,
d

2 + iλ,
d+ 1
2 ,

1 + σ

2

)
(F.24)

Let us explicitly show how to compute h(1)1,n for n = 0 and n = 1. The other functions are
obtained with the same mechanical steps. We start by considering the relevant harmonic
function and its split representation

Ωλ,1(X1, X2;W1,W2) =
λ2

π
(
d−2
2

) ∫
P
Π∆,1(X1, P ;W1, DZ)Π∆̄,1(X2, P ;W2, Z) , (F.25)

where the apparent d = 2 pole is actually canceled by the action of DZ on Z, we are using
the notation ∆ = d

2 + iλ in this appendix and bulk-to-boundary propagators are defined
in (F.15). Contracting the boundary indices we obtain

Ωλ,1(X1,X2;W1,W2)=
λ2C∆,1C∆̄,1

π

∫
P

[
W1 ·W2

(−2P ·X1)∆(−2P ·X2)∆̄
+ (P ·W2)(W1 ·X2)
(−2P ·X1)∆(−2P ·X2)∆̄+1

+ (P ·W1)(W2 ·X1)
(−2P ·X1)∆+1(−2P ·X2)∆̄

+ (P ·W1)(P ·W2)(X1 ·X2)
(−2P ·X1)∆+1(−2P ·X2)∆̄+1

]
.

(F.26)
We can trade factors of P for derivatives with respect to X1 and X2 and obtain

Ωλ,1(X1,X2;W1,W2)=
C∆,1C∆̄,1

∆∆̄

(
∆∆̄W1 ·W2+

∆
2 (W1 ·X2)(W2 ·∂X2)+

∆̄
2 (W2 ·X1)(W1 ·∂X1)

+ 1
4(X1 ·X2)(W1 ·∂X1)(W2 ·∂X2)

)
λ2

π

∫
P

1
(−2P ·X1)∆(−2P ·X2)∆̄

.

(F.27)
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We can now undo the split representation such that this becomes just a sum of derivatives
of the scalar harmonic function

Ωλ,1(X1,X2;W1,W2)=
C∆,1C∆̄,1

∆∆̄C∆,0C∆̄,0

(
∆∆̄W1 ·W2+

∆
2 (W1 ·X2)(W2 ·∂X2)

+ ∆̄
2 (W2 ·X1)(W1 ·∂X1)+

1
4(X1 ·X2)(W1 ·∂X1)(W2 ·∂X2)

)
Ωλ,0(X1,X2) .

(F.28)
By carrying out these derivatives explicitly, and collecting the coefficients of W1 ·W2 and
(X1 ·W2)(X2 ·W1) we can read off

h
(1)
1,0(σ) = N (1)

1

[
2F(0)(σ) + σF(1)(σ)

]
,

h
(1)
1,1(σ) = N (1)

1

[
dF(1)(σ) + σ

8 ((d+ 2)2 + 4λ2)F(2)(σ)
]
,

(F.29)

where we introduced the shorthand notation

F(a)(σ) ≡ 1
Γ
(
d+1
2 + a

) F (d2 + iλ+ a,
d

2 − iλ+ a,
d+ 1
2 + a,

σ + 1
2

)
, (F.30)

and defined

N (1)
1 =

Γ
(
d
2 ± iλ+ 1

)
λ sinh(πλ)

2dπ d+3
2 ((d− 2)2 + 4λ2)

(F.31)

We report here the other functions for J = 1, which can be computed with the same
procedure

h
(1)
0,0(σ) = N (1)

0

(
(d− 2)2

4 + λ2
)

F(1)(σ) ,

h
(1)
0,1(σ) =

1
2N

(1)
0

(
(d− 2)2

4 + λ2
)(

(d+ 2)2
4 + λ2

)
F(2)(σ) .

(F.32)

with N (1)
0 = N (1)

1 . In the rest of this subsection we report the functions for J = 2. We start
from the functions h(2)ℓ,n with ℓ = 2.

h
(2)
2,0(σ)
N (2)

2
=2d

(
F(0)(σ)+σF(1)(σ)

)
+(dσ2−1)F(2)(σ)

h
(2)
2,1(σ)
N (2)

2
=2(d)2F(1)(σ)+dσ

(
5+3d+ d2

4 +λ2
)

F(2)(σ)+(dσ2−1)
(
d

2±iλ+2
)

F(3)(σ)

h
(2)
2,2(σ)
N (2)

2
= (d)3

2 F(2)(σ)+
(
d

2±iλ+2
)[

d(d+2)σ
2 F(3)(σ)+ (dσ2−1)

8

(
d

2±iλ+3
)

F(4)(σ)
]

(F.33)
with

N (2)
2 = (d+ 2)2 + 4λ2

d(d2 + 4λ2) N (1)
1 , (F.34)
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and (d)n is the Pochhammer symbol. For J = 2 and ℓ = 1, instead, we have

h
(2)
1,0

N (2)
1

= F(1)(σ) + σF(2)(σ) ,

h
(2)
1,1

N (2)
1

= 1
8

[
(d(d+ 12) + 4(λ2 + 5))F(2)(σ) + 2σ((d+ 4)2 + 4λ2)F(3)(σ)

]
,

h
(2)
1,2

N (2)
1

= (d+ 4)2 + 4λ2
128

[
8(d+ 2)F(3)(σ) + σ((d+ 6)2 + 4λ2)F(4)(σ)

]
,

(F.35)

with

N (2)
1 =

Γ
(
d
2 ± iλ+ 2

)
λ sinh(πλ)

2dπ d+3
2 ((d− 2)2 + 4λ2)

(F.36)

and for J = 2 with ℓ = 0

h
(2)
0,0 =

Γ
(
d
2 ± iλ+ 2

)
λ sinh(πλ)

2d+2π
d+3

2
F(2)(σ) , h

(2)
0,1 =

Γ
(
d
2 ± iλ+ 3

)
λ sinh(πλ)

2d+2π
d+3

2
F(3)(σ) ,

h
(2)
0,2 =

Γ
(
d
2 ± iλ+ 4

)
λ sinh(πλ)

2d+5π
d+3

2
F(4)(σ) . (F.37)

G Explicit expressions of the inversion formula

G.1 Spin 0

The Källén-Lehmanndecomposition of scalar two-point functions only has the ℓ = 0 term.
The inversion formula (4.21) then takes the simple form

ρP,0O(0)(λ) =
2d+1π

d+1
2 Γ

(
d+1
2

)
Γ
(
d
2 ± iλ

) ∫
X1

Ωλ,0(X2, X1)GO(0)(X1, X2) . (G.1)

The scalar two-point function GO(0)(Y1, Y2) and its Wick rotation to EAdS GO(0)(X1, X2)
only depend on the two-point invariants σdS ≡ Y1 ·Y2 and σEAdS ≡ X1 ·X2 which we discuss
more in detail in appendix F. We can thus use GO(0)(σ) as a short-hand notation for the
scalar two-point function of some bulk scalar operator O(0). Since ρP,0O(0)(λ) does not depend
on X2, we are free to place it anywhere in EAdS and in particular we can pick the origin,
which makes the angular part of integral over X1 trivial. We choose global coordinates in
EAdS, given by (F.2), for which we have

σEAdS = − cosh r ,
∫
X1

= vol(Sd)
∫ ∞

0
dr (sinh r)d (G.2)

where we performed the integration over the angular coordinates, which leads to a factor of
vol(Sd) = 2π

d+1
2

Γ( d+1
2 ) . With the change of variable r → σEAdS and replacing the explicit value
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of Ωλ,0 from eq. (F.24),

ρP,0O(0)(λ)=
2π d+1

2

Γ(±iλ)

∫ −1

−∞
dσ (σ2−1)

d−1
2 F

(
d

2+iλ,
d

2−iλ,
d+1
2 ,

1+σ
2

)
GO(0)(σ) . (G.3)

Here, we omit the label EAdS in σ, not only to avoid clutter but also to emphasise that
this formula can be seen as an integration over the point-function in de Sitter as well.

G.2 Spin 1

We state the generic form of a spinning two-point function in (4.38). In particular for spin-1
fields we have:

GO(1)(Y1, Y2;W1,W2) = (W1 ·W2)G(0)
O(1)(σ) + (W1 · Y2)(W2 · Y1)G(1)

O(1)(σ) , (G.4)

where again we used shorthand notation for the two-point invariant σ = Y1 · Y2. After
Wick rotating this two-point function as discussed in 4.1, we plug it into (4.21) and we
carry out all the index contractions through the application of the K operators on the
W vectors (F.16). Using the explicit expressions for Ωλ,1 and Ωλ,0 from appendix F.3,
we then place X2 at the origin of EAdS as done in the scalar case and using elementary
hypergeometric identities we end up obtaining

ρP,1O(1)(λ)=π
d−1

2 λsinh(πλ)
∫ −1

−∞
dσ (σ2−1)

d−1
2
(
2F(0)(σ)G(0)

O(1)(σ)−(σ2−1)F(1)(σ)G(1)
O(1)(σ)

)
,

ρP,0O(1)(λ)=
32π d−1

2 λsinh(πλ)
(d2+4λ2)

∫ −1

−∞
dσ (σ2−1)

d−1
2 F(0)(σ)f(σ,G(0)

O(1)(σ),G
(1)
O(1)(σ)) , (G.5)

where

f(σ,G(0)
O(1)(σ),G(1)

O(1)(σ))=
[
(d+1)2

σ+
(
(2d+3)σ2−(d+2)

)
∂σ+σ(σ2−1)∂2

σ

]
G(0)
O(1)(σ)

+
[
(d+2)

(
(d+2)σ2−1

)
+(2d+5)σ(σ2−1)∂σ+(σ2−1)2∂2

σ

]
G(1)
O(1)(σ) .

(G.6)

We stress the fact that these integrals can now be interpreted as being carried out in a
physical region of spacelike separation in de Sitter.

H Inversion integrals

In this appendix, we show how to carry out the integrals that are encountered when applying
the inversion formula to the examples we have considered throughout this work. We will start
with some general remarks about these integrals and then show all the specific examples.

H.1 Free QFTs

In the main text, we have considered two-point functions of composite operators made of
two fundamental fields with ∆1 = d

2 + iλ1 and spin m and ∆2 = d
2 + iλ2 and spin J −m.

In total generality, in a free theory these two-point functions factorize

⟨ϕ(m)
1 ϕ

(J−m)
2 (Y1;W2)ϕ(m)

1 ϕ
(J−m)
2 (Y2;W2)⟩

= ⟨ϕ(m)
1 (Y1;W2)ϕ(m)

1 (Y2;W2)⟩⟨ϕ(J−m)
2 (Y1;W2)ϕ(J−m)

2 (Y2;W2)⟩ .
(H.1)
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In every case we studied, after carrying out derivatives and index contractions, we can
reduce the inversion formulas for the spectral densities to linear combinations of integrals
of the following form

ρP,ℓ
ϕ

(m)
1 ϕ

(J−m)
2

(λ) =
∑

k1,k2,k3

ck1,k2,k3

∫
P1,P2,P3

∏3
j=1Π∆̄j−kj ,0(X2, Pj)

(P12)∆123,k(P13)∆132,k(P23)∆231,k

≡
∑

k1,k2,k3

ck1,k2,k3I
QFT
k1,k2,k3

(λ1, λ2) ,
(H.2)

where
∆ijl,k ≡

∆i + ki +∆j + kj −∆l − kl
2 , Pij ≡ −2Pi · Pj ,

∆3 ≡
d

2 + iλ3 , λ3 ≡ λ ,

(H.3)

and ck1,k2,k3 are some coefficients which we determined case by case, and which we will
show how to find in the following subsections. For now, let us focus on the integral IQFT

0,0,0 .
Other IQFT

k1,k2,k3
can be easily obtained by making the shift ∆i → ∆i + ki in IQFT

0,0,0 . The seed
integral IQFT

0,0,0 was first solved in [2] by a brute force computation in local coordinates of the
boundary. It was also computed in [87] by using multiple Schwinger parameterizations. We
report here a more covariant approach in the more modern language of harmonic analysis,
which exploits the underlying representation structure. Since we focus on the ki = 0 case,
it is convenient to use the simplified notation ∆ijl = ∆ijl,0 = ∆i+∆j−∆l

2 . Following the
conventions of [34, 88], we also define

⟨O∆1(P1)O∆2(P2)O∆3(P3)⟩ =
1

(P12)∆123(P13)∆132(P23)∆231
, (H.4)

which represents the standard CFT three-point function of scalar primaries. Let us first
consider the P1 and P2 integrals in IQFT

0,0,0 , namely

J (P3) ≡
∫
P1,P2

⟨O∆1(P1)O∆2(P2)O∆3(P3)⟩Π∆̄1
(X2, P1)Π∆̄2

(X2, P2) . (H.5)

J (P3) defined in this way is a scalar function of P3 and X2, and is homogeneous in P3 of
degree −∆3. So it has to take the form

J (X2, P3) = c(∆1,∆2,∆3)Π∆3(X2, P3) , (H.6)

where c(∆1,∆2,∆3) is a constant to be fixed. To extract this constant, we integrate
J (X2, P3) against another bulk-to-boundary propagator Π∆̄4

(X2, P4)

J̃ (P3, P4) ≡
∫
X2

J (X2, P3)Π∆̄4
(X2, P4), ∆4 =

d

2 + iλ4 . (H.7)

If we treat the CFT three-point function ⟨O∆1(P1)O∆2(P2)O∆3(P3)⟩ in J (P3) as a
bulk integral of three bulk-to-boundary propagators ∏3

j=1Π∆j
(X1, Pj), then J̃ (P3, P4)

can be diagrammatically represented by the left panel of figure 9, with integrations over
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P4
X2

P1

X1
P3

P2

P4
X2 X1

P3

Figure 9. Witten diagrams representing J̃ (P3, P4). The dashed lines are bulk-to-boundary
propagators Π∆,0, and the solid internal lines are AdS harmonics Ωλ,0.

(X1, X2, P1, P2) understood. Performing the P1 and P2 integrals first would yield a one-loop
Witten diagram31 as shown in the right panel of figure 9. Such a Witten diagram was
considered in [89]. Here, we are effectively considering a different order, namely integrating
out the bulk points X1 and X2 first. In eq. (H.7), the bulk integral over X2 gives another
CFT three-point function ⟨O∆̄1

(P1)O∆̄2
(P2)O∆̄4

(P4)⟩, multiplied by a constant [34]

b(∆̄1,∆̄2,∆̄4,0)=
π

d
2 Γ
(

∆̄1+∆̄2+∆̄4−d
2

)
Γ
(

∆̄1+∆̄2−∆̄4
2

)
Γ
(

∆̄1+∆̄4−∆̄2
2

)
Γ
(

∆̄2+∆̄4−∆̄1
2

)
2Γ(∆̄1)Γ(∆̄2)Γ(∆̄4)

C∆̄1,0C∆̄2,0C∆̄4,0

(H.8)

and hence J̃ (P3, P4) reduces to

J̃ (P3,P4)= b(∆̄1,∆̄2,∆̄4,0)
∫
P1,P2

⟨O∆1(P1)O∆2(P2)O∆3(P3)⟩⟨O∆̄1
(P1)O∆̄2

(P2)O∆̄4
(P4)⟩ .

(H.9)

This integral (and also its higher spin generalization) was originally computed by [25], and
is recently reviewed by [88]. Without loss of generality, we assume λ3, λ4 > 0, and then get

J̃ (P3, P4) =
2π d

2

Γ
(
d
2

) 2πd+1Γ(±iλ3)
Γ(∆3)Γ(∆̄3)

b(∆̄1, ∆̄2, ∆̄3, 0)δ(λ3 − λ4)δ(P3, P4) . (H.10)

On the other hand, combining eq. (H.6) and eq. (H.7) yields

J̃ (P3, P4) = c(∆1,∆2,∆3)
∫
X2

Π∆3(X2, P3)Π∆̄4
(X2, P4) (H.11)

31Here “Witten diagram” is an abuse of terminology since the internal lines are harmonic functions instead
of AdS Green’s functions.
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where the bulk integral over X2 has been carried out in [34]:∫
X2

Π∆3(X2, P3)Π∆̄4
(X2, P4) = C∆3C∆̄4

2πd+1Γ(±iλ3)
Γ(∆3)Γ(∆̄3)

δ(λ3 − λ4)δ(P3, P4) . (H.12)

Comparing eq. (H.10) and eq. (H.11), we obtain

c(∆1,∆2,∆3) =
2π d

2

Γ
(
d
2

) b(∆̄1, ∆̄2, ∆̄3, 0)
C∆3C∆̄3

. (H.13)

Once the constant c(∆1,∆2,∆3) is fixed, the remaining integral over P3 in IQFT
0,0,0 is of

the form ∫
P

1
(−2P · Y )d =

π
d
2 Γ
(
d
2

)
Γ(d)

1
(−Y 2) d

2
. (H.14)

Altogether, the final expression of IQFT
0,0,0 is

IQFT
0,0,0 = 2πd

Γ(d)b(∆̄1,∆̄2,∆̄3,0)=
Γ
(
d
2−∆123

)
Γ
(
d
2−∆132

)
Γ
(
d
2−∆231

)
Γ
(
d−
∑3
j=1

∆j

2

)
8Γ(d)Γ(1−iλ1)Γ(1−iλ2)Γ(1−iλ3)

.

(H.15)

For arbitrary IQFT
k1,k2,k3

, it suffices to make the substitution ∆i → ∆i + ki in eq. (H.15)

IQFT
k1,k2,k3

=
Γ
(
d
2−∆123,k

)
Γ
(
d
2−∆132,k

)
Γ
(
d
2−∆231,k

)
Γ
(
d−
∑3
j=1

∆j+kj

2

)
8Γ(d)Γ(1−iλ1−k1)Γ(1−iλ2−k2)Γ(1−iλ3−k3)

. (H.16)

H.1.1 Scalar free QFT

The first nontrivial case we have explored in section 5 is the two-point function of the
composite operator ϕ1ϕ2 in a free theory. We showed that (eq. (5.11))

ρPϕ1ϕ2(λ) =
Γ(±iλ1)Γ(±iλ2)

N0,0
b(∆1,∆2,∆, 0)

λ21λ
2
2λ

2

π3
IQFT
0,0,0 (λ1, λ2) . (H.17)

Applying our integral identity to this case is thus immediate. After simplifying, we obtain

ρPϕ1ϕ2(λ) =
λ sinh(πλ)Γ

(
d+1
2

)
26−dπ d+7

2 Γ(d)Γ
(
d
2 ± iλ

) ∏
±,±,±

Γ
(
d
2 ± iλ± iλ1 ± iλ2

2

)
. (H.18)

H.1.2 Spin 1 free QFT

We studied two spin 1 correlators of composite operators in free theory. For the operator
V ϕ made of a vector and a scalar, the principal series contributions are given by

ρP,0
V ϕ (λ)=

Γ(±iλϕ)Γ(±iλV )
N1,0

∫
X1

Ωλ,0(X2,X1)(K1·∇1)(K2·∇2)ΩλV ,1(X1,X2;W1,W2)Ωλϕ,0(X1,X2) ,

(H.19)

ρP,1
V ϕ (λ)=

Γ(±iλϕ)Γ(±iλV )
N1,1

∫
X1

Ωλ,1(X2,X1;K2,K1)ΩλV ,1(X1,X2;W1,W2)Ωλϕ,0(X1,X2) .

(H.20)
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Let us start from ρP,0V ϕ . We begin by using the split representation for the harmonic functions
and carrying out the integral over X1. This kind of integrals is solved in [34], eq. (126) there

1
J !
(
d−1
2

)
J

∫
X
Π∆2(X,P1)Π∆,J(X,P2;K,Z)(W · ∇)JΠ∆1(X,P3)

= b(∆1,∆2,∆, J)
((Z · P3)P12 − (Z · P1)P23)J

P
∆1+∆2−∆+J

2
13 P

∆1−∆2+∆+J

2
23 P

−∆1+∆2+∆+J

2
12

,

(H.21)

with

b(∆1,∆2,∆,J)=
Γ
(∆1+∆2+∆−d+J

2
)
Γ
(∆1+∆2−∆+J

2
)
Γ
(∆1+∆−∆2+J

2
)
Γ
(∆2+∆−∆1+J

2
)

21−Jπ− d
2 Γ(∆1)Γ(∆2)Γ(∆+J)

C∆1,0C∆2,0C∆,J

(H.22)
being the generalization of (H.8). Carrying out all derivatives and index contractions, we
can write

ρP,0V ϕ (λ) = Ñ V ϕ
0

∫
P1,P2,P3

P13(−2P2 ·X) + P12(−2P3 ·X)− P23(−2P1 ·X)
(−2P1 ·X)∆̄ϕ(−2P2 ·X)∆̄V +1(−2P3 ·X)∆̄+1(P12)α(P13)β(P23)γ

,

(H.23)
with

α = ∆V +∆ϕ −∆+ 1
2 , β = ∆+∆ϕ −∆V + 1

2 , γ = ∆+∆V −∆ϕ − 1
2 . (H.24)

and

Ñ V ϕ
0 =

λ2λ2ϕλ
2
V Γ(±iλV )Γ(±iλϕ)
4π3N1,0

(d− 1)2∆̄λC∆̄λ,0C∆̄V ,1C∆̄ϕ,0b(∆,∆ϕ,∆V , 1) (H.25)

The three terms in the sum in (H.23) are exactly of the form (H.2), so that we can write

ρP,0V ϕ (λ)= Ñ V ϕ
0

(
IQFT
−1,0,0(λV ,λϕ)+IQFT

0,0,−1(λV ,λϕ)−IQFT
−1,1,−1(λV ,λϕ)

)
= π−3− d

2λsinh(πλ)
2(∆V −1)(∆̄V −1)(d2+4λ2)Γ

(
d
2

)
Γ
(
d
2±iλ+1

) ∏
±,±,±

Γ
(
d
2+1±iλ±iλV ±iλϕ

2

)
.

(H.26)
Then, we continue with ρP,1V ϕ . After using the split representation on the harmonic functions
in (H.20), let us focus on the resulting X1 integral∫
X1

Π∆ϕ
(X1,P1)Π∆,1(X1,P2;K1,Z2)Π∆V ,1(X1,P3;W1,Z3)

∝
∫
X1

((−2P2 ·X1)(Z2 ·K1)+2(X1 ·Z2)(P2 ·K1))((−2P3 ·X1)(W1 ·Z3)+2(X1 ·Z3)(P3 ·W1))
(−2X1 ·P1)∆ϕ(−2X1 ·P2)∆+1(−2X1 ·P3)∆V +1 .

(H.27)
We can trade all factors of X1 in the numerator for derivatives with respect to boundary
points. In this way, the X1 integral becomes an integral over a product of three scalar
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bulk-to-boundary propagators, again leading to a CFT three point function∫
X1

Π∆ϕ
(X1, P1)Π∆,1(X1, P2;K1, Z2)Π∆V ,1(X1, P3;W1, Z3)

= 1
∆∆V

((P2 · P3)Z2 · ∂P2Z3 · ∂P3 +∆V Z3 · P2Z2 · ∂P2 +∆Z2 · P3Z3 · ∂P3 +∆∆V Z2 · Z3)

× b(∆ϕ,∆,∆V , 0)
(P12)∆123(P13)∆132(P23)∆231

.

(H.28)
Carrying out the derivatives and substituting this back into (H.20), we can write the result
as a linear combination of I freeQFT:

ρP,1V ϕ (λ) = Ñ V ϕ
1

[
((∆−∆V )2 −∆2

ϕ)
(
2I0,1,−1 + 2I−1,1,0 − I1,0,−1 − I−1,0,1 − I−1,2,−1

)
+ 2(∆ϕ +∆(2∆V − 1)−∆V )

(
(d− 2)I0,0,0 + 2I−1,0,−1

)]
(H.29)

where we kept the notation abbreviated and the subscripts of Ik1,k2,k3 indicate, in order,
the integers kj to add to ∆V , ∆ϕ and ∆ ≡ d

2 + iλ . Moreover,

Ñ V ϕ
1 = Γ(±iλϕ)Γ(±iλV )

N1,1

λ2λ2V λ
2
ϕ

16π3∆∆V
(d− 1)2b(∆ϕ,∆,∆V , 0)

C∆,1C∆V ,1
C∆,0C∆V ,0

. (H.30)

Assembling all the pieces together and simplifying, we obtain

ρP,1V ϕ (λ) =
2−12π−3− d

2λ sinh(πλ)fλ,λV ,λϕ

Γ
(
d+2
2

)
(∆V − 1)(∆̄V − 1)Γ

(
d
2 ± iλ+ 1

) ∏
±,±,±

Γ
(
d
2 ± iλ± iλϕ ± iλV

2

)
,

(H.31)
with

fλ,λV ,λϕ
=16

(
λ2ϕ−(λ2+λ2V )

)2
+64(d−1)λ2λ2V

+8d(3d−4)λ2ϕ+8d
(
2d2−5d+4

)(
λ2+λ2V

)
+d3

(
4d2−11d+8

)
. (H.32)

For the operator ϕ1∇ϕ2, the steps are analogous, so we only report the linear combination
in terms of the standard master integral. We have

ρP,0ϕ1∇ϕ2
(λ)= Ñ ϕ1∇ϕ2

0

(
2∆̄1IQFT

−1,−1,0+(∆1+∆2−d)IQFT
0,0,0

)
=

(d2+4(λ2−λ21+λ22))2Γ
(
d+1
2

)
28−dπ d+7

2 (d2+4λ2)2Γ(d)Γ
(
d
2±iλ

)λsinh(πλ) ∏
±,±,±

Γ
(
d
2±iλ±iλ1±iλ2

2

)
,

(H.33)
with

Ñ ϕ1∇ϕ2
0 = Γ(±iλ1)Γ(±iλ2)

2π3N1,0
(d−1)2λ2λ2

1λ
2
2∆2∆̄2((∆̄1−∆2)b(∆,∆1,∆2,0)+2∆1b(∆,∆1+1,∆2+1,0))

(H.34)
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and
ρP,1ϕ1∇ϕ2

(λ)= Ñ ϕ1∇ϕ2
1

(
IQFT
0,0,−1−IQFT

1,−1,−1+IQFT
0,−1,0

)
=

Γ
(
−d

2±iλ
)
(cosh(2πλ)−(−1)d)

25π5+ d
2 Γ
(
d+2
2

) λsinh(πλ)
∏

±,±,±
Γ
(
d
2+1±iλ±iλ1±iλ2

2

)
.

(H.35)
with

Ñ ϕ1∇ϕ2
1 = Γ(±iλ1)Γ(±iλ2)

4π3∆N1,1
(d−1)2∆2∆̄2(∆+∆1−∆2−1)λ2λ21λ22

C∆,1
C∆,0

b(∆,∆1,∆2+1, 0) .

(H.36)

H.2 CFTs

Another class of two-point functions we considered in this work are two-point functions of
spin J primary bulk CFT operators with conformal dimension ∆ in de Sitter, which as
argued in section 5.2, are of the form

⟨O(J)(Y1,W1)O(J)(Y2,W2)⟩ = cO
[(W1 ·W2)(1− Y1 · Y2) + (Y1 ·W2)(Y2 ·W1)]J

2∆(1− Y1 · Y2)∆+J

= cO
2∆

J∑
m=0

(
J

m

)
(W1 ·W2)m[(Y1 ·W2)(Y2 ·W1)]J−m

(1− Y1 · Y2)∆+J−m

(H.37)
Applying the inversion formula (4.21) we can retrieve the principal series contribution

ρP,ℓ
O(J)(λ)=

1
NJ,ℓ

∫
X1

Ωλ,ℓ(X2,X1;K2,K1)[(K1 ·∇1)(K2 ·∇2)]J−ℓ⟨O(J)(X1,W1)O(J)(X2,W2)⟩ .

(H.38)
After carrying out all the index contractions and the derivatives, in all the examples we
explored the result can always be written as

ρP,ℓ
O(J)(λ) =

ℓ∑
n=−ℓ

J−|n|∑
k=0

cn,k(∆, λ)
∫
X1

Ωλ+in,0(X2, X1)(1−X1 ·X2)−∆−J+k

≡
ℓ∑

n=−ℓ

J−|n|∑
k=0

cn,k(∆, λ)I(J)
CFT,n,k(∆, λ) ,

(H.39)

with some coefficients cn,k(∆, λ) which we determined case by case and which we will
show in the following subsections of this appendix. They appear to satisfy a symmetry
cn,k(∆, λ) = c−n,k(∆, λ) . Let us focus on the integral I(J)

CFT,n,k(∆, λ). By conformal
invariance, we can fix X2 in the origin of EAdS, which in global coordinates is given by
r2 = 0. In the same coordinates, we have σ = X1 ·X2 = − cosh r1 and∫

X
=
∫ ∞

0
dr sinhd r

∫
dΩd = Sd

∫ −1

−∞
dσ(σ2 − 1)

d−1
2 . (H.40)

The integral is thus

I(J)
CFT,n,k(∆,λ)=CΩS

d
∫ −1

−∞
dσ(σ2−1)

d−1
2 2F1

(
∆−n,∆̄+n, d+1

2 ,
1+σ
2

)
(1−σ)−∆−J+k ,

(H.41)
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where ∆ ≡ d
2 + iλ. To solve this, we resort to the Mellin Barnes representation of the

hypergeometric function (which is the inverse Mellin transformation of (D.9))

2F1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∫ i∞

−i∞

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s) (−z)s , (H.42)

and we change variables to u = σ+1
2 :

I(J)
CFT,n,k(∆,λ)= c̃

∫ i∞

−i∞

ds

2πi
Γ(∆−n+s)Γ(∆̄+n+s)Γ(−s)

Γ
(
d+1
2 +s

) ∫ ∞

0
du(1+u)

d−1
2 +k−J−∆u

d−1
2 +s ,

(H.43)
with

c̃ = 2k−J−∆(iλ− n) sin(π(n− iλ))
πΓ
(
d+1
2

) . (H.44)

The integral over u gives some gamma functions, one of which crucially cancels the denomi-
nator in the Mellin integral, giving

I(J)
CFT,n,k(∆, λ) = c̃

∫
ds

2πi
Γ(−s)Γ(∆̄ + n+ s)Γ(s+∆− n)Γ(−d− k − s+ J + ∆)

Γ
(
1−d
2 − k + J + ∆

) .

(H.45)
The resulting Mellin integral can be carried out with Barnes’ first lemma, which states∫ i∞

−i∞

ds

2πiΓ(a+s)Γ(b+s)Γ(c−s)Γ(d−s)=
Γ(a+c)Γ(a+d)Γ(b+c)Γ(b+d)

Γ(a+b+c+d) . (H.46)

Applying this to (H.45), we obtain

I(J)
CFT,n,k(∆, λ) = c̃

Γ(∆̄ + n)Γ(∆− n)Γ(−k + l + n+ ∆ −∆)Γ(−k + l − n+ ∆ + ∆̄)
Γ(−k + l + ∆)Γ

(
1
2 − d

2 − k + l + ∆
) .

(H.47)
Substituting this into (H.39) we can find the spectral densities for any spin J CFT two-
point function. To avoid clutter in the next subsections, we introduce the convenient
shorthand notation

Ī(J)
CFT,n,k ≡

I(J)
CFT,n,k(∆, λ)

C d
2+iλ−n,0

C d
2−iλ+n,0

(λ+ in)2 (H.48)

H.2.1 Scalar CFT

Let us start from the scalar case

⟨O(Y1)O(Y2)⟩ =
cO

2∆(1− Y1 · Y2)∆ . (H.49)

The inversion formula for the principal series contribution reads

ρPO(λ) =
cO

2∆N0,0

∫
X1

Ωλ,0(X1, X2)(1−X1 ·X2)−∆ . (H.50)
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This is already of the form in (H.39), with n = 0 and k = 0 and the coefficient being
c0,0(∆, λ) = cO

2∆N0,0
. We can thus simply apply (H.47) and obtain the spectral density

ρPO(λ)=
cO

2∆N0,0
I(0)

CFT,0,0(∆,λ)= cO
21+d−2∆π

d−1
2 Γ

(
−d

2+∆±iλ
)

Γ(∆)Γ
(
1−d
2 +∆

) λsinh(πλ) (H.51)

H.2.2 Spin 1 CFT

Moving on to the spin 1 case, we have

⟨J(Y1;W1)J(Y2;W2)⟩ =
cJ
2∆

[
W1 ·W2

(1− Y1 · Y2)∆ + (Y1 ·W2)(Y2 ·W1)
(1− Y1 · Y2)∆+1

]
. (H.52)

We start by inverting ρP,1J (λ)

ρP,1J (λ) = 1
N1,1

∫
X1

Ωλ,1(X2, X1;K2,K1)⟨J(X1;W1)J(X2;W2)⟩ . (H.53)

First, we use the split representation (F.14) on Ωλ,1 and carry out the contraction of the
boundary indices following the action of DZ on Z (2.42)

Ωλ,1(X2,X1;K2,K1)

= λ2

π
(
d−2
2

) ∫
P
Π∆(X1,P ;K1,DZ)Π∆̄(X2,P ;K2,Z)

=
C∆,1C∆̄,1λ

2

π
(
d−2
2

) ∫
P

((K1 ·P )(X1 ·DZ)−(P ·X1)(K1 ·DZ))((K2 ·P )(X2 ·Z)−(P ·X2)(K2 ·Z))
(−2P ·X1)∆+1(−2P ·X2)∆̄+1

=
C∆,1C∆̄,1
πλ−2

∫
P

P ·X1(K1 ·K2P ·X2−P ·K2X2 ·K1)+P ·K1(K2 ·PX1 ·X2−P ·X2X1 ·K2)
(−2P ·X1)∆+1(−2P ·X2)∆̄+1

.

(H.54)
Plugging this into (H.53) and computing the action of the K operators over the W

vectors (F.16) we obtain

ρP,1J (λ) = ÑCFT
1,1

∫
X1,P

((P1 ·X1)2 + (P1 ·X2)2 + P1 ·X1P1 ·X2(d− (d− 2)X1 ·X2))
(1−X1 ·X2)∆+1(−2P ·X1)∆+1(−2P ·X2)∆̄+1

= 1
2Ñ

CFT
1,1

(
Ī(1)

CFT,1,0 + Ī(1)
CFT,−1,0 + 2Ī(1)

CFT,0,0 + (d− 2)Ī(1)
CFT,0,1

)
(H.55)

where
ÑCFT

1,1 ≡
cJ(d− 1)2C∆,1C∆̄,1λ

2

2∆πN1,1
. (H.56)

To the second line of (H.55) we have carried out the P integral and retrieved scalar harmonic
functions, and then organized the sum as a polynomial in (1 − X1 · X2) . That put the
expression in a form where (H.47) is applicable to each term in the sum. By substituting
the expression for ICFT we obtain

ρP,1J (λ) = cJ
21+d−2∆π

d−1
2 (∆ − 1)Γ

(
−d

2 + ∆ ± iλ
)

Γ(∆ + 1)Γ
(
1−d
2 + ∆

) λ sinh(πλ) . (H.57)
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We do the analogous steps for ρP,0J (λ), starting from the inversion formula

ρP,0J (λ) = 1
N1,0

∫
X1

Ωλ,0(X2, X1)(∇1 ·K1)(∇2 ·K2)⟨J(X1;W1)J(X2;W2)⟩ . (H.58)

We carry out the derivatives and the contractions with the K operators and obtain

ρP,0J (λ) = cJ(d− 1)2(∆ − d)
22+∆N1,0

∫
X1

Ωλ,0(X2, X1)
(1−X1 ·X2)∆+1 (1 + ∆ + (∆ − d)X1 ·X2)

= cJ(d− 1)2(∆ − d)
22+∆N1,0

(
(1− d+ 2∆)I(1)

CFT,0,0 + (d− ∆)I(1)
CFT,0,1

) (H.59)

Substituting the expression (H.47) and simplifying, we obtain what we presented in the
main text

ρP,0J (λ) = cJ
23+d−2∆π

d−1
2 (∆ − d)Γ

(
−d

2 + ∆ ± iλ
)

(d2 + 4λ2)Γ(∆ + 1)Γ
(
1−d
2 + ∆

) λ sinh(πλ) . (H.60)

H.2.3 Spin 2 CFT

To treat the spin 2 case, the logic is the same.

⟨T (Y1;W1)T (Y2;W2)⟩=
cT

2∆

[ (W1 ·W2)2

(1−Y1 ·Y2)∆ +2(W1 ·W2)(Y1 ·W2)(Y2 ·W1)
(1−Y1 ·Y2)∆+1 +[(Y1 ·W2)(Y2 ·W1)]2

(1−Y1 ·Y2)∆+2

]
.

(H.61)
We start from ρP,2T (λ)

ρP,2T (λ) = 1
N2,2

∫
X1

Ωλ,2(X2, X1;K2,K1)⟨T (X1;W1)T (X2;W2)⟩ . (H.62)

We follow the same identical steps as in the spin 1 example: we use the split representation
on Ωλ,2, carry out the contractions between DZ and Z and between K and W . We land on
a linear combination of scalar harmonic functions which we can express in terms of ICFT

ρP,2T (λ) =
λ2(d+ 1)2(d− 1)3C∆,2C∆̄,2

23+∆d N2,2

∑
±

(
2Ī(2)

CFT,±2,0 + 8Ī(2)
CFT,±1,0 + 2(d− 2)Ī(2)

CFT,±1,1

+ 12Ī(2)
CFT,0,0 + 4(d− 2)Ī(2)

CFT,0,1 + d(d− 2)Ī(2)
CFT,0,2

)
,

(H.63)
which gives

ρP,2T (λ) = cT
21+d−2∆π

d−1
2 (∆ − 1)∆Γ

(
−d

2 + ∆ ± iλ
)

Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) . (H.64)

For ρP,1T (λ) instead, we have

ρP,1T (λ) = 1
N2,1

∫
X1

Ωλ,1(X2, X1;K2,K1)(K1 ·∇1)(K2 ·∇2)⟨T (X1;W1)T (X2;W2)⟩ . (H.65)
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After applying the split representation and carrying out derivatives and index contractions,
we obtain

ρP,1T (λ) = ÑCFT
2,1

∑
±

(
(4(∆ − 1) + d(6∆ − 4 + d(d− 2∆ − 5))Ī(2)

CFT,0,1

+ (d+ 1 + 2d2 − ∆ − 3d∆)
(
2Ī(2)

CFT,0,0 + Ī(2)
CFT,±1,0

)
− (d+ 1)(d+ 1− ∆)

(
(d− 2)Ī(2)

CFT,0,2 − Ī(2)
CFT,±1,1

)
.

(H.66)

with
ÑCFT

2,1 ≡
λ2(d+ 1− ∆)(d+ 1)(d− 1)2C∆,1C∆̄,1

23+∆N2,1
. (H.67)

Explicitly,

ρP,1T (λ) = cT
24+d−2∆π

d−1
2 (1− ∆)(d+ 1− ∆)Γ

(
−d

2 + ∆ ± iλ
)

((d+ 2)2 + 4λ2)Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) . (H.68)

Finally, we have

ρP,0T (λ) = 1
N2,0

∫
X1

Ωλ,0(X2, X1)(K1 · ∇1)2(K2 · ∇2)2⟨T (X1;W1)T (X2;W2)⟩

= ÑCFT
2,0

(
(d2 + 3 + 8∆ + 4∆2 − 4d(∆ + 1))I(2)

CFT,0,0

− (d− ∆)
(
2(d− 1− 2∆)I(2)

CFT,0,1 + (∆ − d− 1)ICFT,0,2
) )

= cT
25+d−2∆(d+ 1)π d−1

2 (d− ∆)(d+ 1− ∆)Γ
(
−d

2 + ∆ ± iλ
)

d(d2 + 4λ2)((d+ 2)2 + 4λ2)Γ(∆ + 2)Γ
(
1−d
2 + ∆

) λ sinh(πλ) ,

(H.69)
where

ÑCFT
2,0 ≡ (d− 1)2d(d+ 1)(d+ d2 − 2d∆ + ∆(∆ − 1))

22+∆N2,0
. (H.70)

I Diagrammatics of de Sitter

In this section we review the in-in formalism and we show the details of the computation
in section 5.3. To perform computations in the in-in formalism, we find it convenient to
analytically continue to EAdS, as done in [5, 45, 56], such that we can exploit the large
amount of mathematical results that are already known for Witten diagrams. In this
subsection, we will only be interested in scalar fields, and as such we will omit spin labels.
Gλ(Y1, Y2) will indicate a spin 0 free propagator which we otherwise refer to as Gλ,0(Y1, Y2) .

I.1 In-in formalism

The in-in (or Schwinger-Keldysh) formalism [90] has been used to compute physical observ-
ables in QFT in de Sitter since the seminal works [91, 92]. We are interested in using it to
compute bulk two-point functions on the interacting Bunch-Davies vacuum

⟨Ω|O(η1,y1)O(η2,y2)|Ω⟩ . (I.1)
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right

left

ϵ

η

O(η1,y1)

O(η2,y2)

Figure 10. The contour integral of the in-in formalism, when computing the Wightman function
Glr(Y1, Y2). The ordering in time of η1 and η2 does not matter.

More explicitly, in the interaction picture, we are computing

⟨Ω|O(η1,y1)O(η2,y2)|Ω⟩=
⟨0|U†

I (η1,−∞)OI(η1,y1)U†
I (0,η1)UI(0,η2)OI(η2,y2)UI(η2,−∞)|0⟩

⟨0|U†
I (0,−∞)UI(0,−∞)|0⟩

(I.2)
where

UI(η1, η2) = T

[
exp

(
−i
∫ η1(1−iϵ)

η2(1−iϵ)
dη HI(η)

)]
, (I.3)

is the time evolution operator with the interacting part of the Hamiltonian HI(η) (which in
de Sitter explicitly depends on time), OI(η,y) is the operator O(η,y) in the interaction
picture and |0⟩ is the free Bunch-Davies vacuum. Concretely, we will be interested in the
case where OI = ϕ2 and ϕ is an elementary field in the following theory

L = −1
2g

µν∂µϕ∂νϕ− 1
2m

2ϕ2 − g

4!ϕ
4 . (I.4)

The full contour time integral in (I.2) is represented pictorially in figure 10.
Expanding the exponentials in (I.2) for weak couplings and carrying out all the possible

Wick contractions results in a set of diagrammatic rules, which are for instance explained in
the appendix of [91]. We review them here for completeness, and to introduce the notation
that we use in 5.3

• There are “right” (r) and “left” (l) vertices coming from operators in the interacting
Hamiltonian, depending on whether they are, respectively, in the time ordered or the
anti-time ordered part of the contour. The right vertices are multiplied by −i, while
the left vertices are multiplied by +i. One then sums over each vertex being l or r.

• Wick contractions between operators on the time ordered part of the contour lead
to time ordered propagators Grrλϕ

(Y1, Y2) = ⟨Tϕ(Y1)ϕ(Y2)⟩, with ϕ being some free
field with ∆ = d

2 + iλϕ and where we are now using embedding space notation for the
coordinates in de Sitter.
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• Wick contractions between operators on the anti-time ordered part of the contour
lead to anti-time ordered propagators Gllλϕ

(Y1, Y2) = ⟨T̄ ϕ(Y1)ϕ(Y2)⟩.

• Wick contractions between operators inserted on two different branches of the time
contour lead to Wightman functions

Glrλϕ
(Y1, Y2) = ⟨ϕ(Y1)ϕ(Y2)⟩ , Grlλϕ

(Y1, Y2) = ⟨ϕ(Y2)ϕ(Y1)⟩. (I.5)

These definitions imply the following relations

Gllλϕ
(Y1, Y2) = θ(η1 − η2)Grlλϕ

(Y1, Y2) + θ(η2 − η1)Glrλϕ
(Y1, Y2) ,

Grrλϕ
(Y1, Y2) = θ(η1 − η2)Glrλϕ

(Y1, Y2) + θ(η2 − η1)Grlλϕ
(Y1, Y2) .

(I.6)

I.2 EAdS-dS dictionary

In this section, we review the dictionary between in-in de Sitter diagrams and Witten
diagrams in EAdS. We translate the rules discussed in [5, 56] in our own embedding space
notation. The Wick rotation chosen to open up the in-in contour and analytically continue
to EAdS is the following, in planar coordinates (see section F.1 for a discussion on coordinate
systems in dS and EAdS)

ηl → ei
π
2 ηl , ηr → e−i

π
2 ηr , (I.7)

and then identifying the absolute value of η with the radial coordinate z in EAdS. The
authors of [5, 56] have shown that, under this continuation,

Gllλ(Y1, Y2) →
iλ

2πΓ(±iλ)
(
eiπ∆λΠ∆λ

(X1, X2)− eiπ∆̄λΠ∆̄λ
(X1, X2)

)
,

Grrλ (Y1, Y2) →
iλ

2πΓ(±iλ)
(
e−iπ∆λΠ∆λ

(X1, X2)− e−iπ∆̄λΠ∆̄λ
(X1, X2)

)
,

Glrλ (Y1, Y2) → Γ(±iλ)Ωλ(X1, X2) ,

Grlλ (Y1, Y2) → Γ(±iλ)Ωλ(X1, X2) ,

(I.8)

where Π∆(X1, X2) is an EAdS bulk-to-bulk propagator and ∆λ ≡ d
2 + iλ. Under this

continuation, the integrals appearing in perturbative computations also rotate accordingly

i

∫
Yl

(· · · ) → e−i
π
2 (d−1)

∫
X
(· · · ) , −i

∫
Yr

(· · · ) → ei
π
2 (d−1)

∫
X
(· · · ) , (I.9)

where ∫
Yα

(· · · ) ≡
∫

dηαddy

(−ηα)d+1 (· · · ) (I.10)

with α = l or α = r and
∫
X is defined in (F.10).
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I.3 Details of the anomalous dimensions computation

We report here the details of the computation of the anomalous dimensions presented
in 5.3.1. Let us start from the in-in formalism sum for the order g2 contribution to the
Wightman two-point function of ϕ2, where we selected Y1 ∈ l and Y2 ∈ r. We have only
one vertex, so we obtain two terms, since we have to consider the case in which this vertex
comes from the interaction Hamiltonian in the time ordered (r) and in the anti-time ordered
(l) part of (I.2):

⟨ϕ2(Y1)ϕ2(Y2)⟩lr(g) = ig

[∫
Y l
(Gllλϕ

(Y1, Y ))2(Glrλϕ
(Y, Y2))2 −

∫
Y r

(Glrλϕ
(Y1, Y ))2(Grrλϕ

(Y, Y2))2
]
,

(I.11)
see figure 6 for the associated diagram. Analytically continuing to EAdS, we apply the
rules (I.8) and obtain

⟨ϕ2(X1)ϕ2(X2)⟩lr
(g) =N(g)

[
e−i π

2 (d−1)
∫

X

(
2eiπdΠ∆ϕ

(X1,X)Π∆̄ϕ
(X1,X)−e2iπ∆ϕΠ2

∆ϕ
(X1,X)

−e2iπ∆̄ϕΠ2
∆̄ϕ

(X1,X)
)
Ω2

λϕ
(X,X2)

+ei π
2 (d−1)

∫
X

(
2e−iπdΠ∆ϕ

(X,X2)Π∆̄ϕ
(X,X2)−e−2iπ∆ϕΠ2

∆ϕ
(X,X2)

−e−2iπ∆̄ϕΠ2
∆̄ϕ

(X,X2)
)
Ω2

λϕ
(X1,X)

]
. (I.12)

where the normalization factor is

N(g) ≡
gλ2ϕ
(2π)2Γ(±iλϕ)

4 . (I.13)

Therefore, we need to evaluate a bulk integral that involves two bulk-to-bulk propagators
and two harmonic functions. To make progress, we express Ω2

λϕ
appearing in (I.12) as an

integral over one single harmonic function. It has been effectively done in section 5, and
takes the following form

(Ωλϕ
(X1, X2))2 =

∫
R
dλ ρPΩ(λ)Ωλ(X1, X2) +

N∑
n=0

ρCΩ(n)Ω2λϕ+i( d
2+2n)(X1, X2) , (I.14)

where the sum appears only if λϕ is imaginary and d
4 +N < iλϕ <

d
4 +N + 1, and

ρPΩ(λ)=
Γ(±iλ)

2Γ(±iλϕ)2
ρP,0ϕ2,free(λ)=

λ2ϕ sinh2(πλϕ)
32π4+ d

2 Γ
(
d
2

)
Γ
(
d
2±iλ

)Γ( d
2±iλ
2

)2 ∏
±,±

Γ
(
d
2±iλ±2iλϕ

2

)
,

ρCΩ(n)=
λ2ϕ

(
d
2

)
n
Γ
(
d
2+n−iλϕ

)2
Γ(−n+iλϕ)2Γ

(
d
2+n−2iλϕ

)
Γ(−n+2iλϕ)sinh2(πλϕ)

4n!(−1)nΓ(d+2n−2iλϕ)Γ(−2n+2iλϕ)
.

(I.15)
The density ρP,0ϕ2,free(λ) for free theory is given by eq. (5.96).

Then, the remaining integral to be evaluated is of the type∫
X

Π∆1(X1, X)Π∆2(X1, X)Ωλ(X,X2) , (I.16)
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where ∆1 and ∆2 are equal to either ∆ϕ or ∆̄ϕ. This integral is convergent for d < 3,
and has a UV divergence when d ≥ 3, which can be easily seen from the coincident limit
Π∆(X1, X2) ∼ |1 + X1 · X2|

1−d
2 . We will regularize this UV divergence in dS4 by using

dimensional regularization, namely taking d = 3 − ϵ. With the regularization scheme
specified, we proceed to compute the integral in (I.16) with the help of Källén-Lehmann
decomposition in AdS [93]

Π∆1(X1,X)Π∆2(X1,X)=
∑
n≥0

a∆1,∆2(n)Π∆1+∆2+2n(X1,X) ,

a∆1,∆2(n)≡

(
d
2

)
n
(∆1+∆2+n+1−d)n(∆1+∆2+2n) 2−d

2

2π d
2n!(∆1+n) 2−d

2
(∆2+n) 2−d

2

(
∆1+∆2+n− d

2

)
n

. (I.17)

The resulting integral involves only one bulk-to-bulk propagator and one harmonic function,
i.e.

∫
X Π∆(X1, X)Ωλ(X,X2). Such an integral is equivalent to the harmonic decomposition

of Π∆ [34]

Π∆(X1, X) =
∫
R
dλ

Ωλ(X1, X)

λ2 +
(
∆− d

2

)2 , (I.18)

where the real part of ∆ should be larger than d
2 . Applying the orthogonality relation (F.12)

of the harmonics functions to (I.18) yields∫
X
Π∆(X1, X)Ωλ(X,X2) =

Ωλ(X1, X2)

λ2 +
(
∆− d

2

)2 , Re∆ >
d

2 . (I.19)

Putting all the ingredients together, we obtain∫
X
Π∆1(X1, X)Π∆2(X2, X)Ω2

λϕ
(X,X2) =

∫
R
dλ ρPΩ(λ)B∆1,∆2(λ) Ωλ(X1, X2) , (I.20)

where

B∆1,∆2(λ) ≡
∞∑
n=0

a∆1,∆2(n)

λ2 +
(
∆1 +∆2 + 2n− d

2

)2 (I.21)

is known as the bubble function [5, 56]. The infinite sum defining B∆1,∆2 is divergent when
d ≥ 3, because the leading large n behavior of its summand is 2−d−1π−

d
2nd−4. This is a

UV divergence. In the convergence region, re-summation can be performed, obtaining a
7F6 hypergeometric function [56], and when d = 2, the result can be further simplified in
terms of ψ functions [85]. However, these re-summed expressions are not directly useful
for our purposes, since we are mainly interested in the residues of B∆1,∆2 . For dS4, the
dimensional regularization d = 3−ϵ is implicitly implemented. In dimensional regularization,
B∆1,∆2(λ) has a λ-independent 1

ϵ divergence, and the analytical properties of its finite part
is insensitive to the renormalization scheme. Therefore, we will still use eq. (I.21) formally
in dS4, without specifying any renormalization.

Altogether, combining eq. (I.12) and eq. (I.20) and rotating back to de Sitter, we get
the leading order correction to the Källén-Lehmann decomposition of ϕ2:

⟨ϕ2(Y1)ϕ2(Y2)⟩lr(g) =
∫
R
dλ ρPϕ2,g(λ)Glrλ (Y1, Y2) , (I.22)
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where

ρPϕ2,g(λ) = g
ρP,0ϕ2,free(λ)

4 sinh2(πλϕ)

[
sin
(
π

(
d

2 + 2iλϕ
))

B∆ϕ,∆ϕ
(λ)

+ sin
(
π

(
d

2 − 2iλϕ
))

B∆̄ϕ,∆̄ϕ
(λ)− 2 sin

(
dπ

2

)
B∆ϕ,∆̄ϕ

(λ)
]
.

(I.23)

Now to compute the anomalous dimensions of [OO]n and [ÕÕ]n, we need to extract the
coefficient of the double poles at ∆ = 2∆ϕ + 2n and ∆ = 2∆̄ϕ + 2n in (I.23), where
∆ ≡ d

2 + iλ, as explained in section 5.3. From eq. (I.21), we know that the bubble function
B∆ϕ,∆ϕ

(B∆̄ϕ,∆̄ϕ
) has a single pole at 2∆ϕ+2n (2∆̄ϕ+2n). In addition, ρP,0ϕ2,free(λ) also has

single poles at these points. Therefore, in this case, the coefficient c2 defined by eq. (5.91)
should be

c
[OO]n
2 =

sin
(
π
(
d
2 + 2iλϕ

))
4 sinh2(πλϕ)

a∆ϕ,∆ϕ
(n)

d− 4n− 4∆ϕ
c
[OO]n
0 ,

c
[ÕÕ]n
2 =

sin
(
π
(
d
2 − 2iλϕ

))
4 sinh2(πλϕ)

a∆̄ϕ,∆̄ϕ
(n)

d− 4n− 4∆̄ϕ

c
[ÕÕ]n
0 ,

(I.24)

where

c
[OO]n
0 = Res

∆=2∆ϕ+2n
ρP,0ϕ2,free(λ), c

[ÕÕ]n
0 = Res

∆=2∆̄ϕ+2n
ρP,0ϕ2,free(λ) . (I.25)

Plugging eq. (I.24) into eq. (5.93), we obtain the anomalous dimensions of [OO]n and [ÕÕ]n
respectively

γ[OO]n = g
c
[OO]n
2

c
[OO]n
0

= g
sin
(
π
(
d
2 + 2iλϕ

))
4 sinh2(πλϕ)

a∆ϕ,∆ϕ
(n)

d− 4n− 4∆ϕ

γ[ÕÕ]n = g
c
[ÕÕ]n
2

c
[ÕÕ]n
0

= g
sin
(
π
(
d
2 − 2iλϕ

))
4 sinh2(πλϕ)

a∆̄ϕ,∆̄ϕ
(n)

d− 4n− 4∆̄ϕ

, (I.26)

where a∆1,∆2(n) is given by eq. (I.17).
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any medium, provided the original author(s) and source are credited.
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