
The VLDB Journal
https://doi.org/10.1007/s00778-023-00828-7

SPEC IAL ISSUE PAPER

HPCache: memory-efficient OLAP through proportional caching
revisited

Hamish Nicholson1 · Periklis Chrysogelos2 · Anastasia Ailamaki1,3

Received: 15 March 2023 / Revised: 20 September 2023 / Accepted: 17 November 2023
© The Author(s) 2023

Abstract
Analytical engines rely on in-memory data caching to avoid storage accesses and provide timely responses by keeping the
most frequently accessed data in memory. Purely frequency- and time-based caching decisions, however, are a proxy of the
expected query execution speedup only when storage accesses are significantly slower than in-memory query processing.
On the other hand, fast storage offers loading times that approach fully in-memory query response times, rendering purely
frequency-based statistics incapable of capturing the impact of a caching decision on query execution. For example, caching
the input of a frequent query that spends most of its time processing joins is less beneficial than caching a page for a slightly
less frequent but scan-heavy query. Thus, existing caching policies waste valuable memory space to cache input data that
offer little-to-no acceleration for analytics. This paper proposes HPCache, a buffer management policy that enables fast
analytics on high-bandwidth storage by efficiently using the available in-memory space. HPCache caches data based on
the speedup potential instead of relying on frequency-based statistics. We show that, with fast storage, the benefit of in-
memory caching varies significantly across queries; therefore, we quantify the efficiency of caching decisions and formulate
an optimization problem.We implement HPCache in Proteus and show that (i) estimating speedup potential improvesmemory
space utilization, and (ii) simple runtime statistics suffice to infer speedup.We show thatHPCache achieves up to a 1.75x speed-
up over frequency-based caching policies by caching column proportions and automatically tuning them. Overall, HPCache
enables efficient use of the in-memory space for input caching in the presence of fast storage, without requiring workload
predictions.

Keywords Analytical query processing · Storage engines · Storage-resident data · NVMe · High-bandwidth storage

1 Introduction

Improvements in CPU and DRAM efficiency allow analyti-
cal engines to place frequently accesseddatasets in-memory

The work was done while the Periklis Chrysogelos was at EPFL.

B Hamish Nicholson
hamish.nicholson@epfl.ch

Periklis Chrysogelos
periklis.chrysogelos@oracle.com

Anastasia Ailamaki
anastasia.ailamaki@epfl.ch

1 EPFL, Lausanne, Switzerland

2 Oracle, Zurich, Switzerland

3 Google, Zurich, Switzerland

[41]—avoiding slow storage accesses1. However, CPU and
DRAMimprovement rates have slowed in recent years,while
advances in flash storage have enabled increased persistent-
storage bandwidth [18, 26, 27, 36]. As a result, storing the
working set inmemory is no longer always advantageous. For
example, when a query is CPU or memory latency bound, it
has lower throughput than storage bandwidth, so storing the
query’s entire input inmemory is wasteful because it is possi-
ble to achieve the same execution time with the input located
on storage. Instead, it would be more beneficial to use the
same memory for another query.

For decades, database designs were based on the assump-
tion that storage IO is the bottleneck in execution times and
relied on in-memory caching in the buffer pool to bypass it.
There are two lines of work that improve buffer pool perfor-

1 The rest of this paper uses the term storage to refer to block storage
such as hard disk drives (HDDs) and NVMe solid-state drives (SSDs).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00828-7&domain=pdf
http://orcid.org/0000-0003-0306-3253
http://orcid.org/0000-0003-0194-708X
http://orcid.org/0000-0002-9949-3639


H. Nicholson et al.

Fig. 1 Execution time of two queries over NVMe resident data as the
storage bandwidth increases compared with in-memory execution

mance for analytics: (i) improving the efficiency of accessing
buffer pool pages [25, 29] and (ii) improving the probability
that frequently used pages remain in memory [11, 12, 22, 31,
34, 35, 38]. In the first line of work, fast access to the buffer
pool accelerates storage [3, 25, 29] and reduces the buffer
pool overhead but relies on the effectiveness of the buffer
pool policy to accelerate query execution. In the second line
ofwork, frequency-based eviction policies improve the cache
hit rate. High-bandwidth storage, like multiple NVMes per
machine, however, allows for data loading times that are
competitive to in-memory query processing (Fig. 1). Thus,
improving the hit rate no longer implies faster analytics, and
as a result, the available in-memory space is underutilized,
slowing down query execution.

In this paper, we propose HPCache, an eviction policy
and tuning agent that optimizes the caching efficiency of
the buffer pool for analytical workloads on high-bandwidth
storage. We show that (i) caching pages that have the
same access frequency can yield variable query accelera-
tion results, and (ii) efficient cache use should aim for partial
column caching to avoid diminishing returns. HPCache is a
buffer management policy that considers both the query fre-
quency and the acceleration impact of any caching decision
to derive a memory-efficient caching decision. Toward that
end,HPCache (i) examines the query execution to understand
caching benefits and (ii) automatically tunes the caching pri-
ority and in-memory column space budget based on past
execution behavior. We extend the previous version [30] of
HPCache to (1) reduce artifacts resulting from looking back
a fixed number of queries during decision-making and (2)
enable custom policies. Further, we provide a design that
allows simple integration of HPCache with an existing ana-
lytical engine. We revisit the sensitivity analysis of HPCache
using a hardware configuration with sufficiently higher stor-
age bandwidth. Overall, HPCache improves the efficiency of
in-memory data caching for analytics, allowing faster query
execution for a given memory budget.

In summary, HPCache makes the following contribu-
tions:

– We show that in the presence of high bandwidth stor-
age, frequency-based in-memory caching policies cache
inputs that provide little query acceleration (Sect. 2).

– We propose HPCache, a policy that enables efficient
memory utilization by considering the expected query
acceleration of different caching decisions (Sect. 3).
To avoid unreliable predictions, HPCache continuously
tunes the caching policy based on run-time statistics
(Sect. 4).

– We extend HPCache to support varying query impor-
tance and non-fixed querywindow lengths (Sect. 4.4) and
describe HPCache’s integration with the rest of the exe-
cution engine (Sects. 5, 6).

– We provide an extensive evaluation of HPCache to show
howproportional caching improved query response times
by up to 1.75x for both small and large cache capacities
(Sect. 7).

Overall, HPCache enables analytical query processing to
efficiently use the available in-memory space when access-
ing larger-than-memory datasets, allowing faster analytics
for the same memory budget, or decreased memory footprint
without execution time degradation.

The additional content compared to the earlier publication
of this work [30] is mainly discussed in Sects. 4.4, 5, 6, and
through new experiments in Sect. 7.

2 In-memory and high-bandwidth Storage

Directly attached NVMe arrays have enough bandwidth to
invalidate the general rule of thumb that scanning persis-
tent data is always slower than in-memory execution. The
rest of this section shows how high read bandwidth affects
the execution speedups achieved by in-memory caching and
how frequency-based caching policies result in ineffective
eviction decisions. Finally, we quantify the relative value of
caching different data.

Fast storage While local storage was once considered slow
relative to memory, recent advances in flash technology have
resulted in servers having comparable storage read band-
width and memory bandwidth. Recent NVMes can sustain
GB/s of read bandwidth, e.g., an Intel D7-P5600 achieves
7 GB/s. Furthermore, CPUs support 100s of PCIe 4.0 lanes
per socket [15], which allows packing multiple NVMes on
the same server to achieve 10s-100sGB/s of aggregated read
bandwidth—just a single order of magnitude lower than the
CPU memory bandwidth.

123



HPCache: memory-efficient OLAP through proportional caching revisited

Quantifying “fast” Still, an order of magnitude more band-
width is significant. Thus, analytical engines rely on CPU
memory for a wide range of operations. In addition to higher
read bandwidth, CPU memory also provides better random
IO performance and lower latency than NVMe arrays. As a
result, CPU memory has been a crucial element in enabling
efficient in-memory joins [5, 6, 8] and analytics in general
[9]. Thus, for many queries, reading the input data is only a
small portion of the memory operations and only dominant
for scan-heavy and few-small-join queries [37].

Performing random or latency-sensitive data accesses
directly on NVMe-resident data would impose a significant
overhead compared to accessing the same data from mem-
ory. In contrast, sequentially accessing data from NVMe
arrays rather than from memory can have a minimal impact
on response times ; especially when random and latency-
sensitive accesses or even compute costs dominate the
execution time of complex queries. As such, when query
complexity increases, and the sequentially accessed input
data remains the same, the impact of slower sequential access,
e.g., from a slower medium, reduces and can often be over-
lapped with the rest of the execution. This shrinking of the
relative contribution of sequential accesses to the total execu-
tion time as query complexity increases, combined with high
NVMe storage bandwidth, allows for sequentially scanning
data from the NVMe-array storage with a minor penalty—
a reverse application of Amdahl’s law. Instead, the caching
layer can use the saved space for simpler, sequentially scan-
heavy queries.

To quantify the aforementioned query complexity, we
define the processing intensity of a query: an indicator for the
insensitivity of a query to accessing its inputs from storage
rather than frommemory. Specifically, we define the process-
ing intensity of a query as the ratio between its in-memory
execution time and the time to scan its inputs from memory.
For example, with a memory bandwidth of 100 GB/s and
10 GB query input data, a query that executes in 20s would
have a processing intensity of 200. With the same setup, a
query that executes in 1 s would have a processing intensity
of 10. A processing-intensive query has a relatively high pro-
cessing intensity and is relatively insensitive to whether its
input data are in memory. The converse is a data-intensive
query, which has a low processing intensity and is largely
bottlenecked by scan throughput.

What is a low or high processing intensity, and conse-
quently, the slowdown of accessing sequential inputs from
storage relative to memory is a function of storage band-
width. Figure2 models the execution time of increasingly
processing-intensive queries normalized to the in-memory
execution time. Each of the plotted lines shows the slowdown
relative to fully in-memory execution. The sloped compo-
nent of each line shows the range of processing intensities
for which queries are bottlenecked by scanning inputs from

Fig. 2 Conceptual slowdown relative to fully in-memory processing for
queries with increasing processing intensity. Modeled as a simplified,
without caching, version of the model introduced in Sect. 4, assuming
that an HDD, anNVMe drive, and an array of 4 NVMe drives are, 0.1%,
3% and 13% of memory bandwidth, respectively

the respective media. The ranges where the lines flatten,
approaching in-memory query processing speeds, illustrate
when the query execution is bottlenecked by in-memory pro-
cessing and not scans. As storage bandwidth increases, a
greater range of queries can run with fully in-memory per-
formance while keeping their inputs entirely in storage. For
example, in Fig. 2, with a single HDD, only queries with a
processing intensity of over nearly 1000 are not bottlenecked
by the throughput of the scan of HDD-resident input data. In
contrast, the transition point from scan throughput bound to
processing bound is at a processing intensity of just over 32
and 8 for a single NVMe drive and an array of NVMe drives,
respectively.

In-memory analytics vs. data loading: a race Contrary to
common belief, storage accesses no longer have a catas-
trophic impact on analytical query response time. We show
this concretely using queries from the Star Schema Bench-
mark (SSB) [32]. Fig. 1 shows the execution time for a
data-intensive (SSB Q1.3) and processing-intensive query
(SSB Q3.1) as the storage bandwidth increases. Each has
the same working set size of 96 GB. The storage bandwidth
is controlled by varying the number of drives the data are
striped across. Both queries access 96 GB of input data, but
the data-intensive query has one cache-resident join while
the processing-intensive query has four higher-cardinality
joins. With 7 GB/s of storage bandwidth, both queries are
bottlenecked by reading data from the NVMe storage. The
data-intensive and processing-intensive queries are 41.2x
( a ) and2.8x ( b ) slower than in-memory execution, respec-
tively; the processing-intensive query is marginally slower as
it first builds the hash tables for its hash joins. However, with
28 GB/s, the processing-intensive query is just 1% slower
than in-memory ( c ), as the storage bandwidth saturates the
query’s processing throughput. Though, the data-intensive
query is still 10.9x slower ( d ). Faster storage has dimin-
ishing returns for extremely data-intensive queries, as both
query processing and data loading compete for the avail-

123



H. Nicholson et al.

able memory bandwidth. Caching the processing-intensive
query’s input data has minimal speedup potential with stor-
age bandwidth in excess of 28 GB/s: the query, either way,
spends most of its time processing the joins. In contrast,
the data-intensive query will benefit from caching for all
storage bandwidths, though the time savings from caching
depends on the storage bandwidth. Overall, whether in-
memory caching of the input data will reduce query response
time or not is query-dependent, even for simple queries.

Memory efficiency of caching While minimizing storage
accesses does not harm single-query execution, it leads to
inefficient memory use when considering multiple queries.
With data loading times comparable to execution times for
some queries, caching input data for a query that spends
most of its time on non-input operations can result in wast-
ing memory that could be used to accelerate another query.
Further, it contradicts the prior wisdom of caching the most
frequently accessed data. The most common caching heuris-
tics for analytics involve prioritizing data that has not been
used for a long time (LRU [40]), that was recently consumed
(MRU [12]), or a combination thereof and second-chance
approaches [22].However, even ifQ3.1 of the previous exam-
ple were executed significantly more frequently than Q1.3,
caching its inputwould provide little benefit: caching reduces
storage IO, but as shown above, Q3.1’s execution time will
improve very little. In contrast, caching the inputs of Q1.3
will accelerate each execution of Q1.3. Thus, treating all IO
savings equally results in suboptimal query response times.

3 HPCache: hybrid proportional caching

Based on the above observations, we propose Hybrid Propor-
tional Caching (HPCache), a new data placement strategy
that makes caching decisions based on the expected query
response time reductions. Rather than aiming to reduce stor-
age accesses, HPCache builds on three key principles to
efficiently use the in-memory space: (i) not all inputs provide
the same query acceleration, (ii) pages should be priori-
tized based on the expected impact on query execution time,
(iii) optimal caching decisions should aim for the sweet spot
of matching query execution times with loading the remain-
ing data. The rest of this section outlines the above key
principles and their effect on in-memory caching decisions.

Not all bytes are the same. Some queries are more sen-
sitive to the location of their input data than others. Multiple
factors affect the query response time, including the query
access patterns, the data placement of both intermediate and
input data, and the ability of the execution strategy to effec-
tively utilize the available hardware resources, e.g., through
prefetching, vectorization, and cache-awareness. Consider-
ing the query execution time, we can roughly classify queries

Fig. 3 Normalized execution time for three different data placements
using 24 NVMe drives with 168 GB/s read bandwidth. The numbers
above the bars show the absolute execution time in seconds

into two broad categories: data-intensive queries whose exe-
cution time is sensitive to the bandwidth available to access
input data, and processing-intensive queries that spend most
of their time accessing intermediate structures like join hash
tables.

Caching different inputs in memory provides different
response time gains. Thus, we use the expected benefit
(Sect. 4.1) when deciding between alternative caching deci-
sions to use the in-memory space efficiently.

Impact- and frequency-based caching. The importance
of caching the input of a query, and that’s the caching
efficiency it observes, depends on its processing inten-
sity: a data-intensive query with low processing intensity
will observe a higher (relative) speedup than a processing-
intensive query when its inputs are cached in memory.

Figure 3 shows the execution time of three analytical
queries, from the Star Schema Benchmark (SSB) [32] at
scale factor 1000, when using three data placement methods:
fully in-memory, fully NVMe resident, and a hybrid config-
uration with half the input data in-memory and half NVMe
resident. Both Q1.1 and Q1.3 are data-intensive queries, and
thus, their execution time is nearly halved when moving half
of their inputs in memory. However, when moving to fully
in-memory, the two queries have different execution times
despite their equal input size due to their different processing
throughputs;Q1.3 has a higher processing throughput, equiv-
alently a lower processing intensity, and thus benefits more
by having all of its inputs in memory. Q3.1 is a processing-
intensive query, so it executes in nearly the same amount of
time regardless of the location of its inputs. Allocating mem-
ory equally to cache the inputs of these three queries would
result in a slower speed up than preferentially caching the
inputs of the data-intensive queries.

However, per-query caching efficiency is not the onlymet-
ric that matters when selecting which query inputs to cache:
query frequency can also boost or reduce the overall effi-
ciency. In a given workload, if the same or similar queries
appear many times, then there is a multiplicative benefit to
accelerating the repetitive query by caching its inputs.

123



HPCache: memory-efficient OLAP through proportional caching revisited

To optimize caching efficiency, HPCache combines tradi-
tional frequency-based approaches with impact-based query
acceleration expectations to achieve the best of both worlds.
Specifically, it weights queries and input columns based on
their occurrence frequencybut calculates the overall expected
execution time instead of purely optimizing the number
of storage accesses. We model query execution as a flow
(Sect. 4.2) to approximate how different data placements
would affect the total execution time for a sequence of queries
and select the best placement given a memory budget.

Partial input caching. Caching entire columns is waste-
ful: even in the simplified case of a single query, caching
more than a specific fraction of a column provides minimal
additional query speedup. Figure4 shows how the execution
time of SSB Q2.2 improves as we increase the percentage
of in-memory input data while the rest resides on an NVMe.
Initially, the execution is dominated by the data loading time
and thus improves linearly as more data is found in the in-
memory cache. However, despite using more memory, the
query execution time sees almost no reduction after a specific
point. From that point up to having fully in-memory inputs,
query execution is dominated by the actual processing. Thus,
additional caching has no benefit: it would be preferable to
use it for another query. HPCache limits the number of pages
that are cached for each column to avoid diminishing returns
from caching unnecessarily high portions of a specific col-
umn. The limit is determined in a per-column base, and it
is proportional to the expected impact of caching the corre-
sponding column (Sect. 4.3).

4 Tuning andmonitoring

To materialize HPCache, we provide a model that captures
per-input caching impact (Sect. 4.1) and use it to provide a
memory-efficient caching configuration (Sect. 4.2). Finally,
we show how HPCache continuously adapts its caching
configuration based on updated estimates and caching con-
figurations (Sect. 4.3).

4.1 Impact modeling

We model the impact following a two-step procedure:
(i) model the impact of caching the inputs of a specific query
and (ii) combine impacts from multiple queries to determine
the overall impact of caching a column.

The benefit of caching a query input. To model the
impact of caching a specific query input, wemodel the execu-
tion time for the pipeline [28] consuming the corresponding

Fig. 4 Execution time for SSB Q2.2 with increasing proportions of
input data cached inmemory (FourNVMes-28GB/s storage bandwidth)

input2: by definition, caching the input will only change
the performance of that pipeline. Any other pipeline that
joins with the current one will use a newly materialized data
structure produced by the modeled one. Further, the pipeline
operates like a pipe as it consumes its input at a specific rate.
This rate is limited either by input access bandwidth or the
pipeline’s maximum throughput. Thus, if we have the size
of the pipeline inputs (B), the storage bandwidth (Sbw), the
memory bandwidth (Mbw), the proportion of inputs in mem-
ory (x), as well as the pipelines maximum throughput (Pbw),
then we can approximate the execution time for partially
cached inputs as

Tpipeline,x% = max

(
(1 − x) ∗ B

Sbw
,
x ∗ B

Mbw
,

B

Pbw

)
(1)

This results in a line similar to Fig. 4 as the proportion of
inputs in memory (x3), varies from 0% to 100%. The query’s
execution time is initially bottlenecked by storage IO (the left
side of the max) until the query execution time reaches in-
memory processing speeds (equal first and the last terms of
themax).At this point, caching any additional inputs inmem-
ory does not improve the execution time. Calculating Pbw is
generally non-trivial and would require an accurate model
and/or observing previous executions of similar queries. We

2 We borrow the definition of pipeline from Neumann [28], where
a pipeline is the sequence of operators between two fully blocking
pipeline breakers or between an input and a fully blocking pipeline
breaker. Fully blocking pipeline breakers are operators that have to
consume their full input before producing any output (e.g., aggregation
and join’s build side). Caching input data will only affect the throughput
of a pipeline starting in an operator that accesses those inputs.
3 We use x both as a percentage, in the form 70%, in subscript, and as
a proportion, in the form 0.7, within equations.

123



H. Nicholson et al.

avoid this complexity by inferring its value by inspecting,
during the actual execution, the query’s processing through-
put on the first few rowgroups and continuously updating this
estimate (more details in Sect. 4.3). To calculate the reduction
of execution time from one input caching rate (x%) versus
another (y%), it is sufficient to subtract the Tpipeline,x% from
Tpipeline,y%.

The benefit of a byte. Some columns may be used by
multiple queries. To compute the caching impact of a col-
umn, we need to aggregate the execution speed-up it will
allow across multiple queries. However, as the column par-
ticipates in multiple pipelines, even if it is fully in-memory,
it may have to wait for other columns of the same pipeline
to be loaded and vice-versa. Thus, to allow estimating the
impact, we rely on a finer-grained granularity that builds the
end-to-end execution time model based on per-column-per-
pipeline time estimates. To build the time estimates, we need
to subdivide the time estimate of the previous paragraph to
columngranularity.We approximate this division by splitting
Tpipeline,mem across the columns based on their relative sizes.

4.2 A balancedmodel

To provide a memory-efficient caching configuration, we
model the expected execution time and the expected mem-
ory budget and formulate two optimization problems—one
to optimize for the execution time given a memory footprint
and one to optimize the memory footprint given a slowdown
budget. Our description focuses on the former, but the same
principles apply to the latter.

Modeling as a flow.To decouple modeling from hyperpa-
rameter tuning, such as retrieving Tpipeline,mem and whether
future or past queries are available, we generalize the prob-
lem formulations and model execution of L queries, which
can be either future or past ones—andwe optimize execution
across these L queries.

To calculate the total execution time (T ) over these L
queries, we split the queries into pipelines, and for each
pipeline, we sum the time for the various participating
columns. The summation across pipelines is supported by
the fact that pipelines execute one after the other, while the
summation across columns is valid because the accredited
per-column times already split the execution time based on
column size. Similarly, based on the caching ratios, we can
compute the in-memory space C (x%) of having the corre-
sponding proportions cached in memory.

For example, for two queries QA and QB , that have a
single pipeline each and they touch columns {i, j} and { j, k},
respectively, we approximate the total execution time as:

Txi, j,k% = max
(
T i
pipelineA,xi%, T

j
pipelineA,x j%

)

+ max
(
T j
pipelineB ,x j%

, T k
pipelineB ,xk%

) (2)

by making the approximation that:

TpipelineA,xi, j% = max
(
T i
pipelineA,xi%, T

j
pipelineA,x j%

)
(3)

because a pipeline’s throughput will be bottlenecked by the
column with the lowest available access bandwidth. For
example, if the query is IO bound and column i is storage
resident while j is in memory, the query will process only as
fast as column j can be read from storage. Note that shared
columns share cache proportions (e.g., xb%). Also, while
the methodology could model cold caches, this formulation
is optimized for query repetitions and thus ignores cold cache
cases such as column b being fully storage resident before
QA, but brought into the cache before QB starts.

The above formulation of Tx% allows for capturing (i) the
impact of different configurations, (ii) the shared caching
proportions across queries, and (iii) the frequency-based
importance of each query, as queries that repeat multiple
times in the L windowwill appear multiple times in the sum-
mation.

Static tuning and optimization To provide an efficient
configuration, HPCache sets up and solves a minimization
problem that finds the x% that minimizes Tx%, subject to
C (x%) < B, where B is the memory budget. We solve the
optimization problem using a convex optimizer. The opti-
mal configuration x% is then provided to the buffer pool.
The buffer pool preferentially caches pages to attempt to
maintain these proportions of the columns in memory using
a soft-pinning mechanism (Sect. 5.3). The execution engine
requests data pages from the buffer pool as it would do for
any other caching policy.

4.3 Continuous tuning

HPCache tracks query execution as it evolves, continuously
adapting the caching configuration by taking into considera-
tion the recent query and performance history. Furthermore,
HPCache continuously monitors the query execution to tune
its estimates of the inferred Pbw for the currently executing
pipeline.

Looking back. The above model optimizes the execution
across L queries. This allowsHPCache to optimize for future
as well as past queries. In the default case, though, HPCache
uses L − 1 past queries combined with the current query to
decide a new caching configuration. For the past queries, it
estimates Pbw based on the pipeline execution times. How-
ever, HPCache does not fix the caching ratios of the previous
queries, to allow re-optimizing and reducing or increasing
them based on the queries—essentially optimized under the
assumption that a similar pattern as the last L − 1 queries
will repeat next.

123



HPCache: memory-efficient OLAP through proportional caching revisited

Monitoring and inspection. In general, it is hard to
predict Pbw reliably for each pipeline. Instead, HPCache
estimates Pbw during query execution. In each pipeline invo-
cation, the pipelines of interest receive a set of input blocks
corresponding with one block per accessed attribute. The
execution engine requests from the storage layer the pages
needed for each pipeline invocation. HPCache intercepts
these requests to calculate an estimate of Pbw from the pages
per second that the pipeline is processing and the known
input size of the pipeline. Since many instances of the same
pipeline run in parallel, we assume that pipeline processing
time is equally distributed across threads.

HPCache uses the estimate of Pbw along with the exe-
cution times of the previous queries as inputs for the
optimization problem formulated in Sect. 4.2. HPCache re-
solves the problem periodically in a background thread using
the latest statistics, both refining its estimated Pbw for the
current pipeline and the overall optimal column proportions.
The new optimal configuration is continuously supplied to
the buffer pool as a maximum number of pages to cache for
each column. If some columns exceed their maximum allo-
cations in the new configuration, then the buffer manager
moves pages from the over-represented column into a (logi-
cal) global free list by removing soft-pins (Sect. 5.3). Free list
pages are evicted first to make room for new pages. While
pages are in the free list, they are still available to threads
requesting them until they are evicted.

4.4 Proportional caching: avoiding horizon effects

Using a fixed number of queries to make caching decisions is
prone to issues arising from patterns with a higher repetition
period than the current window. Further, using a very big
look-back query window L , slows down the adaptation of
the caching method to new query patterns.

To reduce the impact of the query window on HPCache,
we use HPCache’s flexible optimization goal. Specifically,
instead of considering exactly L queries and giving them the
same importance, we replace the optimization goal with a
function that weights differently each of the past (potentially
more than L) queries.

We set the weights using an exponential function, loosely
mimicking an exponential smoothing process [1]. Queries
that are further back in time get an exponentially smaller
weight, while the currently running query gets a weight of 1.
Specifically, the minimization problem becomes:

min
x%

∑
i

(1 − a)i TQi ,x%

s.t. Cx% < B

(4)

where i is how far ago Qi appeared, with i = 0 for the cur-
rent query, i = 1 for the previous one, etc. TQi ,x% is the

expected execution time for query Qi , under caching pro-
portions x%. Parameter a ∈ [0, 1) is a smoothing factor,
specifying how aggressively HPCache should adapt to new
queries (as a approaches 1). A value of a = 0 means that all
seen queries are equally important, while a value of a = 1
would make HPCache consider only the current query (sen-
sitivity analysis in Sect. 7.1).

Depending on the value of a some queries may have min-
imal impact on the final configuration and, yet, contribute a
significant number of terms in the constraints and minimiza-
tion goal—causing a disproportional minimization overhead
versus their importance. To avoid this disproportionality, we
prune the terms corresponding to queries with a factor below
a threshold.

Extensions. Transformations of the minimization prob-
lem allow HPCache to cover various use cases. For example,
increasing the weight of some queries results in creating
“high-priority” queries whose acceleration is prioritized over
the rest. Similarly, replacing the minimized function with

max
(
max

(
TQi ,x%, Tthresh

))
(5)

makes HPCache generate caching proportions that aim at
keeping the query execution times below a response time
Tthresh . Adding on that formula a scaled-down version of
Eq.4 allows the aforementioned configuration to handle
queries with that, even if everything is in-memory, are slower
than the target Tthresh . Overall, HPCache’s approach of revis-
iting the caching policy as a mathematical minimization
problem and combining it with the throughput-oriented view
of query execution enables newcustomizations of the caching
process.

5 Integration and interoperability

While in the previous sections, we focused on HPCache’s
control logic, HPCache also needs to integrate with a variety
of different executionmodules. The rest of this section details
how HPCache interacts with the buffer cache to maintain the
appropriate data proportions andwith the execution engine to
retrieve the necessary information to drive both the decision-
making process as well as the actual data fetching.

5.1 Architecture overview

HPCache intercepts the calls between the analytical engine
and the storage layer to retrieve the performance indicators
it requires in a transparent way. Specifically, during query
execution, the analytical engine requests data pages from the
storage layer. HPCache intercepts these requests and uses
their timings to compute three indicators that are necessary
for the tuning method described in Sect. 4.3.

123



H. Nicholson et al.

The first indicator is about which attribute, and row groups
were requested. This allows for maintaining statistics that
are required for building the capacity constraints involved in
the optimization column: which columns are candidates for
caching and their size. Second, it associates the above statis-
tics with a query and operator id. This allows requests to be
linked into the “impact” of optimizing each column. Third, it
keeps a timeline of the requests to calculate the request inter-
arrivals for each input column and query. These interarrivals
are then used to extract the throughput corresponding to each
query operator.

5.2 Integration with the execution engine

To request a page, operators first invoke willNeedPage to
mark that a data page will be needed and to initiate the page
request. When the page is actually needed, the execution
engine calls getPage to retrieve the actual page – blocking
if the page is still not available. In addition to the page ID,
willNeedPage also takes the operator ID as an argument
so that the caching policy can track request origins and infer
the processing throughput of the requesting operator.

The interface between HPCache and the query execu-
tion engine is asynchronous. Splitting the interface into
willNeedPage and getPage allows HPCache to trig-
ger multiple concurrent page requests and only block when
enough on-the-fly requests have been issued. This is a key
requirement for our throughput-oriented design and espe-
cially for hiding the latency of page fetches by overlapping
it with upcoming data requests.

For example, the query executor may request six pages
through willNeedPage. Each of these calls would result
in HPCache calling into the storage manager to asyn-
chronously load the corresponding page to memory if it’s
not already present. However, willNeedPage does not
wait for the transfer to complete, and control immediately
returns to the query executor. To wait for the page transfer
to complete, the executor calls into getPage. This two-
step process means that while the executor waits for the first
requested page, it can issue the next five requests to hide their
latency.

5.3 Integration with buffer cache

Managing caching proportions HPCache manages the data
proportions in the buffer cache using a soft-pinning mech-
anism. When a new page is inserted into the buffer cache,
the buffer cache makes a call back to HPCache, which sets a
soft-pin bit in the page with a probability equal to the recom-
mended column proportion. For example, if column B has
10 pages and a recommended proportion of 70%, then over
time (ignoring evictions) column B will have, on average,
7 soft-pinned pages. HPCache determines which column a

page belongs to based on the page’s ID. A soft-pin indi-
cates that when the buffer cache needs to evict a page, it
will prioritize evicting pages without a soft-pin. Soft-pins
are orthogonal to traditional pins, meaning that a soft-pinned
page may be evicted if it’s not pinned, while a pinned page
that is not soft-pinned is not an eviction candidate.As a result,
during eviction, the buffer cache prioritizes the eviction of
pages with neither a soft nor hard pin (the logical free list),
followed by pages with a soft-pin but no hard pin, and, as
traditional buffer caches, it never evicts (hard) pinned pages.
Our design traverses the page frames to find an appropriate
page to evict.

Soft-pins are removed by HPCache in a background
thread. This background thread periodically (every 200 ms)
invokes the optimization problem to update the recom-
mended proportions. This keeps the optimization problem
off of the hot path of page requests. When the recommended
proportion of a column decreases, each soft-pinned page of
the column has its soft-pin removed with a random uniform
probability equal to 1− recommended proportion

current proportion . HPCache tra-
verses all of the buffer frames, uses the buffer framemetadata
to check which column the page belongs to, and removes
soft-pins with the above probability, avoiding the use of sec-
ondary data structures to locate all of the cached pages for a
particular column. A uniform randomdistribution of pages in
memory is preferable for bandwidth-sensitive workloads, as
it spreads the IO requests over the full duration of the column
access.

6 System

We incorporate HPCache in Proteus [13, 23, 33], a pipelined
analytical engine that uses LLVM-based code generation.

Proteus uses HetExchange [13] to parallelize query exe-
cution by injecting a set of metaoperators. Proteus represents
queries as a set of pipelines. Specifically, HetExchange uses
the router operator to parallelize execution: each router oper-
ator creates multiple instantiations of the pipeline above it
and routes inputs to the different instances based on a routing
policy. Pipeline instances are affinitized to specific proces-
sors, and execution across processors uses multiple pipeline
instances. For example, a commonly used routing policy is
a prefer-local policy. Under that policy, tasks are assigned
to pipeline instances in the same NUMA region as the input
data—and only fall back into assigning an input row group
to a remote instance when there is skew. Further, routers do
not perform any actual data transfers but only route tasks.

The mem-move operators handle data transfers. Such
operators are often placed after routers and are responsible for
fetching the data to localmemory if they are not already there.
For example, suppose a router decides, due to skew, to send
a row group to a remote pipeline instance and a mem-move

123



HPCache: memory-efficient OLAP through proportional caching revisited

follows the router. In that case, the mem-move will transfer
the corresponding data pages to the NUMA node local to
the pipeline instance. The mem-move is also responsible for
overlapping data transfers with the execution that follows it.
In that regard, each mem-move operator instance has a con-
sumer and producer side. The producer side accepts page
handles, starts an asynchronous data transfer, and registers
the transfer into a queue of pending transfers. The consumer
side waits on that queue for completed transfers, and when a
transfer completes, it removes it from the queue and pushes
the corresponding data and task to the next operator. Each
mem-move supports having multiple on-the-fly data trans-
fers.

To integrate HPCache in Proteus, we extend the scan,
router policies, and mem-move operators. When execut-
ing over storage-resident data, the scan operator emits page
IDs instead of in-memory block handles. Further, we aug-
mented the routing policies to be able to consider the NVMe
location when deciding where to route a row group. Specifi-
cally, locality-based routing policies select the target pipeline
instance based on the current location of the in-memory input
data. For HPCache support, we extended the policies so that
1) if the data are not available in memory, they consider their
location as the NUMA node closer to the NVMe holding the
corresponding page, 2) if the data is cached in memory, the
routing policy uses the location of the in-memory copy as the
page’s current NUMA affinity.

Lastly, HPCache plugs into the mem-move operator to
implement the NVMe-to-memory data transfers. Specifi-
cally, when the producer side of mem-move receives a page
ID instead of an in-memory block handle, it will make a
request from the buffer cache through the willNeedPage
interface. The consumer side will do a getPage to wait for
the transfer initiated by willNeedPage to complete. Mul-
tiple requests (transfers triggered by willNeedPage) will
be on the fly, even from a single operator, which assists with
hiding the access latency. If the pagewas already in the buffer
cache, then willNeedPage wouldn’t trigger any storage
reads, and getPage would return the page immediately.
The rest of the operators are oblivious to the storage layer.

In Proteus, the page ID uniquely identifies the page and
encodes the row group ID. Using the page ID, HPCache
tracks the per-thread pipeline statistics in a simple thread
private data structure through the calls to getPage. All
pages within a row group are requested by the same pipeline
instance, and each thread executes a single pipeline instance
at a time. This data structure stores the time since the first
page in the row group was requested, the columns accessed,
the sum of times between the first page request for one row
group, the first page request for the next, and the total count
of requested row groups. As for fixed-width binary colum-
nar data Proteus sizes each data page to be close to an OS
huge page (exact size depends on the types in the rowgroup),

HPCache has to store the above information once per few
MBs of data. When the background thread invokes the opti-
mization problem, it aggregates the per-thread statistics in
order to calculate the inputs for the optimization problem.
The background thread stores a history of these aggregated
statistics at least as long as the look-back window (Sect. 4.3).

7 Evaluation

In this section, we evaluate HPCache’s ability to efficiently
use the available buffer cache, through a series of micro- and
macro-experiments.

Experimental setup. Sect. 7.1 demonstrates the impact
of varying both cached column proportions and storage
bandwidth on query execution times through a set of micro-
benchmarks. Further, we evaluate the accuracy and overhead
of HPCache’s query execution time predictions as well as
compare the exponential and fixed lookback formulations of
the optimization problem.

In Sect. 7.2, we compare HPCache with an LRU eviction
policy with different cache sizes and storage bandwidths. For
workloads that involvemany large scans, LRU is comparable
to other policies that prioritize caching recently used pages.

Hardware.Weuse a dual-socketAMDEPYC7413 server
with Ubuntu 20.04 and kernel 5.4.0. Each CPU socket has
12 Corsair MP600 Pro NVMe drives, each using 4 PCIe 4.0
lanes, 256 GB of DRAM, and 24 cores. On each socket, we
observe a maximum memory bandwidth of 116 GB/s per
socket on the STREAM triad benchmark [27], and 84 GB/s
sequential read bandwidth from the corresponding 12 socket-
local NVMe drives, using fio [4]. In experiments that vary
the storage bandwidth, we vary the number of NVMe drives
and stripe the data across the selected drives.

Software.For all IO,weuseio_ringwith theO_DIRECT
flag to bypass the operating system buffer cache. Our buffer
cache uses 2 MiB pages to match the 2 MiB hugepages used
by Proteus. We use the CVXPY [2, 16] library to solve the
optimization problem outlined in Sect. 4.3.

7.1 Micro-benchmarks

Proportional caching. Fig. 5 evaluates the relationship
between storage bandwidth and the amount of input data
that need to be cached in memory to achieve peak query
performance. We run SSB Q2.2 and vary the percentage
of the input columns that are memory resident before the
query begins from 0% to 100%. When data is fully loaded
in memory, this query has a throughput of 80 GB/s, which
is between the bandwidth of using 8 and 12 drives in our
experimental setup. There is a linear decrease in execution
time as the proportion of data in memory increases when the

123



H. Nicholson et al.

Fig. 5 Execution time of SSB Q2.2 as the percentage of the queries
inputs in memory range from 0% to 100%. Each series plots the execu-
tion time with a different storage bandwidth

Fig. 6 Runtime query execution time predictions vs actual execution
times for SSB Q1.3

storage bandwidth is below 84GB/s.When the storage band-
width exceeds 84 GB/s, there is no benefit to caching data
in memory as the query is no longer bottlenecked by storage
bandwidth. As the storage bandwidth increases, the propor-
tion of data that needs to be in memory before achieving the
minimum execution time decreases. Further, once storage
bandwidth exceeds the query throughput, there is no benefit
to caching any data in memory.

Predicted execution times. Fig. 6 and Fig. 7 evaluate the
accuracy of the run-time estimates of the pipeline execu-
tion times for SSB Q1.3 and SSB Q3.1, respectively. We
use SSB Q1.3 (a data-intensive query), and SSB Q3.1 (a
processing-intensive query) to evaluate our model on both
data-intensive and processing-intensive queries. Each query

Fig. 7 Runtime query execution time predictions vs actual execution
times for SSB Q3.1

is run twice, starting from a cold cache with a cache budget
of 25 GB, and HPCache evaluates the optimization prob-
lem every 100 ms.—approximately 1/4 of its working set.
SSB Q1.3 has two query pipelines. The first, shorter pipeline
selects from the dimension table to build a hashtable for a
hash join, and the second selects from the fact table and
probes the hashtable. The build pipeline only consumes 4
pages of data and completes too quickly for HPCache to
estimate execution times, so HPCache does not attempt to
optimize that pipeline’s inputs. Hence, for Q1.3, the predic-
tions are solely for the longer-running probe pipeline. SSB
Q3.1 is similar; it has two small build pipelines (each exe-
cuting in under 0.06 s), one slightly larger build pipeline and
the long-running probe pipeline; HPCache makes estimates
for the latter two pipelines; We plot the predicted pipeline
execution times (per Eq.1) made in the first execution of the
query (which populates the cache), as well as the execution
time of pipelines in the second execution with a hot cache.
For SSB Q3.1, the shaded region in Fig. 7 marks the start of
the first pipeline. The execution times of the queries when
the input data is fully in memory are shown in the dashed
black lines.

HPCache accurately models the in-memory execution
times. However, early estimates in query pipeline execution
do overestimate the in-memory execution times. In Proteus,
parallelism is controlled by creating multiple instances of
same the pipeline.When execution begins, there is some vari-
ation on when each pipeline instance begins consuming data.
Since the system assumes all pipeline instances have equal
throughput, this leads to the observed early overestimates.
Since the Q1.3 probe pipeline is a data-intensive pipeline, the
predicted HPCache time is based on the storage and mem-
ory bandwidth. In contrast to Q1.3, both pipelines shown for

123



HPCache: memory-efficient OLAP through proportional caching revisited

Fig. 8 Caching impact when using a fixed look-back window (blue) versus exponential smoothing (green) versus, for various smoothing factors.
Left: execution time per query (white background for query template 1, gray for query template 2). Right: total execution time across the full
sequence

Q3.1 are processing-intensive, so the current run-time predic-
tion and the in-memory prediction are identical and are both
based on the pipeline’s predicted maximum throughput. The
prediction model consistently underestimates the real execu-
tion time for both hot cache and in-memory execution. This
is because the model assumes that all logical cores are only
processing the pipeline. It does not account for anything else
utilizing the CPU, such as the background prediction thread.

Horizon effect and exponential smoothing. Next, we
show the issues that arise when using a fixed-length query
window and how using the proposed exponential smoothing
improves the cache efficiency.

Methodology. HPCache has access to 28 GB/s of storage
bandwidth and 80 GB of memory for caching. The sequence
beginswith three iterations ofQ1 and then alternates between
increasing iterations of Q1 and Q2. The beginning and end of
each sub-sequence of query template iterations are marked
with a vertical dashed line. Both query templates have sim-
ilar processing throughput exceeding the storage bandwidth
and distinct inputs of equal size. They require caching in
excess of the maximum cache size to approach in-memory
performance. The optimization problem is evaluated every
200 ms.

The fixed-horizon issue. Fig. 8 plots the execution time
for each query in this sequence on the left and the cumu-

lative execution time of the sequence on the right. The
sequence in blue at the bottom of the figure uses HPCache
with a fixed-length window of 15 past queries to decide
the column proportions—similar to the previous version of
HPCache [30]. This fixed-window, linear formulation treats
each query in the history window with equal weight. So
HPCache minimizes the execution time of whichever query
template appeared most often in the window of past queries.
This can result in past query patterns inducing large changes
in the column proportions as they drop out of the window.
This effect can be seen in this plot, where the model is slow
to adapt to Q2. It begins caching pages with Q2 at the 21st
query in the sequence, and the impact of this is seen in the next
query. This change occurs here because at query 21, there are
eight instances of Q2 and seven of Q1 in the history window,
so the perceived benefit of caching Q2 is finally greater than
the benefit of caching for Q1. At every point earlier in the
sequence, there are more instances of Q1 than Q2. The lin-
ear formulation can outperform when new queries appear
for a short time before the sequence returns to the previous
pattern, for example, at query 4, or queries 7 and 8 (where,
in contrast, some exponential smoothing configurations are
penalized in query 5 and 9 for changing their configuration).

Exponential smoothing to avoid horizon effects.The green
sequences in Fig. 8 show the execution times of the same

123



H. Nicholson et al.

Fig. 9 Scalability of the optimization problem

sequence but using the exponential smoothing proposed in
Sect. 4.4,which assigns higherweighs tomore recent queries,
and smoothly lowers the weight of past queries. In the green
sequences, the topmost has the most aggressive value of the
tuning parameter a, and the bottom has the least aggressive.
For example, a = 1 − 2−1 gives greater weight to the exe-
cution time of the current and most recent queries. For this
value of a, HPCache changes the cached column proportions
at the beginning of each sub-sequence except for the first at
query 4,where theweighted times of the previous four execu-
tions of Q1 exceed the weighted time of the current Q2.With
less aggressive values of a, HPCache is gradually slower to
change the cached column proportions. This can be seen in
the figure when the query pattern shifts from Q1 to Q2 at
query 22 (and back again at Q28). The least aggressive value
(a = 1 − 2

−1/16 ) behaves similarly to the equal weighting.
Exponential smoothing reacts more quickly more quickly to
changes in the query pattern. In this workload, this results
in improved end-to-end performance as after query 4, each
query is run at least twice in a row. Overall, using the aggres-
sive exponential smoothing enables HPCache to achieve an
additional 1.12x speed-up compared to the linear window.

Optimization Overhead Fig. 9 shows how the optimization
time scales with the number of columns and queries. Here,
only the optimization problem run in order to isolate the
optimization time. In Fig. 9a, we vary the number of dis-
tinct columns and the number of queries over those columns
supplied to the optimization problem. Each query is data
intensive, having a throughput greater than the storage band-
width, and uses four random columns. For example, at point
40 on the x-axis, there are 40 distinct columns and 40 queries
over those columns.Theoptimization problemscales linearly
with both the number of queries and the number of distinct
columns. Figure9b and Fig. 9c show the same trend, but for
the case where we keep the number of queries and columns,
respectively, fixed at 4. The queries for both are again all data

Fig. 10 The overhead on query execution time from solving the opti-
mization problem during query execution relative to using a trace of the
outputs of the optimization problem. Execution times are normalized
to the execution time when running with the trace. A 40GB cache and
4 NVMe drives are used

intensive. Fig. 9d plots the optimization time as the ratio of
processing-intensive to data-intensive queries increases. 100
queries and 4 columns are used. Here, we can see that the
optimization time is empirically independent of the query
throughput. The optimization problem is sufficiently fast for
the workloads discussed in this section. Note that even at 100
distinct columns, the HPCache’s optimization time is faster
than the execution time of the simpler queries shown in the
above experiments.

Fig. 10 shows the impact on query execution times of solv-
ing the optimization problem during query execution. SSB
queries Q1.3 and Q3.1 are run using a hot cache. The green
bars show HPCache, which is solving the optimization prob-
lem every 200 ms. The blue bar shows a modified HPCache.
The modified HPCache uses a trace file of the outputs of the
optimization problem to mock the call to solve the optimiza-
tion problem. Due to the very small absolute differences, the

123



HPCache: memory-efficient OLAP through proportional caching revisited

Fig. 11 Per query and cumulative execution time of the query sequence using 80GB cache, which is smaller than the working set of one query.
The data is striped across 4 drives (28 GB/s storage bandwidth)

queries are run 50 times each, and we report the average exe-
cution times. For the data-intensive Q1.3, the difference is
0.3% and nearly indistinguishable from measurement noise.
For the processing-intensive Q3.1, the difference is 1.4%.
The overhead on query execution time of solving the opti-
mization problem is relatively low. For longer queries, it
would be feasible to further reduce the overhead by not
resolving the problem once the outputs are stable, but we
chose not to in our implementation.

7.2 End-to-end evaluation

In this subsection, we evaluate HPCache’s end-to-end per-
formance on a sequence of queries, demonstrating its effec-
tiveness for varying cache sizes and storage bandwidths.

Methodology We evaluate on a sequence of 30 random
queries from 4 query templates (QC and SSB Q2.1, Q2.2
and Q2.3) on the Star Schema Benchmark (SSB) data at a
scale factor of 1000 [32].QC joins the lineorder tablewith the
customer and date tables and then groups by customer. Two
of the four input lineorder columns of QC overlap with the
other queries. Each query template has four input columns
totaling 96 GB of inputs. All caching policies are evalu-
ated starting from an empty cache. The system is warmed
up by executing one query, and then, the caches are dropped
before running the query sequence. To run in-memory, we
use a caching policy that never evicts, and the cache is pre-
populated with the full working set. To run without caching,
we use a caching policy that immediately evicts each page
once it has been consumed by the requesting query. The least
recently used (LRU) policy is implemented using the stan-
dard hash table and linked list approach to track the most
recently used pages. Further, our LRU policy is partitioned
to reduce the mutex contention for the updates necessary to

the linked list and hash table on each page request. The in-
memory, non-caching, and LRU cache policies do not track
the per-query or per-column statistics outlined in Sect. 5.3,
but LRU does track the per-page recency of access.

Avoiding cache thrashing. In the next experiments, we
evaluateHPCache’s ability to avoid cache thrashing and com-
pare it with prior approaches. Thrashing: bigger-than-cache
working sets. Fig. 11 plots the per query and cumulative exe-
cution times of the query sequence with 28 GB/s of storage
bandwidth and an 80 GB cache, which is smaller than the
working set of any one query. LRU suffers from cache thrash-
ing within the execution of a single query and, therefore, has
performance comparable to not caching at all. For this work-
load, LRU is representative of policies that cache recently
used pages. Since the workload is composed of queries
performing column scans, other policies such as 2Q [22]
designed to resist scan thrashing would behave similarly. In
contrast, HPCache optimizes over a history of queries instead
of hit rates and achieves a 1.75x speedup over LRU.

Thrashing: smaller-than-cache working sets. When the
cache size is greater than one query’s working set, LRU can
improve execution times for successive queries accessing the
same data. In Fig. 12, the 120 GB cache size exceeds the
working set of one query. For example, queries 1 through 5
access the same columns, and query 6 has only a two-column
overlap with the prior queries. Thus, in the sub-sequence of
queries 1-5, LRU does not suffer from intra-query thrashing,
and so when two subsequent queries have overlapping work-
ing sets it performs better. However, on query 6, where there
is partial overlap, but a query with lower processing through-
put (shown by the slower in-memory execution time), LRU
again suffers from cache-thrashing. On this query, HPCache
achieves a 1.72x speedup. However, HPCache does not result
in a speedup for every individual query. In the sub-sequence
of queries 11-15 that share inputs,HPCache is faster for query

123



H. Nicholson et al.

Fig. 12 Per query and cumulative execution time of the query sequence using 120GB cache, which is smaller than the working set of one query.
The data are striped across 4 drives (28 GB/s storage bandwidth)

Fig. 13 Total execution time of the query sequence in Fig. 11 as the
storage bandwidth increases. (80GB cache)

Fig. 14 Total execution time for the query sequence using 4 drives and
varying the cache size from 20GB to 160GB

11 but slower for queries 12-15 as it does not fully cache these
inputs. Overall, HPCache performs better on the workload
through improved memory efficiency, achieving a speedup
of 1.14x on the total execution time.

Effective caching when varying storage bandwidths.
Figure13 shows the cumulative execution time for the same

query sequencewith an 80GBcache as the storage bandwidth
varies. The execution time for the sequencewhen run fully in-
memory and with no caching is also shown. In memory and
no caching are the lower andupper bounds for execution time.
As the storage bandwidth increases, the benefit of caching
diminishes, and both policies converge to in-memory exe-
cution times. Though HPCache approaches full in-memory
execution faster than LRU. At 56GB/s HPCache is only 14%
slower than memory, and at 84 GB/s just 7% slower. In com-
parison, LRU is 36% and 19% slower for the same respective
storage bandwidths.

Efficient cache utilization. Fig. 14 shows the cumula-
tive execution time for the query sequence using four drives
(28 GB/s storage bandwidth) as the cache size is increased
from 20 GB to 200 GB. At 20 GB, LRU performs marginally
slower than no caching at all, as there are no cache hits and
the overheads ofmaintaining the LRUdata structures. In con-
trast, HPCache uses the 20 GB available memory to improve
execution time by 8% relative to not caching. Between 20GB
and 80 GB HPCache improves steadily. LRU sees a slight
improvement, as our partitioned LRU implementationmeans
that there are some cache hits on subsequent queries with the
same working set and when the cache size is a sizable frac-
tion of a single query’s working set. There is a large jump in
performance for LRU between 80 GB and 100 GB as with
a 100 GB cache, LRU can fully cache the inputs of a query,
so when two queries run back-to-back with the same work-
ing set, the page requests in the second query will hit the
cache. LRU again plateaus between 100 GB and 140 GB
until the entire working set of all the queries can be cached
with a 160 GB cache. Both LRU and HPCache approach in-
memory performancewith a 160GBcache but do not achieve
in-memory performance as the data must first be loaded from
storage the first time it is used in the sequence. Overall,
HPCache achieves steady performance improvements across

123



HPCache: memory-efficient OLAP through proportional caching revisited

the full range of cache sizes, efficiently using the available
memory.

8 Background and related work

OS-assisted buffer pools. Due to the difficulty of imple-
menting an efficient buffer pool, systems have often aban-
doned buffer pools altogether and instead relied on the
operating system kernel’s paging capabilities, often through
mmap; for example, MonetDB relies on memory-mapped
IO to support larger than memory datasets [7, 20]. Memory-
mapped IO offloads a significant part of the buffer pool
implementation to the OS and offers hardware-assisted page-
fault handling. However, memory-mapped IO also reduces
the control that the database engines have over buffer man-
agement and can even result in sufficient contention and
reduced prefetching that prevents the database engine from
saturating NVMe arrays [14]. Vmcache is a buffer pool
design that uses virtual memory but retains DBMS control
over page eviction by using anonymous rather than file-
backed virtual memory along with the MADV_DONTNEED
hint, and addresses OS page table scalability issues through
a kernel module [24].

Optimizing buffer pool accesses. Providing persistency
and support for out-of-memory data traditionally introduces
two overheads with respect to the buffer pool. First, hav-
ing a centralized buffer pool creates a point of contention
[21]. Second, persistency requires a level of indirection
when translating in-memory references to out-of-memory
object references. Graefe et al. [19] use pointer swizzling
to eliminate buffer pool overheads when all data fits in
memory. Pointer swizzling dereferences page references
and replaces swizzled pointers with in-memory pointers.
By avoiding a hashtable, they avoid a costly central point
of contention. LeanStore [25] extends on pointer swiz-
zling by speculatively unswizzling pages, which keeps hot
pages in memory without explicitly tracking page accesses
in shared data structure. Umbra [29] extends LeanStore
with support for variable length buffer frames, improving
handling of large objects. Overall, optimizing buffer pool
accesses reduces the overhead imposed onmostly in-memory
analytics while adding support for out-of-memory data.
In contrast, HPCache improves the cache efficiency with
respect to the performance gains achieved by caching data in
memory.

Buffer pool evictionpolicies.Apart fromhandling larger-
than-memory datasets, traditionally, buffer pools promise
efficient in-memory data caching. Multiple eviction poli-
cies have been proposed to increase the cache hit frequency,
using the databases’ access patterns, such as partitioning
the buffer pool by relation [38], or into priority or access
patterns zones and using an access pattern-optimized evic-

tion policy inside each partition [31, 34]. Partitions are
sized based on the expected performance benefit. Other
approaches provide each query with a buffer large enough
for the queries modeled hotset of pages [35]. LRU and MRU
are used to increase the hit chance inside each partition, with
second-chance eviction policies like 2Q reducing the cache
pollution [22]. However, directly attached NVMe arrays pro-
vide significant bandwidth to make data scans competitive
to query execution times. Instead of relying on frequency-
based cache eviction, HPCache takes into consideration the
overall benefit of data caching and prioritizes caching of
high-benefit data over frequently loaded but low-benefit
inputs.

Heterogeneous storage. The multitude of available stor-
age devices provides a rich spectrum of performance and
budget tradeoffs. Do et al. [17] reduce the computational
cost of log-structured storage by offloading the computation
required for garbage collection and recovery onto compu-
tational SSDs. Mosaic [39] is a storage engine specialized
for scan-heavy workloads. It calculates performance-budget
Pareto-optimal data placements for data residing across mul-
tiple types of storage devices. Mosaic uses workload traces
to model column-granular data placement as an optimiza-
tion problem and solves it offline using linear optimization.
Borovica et al. [10] propose Skipper, an execution framework
optimized for cold storage devices (CSD): as CSD can result
in high delays when accessing data from powered-off disks,
Skipper uses out-of-order execution to codesign the execu-
tion order and disk requests to hide unnecessary latencies.
Both Skipper andMosaic optimize the performance and cost
of analytics on scan-heavy workloads, assuming the storage
medium is the bottleneck. In contrast, in this work, we focus
on improving analytical response times over high-bandwidth,
directly attached NVMes.

9 Conclusion

In this paper, we show that (i) caching pages that are accessed
with the same frequency can yield significantly different
query acceleration results, and (ii) optimizing the memory
footprint requires partial column caching to avoid dimin-
ishing returns. We proposed HPCache, an eviction policy
and tuning agent that optimizes the caching decisions of
the buffer pool for analytical workloads on high-bandwidth
storage. HPCache both inspects query execution to pre-
dict caching benefits and automatically tunes page caching
priority. HPCache improves the efficiency of in-memory
data caching for analytics, allowing faster query execution
time and improved NVMe bandwidth utilization for a given
memory budget. HPCache achieves up to a 1.75x speed up
compared to an LRU eviction policy.

123



H. Nicholson et al.

Acknowledgements This work was partially funded by the SNSF
project “Efficient Real-time Analytics on General-Purpose GPUs” sub-
side no. 200021_178894/1.

Funding Open access funding provided by EPFL Lausanne

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Exponential smoothing. https://en.wikipedia.org/wiki/
Exponential_smoothing

2. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting
system for convex optimization problems. J. Control Decis. 5(1),
42–60 (2018)

3. Athanassoulis, M., Bøgh, K.S., Idreos, S.: Optimal column lay-
out for hybrid workloads. Proc. VLDB Endow. 12(13), 2393–2407
(2019). https://doi.org/10.14778/3358701.3358707

4. Axboe, J.: Fio (2022). https://github.com/axboe/fio. Original-date:
2012-10-22T08:20:41Z

5. Bandle, M., Giceva, J., Neumann, T.: To partition, or not to par-
tition, that is the join question in a real system. In: Li, G., Li,
Z., Idreos, S., Srivastava, D. (eds.) SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June
20–25, 2021, pp. 168–180. ACM (2021). https://doi.org/10.1145/
3448016.3452831

6. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main mem-
ory hash join algorithms formulti-core cpus. In: Sellis, T.K.,Miller,
R.J., Kementsietsidis, A., Velegrakis, Y. (eds.) Proceedings of the
ACMSIGMOD International Conference onManagement of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, pp. 37–48.
ACM (2011). https://doi.org/10.1145/1989323.1989328

7. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory
wall in MonetDB. Commun. ACM 51(12), 77–85 (2008). https://
doi.org/10.1145/1409360.1409380

8. Boncz, P.A., Manegold, S., Kersten, M.L.: Database architec-
ture optimized for the new bottleneck: Memory access. In:
Atkinson, M.P., Orlowska, M.E., Valduriez, P., Zdonik, S.B.,
Brodie, M.L. (eds.) VLDB’99, proceedings of 25th interna-
tional conference on very large data bases, september 7-10,
1999, edinburgh, scotland, UK, pp. 54–65. Morgan Kaufmann
(1999). http://www.vldb.org/conf/1999/P5.pdf. Tex.bibsource:
dblp computer science bibliography, https://dblp.org tex.biburl:
https://dblp.org/rec/conf/vldb/BonczMK99.bib tex.timestamp:
Wed, 11 May 2022 08:53:25 +0200

9. Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: Hyper-
pipelining query execution. In: Second Biennial Conference
on Innovative Data Systems Research, CIDR 2005, Asilomar,
CA, USA, January 4-7, 2005, Online Proceedings, pp. 225–
237. www.cidrdb.org (2005). http://cidrdb.org/cidr2005/papers/
P19.pdf

10. Borovica-Gajic, R., Appuswamy, R., Ailamaki, A.: Cheap data
analytics using cold storage devices. Proc. VLDB Endow. 9(12),
1029–1040 (2016). https://doi.org/10.14778/2994509.2994521

11. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang,
C.A.: SSD bufferpool extensions for database systems. Proc.
VLDB Endow. 3(2), 1435–1446 (2010). https://doi.org/10.14778/
1920841.1921017

12. Chou,H., DeWitt, D.J.: An evaluation of buffermanagement strate-
gies for relational database systems. Algorithmica 1(3), 311–336
(1986). https://doi.org/10.1007/BF01840450

13. Chrysogelos, P., Karpathiotakis, M., Appuswamy, R., Ailamaki,
A.: HetExchange: encapsulating heterogeneous CPU-GPU par-
allelism in JIT compiled engines. Proc. VLDB Endow. 12(5),
544–556 (2019). https://doi.org/10.14778/3303753.3303760

14. Crotty, A., Leis, V., Pavlo, A.: Are You Sure You Want to Use
MMAP in Your Database Management System? In: CIDR 2022,
Conference on Innovative Data Systems Research, p. 7 (2022)

15. Devices, A.M.: Amd epycTM 7003 series data sheet (2021). https://
www.amd.com/system/files/documents/amd-epyc-7003-series-
datasheet.pdf

16. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling
language for convex optimization. J. Mach. Learn. Res. 17(83),
1–5 (2016)

17. Do, J., Picoli, I.L., Lomet, D.B., Bonnet, P.: Better database
cost/performance via batched I/O on programmable SSD. VLDB
J. 30(3), 403–424 (2021). https://doi.org/10.1007/s00778-020-
00648-z

18. Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K.,
Burger, D.: Dark silicon and the end of multicore scaling. IEEE
Micro 32(3), 122–134 (2012). https://doi.org/10.1109/MM.2012.
17

19. Graefe, G., Volos, H., Kimura, H., Kuno, H., Tucek, J., Lil-
libridge, M., Veitch, A.: In-memory performance for big data.
Proc. VLDBEndow. 8(1), 37–48 (2014). https://doi.org/10.14778/
2735461.2735465

20. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, S., Ker-
sten, M.: MonetDB: two decades of research in column-oriented
database architectures. IEEE Data Eng. Bull. 35, 40–45 (2012)

21. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.:
Shore-MT: a scalable storage manager for the multicore era. In:
Proceedings of the 12th International Conference on Extending
Database Technology Advances in Database Technology - EDBT
’09, p. 24. ACM Press, Saint Petersburg, Russia (2009). https://
doi.org/10.1145/1516360.1516365. http://portal.acm.org/citation.
cfm?doid=1516360.1516365

22. Johnson, T., Shasha, D.E.: 2q: A low overhead high performance
buffer management replacement algorithm. In: Bocca, J.B., Jarke,
M., Zaniolo, C. (eds.) VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994,
Santiago de Chile, Chile, pp. 439–450. Morgan Kaufmann (1994).
http://www.vldb.org/conf/1994/P439.PDF

23. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over
heterogeneous data through engine customization. Proc. VLDB
Endow. 9(12), 972–983 (2016). https://doi.org/10.14778/2994509.
2994516

24. Leis, V., Alhomssi, A., Ziegler, T., Loeck, Y., Dietrich, C.: Virtual-
memory assisted buffer management. Proc. ACM Manag. Data
1(1), 7:1-7:25 (2023). https://doi.org/10.1145/3588687

25. Leis, V., Haubenschild, M., Kemper, A., Neumann, T.: LeanStore:
In-Memory Data Management beyond Main Memory. In: 2018
IEEE 34th International Conference on Data Engineering (ICDE),
pp. 185–196. IEEE, Paris (2018). https://doi.org/10.1109/ICDE.
2018.00026

26. McCalpin, J.D.: Stream: Sustainable memory bandwidth in
high performance computers. Tech. rep., University of Virginia,
Charlottesville, Virginia (1991-2007). http://www.cs.virginia.edu/

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing
https://doi.org/10.14778/3358701.3358707
https://github.com/axboe/fio
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
http://www.vldb.org/conf/1999/P5.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.14778/2994509.2994521
https://doi.org/10.14778/1920841.1921017
https://doi.org/10.14778/1920841.1921017
https://doi.org/10.1007/BF01840450
https://doi.org/10.14778/3303753.3303760
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://doi.org/10.1007/s00778-020-00648-z
https://doi.org/10.1007/s00778-020-00648-z
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.1145/1516360.1516365
https://doi.org/10.1145/1516360.1516365
http://portal.acm.org/citation.cfm?doid=1516360.1516365
http://portal.acm.org/citation.cfm?doid=1516360.1516365
http://www.vldb.org/conf/1994/P439.PDF
https://doi.org/10.14778/2994509.2994516
https://doi.org/10.14778/2994509.2994516
https://doi.org/10.1145/3588687
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1109/ICDE.2018.00026
http://www.cs.virginia.edu/stream/


HPCache: memory-efficient OLAP through proportional caching revisited

stream/. A continually updated technical report. http://www.cs.
virginia.edu/stream/

27. McCalpin, J.D.: Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA)Newslet-
ter 19–25 (1995)

28. Neumann, T.: Efficiently compiling efficient query plans for mod-
ern hardware. Proc. VLDB Endow. 4(9), 539–550 (2011). https://
doi.org/10.14778/2002938.2002940

29. Neumann, T., Freitag, M.J.: Umbra: A disk-based system with
in-memory performance. In: 10th Conference on Innovative Data
SystemsResearch, CIDR 2020, Amsterdam, TheNetherlands, Jan-
uary 12–15, 2020, Online Proceedings. www.cidrdb.org (2020).
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

30. Nicholson, H., Chrysogelos, P., Ailamaki, A.: HPCache: Memory-
Efficient OLAP Through Proportional Caching. In: DaMoN’22,
p. 9.Association forComputingMachinery, Philadelphia, PA,USA
(2022). https://doi.org/10.1145/3533737.3535100

31. Nyberg, C.: Disk scheduling and cache replacement for a database
machine. Master’s thesis, UC Berkeley (1984)

32. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema
benchmark and augmented fact table indexing. In: Nambiar,
R., Poess, M. (eds.) Performance Evaluation and Benchmark-
ing. Lecture Notes in Computer Science, pp. 237–252. Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10424-4_17

33. Raza, A., Chrysogelos, P., Anadiotis, A.C., Ailamaki, A.:
Adaptive HTAP through Elastic Resource Scheduling.
arXiv:2004.05437 [cs, eess] (2020). http://arxiv.org/abs/2004.
05437. arXiv:2004.05437

34. Reiter, A.: A study of buffer management policies for data man-
agement systems. Tech. rep., WISCONSIN UNIV MADISON
MATHEMATICS RESEARCH CENTER (1976)

35. Sacco, G.M., Schkolnick, M.: A mechanism for managing the
buffer pool in a relational database system using the hot set model.
In: Eigth International Conference on Very Large Data Bases,
September 8-10, 1982, Mexico City, Mexico, Proceedings, pp.
257–262. Morgan Kaufmann (1982). http://www.vldb.org/conf/
1982/P257.PDF

36. Samuels, A.: The consequences of infinite storage bandwidth
(2016). https://events.static.linuxfound.org/sites/events/files/
slides/Keynote_Allen%20Samuels_Final.pdf. Vault Linux Stor-
age & Filesystems Conference

37. Sirin, U., Ailamaki, A.:Micro-architectural analysis ofOLAP: lim-
itations and opportunities. Proc. VLDB Endow. 13(6), 840–853
(2020). https://doi.org/10.14778/3380750.3380755

38. Stonebraker, M., Woodfill, J., Ranstrom, J., Murphy, M.C., Meyer,
M., Allman, E.: Performance enhancements to a relational database
system. ACM Trans. Database Syst. 8(2), 167–185 (1983). https://
doi.org/10.1145/319983.319984

39. Vogel, L., Leis, V., vanRenen,A., Neumann, T., Imamura, S., Kem-
per, A.: Mosaic: a budget-conscious storage engine for relational
database systems. Proc. VLDBEndow. 13(12), 2662–2675 (2020).
https://doi.org/10.14778/3407790.3407852

40. Yu,Y.,Wang,W., Zhang, J., Letaief,K.B.: LRC: dependency-aware
cache management for data analytics clusters. In: 2017 IEEE Con-
ference on Computer Communications, INFOCOM 2017, Atlanta,
GA, USA, May 1–4, 2017, pp. 1–9. IEEE (2017). https://doi.org/
10.1109/INFOCOM.2017.8057007

41. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory
big data management and processing: a survey. IEEE Trans.
Knowl. Data Eng. 27(7), 1920–1948 (2015). https://doi.org/10.
1109/TKDE.2015.2427795

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3533737.3535100
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
http://arxiv.org/abs/2004.05437
http://arxiv.org/abs/2004.05437
http://arxiv.org/abs/2004.05437
http://arxiv.org/abs/2004.05437
http://www.vldb.org/conf/1982/P257.PDF
http://www.vldb.org/conf/1982/P257.PDF
https://events.static.linuxfound.org/sites/events/files/slides/Keynote_Allen%20Samuels_Final.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Keynote_Allen%20Samuels_Final.pdf
https://doi.org/10.14778/3380750.3380755
https://doi.org/10.1145/319983.319984
https://doi.org/10.1145/319983.319984
https://doi.org/10.14778/3407790.3407852
https://doi.org/10.1109/INFOCOM.2017.8057007
https://doi.org/10.1109/INFOCOM.2017.8057007
https://doi.org/10.1109/TKDE.2015.2427795
https://doi.org/10.1109/TKDE.2015.2427795

	HPCache: memory-efficient OLAP through proportional caching revisited
	Abstract
	1 Introduction
	2 In-memory and high-bandwidth Storage
	3 HPCache: hybrid proportional caching
	4 Tuning and monitoring
	4.1 Impact modeling
	4.2 A balanced model
	4.3 Continuous tuning
	4.4 Proportional caching: avoiding horizon effects

	5 Integration and interoperability
	5.1 Architecture overview
	5.2 Integration with the execution engine
	5.3 Integration with buffer cache

	6 System
	7 Evaluation
	7.1 Micro-benchmarks
	7.2 End-to-end evaluation

	8 Background and related work
	9 Conclusion
	Acknowledgements
	References


