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Identifying invariant solutions of wall-bounded
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Invariant solutions of the Navier–Stokes equations play an important role in the
spatiotemporally chaotic dynamics of turbulent shear flows. Despite the significance of
these solutions, their identification remains a computational challenge, rendering many
solutions inaccessible and thus hindering progress towards a dynamical description of
turbulence in terms of invariant solutions. We compute equilibria of three-dimensional
wall-bounded shear flows using an adjoint-based matrix-free variational approach. To
address the challenge of computing pressure in the presence of solid walls, we develop a
formulation that circumvents the explicit construction of pressure and instead employs the
influence matrix method. Together with a data-driven convergence acceleration technique
based on dynamic mode decomposition, this yields a practically feasible alternative
to state-of-the-art Newton methods for converging equilibrium solutions. We compute
multiple equilibria of plane Couette flow starting from inaccurate guesses extracted from a
turbulent time series. The variational method outperforms Newton(-hookstep) iterations in
converging successfully from poor initial guesses, suggesting a larger convergence radius.

Key words: variational methods

1. Introduction

Viewing fluid turbulence as a deterministic chaotic dynamical system has revealed new
insights beyond what can be achieved through a purely statistical approach (see reviews by
Kawahara, Uhlmann & van Veen 2012; Graham & Floryan 2021). The idea for a dynamical
description by envisioning turbulence as a chaotic trajectory in the infinite-dimensional
state space of the Navier–Stokes equations dates back to the seminal work of Hopf (1948).
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A remarkable progress in bridging the gaps between ideas from dynamical systems theory
and practically studying turbulence in this framework has been the numerical computation
of invariant solutions – an advance that did not happen until the 1990s. Invariant solutions
are non-chaotic solutions to the governing equations with simple dependence on time.
This includes equilibria (Nagata 1990), travelling waves (Faisst & Eckhardt 2003; Wedin
& Kerswell 2004), periodic and relative periodic orbits (Kawahara & Kida 2001; Chandler
& Kerswell 2013; Budanur et al. 2017), and invariant tori (Suri et al. 2019; Parker,
Ashtari & Schneider 2023). In the dynamical description, the chaotic trajectory of the
turbulent dynamics transiently, yet recurringly, visits the neighbourhood of the unstable
invariant solutions embedded in the state space of the evolution equations. In this picture,
therefore, unstable invariant solutions serve as the building blocks supporting the turbulent
dynamics, and extracting them is the key for studying turbulence in the dynamical systems
framework.

Equilibria of plane Couette flow (PCF) computed numerically by Nagata (1990) were
the first non-trivial invariant solutions discovered in a wall-bounded three-dimensional
(3-D) fluid flow. Despite their lack of temporal variation, equilibrium solutions can
capture essential features of chaotic flows and play an important role in characterising
their chaotic dynamics. In PCF, for instance, Nagata (1990), Clever & Busse (1992),
Waleffe (1998), Itano & Toh (2001), Wang, Gibson & Waleffe (2007) and others
compute equilibrium solutions. Typically, these equilibria contain wavy streaks together
with pairs of staggered counter-rotating streamwise vortices, and thus capture basic
structures of near-wall turbulence. Gibson, Halcrow & Cvitanović (2008, 2009) and
Halcrow et al. (2009) demonstrate how the chaotic dynamics is organised by coexisting
equilibrium solutions together with their stable and unstable manifolds; Schneider,
Gibson & Burke (2010) and Gibson & Brand (2014) compute equilibria that capture
localisation in the spanwise direction; Eckhardt & Zammert (2018) compute equilibria
that capture localisation in the streamwise direction; Brand & Gibson (2014) compute
equilibria that capture localisation in both the streamwise and spanwise directions;
and Reetz, Kreilos & Schneider (2019) identify an equilibrium solution underlying
self-organised oblique turbulent–laminar stripes. While equilibrium solutions have been
shown to capture features of the chaotic flow dynamics, their numerical identification in
very-high-dimensional fluid flow problems remains challenging.

One approach to computing equilibrium solutions is to consider a root finding problem.
Irrespective of their dynamical stability, equilibria of the dynamical system ∂u/∂t = r(u)
are, by definition, roots of the nonlinear operator governing the time evolution, r(u) = 0.
The root finding problem can be solved by Newton(–Raphson) iterations. Newton
iterations are popular because of their locally quadratic convergence. However, employing
Newton iterations for solving the root finding problem has two principal drawbacks.
For a system described by N degrees of freedom, the update vector in each iteration
is the solution to a linear system of equations whose coefficient matrix is the N × N
Jacobian. Solving this large system of equations, and the associated quadratically scaling
memory requirement, are too costly for very-high-dimensional, strongly coupled fluid
flow problems. In addition to poor scaling, Newton iterations typically have a small
radius of convergence, meaning that the algorithm needs to be initialised with an
extremely accurate initial guess in order to converge successfully. Finding sufficiently
accurate guesses is not simple even for weakly chaotic flows close to the onset of
turbulence. Newton-GMRES-hookstep is the state-of-the-art matrix-free variant of the
Newton method commonly used for computing invariant solutions of fluid flows. This
method defeats the N2 memory scaling drawback by employing the generalised minimal
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residual (GMRES) method and approximating the update vector in a Krylov subspace
(Saad & Schultz 1986; Tuckerman, Langham & Willis 2019). In addition, the robustness
of the convergence is improved via hookstep trust-region optimisation (Dennis & Schnabel
1996; Viswanath 2007, 2009). Newton-GMRES-hookstep thereby enlarges the basin
of convergence of Newton iterations. Yet requiring an accurate initial guess is still a
bottleneck of this method, and identifying unstable equilibria remains challenging.

An alternative to the root finding set-up is to view the problem of computing an
equilibrium solution as an optimisation problem. Deviation of a flow field from being
an equilibrium solution can be penalised by the norm of the to-be-zeroed right-hand-side
operator, ‖r(u)‖. The absolute minima of this cost function, ‖r(u)‖ = 0, correspond to
equilibrium solutions of the system. Therefore, the problem of finding equilibria can
be recast as the minimisation of the cost function. A matrix-free method is crucial for
solving this minimisation problem in very-high-dimensional fluid flows. Farazmand (2016)
proposed an adjoint-based minimisation technique to find equilibria and travelling waves
of a two-dimensional (2-D) Kolmogorov flow. The adjoint calculations allow the gradient
of the cost function to be constructed analytically as an explicit function of the current flow
field. This results in a matrix-free gradient descent algorithm whose memory requirement
scales linearly with the size of the problem. The adjoint-based minimisation method is
significantly more robust to inaccurate initial guesses in comparison to its alternatives
based on solving a root finding problem using Newton iterations. This improvement,
however, is obtained by sacrificing the quadratic convergence of the Newton iterations and
exhibiting slow convergence. In the context of fluid mechanics, the variational approach
has been applied successfully to the 2-D Kolmogorov flows (see Farazmand 2016; Parker
& Schneider 2022).

Despite the robust convergence and favourable scaling properties of the adjoint-based
minimisation method, it has not been applied to 3-D wall-bounded flows. Beyond the
high-dimensionality of the 3-D wall-bounded flows, the main challenge in the application
of this method lies in handling the wall boundary conditions that cannot be imposed
readily while evolving the adjoint-descent dynamics (see § 3.3). This is in contrast to
doubly periodic 2-D (or triply periodic 3-D) flows where the adjoint-descent dynamics
is subject to periodic boundary conditions only, that can be imposed by representing
variables in Fourier basis (Farazmand 2016; Parker & Schneider 2022). To construct
a suitable formulation for 3-D flows in the presence of walls, we project the evolving
velocity field onto the space of divergence-free fields and constrain pressure so that it
satisfies the pressure Poisson equation instead of evolving independent of the velocity
(see § 3.4). However, solving the pressure Poisson equation with sufficient accuracy is
not straightforward in wall-bounded flows. The challenge in computing the instantaneous
pressure associated with a divergence-free velocity field stems from the absence of explicit
physical boundary conditions on pressure at the walls (Rempfer 2006). As a result, a
successful implementation of the constrained dynamics hinges on resolving the challenge
of expressing accurately the pressure in wall-bounded flows.

We propose an algorithm for computing equilibria of wall-bounded flows using
adjoint-descent minimisation in the space of divergence-free velocity fields. The proposed
algorithm circumvents the explicit construction of pressure, thereby overcoming the
inherent challenge of dealing with pressure in the application of the adjoint-descent
method to wall-bounded flows. We construct equilibria of PCF, and discuss the application
of the introduced method to other wall-bounded flows and other types of invariant
solutions where the challenge of dealing with pressure exists analogously. To accelerate
the convergence of the algorithm, we propose a data-driven procedure that takes advantage
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of the almost linear behaviour of the adjoint-descent dynamics in the vicinity of an
equilibrium solution. The acceleration technique approximates the linear dynamics using
dynamic mode decomposition, and thereby approximates the asymptotic solution of the
adjoint-descent dynamics. The large basin of convergence together with the improved
convergence properties renders the adjoint-descent method a viable alternative to the
state-of-the-art Newton method.

The remainder of the paper is structured as follows. The adjoint-based variational
method for constructing equilibrium solutions is introduced in a general setting in § 2.
The adjoint-descent dynamics is derived for wall-bounded shear flows in § 3, and an
algorithm for numerically integrating the derived dynamics is presented in § 4. The method
is applied to PCF in § 5, where the convergence of multiple equilibria is demonstrated.
The data-driven procedure for accelerating the convergence is discussed in § 6. Finally,
the paper is summarised and concluding remarks are provided in § 7.

2. Adjoint-descent method for constructing equilibrium solutions

Consider a general autonomous dynamical system

∂u
∂t

= r(u), (2.1)

where u is an n-dimensional real-valued field defined over a d-dimensional spatial domain
x ∈ Ω ⊆ R

d and varying with time t ∈ R. Within the space of vector fields M = {u :
Ω → R

n}, the evolution of u is governed by the smooth nonlinear operator r subject
to time-independent boundary conditions (BCs) at ∂Ω , the boundary of Ω . Equilibrium
solutions of this dynamical system are u∗ ∈ M for which

r(u∗) = 0. (2.2)

The residual of (2.2) is not zero for non-equilibrium states u /= u∗. We thus penalise
non-equilibrium states by the non-negative cost function J2 defined as

J2 = 〈r(u), r(u)〉 , (2.3)

where 〈·, ·〉 denotes an inner product defined on M . The cost function takes zero value if
and only if u = u∗. We thereby recast the problem of finding equilibrium solutions u∗ as
a minimisation problem over M , and look for the global minima of J2 at which J2 = 0,
following the arguments of Farazmand (2016).

In order to find minima of J2, we construct another dynamical system in M along
whose evolution the cost function J2 decreases monotonically. The objective is to define
an evolution equation

∂u
∂τ

= g(u), (2.4)

where the choice of the operator g guarantees

∂J2

∂τ
≤ 0, ∀τ. (2.5)

Here, τ is a fictitious time that parametrises the evolution governed by the constructed
dynamics. The rate of change of J2 along trajectories of the dynamical system (2.4) is

∂J2

∂τ
= 2 〈L (u; g), r(u)〉 , (2.6)
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where L (u; g) is the directional derivative of r(u) along ∂u/∂τ = g:

L (u; g) = lim
ε→0

r(u + εg)− r(u)
ε

. (2.7)

We can rewrite (2.6) as
∂J2

∂τ
= 2

〈
L †(u; r), g(u)

〉
, (2.8)

where L † is the adjoint operator of the directional derivative L , with the following
definition: 〈

L (v; v′), v′′〉 =
〈
L †(v; v′′), v′

〉
, ∀ v, v′, v′′ ∈ M . (2.9)

To guarantee the monotonic decrease of J2 with τ , we choose

g(u) = −L †(u; r). (2.10)

This choice results in monotonic decrease of J2 along solution trajectories of the adjoint
dynamical system (2.4):

∂J2

∂τ
= −2

〈
L †(u; r),L †(u; r)

〉
≤ 0. (2.11)

In summary, in order to find equilibria of ∂u/∂t = r(u), the variational approach
proposed by Farazmand (2016) constructs a globally contracting dynamical system
∂u/∂τ = g(u) that is essentially the gradient descent of the cost function J2. Every
trajectory of the constructed dynamical system eventually reaches a stable equilibrium
corresponding to a minimum of the cost function. Equilibria of the original dynamics are
equilibria of the adjoint dynamics at which the cost function takes its global minimum
value J2 = 0. However, the adjoint dynamics might have other equilibria that correspond
to a local minimum of the cost function with J2 > 0, and are not equilibria of the original
dynamics. This is illustrated schematically in figure 1. Finding equilibria of ∂u/∂t = r(u)
requires integrating the adjoint dynamics ∂u/∂τ = g(u) forwards in the fictitious time τ .
The solutions obtained at τ → ∞ for which J2 = 0 are equilibria of the original system.
Otherwise, when the trajectory gets stuck in a local minimum of the cost function, the
search fails and the adjoint dynamics should be integrated from another initial condition.

3. Application to the wall-bounded shear flows

3.1. Governing equations
We consider the flow in a 3-D rectangular domain Ω of non-dimensional size x ∈ [0, Lx),
y ∈ [−1,+1] and z ∈ [0, Lz). The domain is bounded in y between two parallel plates,
and is periodic in the lateral directions x and z. Incompressible isotherm flow of a
Newtonian fluid is governed by the Navier–Stokes equations (NSE). The non-dimensional,
perturbative form of the NSE reads

∂u
∂t

= − [(ub · ∇)u + (u · ∇)ub + (u · ∇)u] − ∇p + 1
Re
�u =: F(u, p), (3.1)

∇ · u = 0. (3.2)

Here, Re is the Reynolds number, and ub is the laminar base flow velocity field. The fields
u and p are the deviations of the total velocity and pressure from the base flow velocity and
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(a) (b)

0

J

Figure 1. Replacing the original dynamics with the gradient descent of the cost function J = ‖r(u)‖ by the
adjoint-descent method. (a) Schematic of the trajectories and two equilibria of the original system parametrised
by the physical time t: ∂u/∂t = r(u). (b) Contours of J and sample trajectories of its gradient flow parametrised
by the fictitious time τ : ∂u/∂τ = g(u). Trajectories of the adjoint-descent dynamics converge to a stable fixed
point, that is, either an equilibrium of the original dynamics, where the global minimum value of J = 0 is
achieved, or a state at which J takes a local minimum value.

pressure fields, respectively. For common driving mechanisms such as the motion of walls
in the xz plane, externally imposed pressure differences, or injection/suction through the
walls, the laminar base flow satisfies the inhomogeneous BCs, absorbs body forces, and is
known a priori. Consequently, the perturbative NSE (3.1) and (3.2) are subject to the BCs

u(x, y = ±1, z; t) = 0, (3.3)

[u, p](x = 0, y, z; t) = [u, p](x = Lx, y, z; t), (3.4)

[u, p](x, y, z = 0; t) = [u, p](x, y, z = Lz; t). (3.5)

The canonical wall-bounded shear flows such as PCF, plane Poiseuille flow and asymptotic
suction boundary layer flow are governed by the incompressible NSE (3.1)–(3.5), where
ub differentiates them from one another. We derive the adjoint-descent dynamics based on
a general base flow velocity field ub, and in § 5 demonstrate the adjoint-based method for
the specific case of PCF.

The state space M of the NSE contains velocity fields u : Ω → R
3 of zero divergence

that satisfy the kinematic conditions (3.3)–(3.5). The space M carries the standard
energy-based L2 inner product denoted with 〈·, ·〉M . The pressure p associated with an
admissible velocity field u ∈ M ensures that under the NSE dynamics, the velocity
remains divergence-free,

∂(∇ · u)/∂t = ∇ · F(u, p) = 0, (3.6)

while remaining compatible with the no-slip BCs (3.3),

∂u/∂t|y=±1 = F(u, p)|y=±1 = 0. (3.7)

This requires p to satisfy the Poisson equation with a velocity-dependent source term
(Rempfer 2006; Canuto et al. 2007).
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We could not derive a variational dynamics based on expressing pressure explicitly as
the solution to this Poisson equation. Therefore, instead of the state space M of the NSE,
we define the search space such that ‘velocity’ and ‘pressure’ can evolve independently.
Accordingly, we define the cost function such that residuals of both (3.1) and (3.2) are
included. Otherwise, the derivation follows § 2.

3.2. The search space
We define the inner product space of general flow fields as

P =
⎧⎨
⎩

[
v
q

] ∣∣∣∣∣∣
v : Ω → R

3

q : Ω → R

v and q periodic in x and z

⎫⎬
⎭ , (3.8)

where v and q are sufficiently smooth functions of space. Hereafter, the symbols u, p
indicate physically admissible velocity and pressure, implying u ∈ M and p satisfying
the relevant Poisson equation. The space of general flow fields P is endowed with the
real-valued inner product

〈·, ·〉 : P × P → R,

〈[
v1
q1

]
,

[
v2
q2

]〉
=

∫
Ω

(v1 · v2 + q1q2) dx. (3.9)

Here, · is the conventional Euclidean inner product in R
3. Physically admissible velocity

and pressure fields form the following subset of the general flow fields:

Pp =
⎧⎨
⎩

[
u
p

]
∈ P0

∣∣∣∣∣∣
∇ · u = 0

∇ · F(u, p) = 0
F(u, p)

∣∣
y=±1 = 0

⎫⎬
⎭ , (3.10)

where P0 is the subset of P whose vector-valued component satisfies the homogeneous
Dirichlet BC at the walls,

P0 =
{[

v
q

]
∈ P

∣∣∣∣ v( y = ±1) = 0
}
. (3.11)

Equilibrium solutions of the NSE are [u∗, p∗] ∈ Pp for which

F(u∗, p∗) = 0. (3.12)

We aim to impose the zero-divergence constraint together with the defining property of
an equilibrium solution via the variational minimisation discussed in § 2. To that end, we
consider an evolution in the space of general flow fields U = [v, q] ∈ P0 in which the
velocity and the pressure component are evolved independently. A flow field U ∈ P0
necessarily satisfies neither the defining property of an equilibrium solution nor the
zero-divergence constraint. Therefore, we define the residual field R ∈ P associated with
a general flow field as

R =
[

r1
r2

]
=

[F(v, q)
∇ · v

]
, (3.13)
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and the cost function J2 as

J2 =
∫
Ω

(
F2(v, q)+ (∇ · v)2

)
dx =

∫
Ω

(
r1 · r1 + r2

2

)
dx = 〈R,R〉 . (3.14)

At the global minima of the cost function, J2 = 0, the defining property of an equilibrium
solution (3.12) and the incompressibility constraint (3.2) are both satisfied. The operator
G = [g1, g2] acting on general flow fields U = [v, q] ∈ P0 is constructed such that an
equilibrium solution [u∗, p∗] is obtained by evolving the variational dynamics

∂U
∂τ

= ∂

∂τ

[
v
q

]
=

[
g1
g2

]
. (3.15)

The operator G is derived following the adjoint-based method described in § 2 to guarantee
the monotonic decrease of the cost function along trajectories of the variational dynamics
(3.15).

3.3. Adjoint operator for the NSE
The variational dynamics (3.15) must ensure that the flow field U remains within P0,
thus U is periodic in x and z, and its velocity component v takes zero value at the walls for
all τ . In order for these properties of U to be preserved under the variational dynamics,
the operator G must be periodic in x and z, and g1 = ∂v/∂τ must take zero value at the
walls, meaning that G ∈ P0. In addition, we choose the residual R to lie within P0.
The periodicity of R in x and z results automatically from the spatial periodicity of U
in these two directions. However, at the walls we enforce the condition r1(v, q)|y=±1 =
F(v, q)|y=±1 = 0. With the choice of U,R,G ∈ P0, the flow field remains within P0 as
desired. Following this choice, all the boundary terms resulting from partial integrations
in the derivation of the adjoint operator cancel out (see Appendix A), and the adjoint of
the directional derivative of R(U) along G is obtained as

L †
1 = (∇r1) (ub + v)− (∇(ub + v))T r1 + 1

Re
�r1 + r2r1 − ∇r2, (3.16)

L †
2 = ∇ · r1. (3.17)

Therefore, with G = −L †(U; R), the variational dynamics takes the form

∂v

∂τ
= −L †

1 = − (∇r1) (ub + v)+ (∇(ub + v))T r1 − 1
Re
�r1 − r2r1 + ∇r2, (3.18)

∂q
∂τ

= −L †
2 = −∇ · r1. (3.19)

Equation (3.18) is fourth order with respect to v, and (3.19) is second order with respect
to q. Therefore, four BCs for each component of v and two BCs for q are required in the
inhomogeneous direction y. The choice of U ∈ P0 implies v = 0, and the choice of R ∈
P0 implies r1 = F(v, q) = 0 at each wall. Consequently, the adjoint-descent dynamics
requires two additional wall BCs in order to be well-posed. As the additional BCs, we
impose ∇ · v = 0 at each wall. Therefore, the adjoint-descent dynamics is subject to the
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following BCs:

[v, q](x = 0, y, z; τ) = [v, q](x = Lx, y, z; τ), (3.20)

[v, q](x, y, z = 0; τ) = [v, q](x, y, z = Lz; τ), (3.21)

v(x, y = ±1, z; τ) = 0, (3.22)[
−ub · ∇v − ∇q + 1

Re
�v

]
y=±1

= 0, (3.23)

ey · ∂v
∂y

∣∣∣∣
y=±1

= 0, (3.24)

where the BC (3.23) is r1 = F(v, q) = 0, and the BC (3.24) is ∇ · v = 0 at the
walls obtained by substituting v( y = ±1) = 0 in the definitions of F(v, q) and ∇ · v,
respectively. The choice of the additional BCs is consistent with the properties of the state
space of the NSE, and is physically meaningful. Note, however, that the BC (3.24) does
not need to be enforced explicitly during the derivation of the adjoint operator. In the
absence of solid walls in a doubly periodic 2-D or a triply periodic 3-D domain, the BCs
(3.22)–(3.24) do not apply. Instead, the fields are subject to periodic BCs only.

Numerically imposing the BCs (3.22)–(3.24) while evolving (3.18) and (3.19) forwards
in the fictitious time is not straightforward. Consequently, instead of advancing the derived
variational dynamics directly, we constrain the adjoint-descent dynamics to the subset of
physical flow fields Pp. Within this subset, pressure does not evolve independently but
satisfies the pressure Poisson equation. Thereby, we obtain an evolution equation for the
velocity within the state space of the NSE. This allows us to employ the influence matrix
(IM) method (Kleiser & Schumann 1980) to integrate the constrained adjoint-descent
dynamics.

3.4. Variational dynamics constrained to the subset of physical flow fields
To obtain a numerically tractable variational dynamics, we constrain the adjoint-descent
dynamics (3.18)–(3.24) to the subset of physical flow fields Pp. Within Pp, the
velocity component u is divergence-free over the entire domain. In addition, the pressure
component p is governed no longer by an explicit evolution equation, but by a Poisson
equation with a velocity-dependent source term. Let p = P[u] denote the solution to
the Poisson equation yielding pressure associated with an instantaneous divergence-free
velocity u. In order for u to remain divergence-free, g1 needs to be projected onto the
space of divergence-free fields, yielding the evolution

∂u
∂τ

= P

{
− (∇r1) (ub + u)+ (∇(ub + u))T r1 − 1

Re
�r1

}
=: f , (3.25)

where P denotes the projection operator. The argument of the operator P is the right-hand
side of (3.18) with r2 = 0 and ∇r2 = 0 that result from the zero divergence of u.
According to Helmholtz’s theorem, a smooth 3-D vector field can be decomposed
into divergence-free and curl-free components. Thus g1 = ∂u/∂τ is decomposed as
g1 = f − ∇φ, where f = P{g1} is the divergence-free component, and φ is the scalar
potential whose gradient gives the curl-free component. Therefore, the evolution of the
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divergence-free velocity is governed by

∂u
∂τ

= − (∇r1) (ub + u)+ (∇(ub + u))T r1 + ∇φ − 1
Re
�r1, (3.26)

∇ · u = 0, (3.27)

subject to

u(x = 0, y, z; τ) = u(x = Lx, y, z; τ), (3.28)

u(x, y, z = 0; τ) = u(x, y, z = Lz; τ), (3.29)

u(x, y = ±1, z; τ) = 0, (3.30)

r1(x, y = ±1, z; τ) = 0, (3.31)

where r1 = r1(u,P[u]) and thus the BC (3.31) is satisfied automatically. It is necessary
to verify that the constrained variational dynamics still guarantees a monotonic decrease
of the cost function. For U ∈ Pp, the scalar component of the steepest descent direction,
g2, vanishes (see (3.19)). Therefore, according to the definition of the inner product on
Pp (3.9), it is sufficient to verify that

∫
Ω
( f · g1) dx = 〈

f , g1
〉
M

≥ 0. The Helmholtz
decomposition is an orthogonal decomposition with respect to the L2 inner product
defined on the state space of the NSE, 〈 f ,∇φ〉M = 0. Therefore,

〈
f , g1

〉
M

= 〈 f , f 〉M −
〈 f ,∇φ〉M = ‖ f ‖2

M ≥ 0, thus the evolution of u along f guarantees the monotonic
decrease of the cost function, as desired.

The variational dynamics (3.26)–(3.31) is equivariant under continuous translations in
the periodic directions x and z. Furthermore, one can verify through simple calculations
that this dynamics is also equivariant under the action of any reflection or rotation
permitted by the laminar base velocity field ub. Consequently, the symmetry group
generated by translations, reflections and rotations in the obtained variational dynamics
is identical to that of the NSE (3.1)–(3.5). Therefore, to construct equilibria within a
particular symmetry-invariant subspace of the NSE, one can use initial conditions from
the same symmetry-invariant subspace to initialise the variational dynamics, and the
variational dynamics preserves the symmetries of the initial condition.

In the variational dynamics, the scalar field φ plays a role analogous to the pressure p in
the incompressible NSE. The scalar fields φ and p adjust themselves to the instantaneous
physical velocity u such that ∇ · u = 0 and u( y = ±1) = 0 are preserved under the
evolution with the fictitious time τ and the physical time t, respectively. Similar to the
pressure in the NSE, φ satisfies a Poisson equation with a velocity-dependent source term.
Solving the Poisson equation for φ and p is a numerically challenging task in the present
wall-bounded configuration (Rempfer 2006). Therefore, instead of attempting to compute
p and φ and thereby advancing the variational dynamic (3.26), we formulate the numerical
integration scheme based on the IM method (Kleiser & Schumann 1980), where the no-slip
BC and zero divergence are satisfied precisely, while the explicit construction of p and φ
is circumvented.

4. Numerical implementation

To advance the variational dynamics (3.26)–(3.31) without computing explicitly φ and p,
we take advantage of the structural similarity between the variational dynamics and the
NSE. In order to evaluate the right-hand side of (3.26), we consider the following partial
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differential equation for the residual field r1:

∂r1

∂τ̂
= −

(
N(r1)− ∇φ + 1

Re
�r1

)
, (4.1)

subject to

r1( y = ±1) = 0, (4.2)

∇ · r1 = 0, (4.3)

where N(r1) = (∇r1)(ub + u)− (∇(ub + u))Tr1, with both u and ub being treated as
constant fields. We use the dummy equation (4.1) to evaluate the right-hand side of (3.26)
since the instantaneously evaluated right-hand sides of these two systems are identically
equal. For brevity, we are omitting the periodic BCs in x and z since spatial periodicity
can be enforced via spectral representation in an appropriate basis, such as a Fourier
basis, that is periodic by construction. Equation (4.1) together with the BC (4.2) and the
zero-divergence constraint (4.3) resembles the structure of the incompressible NSE:

∂u
∂t

= M(u)− ∇p + 1
Re
�u, (4.4)

which is subject to

u( y = ±1) = 0, (4.5)

∇ · u = 0, (4.6)

with M(u) = −(ub · ∇)u − (u · ∇)ub − (u · ∇)u. The IM algorithm has been developed
to numerically advance this particular type of dynamical system, which has a Laplacian
linear term and gradient of a scalar on the right-hand side, and is subject to a
zero-divergence constraint and homogeneous Dirichlet BCs at the walls. This algorithm
enforces zero divergence and the homogeneous Dirichlet BCs within the time-stepping
process, while the scalar field is handled implicitly and is not resolved as a separate
variable (Kleiser & Schumann 1980; Canuto et al. 2007, § 3.4). We use the IM algorithm,
and introduce the following five steps that advance u under the variational dynamics
(3.26)–(3.31) for one time step of size �τ .

(i) The current velocity field u that satisfies ∇ · u = 0 and u( y = ±1) = 0 is advanced
under the NSE dynamics for one physical time step�t using the IM algorithm. This
yields the updated velocity u�t, where the IM algorithm ensures ∇ · u�t = 0 and
u�t( y = ±1) = 0.

(ii) The residual field r1, which is by definition the right-hand side of the NSE (3.1), is
approximated via finite differences:

r1 = ∂u
∂t

≈ u�t − u
�t

. (4.7)

Since both u and u�t are divergence-free and satisfy homogeneous Dirichlet BCs at
the walls, ∇ · r1 = 0 and r1( y = ±1) = 0.

(iii) The current residual field r1 is advanced under the dummy dynamics (4.1)–(4.3)
for one time step �τ̂ using the IM algorithm, which yields r�τ̂1 . The IM algorithm
ensures that ∇ · r�τ̂1 = 0 and r�τ̂1 ( y = ±1) = 0.
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(iv) The right-hand side of (4.1) is approximated via finite differences:

f = ∂r1

∂τ̂
≈ r�τ̂1 − r1

�τ̂
. (4.8)

Since both r1 and r�τ̂1 are divergence-free and satisfy homogeneous Dirichlet BCs
at the walls, ∇ · f = 0 and f ( y = ±1) = 0.

(v) Having approximated f , which is the descent direction at the current fictitious time
τ , we advance the velocity for one step of size �τ using

u�τ = u +�τ f . (4.9)

Since both u and f are divergence-free and take zero value at the walls, the updated
velocity satisfies ∇ · u�τ = 0 and u�τ ( y = ±1) = 0.

The finite differences (4.7) and (4.8) affect the accuracy of time-stepping the variational
dynamics, but they do not interfere with imposing the BC u( y = ±1) = 0 and the
constraint ∇ · u = 0 within machine precision. The low accuracy of the first-order finite
differences does not affect the accuracy of the obtained equilibrium solution since both r1
and f tend to zero when an equilibrium is approached. We are also not concerned about
the low accuracy of the first-order forward Euler update rule (4.9) since the objective is
to obtain the attracting equilibria of the adjoint-descent dynamics reached at τ → ∞.
Therefore, the introduced procedure is able to construct equilibrium solutions within
machine precision.

We implement this procedure in Channelflow 2.0, an open-source software package for
numerical analysis of the incompressible NSE in wall-bounded domains. In this software,
an instantaneous divergence-free velocity field is represented by Chebyshev expansion in
the wall-normal direction y, and Fourier expansion in the periodic directions x and z:

uj(x, y, z) =
∑

m,p∈Z

n∈W

ûm,n,p,j Tn( y) exp(2πi (mx/Lx + pz/Lz)), j = 1, 2, 3, (4.10)

where Tn( y) is the nth Chebyshev polynomial of the first kind, i is the imaginary unit,
and indices 1, 2, 3 specify directions x, y and z, respectively. Channelflow 2.0 employs the
IM algorithm for time-marching the NSE (4.4). With modification for the nonlinear term
N(r1), (4.1) can also be advanced in time.

5. Application to plane Couette flow

We apply the introduced variational method to PCF, the flow between two parallel plates
moving at equal and opposite velocities, which is governed by the general NSE (3.1)–(3.5)
with the laminar base flow ub = [y, 0, 0]T. Due to the periodicity in x and z, PCF is
equivariant under continuous translations in these directions:

τ(�x, �z) : [u, v,w] (x, y, z) �→ [u, v,w] (x + �x, y, z + �z), (5.1)

where u, v and w are the components of u in the x, y and z directions, respectively.
In addition, PCF is equivariant under two discrete symmetries: rotation around the line
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x = y = 0,
σ1 : [u, v,w] (x, y, z) �→ [−u,−v,w] (−x,−y, z), (5.2)

and reflection with respect to the plane z = 0,

σ2 : [u, v,w] (x, y, z) �→ [u, v,−w] (x, y,−z). (5.3)

The variational dynamics (3.26)–(3.31) is verified easily to be equivariant under the
same continuous and discrete symmetry operators. Therefore, the variational dynamics
preserves these symmetries, if present in the initial condition. In the following, we
demonstrate the convergence of multiple equilibrium solutions from guesses both within
a symmetry-invariant subspace and outside.

5.1. Results
We search for equilibria of PCF at Re = 400 within a domain of dimensions Lx = 2π/1.14
and Lz = 2π/2.5 (see § 3.1). This domain was first studied by Waleffe (2002). Several
equilibrium solutions of PCF in this domain at Re = 400 were computed by Gibson
et al. (2008, 2009). These are available in the database on channelflow.org. Here, the
flow field is discretised with Ny = 31 collocation points in the wall-normal direction,
and Nx = Nz = 32 points in the lateral directions. The adjoint-descent dynamics is
integrated numerically by the forward Euler scheme (4.9) with �τ = 0.03, and r1 and
f are approximated via finite differences (4.7) and (4.8) with step sizes �t = 0.25 and
�τ̂ = 0.25, respectively (see § 4). An accurate finite-difference approximation of r1 and
f suggests choosing �t and �τ̂ as small as possible. However, smaller values for these
step sizes result in a less stable forward Euler integration scheme, requiring a smaller value
of �τ to remain stable. Since for an equilibrium solution r1 = f = 0, larger values of �t
and �τ̂ do not diminish the accuracy of the obtained equilibrium solution. Consequently,
empirically we choose values for �t and �τ̂ so that a reasonably large value for �τ can
be used.

To verify the scheme and its implementation, we converge the so-called ‘Nagata’s lower
branch’ equilibrium solution (Nagata 1990) at Re = 400. As initial guess, we take an
equilibrium solution on the same branch but at a significantly different Re. The Nagata’s
lower branch solution at Re = 400 continued from Nagata’s original domain dimensions
to those considered here is available in the database on channelflow.org. We continue
this equilibrium solution to Re = 230, and use the resulting solution to initialise both the
adjoint-descent variational method and the standard Newton iterations at Re = 400. The
standard Newton iterations, i.e. without optimisations such as hooksteps, fail to converge.
However, the adjoint-descent variational method converges successfully to the equilibrium
solution at Re = 400 on the same branch.

Along the trajectory of the adjoint-descent dynamics, the cost function initially drops
rapidly and subsequently decreases with an exponential rate, as shown in figure 2. The
exponential decrease of the cost function is explained by the dynamical system picture
of the adjoint descent: the adjoint-descent dynamics converges to a stable fixed point,
hence the evolution is dominated by the slowest eigenmode of the linearised dynamics
in the vicinity of that fixed point. The sharp initial drop and the following exponential
decay of the cost function are reflected in fast and slow traversal, respectively, of the
trajectory within the state space. Figure 3 presents a 2-D projection of the trajectory, with
markers indicating that the majority of the trajectory is traversed quickly in the beginning
of the integration, and the majority of the integration time is spent on the remaining,
much shorter portion of the trajectory. For instance, the portion of the trajectory traversed
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Figure 2. Convergence of the adjoint-descent variational method for constructing an equilibrium solution of
the PCF. The minimisation of the cost function J evolves the initial guess towards a true equilibrium solution
at which J = 0.

0.12 0.13 0.14 0.15 0.16
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−0.036
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−0.032

−0.030
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−3

log(J ) = −4

−5−6

Figure 3. The trajectory of the adjoint-descent dynamics along which the cost function J decreases
monotonically, as shown in figure 2. The projection shows P2 = Re{û0,5,0,1} against P1 = Re{û0,3,0,1}. The
majority of the trajectory is traversed rapidly at the beginning, as indicated by a sharp drop of J in figure 2,
followed by a slow traversal of the remaining portion towards the asymptotic solution, reflected in figure 2 as
an exponential decay of the cost function.

during the first 1.2 × 106 fictitious time units, which decreases the cost function from
J = 5.9 × 10−3 to J = 10−5, is considerably longer than the remaining portion, which
takes over 90 % of the integration time to be traversed. In figure 3, P1 and P2 are the
real parts of û0,3,0,1 and û0,5,0,1, i.e. the coefficients of the third and fifth Chebyshev
polynomials in the expansion of the mean streamwise velocity in y (see (4.10)). The
visualisation of the trajectory in different projections of the state space yields a similar
observation.

Nagata’s lower branch equilibrium solutions are symmetric under shift-and-rotate
symmetry s1 = τ(Lx/2, Lz/2) σ1,

s1[u, v,w](x, y, z) = [−u,−v,w](−x + Lx/2,−y, z + Lz/2), (5.4)
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Figure 4. The L2-norm of the velocity field against the physical time t in direct numerical simulation from a
random initial condition. The snapshots corresponding to the local extrema of ‖u‖ are selected as guesses for
an equilibrium solution. Table 1 summarises the result of the convergence from each guess using NGh and the
adjoint-descent variational method.

and shift-and-reflect symmetry s2 = τ(Lx/2, 0)σ2,

s2[u, v,w](x, y, z) = [u, v,−w](x + Lx/2, y,−z). (5.5)

Therefore, the initial guess in the present example, namely Nagata’s lower branch solution
at Re = 230, is symmetric under s1 and s2 that are preserved by the adjoint-descent
dynamics. The velocity field remains symmetric under s1 and s2 without explicitly
enforcing them during the forward integration until the equilibrium solution on the same
branch at Re = 400 is converged.

To investigate further the robustness of the adjoint-descent variational method in
converging successfully from inaccurate guesses, we initialise the method with guesses
obtained from a direct numerical simulation. We construct a random divergence-free
velocity field with L2-norm ‖u‖ = 0.2, and time-march the NSE along a turbulent
trajectory until the flow laminarises. The initial condition and therefore the entire trajectory
are not symmetric under any of the symmetries allowed by the PCF. We extract the
local extrema of ‖u‖ as a function of time t, where ∂‖u‖/∂t = 0, as guesses for
potential equilibrium solutions. Figure 4 shows ‖u‖ plotted against t, from which 26
guesses are extracted. The standard Newton iterations do not converge starting from
any of the guesses. With hookstep optimisation, five of the searches converge within 50
Newton-GMRES-hookstep (NGh) iterations. The converged solutions include the trivial
laminar solution u = 0 as well as two non-trivial solutions EQ1 and EQ3 (see tables 1
and 2 for properties of the converged solutions). By integrating the adjoint-descent
dynamics, 11 of the guesses converge to an equilibrium solution. These solutions include
the trivial solution as well as five non-trivial equilibria, EQ1 to EQ5 (see tables 1 and
2). Among these solutions, EQ1, EQ4 and EQ5 have been documented in the literature
(Gibson et al. 2009). Yet, to the best of our knowledge, the equilibria labelled EQ2 and
EQ3 have not been reported previously. Snapshots that lead to a successful search via
either NGh iterations or the adjoint-descent algorithm are marked in figure 4.
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Snapshot NGh iterations NGh solution Adjoint-descent solution

1 13 EQ0 EQ0
2 11 EQ0 EQ0
3 — — EQ0
4 23 EQ1 EQ2
5 15 EQ1 —
6 — — EQ1
7 13 EQ3 EQ2
8 — — EQ4
9 — — EQ3
10 — — EQ5
11 — — EQ5
12 — — EQ3

Table 1. The list of the equilibrium solutions converged by NGh and the adjoint-descent variational method
from the guesses marked in figure 4. See table 2 for properties of the equilibria EQ0 to EQ5.

Solution ‖u‖ D/Dlam

EQ0 0 1
EQ1 0.385858 3.04427
EQ2 0.268277 1.76302
EQ3 0.240519 1.60348
EQ4 0.168131 1.45374
EQ5 0.328654 2.37353

Table 2. Properties of the equilibrium solutions converged by NGh and the adjoint-descent variational method
(see table 1 and figure 4). The second column contains the L2 norm of the solutions, and the third column
contains the total energy dissipation of the solutions normalised by that of the laminar base flow.

The variational method succeeds in more than twice as many cases as the NGh
method, and extracts three more non-trivial equilibria from a turbulent trajectory with
a crude criterion for selecting guesses. This suggests that the basin of attraction to
converge an equilibrium solution is typically larger for the adjoint-descent variational
method compared to the NGh method. However, the larger basin of attraction does not
necessarily contain the smaller one. Notice, for instance, that the NGh iterations and the
adjoint-descent algorithm converge to different equilibrium solutions when initialised with
snapshot 4, or the NGh iterations converge when initialised with snapshot 5 while the
adjoint-descent does not.

Despite the advantage of the variational method in converging successfully from
inaccurate guesses, this method exhibits a very slow rate of convergence. For instance,
the convergence in our first example (figure 2) takes near 650 hours of wall clock time
on one core of a 2.60 GHz Intel Xeon E5-2640 CPU. Besides the improvements on the
computer programming side, such as parallel computations on multiple CPU cores, the
convergence can be accelerated significantly by employing the inherent predictability of
the variational dynamics, namely its almost linear behaviour when the trajectory reaches
the vicinity of a solution. In the following, we introduce a data-driven technique for such
an acceleration.

977 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.927


Identifying invariant solutions of wall-bounded shear flows

6. Accelerating the convergence

The variational dynamics evolves along the gradient descent of the cost function. As
a result, this dynamics is globally contracting, and almost all its trajectories eventually
converge to a stable fixed point where the cost function takes a minimum value. When
the trajectory of the adjoint-descent dynamics has got sufficiently close to its destination
fixed point, the cost function is well represented by a quadratic function, and its gradient
flow is almost linear. The approximately linear behaviour of the variational dynamics in
the vicinity of an asymptotic fixed point inspires the idea of the following data-driven
technique for accelerating the slow convergence of the variational method.

Our acceleration technique aims to approximate the expected linear dynamics and
thereby approximate the equilibrium solution of the adjoint-descent dynamics. Since the
destination fixed point is not known a priori, linearisation around the unknown fixed point
is not possible. Instead, we employ dynamic mode decomposition (DMD) to approximate
the linear dynamics based on the available portion of the trajectory that has been traversed.
The DMD is a regression framework that constructs the best-fit linear model over a
series of snapshots (Rowley et al. 2009; Schmid 2010; Kutz et al. 2016; Schmid 2022).
The equilibrium solution of the adjoint-descent dynamics is approximated by letting the
fictitious time go to infinity in the approximated linear system.

6.1. Dynamic mode decomposition
Suppose that each instantaneous spatially resolved flow field u(x; τ) is represented
by an N-dimensional real-valued column vector ψ(τ). Then M snapshots ψk = ψ(τk),
k = 1, . . . ,M, along a single trajectory can be related to the snapshots taken δτ later along
the same trajectory, ψ ′

k = ψ(τk + δτ), via the following linear relation:

ψ ′
k = Aψk + ek, k = 1, . . . ,M, (6.1)

where ek is the error in approximating ψ ′
k by the linear map ψk �→ Aψk. The DMD

constructs the N × N linear operator A that minimises the sum of squares of the elements
of ek over all M snapshot pairs:

A := Ψ ′Ψ+, (6.2)

where Ψ := [ψ1 ψ2 . . . ψM], Ψ ′ := [ψ ′
1 ψ

′
2 . . . ψ

′
M], and the superscript + denotes the

Moore–Penrose pseudo-inverse. The dimensionality of the system can be prohibitively
large for constructing A directly as defined in (6.2), which is typically the case in a fluid
dynamics problem. Therefore, we instead use a rank-reduced representation of this matrix.
For this, the data matrix Ψ is factorised via singular value decomposition as Ψ ≈ UΣV T

with truncation rank r. The r × r projection of A on the POD modes U is

Ã = UTAU = UTΨ ′VΣ−1. (6.3)

The dynamic modes and their temporal behaviour are constructed from the
eigendecomposition of Ã: dynamic modes are φq = (Ψ ′VΣ−1)vq with q = 1, . . . , r,
where vq are eigenvectors of Ã; and the dynamic mode φq evolves as eωqτ , where
ωq = ln(λq)/δτ , and λq is the eigenvalue of Ã associated with vq. Finally, the linear

977 A7-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.927


O. Ashtari and T.M. Schneider

evolution of ψ(τ) is approximated as

ψ(τ) ≈
r∑

q=1

bqφq eωqτ , (6.4)

where bq are the amplitudes of the dynamic modes at a reference time, for instance at τM .
Based on this linear model, we approximate the asymptotic equilibrium solution of the
variational dynamics as follows.

6.2. Numerical implementation
In order to approximate the linear dynamics using DMD, we collect snapshots ψk after
the initial fast drop in the cost function, when it decays exponentially. The exponential
decay implies that the dynamics is almost linear and dominated by only few of the
slowest attracting eigenmodes. As a result, the snapshot matrices are of low column
rank. In the vicinity of the yet to-be-found attracting fixed point, the Jacobian of the
descent dynamics is the negative of the (discretised) second variation, or Hessian, of the
cost function, and thus symmetric. Consequently, the eigenvalues of the linear dynamics
approximated by the DMD are real. Suppose that the dynamic modes are sorted in
increasing order of |ωq|. Then the exponent ω1 is significantly closer to zero than the
rest, and ω2, . . . , ωr are negative. By assuming ω1 ≈ 0, the linear model (6.4) can be
expressed as the superposition of the steady state ψs := b1φ1 and the decaying terms
bqφq eωqτ , q = 2, . . . , r. The steady state ψs approximates the equilibrium solution of
the almost linear adjoint-descent dynamics. The state vector ψs is mapped back to the
corresponding flow field, from where the integration of the adjoint-descent dynamics is
restarted. Let r∗ denote the rank of the snapshot matrices. Then the truncation rank r ≤ r∗
is chosen such that the cost function associated with the approximated equilibrium is the
smallest. We consistently found the minimum for r = r∗. In the following, we demonstrate
the acceleration of the first test case presented in § 5.

The snapshot vectors ψ are the (real-valued) state vectors containing the minimum
number of independent variables required for describing a divergence-free velocity field in
Fourier–Chebyshev–Fourier spectral representation (4.10). The vector ψ has N = 20 218
elements for the discretisation used in § 5. Initially, we integrate the adjoint-descent
dynamics and let the cost function drop to log(J) = −4.5 before performing the first
DMD extrapolation. The linear model is constructed using M = 100 snapshots spaced
uniformly over an interval of 2 × 104 time units (δτ = 200). The next DMD extrapolations
are performed using the same number of snapshots M and the same spacing δτ , while the
adjoint dynamics is integrated forwards in time for 15 × 104 time units before starting to
collect new snapshots. The acceleration technique allows us to achieve the convergence
criterion J = 10−12 through τ = 7.36 × 105 time units of total forward integration, while
without acceleration it takes τ = 1.38 × 107 time units, that is, almost 19 times longer (see
figure 5, and compare with figure 2). The time required for performing the extrapolation is
negligible compared to the time required for the forward integration of the adjoint-descent
dynamics. The first DMD extrapolation has resulted in a slight increase in the value of J.
The 2-D projection of the state space, displayed in figure 6, shows that the first extrapolated
state is significantly closer to the destination fixed point, despite being located on a higher
level of J. By restarting the integration from the extrapolated state, the trajectory gets
attracted quickly to the dominating eigendirection of the linearised dynamics, resulting in
a rapid drop in J (see figures 5 and 6).
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0 0.5 1.0 1.5 2.0

τ

10−13

10−11

10−9

10−7

10−5

10−3

J

E1

E2

(×10–6)

Figure 5. Acceleration of the convergence of the adjoint-descent variational method by successive
DMD-based extrapolations. The extrapolation employs DMD to construct a best-fit linear model for the
dynamics in the vicinity of an equilibrium, and approximates the asymptotic solution of the adjoint-descent
dynamics by the asymptotic solution of the linear model. The acceleration technique reduces the total duration
of the forward integration by 95 % in this example. The jumps in the state space associated with the first two
extrapolations, E1 and E2, are shown in figure 6.

0.12 0.13 0.14 0.15 0.16

P1

−0.036

−0.034

−0.032

−0.030

P2

E1

E2

Figure 6. The trajectory of the accelerated adjoint-descent dynamics in the same 2-D projection of figure 3.
The DMD-based extrapolations allow jumping to a state closer to the destination fixed point while avoiding
integration of the adjoint-descent dynamics. The inset displays 225 times magnification of the area around the
asymptotic solution.

Exploiting the linear behaviour of the variational dynamics, typically the acceleration
technique achieves an order of magnitude speed-up in converging equilibria of PCF. The
linear behaviour in the vicinity of an equilibrium solution at sufficiently large τ is a
generic characteristic of the adjoint-descent variational method. Therefore, the introduced
DMD-based acceleration technique is system-independent, and provided the snapshot
vectors of the variational dynamics, can be applied directly to any other problem.
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7. Summary and concluding remarks

The unstable invariant solutions embedded within the chaotic attractor of the
Navier–Stokes equations (NSE) underpin the dynamics of a turbulent flow. Despite the
significance of invariant solutions for a dynamical description of chaotic flows, the
identification of these solutions remains a computational challenge, demanding robust
algorithms. In this work, we have presented a matrix-free, adjoint-based variational
method for computing equilibrium solutions of wall-bounded shear flows. We have applied
the introduced method to plane Couette flow (PCF), and demonstrated the convergence of
multiple equilibrium solutions. The variational method outperforms the state-of-the-art
Newton iterations in converging successfully from inaccurate initial guesses, which
suggests a larger basin of attraction.

The present method employs the norm of the right-hand side of the evolution equation
as a cost function to penalise the deviation of a flow field from the equilibrium state.
Thereby, the problem of finding an equilibrium solution is recast as the minimisation of
the cost function. To solve the minimisation problem, we adopted the variational approach
of Farazmand (2016), where the gradient of the cost function is constructed analytically
via adjoint calculations, and thereby a matrix-free gradient descent method is utilised. The
cost function decreases monotonically along trajectories of the gradient descent dynamics
until a minimum value is obtained. The global minima of the cost function, taking zero
value, correspond to the equilibrium solutions of the flow. If a local minimum is obtained,
then the search for an equilibrium solution has failed. However, a local minimum of the
cost function corresponds to the locally slowest state with respect to the chosen norm.
This provides a means of characterising the so-called ‘ghost’ of a saddle–node bifurcation
(Strogatz 2018), which may influence the emerging spatiotemporal structures in chaotic
flows (see, for example, Reetz, Subramanian & Schneider 2020, § 3.1).

The present work describes two key contributions. First, we apply the adjoint-based
variational method to 3-D wall-bounded flows. Previously, the variational approach had
been successfully applied only to a 2-D Kolmogorov flow in a doubly periodic domain
without walls (Farazmand 2016; Parker & Schneider 2022). The primary challenge in
extending the variational method for computing equilibria to wall-bounded flows lies in
handling the nonlinear, non-local pressure in the presence of solid walls. To overcome
this challenge, we have formulated the variational dynamics in a way such that an explicit
computation of pressure is avoided, allowing for application to 3-D wall-bounded flows.
We demonstrated the variational method for PCF.

The second contribution is addressing the slow convergence of the adjoint-based
variational method, which poses a challenge in utilising this method practically for
3-D NSE. We propose a data-driven technique for accelerating the convergence by
extrapolating the asymptotic fixed point of the variational dynamics based on the traversed
portion of its trajectory. Since any trajectory of the variational dynamics converges to
a stable fixed point, the dynamics behaves almost linearly when the trajectory has got
close enough to the asymptotic solution. The extrapolation technique takes advantage
of this predictability, and approximates the best-fit linear dynamics using dynamic
mode decomposition (DMD). The asymptotic solution of the approximated linear system
approximates the asymptotic solution of the variational dynamics. This results in an
order-of-magnitude speed-up in the overall duration of the forward integration required
to converge to a solution within machine accuracy. The proposed acceleration technique
is based on the generic properties of gradient descent minimisation, and is therefore
independent of the physical system of study. In practical applications aimed at identifying
a large number of equilibrium solutions, one may further combine the introduced
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method with Newton iterations, once its restrictive convergence region is reached. Such
a hybrid approach leverages the large radius of convergence of the adjoint-descent
method and provides even faster convergence than the DMD-based acceleration technique
alone.

The variational dynamics have been derived for the deviation of the velocity field
from the laminar base flow. Consequently, an identical formulation and implementation
translates directly to other wall-bounded flows such as plane Poiseuille flow (PPF) and
asymptotic suction boundary layer (ASBL) flow as only the respective base velocity
profiles in the variational dynamics (3.26)–(3.31) need to be adapted. However, due to the
mean advection in PPF and ASBL flow, steady solutions in these flows take the form of
travelling waves or relative equilibria, which are equilibria in a moving frame of reference.
The present method can be extended to compute travelling waves by expressing the NSE
in a moving frame of reference. The speed of the Galilean transformation is an additional
unknown in the cost function whose minimisation yields relative equilibrium solutions
(Farazmand 2016). The handling of the pressure and boundary conditions (BCs) remains
unchanged.

In the derivation of the adjoint-descent dynamics, we assume the base velocity profile to
be known and constant, which is the case when a fixed mean pressure gradient is imposed
on the flow. For the alternative integral constraint of fixed mass flux, the base velocity
profile, or more precisely its amplitude, needs to be determined together with the velocity
and pressure perturbations. As for the generalisation for travelling waves, the additional
unknown can be included in the variational formulation without modifying the handling
of pressure and BCs.

The advantages of the adjoint-based variational method have inspired its application
in computing other invariant sets, such as periodic orbits (Azimi, Ashtari & Schneider
2022; Parker & Schneider 2022) and connecting orbits (Ashtari & Schneider 2023).
These methods view the identification of a periodic or connecting orbit as a
minimisation problem in the space of space–time fields with prescribed behaviour
in the temporal direction. They then employ a similar adjoint-based technique to
solve the minimisation problem. The robust convergence of these extensions has
so far been demonstrated only in 2-D flows in a doubly periodic domain and for
one-dimensional model systems. As in computing equilibria, dealing with pressure is
the key challenge in formulating the adjoint-based variational method for computing
periodic or connecting orbits in 3-D wall-bounded flows. In our ongoing research, the
next step is to extend the introduced algorithm to the computation of more complex
invariant solutions in wall-bounded flows via extensions of the adjoint-based variational
method.
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Appendix A. Derivation of the adjoint operator

A.1. Directional derivative of the residual
Using indicial notation to specify the x, y and z components of vector quantities by the
indices i = 1, 2, 3, respectively, we write the residual of the momentum and continuity
equations as

r1,i = −ub,j
∂vi

∂xj
− vj

∂ub,i

∂xj
− vj

∂vi

∂xj
− ∂q
∂xi

+ 1
Re

∂2vi

∂xj ∂xj
, (A1)

r2 = ∂vj

∂xj
, (A2)

where repeated indices imply the Einstein summation convention. The directional
derivative of the residual components r1,i and r2 along G = [g1, g2] are found directly
from the definition:

L1,i(U; G) = lim
ε→0

r1,i(U + εG)− r1,i(U)
ε

= −ub,j
∂g1,i

∂xj
− g1,j

∂ub,i

∂xj
− g1,j

∂vi

∂xj
− vj

∂g1,i

∂xj
− ∂g2

∂xi
+ 1

Re
∂2g1,i

∂xj ∂xj
, (A3)

L2(U; G) = lim
ε→0

r2(U + εG)− r2(U)
ε

= ∂g1,j

∂xj
. (A4)

A.2. The adjoint operator
To derive the adjoint operator of the directional derivative of the residual, L (U; G), we
expand the inner product of L (U; G) and the residual R as follows:

〈L (U; G),R〉 =
∫
Ω

(L1 · r1 + L2r2) dx

=
∫
Ω

[(
−ub,j

∂g1,i

∂xj
− g1,j

∂ub,i

∂xj
− g1,j

∂vi

∂xj
− vj

∂g1,i

∂xj

− ∂g2

∂xi
+ 1

Re
∂2g1,i

∂xj ∂xj

)
r1,i +

(
∂g1,j

∂xj

)
r2

]
dx. (A5)

Integrating by parts, we have

∫ xj,max

xj,min

ub,j
∂g1,i

∂xj
r1,i d xj = ub,jg1,ir1,i

∣∣xj,max
xj=xj,min

−
∫ xj,max

xj,min

∂(ub,jr1,i)

∂xj
g1,i d xj, (A6)

∫ xj,max

xj,min

vj
∂g1,i

∂xj
r1,i d xj = vjg1,ir1,i

∣∣xj,max
xj=xj,min

−
∫ xj,max

xj,min

∂(vjr1,i)

∂xj
g1,i d xj, (A7)
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xi,min

∂g2

∂xi
r1,i d xi = g2r1,i

∣∣xi,max
xi=xi,min

−
∫ xi,max

xi,min

∂r1,i

∂xi
g2 d xj, (A8)

∫ xj,max

xj,min

∂2g1,i

∂xj ∂xj
r1,i d xj =

[
∂g1,i

∂xj
r1,i − g1,i

∂r1,i

∂xj

]xj,max

xj=xj,min

+
∫ xj,max

xj,min

∂2r1,i

∂xj ∂xj
g1,i d xj,

(A9)∫ xj,max

xj,min

∂g1,j

∂xj
r2 d xj = g1,jr2

∣∣xj,max
xj=xj,min

−
∫ xj,max

xj,min

∂r2

∂xj
g1,j d xj. (A10)

For U,R,G ∈ P0, the following boundary terms cancel out either due to the periodicity
of U , R and G in x and z, or due to g1( y = ±1) = 0:

ub,jg1,ir1,i
∣∣xj,max
xj=xj,min

= 0, (A11)

vjg1,ir1,i
∣∣xj,max
xj=xj,min

= 0, (A12)

g1,i
∂r1,i

∂xj

∣∣∣xj,max

xj=xj,min
= 0, (A13)

g1,jr2
∣∣xj,max
xj=xj,min

= 0. (A14)

Similarly, the other two boundary terms cancel out either due to the periodicity of R and
G in x and z, or due to r1( y = ±1) = 0:

g2r1,i
∣∣xi,max
xi=xi,min

= 0, (A15)

∂g1,i

∂xj
r1,i

∣∣∣xj,max

xj=xj,min
= 0. (A16)

We now rewrite the inner product as

〈L (U; G),R〉 =
∫
Ω

(
∂(ub,jr1,i)

∂xj
− r1,j

∂ub,j

∂xi
− r1,j

∂vj

∂xi
+ ∂(vjr1,i)

∂xj

+ 1
Re

∂2r1,i

∂xj ∂xj
− ∂r2

∂xi

)
g1,i dx +

∫
Ω

(
∂r1,i

∂xi

)
g2 dx, (A17)

which can be written in vector form as

〈L (U; G),R〉 =
∫
Ω

(
(∇r1) (ub + v)− (∇(ub + v))T r1

+ 1
Re
�r1 + r2r1 − ∇r2

)
· g1 dx +

∫
Ω

(∇ · r1) g2 dx. (A18)

By definition

〈L (U; G),R〉 = 〈G,L †(U; R)〉 =
∫
Ω

(L †
1 · g1 + L †

2 g2) dx, (A19)

therefore, the components of L †(U; R) are obtained as

L †
1 = (∇r1) (ub + v)− (∇(ub + v))T r1 + 1

Re
�r1 + r2r1 − ∇r2, (A20)

L †
2 = ∇ · r1. (A21)
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