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High‑throughput generation of large and consistent ab initio data combined with advanced machine‑
learning techniques are enabling the creation of interatomic potentials of near ab initio quality. This 
capability has the potential of dramatically impacting materials research: (i) while classical interatomic 
potentials have become indispensable in atomistic simulations, such potentials are typically restricted to 
certain classes of materials. Machine‑learned potentials (MLPs) are applicable to all classes of materials 
individually and, importantly, to any combinations of them; (ii) MLPs are by design reactive force fields. 
This Focus Issue provides an overview of the state of the art of MLPs by presenting a range of impressive 
applications including metallurgy, photovoltaics, proton transport, nanoparticles for catalysis, ionic 
conductors for solid state batteries, and crystal structure predictions. These investigations provide 
insight into the current challenges, and they present pathways for their solutions, thus setting the stage 
for exciting perspectives in computational materials research.

Introduction
To appreciate the distinct features and innovative charac-
ter of interatomic potentials obtained with machine learning 
techniques, let us briefly highlight the key aspects of classical 
potentials or force fields. In both machine learning and clas-
sical approaches, the motivation is the same, namely atomistic 
simulations of large systems, sampling the configurational space 
and dynamic processes in a statistically meaningful way. In the 
absence of any better way, such interatomic potentials were orig-
inally fitted to empirical data such as vibrations of molecules 
and the structure of crystalline solids [1, 2], elastic coefficients, 
thermal expansion coefficients, and thermodynamic properties 
of fluids. This led to ground-breaking work by pioneers such 
as Aneesur Rahman [3]. A major driver in the development of 
force fields in the 1980’s was the desire to perform molecular 
simulations of DNA and proteins and their interaction with drug 
molecules. This led to the development of force fields such as 

ECEPP by the group of Harald Scheraga at Cornell University, 
the CHARMM force field in the group of Martin Karplus at 
Harvard, the AMBER forcefield by the group of Peter Kollman 
at the University of California in San Francisco, and the OPLS 
force field from the group of Jorgensen at Yale University. In 
this context, first versions of the consistent force field (CFF) 
were developed by Lifson, Hagler and Dauber [4]. An interest-
ing approach was pursued in the group of Norman Allinger by 
including electronic aspects in a force field called MMP2 [5].

These classical force fields are based on a deep chemical 
understanding of the bonding and intermolecular interactions 
in molecular and bio-molecular systems. The various param-
eters were obtained largely by fitting to experimental data such 
as known interatomic distances and vibrational frequencies. A 
characteristic feature of these force fields is the atom-typing, 
i.e., the assignment of specific force field parameters based on 
a topological analysis of the environment of each atom. To a 
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certain extent, a generalization of this idea is found in the pre-
sent machine-learned potentials. In the 1980’s, developers of 
molecular quantum chemistry programs based on Hartree–Fock 
theory had achieved the analytical computation of first and sec-
ond derivatives of the total energy. At the same time, computers 
such as the CRAY-1 had become powerful enough to solve the 
Hartree–Fock equations for molecular systems of sufficient size 
representing the key chemical groups occurring in organic and 
biochemical molecules. This led to the idea of creating large and 
consistent training sets for fitting force field parameters using 
ab initio data, namely forces and second derivatives of small 
molecules in various deformed conformations [6]. This con-
cept was implemented in the form of a large industrial con-
sortium led by a San Diego based start-up company. The use of 
ab initio data was the basis for fitting the strong intramolecular 
interactions. However, the weak intermolecular interactions 
still required fitting to experimental data such as densities of 
molecular crystals and molecular liquids. The result of this effort 
was a valence force field called CVFF [6].

The adequate description of bonding in metals requires 
interaction terms beyond simple pair-wise interactions. This 
fact led to the development of empirical N-body potentials by 
Finnis and Sinclair [7]. Parameters for this simple but efficient 
potential could be obtained from fitting to experimental data 
including lattice constants, cohesive energy, and elastic moduli. 
During the same time, important conceptual work was pursued 
by David Pettifor in the development of bond order potentials 
[8]. Compared with the development of first and second deriva-
tives in Hartree–Fock based quantum chemistry programs, this 
important feature was implemented in solid state and molecu-
lar programs using density functional theory, thus enabling the 
exploration of the energy hypersurface of systems such as met-
als, semiconductors, and ceramics. As a result, the development 
of classical interatomic potentials for metals and non-metallic 
inorganic materials shifted increasingly from fitting to experi-
mental data such as lattice parameters, cohesive energies, elastic 
coefficients, and phonon dispersions to the fitting of ab initio 
data.

For metals and metal alloys, the effective medium theory [9] 
and the related embedded atom method (EAM) [10] became 
highly efficient and useful approaches to describe the proper-
ties of metals and alloys such as radiation damage in Fe–Cr 
alloys [11], the diffusion of vacancies and self-interstitials, the 
dynamics of dislocations, and the migration and trapping of H 
interstitials [12]. EAM potentials such as those for the study of 
H in Zr were developed by fitting energies, forces, and stress ten-
sors from ab initio calculations [13]. The physical interpretation 
of the interaction terms in EAM potentials allows calibration 
with experimental data. This convenient aspect of EAM poten-
tials was used, for example, to correct the small error in the 
density predicted by standard density functional theory (DFT) 

calculations [13]. As will be discussed below, MLPs do not offer 
such a direct possibility for compensating intrinsic DFT errors, 
thus requiring more creative approaches to accomplish this task. 
The work with EAM potentials also revealed the limitations of 
this approach. For example, the accurate description of metal-
lurgically important yet subtle properties such as stacking fault 
energies requires a high degree of flexibility in the representation 
of interatomic interactions, which may be beyond the capabili-
ties of EAM potentials. Furthermore, the application of EAM 
potentials to alloys turned out to be difficult, possibly because 
the embedding function and electron densities are only those 
of the elements and so often it is only the pair potential that can 
be tweaked.

Extensions of the EAM potentials by including angular 
terms have been explored and successfully applied [14]. How-
ever, the inclusion of atoms such as oxygen and nitrogen leads 
to the difficult question of charge transfer. Furthermore, the 
description of reactive systems, i.e., the making and breaking of 
bonds, poses tremendous challenges for interatomic potentials. 
To this end, concepts of polarization and charge equilibration 
have been introduced into force fields and have led to forms such 
as charge optimized many body (COMB) potentials and reactive 
force fields such as ReaxFF have been introduced [15]. It is prob-
ably fair to say that in the hands of experts, these approaches 
can be very useful, but their general applicability is littered with 
difficulties and pitfalls. One of the reasons is the interdepend-
ence of parameters, which are conceptually separated into dif-
ferent interaction terms, but in reality, are coupled in a highly 
non-linear manner.

Ionic potentials building on the pioneering concepts of 
Erwin Madelung [16], Max Born and Joseph Mayer [2] turned 
out to be extremely useful for the description of oxides and other 
ionic materials. Using only a few parameters, an amazing rich-
ness of phenomena can be captured [17, 18]. For example, only 
three parameters, namely an effective charge and two parameters 
describing the repulsion between O atoms are sufficient to cap-
ture the thermal expansion of  Li2O and the diffusion coefficients 
of O including the super-ionic pre-melting, and the melting tem-
perature [19].

Common to all the above approaches is the description 
of interatomic interactions in terms of a relatively small set of 
physics-based terms such as the length and strength of chemical 
bonds between pairs of atoms described by a Morse potential, 
the electrostatic interactions between atomic charges formulated 
as Coulomb interaction, and long-range van der Waals interac-
tions with a characteristic 1/r6 dependence.

The greatest limitation to creating predictive classical poten-
tials with quantum mechanical fidelity, as described above, is 
the inability to fit the complicated, multivariate potential energy 
surface of the electronic structure with a small set of param-
eters and simple analytic functions. Consequently, the need to 
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create predictive quantum-based force fields has motivated the 
use of machine learning, which is well suited to fitting compli-
cated multidimensional functions of many-body systems, albeit 
requiring a larger parameter set. Supporting the validity of the 
MLP approach is the “universal approximation theorem” [20], 
which suggests a neural network can be developed to represent 
to a good approximation the electronic structure’s multivariate 
potential energy surface within a training domain.

The innovation of machine learning
In a remarkable paper published in 1998, Gassner et al. dem-
onstrated for the case of  Al3+ ions in water that ‘the advantages 
of a neural network type potential function as a model-inde-
pendent and “semiautomatic” potential function outweigh the 
disadvantages in computing speed and lack of interpretability’ 
[21]. Surprisingly, this idea did not immediately spread across 
the field and it was almost ten years later when Manzhos and 
Carrington combined the high-dimensional model representa-
tion idea of Rabitz and coworkers with neural-network fitting 
to build a multidimensional potential for the potential energy 
surface of water molecules [22, 23], and Behler and Parrinello 
demonstrated a generalized neural-network representation of 
high-dimensional potential-energy surfaces for the case of bulk 
Si [24]. In 2010, Bartók et al. introduced the Gaussian Approxi-
mation Potential and showed the power of this approach by 
computing bulk and surface properties of diamond, silicon, 
germanium, and phonon dispersions of iron, achieving unprec-
edented fidelity in reproducing the ab initio results [25].

Recognizing the innovative character of machine learning 
approaches to generate interatomic potentials, the field started 
to expand rapidly leading to a variety of implementations and 
promising applications. This evolution also revealed serious 
challenges and obstacles such as finding the most efficient proto-
col to create training sets, selecting the best mathematical form 
of representing the potential, and performing the fit of the large 
number of parameters. The use of MLPs in molecular dynamics 
simulations revealed aberrations such as sudden fusion of atoms 
and obviously unphysical breaking of bonds, which called for 
careful extensions of the respective training sets to inform the 
potential about such situations. Over time, experience with con-
structing training sets and generating MLPs has grown and the 
power and promise of MLPs by far outweigh the early concerns.

The key features of MLPs and their similarities with classical 
force fields are:

1. The total energy of a system is expressed as a sum of the 
contributions from each atom. While this is also true 
for potentials like EAM, it is not for valence force fields 
using parameters for bond-angles (3-body) and dihedrals 
(4-body) terms as well electrostatic terms.

2. The energy of each atom only depends on the atom type 
and position of the neighboring atoms within a relatively 
short radius. In other words, the interactions of an atom 
with its surroundings are assumed to be of a local nature. 
Again, this is similar to classical force fields, but in contrast 
to typical organic force fields, there is no concept of bonds 
between atoms.

3. The energy of each atom is described by an expansion in 
generic functions. These functions are translationally and 
rotationally invariant, and they do not have a direct physical 
interpretation.

4. The coefficients of these functions are determined either by 
a regression method or by a neural network using a training 
set that provides energies, forces, and stress tensors for a 
comprehensive set of systems that sample the configura-
tional space of interest.

5. These primary fitting data are typically obtained from quan-
tum mechanical calculations. The errors due to the approxi-
mations in the ab initio calculations are inherited by the 
resulting MLP.

6. Once created, MLPs cannot easily be calibrated with experi-
mental data.

These key features have remarkable consequences, namely:

1. By construction, there is no concept of chemical bonds in 
the above constructed MLPs. In other words, MLPs are 
reactive force fields.

2. MLPs do not consider atomic charges or charge transfer 
between atoms. Solely, the geometric and chemical environ-
ment of an atom determines its energy. There is no concept 
of metallic, covalent, or ionic bonds. The absence of atomic 
charges is a remarkable feature and, amazingly, MLPs can 
describe ionic crystals very well. This is also a limitation, 
since long-range electrostatic interactions, for example due 
to charged point defects in an oxide or ions in a liquid, will 
require a special treatment.

3. Since MLPs are lacking physical insight, they do not per se 
prevent atoms from getting very close or systems to break 
into fragments unless explicitly trained.

4. A rather large number of systems and configurations are 
needed to train an MLP. This can amount to thousands of 
structures to inform an MLP about the hypersurface of the 
system of interest.

5. In principle, MLPs can be combined with classical force 
fields. For example, it is possible to add short-range repul-
sive terms to prevent atoms getting too close during molec-
ular dynamics simulations. Along the same lines, it is also 
possible to use MLPs to capture the difference between a 
classical potential and DFT.
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6. While MLPs are based on a single and uniform source, 
namely, quantum mechanical calculations, information 
about specific systems, such as experimental data, are not 
included in the fitting process, since this would spoil the 
consistency of the training set. In fact, an attempt to mix 
quantum mechanically computed total energies and forces 
with experimental data such as elastic coefficients would 
constitute a mismatch in the types of data.

The overall workflow of the creation and use of an MLP is 
illustrated in Fig. 1.

Since the early seminal papers, the field has seen a lot of 
developments and refinements. In particular, Behler has put for-
ward approaches based on Neural Network Potentials (NNPs) 
by introducing different sets of symmetry functions used to rep-
resent the local atomic environments, which are represented in 
terms of pairwise distances between all atoms of a local cluster, 
as well as different activation functions for the neural network 
[26–29]. These developments have also been discussed in more 
recent reviews [30, 31], whereas the early developments in this 
field have been summarized by Handley and Popelier [32].

An alternative route was taken by regression methods 
as first developed Bartók et al. by introducing the Gaussian 

Approximation Potential (GAP) [25]. Instead of using pair-
wise atomic distances to describe local atomic structures these 
authors preferred to work with combinations of radial functions 
and spherical harmonics, which they transformed into bispec-
trum coefficients allowing them to ensure the rotational sym-
metry of the local representation in addition to translational 
and permutation symmetry [33, 34]. Later on, this approach 
was adopted by Thompson and coworkers, while introducing 
the Spectral Neighbor Analysis Potential (SNAP) [35–37] and 
quadratic SNAP (qSNAP) [38]. However, while Bartók et al. 
relied on Bayesian regression, Thompson et al. preferred lin-
ear regression. Shapeev and coworkers proposed a yet different 
method, the Moment Tensor Potential (MTP), which is based 
on a representation of the local atomic environments in terms of 
harmonic polynomials [39–41]. Finally, Drautz introduced the 
Atomic Cluster Expansion (ACE), which turned out to be more 
general than the previous approaches and to include these as 
limiting cases [42–47]. Once generated, most of these MLPs can 
be used with LAMMPS, which is nowadays the standard code 
for classical molecular dynamics simulations [48].

Beyond the methods of determining the functional form 
and the parameters of MLPs a variety of approaches have been 
developed to improve efficiency in the creation of training sets. 
In this respect, learning-on-the-fly is a special case. One of the 
pioneers of this approach was Alesandro de Vita who demon-
strated this approach using classical potentials [49] as well as 
for MLPs [50]. On-the-fly-learning was also implemented in 
the MTP scheme, where it was successfully applied to the study 
of vacancy diffusion in Al, Mo, and Si [40]. A particularly effi-
cient realization of this concept was accomplished in the group 
of Georg Kresse and implemented in the Vienna Ab initio Simu-
lation Package (VASP) [51–53]. In this approach, a molecular 
dynamics simulation is started using initially DFT to determine 
the energies and forces needed to propagate the system. The 
ab initio data are used to generate on the fly an MLP which is 
then used to evolve the molecular dynamics (MD) trajectory. A 
Bayesian inference is used to determine the need for expand-
ing the training and to update the MLP. The net result is a dra-
matic acceleration of the molecular dynamics simulation while 
remaining very close to the DFT trajectories. This approach has 
been successfully applied to Zr and  ZrO2 [54–56].

A related approach to overcome the limitations of static 
training sets created before the actual process of generating an 
MLP is active learning, which as indicated in Fig. 1 allows to 
dynamically extend the training set as the calculations using a 
previously generated MLP proceed [41, 47, 57, 58]. This requires 
in each step measures to check an MLP for going beyond its 
range of reliability. In the simplest case this means to perform a 
similarity check of the structures created in the course of an MD 
simulation using the MLP against the structures of the training 
set used to generate the MLP. In case that the similarity check 

Figure 1:  Workflow of construction, optimization, and use of machine-
learned potentials.
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fails, the new structure is included in the training set and a new 
MLP is generated.

While generating MLPs solely from quantum mechanical 
calculations without inclusion of other sources of information 
as, e.g., experimental data has the advantage of guaranteeing 
consistency of training sets, it comes at the same time with the 
disadvantage of being bound to the approximations underlying 
those calculations. Specifically, as well-known, the limitations of 
the local and semi-local approximations to density functional 
theory turn out to be insufficient for the treatment, e.g., of semi-
conductors and insulators as well as materials with localized 
electronic states. Approaches with higher-level approximations 
exist but come with higher computational demands. A particu-
larly elegant method to keep the additional effort at a minimum 
is Δ-learning as recently introduced by several authors [59–62] 
and combined with an on-the-fly-learning approach by Kresse 
and coworkers [56]. This approach is based on the assumption 
that the difference of the energies arising from calculations 
using a low-level approximation as, e.g., generalized gradi-
ent approximation (GGA) and a high-level approximation as, 
e.g., metaGGA, hybrid functional, or RPA varies much more 
smoothly across the configurational space spanned by a training 
set than the low-level energies themselves. As a consequence, it 
should be sufficient to perform only low-level calculations for 
the full training set while restricting the high-level calculations 
to a much smaller set. If the latter is not a strict subset of the 
full training set, additional inexpensive low-level calculations 
must be performed for this set. Finally, two different MLPs are 
generated, one from the low-level results for the full training 
set and another one from the difference between the low-level 
and high-level results obtained for the smaller set, and these 
two MLPs are combined to a Δ-learned high-level MLP. The 

efficiency and validity of this approach have been demonstrated 
for  ZrO2 [56] (see Fig. 2).

Recently, the generation of MLPs for magnetic systems 
came into focus. In particular, magnetic MLPs were sought to 
study magnetization dynamics and spin–lattice interaction at 
elevated temperatures. Several approaches to magnetic MLPs 
have been discussed in the literature so far. Dragoni et al. dem-
onstrated that the GAP approach can successfully describe the 
energetic and thermodynamics of ferromagnetic α-iron includ-
ing the energetics of point defects [63]. The potential was also 
able to reproduce the Bain path connecting the bcc, bct, and fcc 
structures. Novikov et al. developed a magnetic Moment Ten-
sor Potential (MTP) and applied it to the ferromagnetic and 
paramagnetic states of bcc Fe [64]. While their method is appli-
cable only to collinear spin arrangements, the magnetic SNAP 
technique proposed by Nikolov et al. is based on an extended 
Heisenberg model with parameters taken from additional ab ini-
tio spin-spiral calculations [65]. Yet, the underlying pairwise 
spin interaction can result in limitations, especially for dis-
ordered systems. This is different in the method proposed by 
Eckhoff and Behler [66, 67], which includes the full spin struc-
ture within each local atomic cluster. The same is true for the 
magnetic version of the Atomic Cluster Expansion [43], which 
has been successfully applied to the investigation of bcc and 
fcc Fe [68].

Basic concepts of MLPs
From a bird’s eye view, generation of MLPs is most easily under-
stood in terms of two parts, which efficiently access and process 
the information stored in the training set. To this end, one often 
distinguishes a descriptor, which describes atomic structures, 

Figure 2:  Demonstration of the accuracy of Δ-learning as applied to (a) monoclinic, (b) tetragonal, and (c) cubic  ZrO2 [56]. Phonon dispersions 
computed with SCAN exchange correlation functionals are well reproduced with a machine-learned force field (MLFF) generated with a SCAN-based 
training set and a PBE training set adjusted with Δ-learning to SCAN  (SCANΔ). The Δ-learning function was generated with a subset of 100 simulations 
recomputed with SCAN. The MLFF-SCANΔ is illustrated to precisely reproduce the MLFF-SCAN results.
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and a regressor, which maps the structural information to ener-
gies, forces, and stresses [39].

The descriptor is usually based on dividing the atomic struc-
ture, be it a molecule or a periodic structure, into local atomic 
environments comprising a few tens of atoms. This situation 
is sketched in Fig. 3, where a local cluster centered about the 
central atom is highlighted. Within each local atomic environ-
ment, the atomic structure is described in terms of the (relative) 
atomic positions and the respective atom types. This description 
can be written as 

where the index i designates the central atom of a cluster, while 
the index j enumerates all atoms in the cluster of atom i. The 
vector rji designates the relative atomic position of atom j in the 
cluster with respect to the central atom i in sphercial coordi-
nates. Alternatively, the atomic structure in a local cluster can 
be specified in terms of all pairwise distances rjl in the cluster. 
While Neural Network potentials often prefer to work with 
pairwise distances, regression methods often employ a repre-
sentation in terms of spherical coordinates. The parameters Aj 
indicate the atomic species. N and Ni denote the number of all 
atoms in the system and of all atoms in the cluster surrounding 
atom i, respectively. Finally, the index k labels different descrip-
tor functions, which in the context of neural networks are often 
called symmetry functions and which could be combinations of 
radial functions and spherical harmonics. 

Following the basic idea underlying the descriptor, the 
regressor divides the energies, forces, and stress tensor compo-
nent values into contributions from all local atomic environ-
ments, expresses these quantities in terms of the descriptors, and 
determines the parameters entering these expressions, which 

Bi,k = Bi,k
({

r ji ,Aj , j = 1, . . . ,Ni

})

, i = 1, . . . ,N ,

in the simplest case given below are the expansion coefficients 
of a linear combination. Specifically, the total system energy is 
written as,

where again i labels the different atoms. Within each atomic 
cluster, the energy is then expressed in terms of the local atomic 
descriptors Bi,k. In the simple case of a linear-regression scheme 
this energy dependence would assume the form 

The corresponding formula for the forces reads as

Of course, the complexity of the approach is hidden in the 
functional form of the coefficients Bi,k.

The general paradigm presented above is adopted by all 
existing approaches, which are distinguished by their descrip-
tors of the atomic structures and their regressors, i.e., their 
approaches for determining the parameters characterizing the 
MLP, although NNPs follow a different route to determine the 
parameters entering the MLP.

Applications of MLPs
In general, the breathtaking progress in the development of new 
approaches and tools enabling generation of efficient and accu-
rate MLPs has been complemented by an ever-increasing num-
ber of applications to different kinds of materials including mul-
tinary metallic alloys, semiconductors, oxides, and liquids. Of 
course, this is due in a large part to the fact that MLPs are gen-
eral in terms of the tractable systems and free of any notions like 
atomic charges, bonds, or magnetic moments. MLPs have been 
demonstrated to work well for large length and time scale MD 
simulations of  109 atoms for 1 ns [69]. Atomistic simulations 
with MLPs are found to reliably predict material phenomena 
and material properties of interest to scientific and engineering 
applications. Such properties include elastic moduli, phase tran-
sitions, phase diagrams, thermal conductivity, radiation damage, 
dislocations behavior, fracture, diffusion, lattice expansion, and 
phonon spectra [40, 54–56, 70–81]. Excellent overviews of the 
field focusing on both advances in method development and 
applications have been recently presented by Schmidt et al. as 
well as by Zuo et al. [82, 83].

The use of MLPs for the study of metallurgical phenomena, 
as exemplified in Fig. 4 and Fig. 5, has evolved quickly because 

E =

∑

i

Ei ,

Ei = β0 +

K
∑

k=1

βkBi,k

F j = −∇jE = −∇j

∑

i

Ei = −

∑

i

K
∑

k=1

βk∇jBi,k

Figure 3:  Illustration of the environment-dependence of atomic energies 
for a system with periodic boundary conditions. The energy contribution 
of the atom at the center of the blue circle depends on the positions of 
all the atoms within the dashed spherical boundary that is defined by its 
cutoff radius.
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traditional interatomic potentials of the EAM and MEAM type 
have often been unable to deal with important classes of prob-
lems. For instance, (i) few EAM potentials properly represent the 
structure and motion of the crucial screw dislocations in body-
centered-cubic metals, (ii) EAM/MEAM potentials are often not 
quantitatively accurate for metal alloys due to the way alloying 
effects can be included, and (iii) such potentials often struggle 
to show physical behavior at the tips of sharp cracks. All these 
examples, and more, precisely encompass the kinds of systems 
and problems that are at the core of critical metallurgical issues 
in technologically important alloys.

A key feature in MLP development for metals is an appro-
priate scope of training structures. Metallurgical performance 
is controlled by the motion and interaction of defects (dislo-
cations, cracks, grain boundaries, vacancies, precipitates) in 
the material. Thus, training structures that are limited to bulk 
properties (lattice constants, cohesive energies, elastic constants, 
phonon spectra) plus a few simple defects (vicinal surface ener-
gies, vacancy formation energy, possible a stacking fault energy) 
are usually not at all sufficient to create an MLP that is “transfer-
able” to complex crystalline defects, their interactions, and their 

behavior in alloys. The form of the MLP (neural network, GAP, 
SNAP, moment-tensor potential, etc.) may be less important 
than the database of training structures, although each type of 
MLP has advantages and disadvantages in terms of flexibility, 
generality, accuracy, and computational cost.

Of course, listing all published work on applications of 
MLPs to real materials would be far beyond this Introduction 
and so we mention only a few selected publications with sev-
eral illustrated in Fig. 6. Of these applications a large focus is 
given to metals and metallurgy where MLPs have been highly 
successful. Nonetheless, the types of computations such as pho-
nons, thermodynamics, and phase stability are applicable to 
all materials.

Seko et al. used compressed sensing techniques to reproduce 
energies, forces, and stress tensors, thus enabling the prediction 
of properties such as lattice constants and phonon dispersions 
for ten elemental metals, namely Ag, Al, Au, Ca, Cu, Ga, In K, 
Li, and Zn [85]. Eshet et al. used a neural network approach to 
create an MLP to simulate the high-pressure behavior of solid 
and liquid sodium [86] and Jose et al. demonstrated the per-
formance of neural network potentials for solid copper [87]. 

Figure 4:  Atomistic simulation of strengthening in Al-6xxx alloys by nanoscale  Mg5Si6 β” precipitates having a 22-atom monoclinic unit cell, using a 
near-chemically-accurate NNP for the Al-Mg-Si system [84]. Only non-fcc atoms in a slice of crystal containing the dislocation slip plane are shown. 
For the same precipitate and orientation, an Al edge dislocation (gray band) cuts (top) through the precipitate when sheared to the right but loops 
(bottom) around the precipitate when sheared to the left. The asymmetry arises due to the asymmetry of the precipitate shearing energy and the 
sign of the residual misfit stresses in the precipitate. Accurate simulations require accurate representation of (i) the Al matrix and its dislocations, (ii) 
the precipitate lattice, elastic, and shearing properties, and (iii) the precipitate/Al interfaces. Execution at scales relevant to experiments (precipitate 
spacing of ~300A, in full 3d samples) is far beyond the capabilities of first-principles methods. These features make MLPs essential. Adapted from Ref. 
[84]
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Kruglov et al. simulated the density of solid and liquid Al and 
computed the phonon density of states, entropy, and melting 
temperature of solid Al in excellent agreement with experimen-
tal data and results from ab initio calculations [88], whereas 
Botu et al. constructed an MLP for elemental Al using only 
forces calculated for reference atomic structures including bulk 
Al with lattice expansion and contraction, surfaces, isolated clus-
ters, point defects, grain boundaries, and dislocations resulting 
in several millions of local configurations [89]. Zong et al. used 
an MLP to calculate the elastic and vibrational properties as 
well as the phase stability of Zr [71], whereas Qian et al., using 
a Gaussian Approximation Potential, focused especially on the 
β-phase of Zr, which displays unstable phonon modes at 0 K, 
and were able to attribute this instability to a double well of the 
potential energy surface with a maximum at the equilibrium bcc 
structure, which vanishes at high temperatures due to dynamical 
averaging of the low-symmetry minima at elevated temperatures 
[72]. Radiation damage and defects in tungsten were studied by 
Byggmästar et al. also using GAP, who found excellent agree-
ment of surface properties and defect energies with the DFT 
results [73].

Worth mentioning is also a study by Li et al., who dem-
onstrated the successful application of MLPs to quaternary 
metallic alloys [90, 91]. Using a “physically-informed neural 
network”, which combines machine learning with an imposi-
tion of physically-motivated forms for underlying functions 
appearing in the potential, Mishin et al. were able to accurately 
capture the structure and motion of the key screw dislocation 
in bcc Ta [92], while the GAP potential for Fe [93] and the 
Moment Tensor Potential for W [94] showed similar physi-
cal results. These, and other studies, are enabling some new 
understanding of plasticity in this important new class of alloys 
where widely used EAM potentials show the usual artifacts for 
screw dislocations. A neural network approach to hexagonally 

close-packed Ti and Zr elemental metals showed broadly good 
behavior for the many different dislocation slip systems (basal, 
prismatic, pyramidal) in hcp crystals [95]. Using a neural net-
work framework and putting strong emphasis on an exten-
sive and metallurgically-relevant training dataset to develop 
a series of MLPs of increasing alloy complexity (Al, Al–Cu, 
Al–Mg–Si, Al–Mg–Cu, Al–Mg–Cu–Zn) Marchand and Cur-
tin were able to capture dislocations, solutes, precipitates, etc. 
that are now enabling atomic-scale study of technological Al 
alloys (Al-2xxx, Al-5xxx, Al-6xxx, and Al-7xxx families) [96]. 
Neural network potentials for Mg [75] and Zr [76] revealed 
unexpected plastic flow behavior that rationalizes experimen-
tal observations [97].

While initial applications of MLPs focused on metals and 
alloys, the approach has more recently also been applied to 
a range of other systems including solids, liquids, and mole-
cules. Deringer and Csányi generated a Gaussian Approxima-
tion Potential for amorphous carbon from ab initio molecular 
dynamics trajectories of liquid structures at temperatures up to 
9000 K [98], whereas Bartók et al. used the same approach to 
train a model of Si surfaces, which reproduced the 2 × 1 recon-
struction of the Si(001) surface with the correct tilt angle of the 
surface dimers as well as the famous Si(111)− 7 × 7 reconstruc-
tion, which are inaccessible to the traditional classical intera-
tomic potentials or forcefields [62]. Shaidu et al. demonstrated 
the ability of a neural network potential to calculate elastic and 
vibrational properties of diamond, graphite, and graphene as 
well as the phase stability and structures of a wide range of crys-
talline and amorphous phases in good agreement with ab initio 
data [70], while Babaei et al. investigated phonon transport in 
crystalline Si with and without vacancies likewise using GAP 
and found very good agreement with results obtained from DFT 
calculations but much larger errors when classical forcefields 
were applied [74]. Ghasemi et al. presented an efficient approach 

Figure 5:  (a) Competing slip systems for <a> Burgers vector screw dislocation motion in hcp Zr. A Zr NNP predicts (b) the prismatic dislocation to be the 
preferred (stable) system, (c) the pyramidal dislocation to be metastable with energy 7 meV/A higher than the prism screw, and (not shown) the basal 
dislocation unstably transforming into the prism core. All these essential features of plastic slip in hcp Zr agree with experiments. In small DFT cells, 
the prism -pyramidal energy difference is only 3.2+/-1.6 meV/A and the NNP predicts 3.8 meV/A in good agreement but both much smaller than the 
large-size value of 7 meV/A, demonstrating the need to study these problems at scales far beyond what is feasible in DFT. Color contours show the Nye 
Tensor of the plastic displacement associated with each atomistic core structure. Adapted from [76].
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to capture long-range electrostatic effects in clusters of NaCl 
and to combine them with short-range terms based on local 
ordering [99].

Among applications to molecules and molecular systems 
is work by Jose et al., who demonstrated the performance of 
neural network potentials for methanol molecules [87] as well 

Figure 6:  (a) HCP (top) vs BCC (bottom) MD predicted phonons at 300 K and 1188 K, respectively, using a GAP by Qian et al. [72]. The BCC phonons 
illustrated with spectral energy density (SED) analysis exhibit large anharmonicities that correspond to a phase instability at lower temperatures. 
(b) Statistical performance of multinary SNAPs of Li et al. for metallurgy studies (reproduced from [90] according to the Creative Commons License 
(https:// creat iveco mmons. org/ licen ses/ by/4. 0/)). (c) Exemplar strong defect prediction performance of a GAP for W that Byggmästar et al. developed 
for radiation damage studies [73]. The DFT accurate GAP for W was applied to radiation damage cascade simulations to identify a preference for 
spherical void formation due to radiation damage. (d) Thermal expansion of the Eshet et al. NNP for Na illustrated as strongly trending with experiment 
[86].

https://creativecommons.org/licenses/by/4.0/
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as by Brockherde et al. for small molecular systems including 
the internal proton transfer in malonaldehyde  (C3O2H4) [100]. 
MLPs have also been used to study proton transport reactions 
in large molecules. Jinnouchi et al. developed an MLP trained 
with on-the-fly ab initio MD to study proton conductivity mech-
anisms via charge transfer (see Fig. 7 for illustrative example 
in liquid  H2O) in dry and hydrated Nafion polymer systems 
[101]. Water, arguably the most important liquid on earth, has 
also been a focus of MLP studies [102, 103]. Zhang et al. have 
computed the phase diagram of  H2O as a function of pressure 
and temperature using a combination of deep neural network 
MLPs, capturing the major liquid and solid phases to within 
reasonable quantitative agreement with experiment [77]. More 
recently, Singraber et al. performed molecular dynamics simula-
tions for water using a high-dimensional neural network poten-
tial [104–106], whereas Ko et al. demonstrated the validity of 
such neural networks for a wide range of organic molecules and 
metal cluster [107].

Finally, phase stability was addressed by Sosso et al., who 
created a neural network potential, which allowed an accurate 
description of the liquid, crystalline, and amorphous phases of 
the phases change material GeTe [108] as well as by Artrith and 
Urban, who successfully constructed an MLP for  TiO2 using 
an artificial neural network approach, which in addition to 
correctly describing the phase stability of rutile, anatase, and 
brookite allowed predictions about the stability of high-pres-
sure columbite and baddeleyite phases [109]. Artrith et al. also 

predicted stability of amorphous structures in the system  LixSi1-x 
using a total of about 45,000 reference structures to train an 
artificial neural network (ANN) potential [110].

Overview of this Focus Issue
The dynamic development of the field and the excitement of many 
researchers assimilating the new ideas and applying the various 
approaches is well reflected by this Focus Issue. A representative 
selection of methods for generating machine-learned potentials is 
employed to describe the properties of an assortment of material 
systems including metals and alloys, oxides, silicates, semiconduc-
tors, graphanol, liquid silicon, and superionic conductors. Owing 
to the still limited experience with the various approaches, some 
of the contribution put emphasis on comparing different meth-
ods or different parameter settings and their impact on the final 
results as well as on the efficiency of generating and applying the 
respective MLPs. Others present new approaches.

Meziere et al. focus on an efficient creation of training sets 
for machine-learned potentials [111]. In doing so, they present 
a small-cell training approach, which is based on the idea of 
systematically extending the training set starting from unit cells 
with only a few atoms and moving on to larger and larger cells. 
In each step the generated MLP is tested on the structures of 
the next-largest cell size and the process is stopped if the latter 
are successfully described by the actual MLP. The approach is 
applied to zirconium and its hydrides.

Figure 7:  Illustration of proton charge transfer between water molecules, right molecule to left in inset, using a SNAP generated from GGA-BLYP 
ab initio MD calculations. The use of SNAP demonstrates that MLPs may be reactive in general not only the deep neural network potentials common 
for chemistry applications.
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Zhou et al. reflect on the known transferability of physi-
cally motivated forcefields such as the Embedded Atom Method 
beyond the portion of configuration space defined by the train-
ing data and the difficulties of MLPs to provide a similar trans-
ferability and stability [112]. This leads them to propose a modi-
fication of a Neural Network Potential by including information 
from an EAM potential to bound the energies of the former. 
The validity of their approach is demonstrated with zinc as an 
example.

Being interested in proton exchange membranes operating 
a higher temperature and low humidities, Achar et al. gener-
ate a deep-learning neural network potential to investigate 
double-sided graphanol, the hydroxyl functionalized form of 
graphene, which is the hydrogenated version of graphene [113]. 
Generation of the potential involved active learning to improve 
its robustness on extending the configuration space. Extensive 
tests with systems of up to 30,000 atoms demonstrated the valid-
ity of the potential to predict, e.g., thermal fluctuations and self-
diffusivities with high efficiency and near-DFT accuracy.

Liang et al. use a semi-automated workflow ranging from 
high-throughput DFT calculations, efficient fitting and vali-
dation procedures including active learning and uncertainty 
indication to demonstrate the accuracy of the Atomic Cluster 
Expansion (ACE) with a study on Pt–Rh nanoparticles, which 
play an important role in catalysis [114]. Applying the gener-
ated potential in MD simulation at elevated temperatures they 
are able to show that experimentally observed thick Pt shells 
covering a Rh core are kinetically stabilized rather than being 
thermodynamically stable.

Distinguishing between the local atomic environments 
(descriptors) and the models (regressors) as the main ingredi-
ents for generating MLPs, Rohskopf et al. focus on the impact 
of the latter on the validity of an MLP for use in subsequent 
calculations of materials properties [115]. In doing so, they 
use models of different complexity ranging from linear regres-
sion to non-linear neural networks and investigate solid and 
liquid phases of silicon, GaN, and the superionic conductor 
 Li10Ge(PS6)2 (LGPS). This allows the authors to discuss the spe-
cific advantages of linear and non-linear models if combined 
with different descriptors.

Semba et al. perform ab initio MD simulations with on-
the-fly learning to generate an MLP for the investigation of the 
impact of oxygen and hydrogen on the structural and electronic 
properties of interfaces between amorphous and crystalline sili-
con [116]. This approach enables them to examine in-gap states 
that could influence the performance solar cells including such 
interfaces.

Using a machine-learned potential, Sotskov et al. present 
an algorithm for on-lattice crystal structure prediction, which 
provides a route for efficient high-throughput discovery of 
multicomponent alloys [117]. The algorithm is based on the 

systematic addition of atoms on the lattice sites of a supercell 
and calculation of the total energies in each step using an MLP. 
The approach is validated with the binary, ternary, and quater-
nary alloys of Nb, Mo, Ta, and W, for which new stable struc-
tures are found.

With an application focus, Jain et al. use an Al–Mg–Si NNP 
to study the natural (room temperature) aging in the Al-6xxx 
alloys widely used in the automotive industry [118]. They reveal 
that the origin of significant retardation of natural aging is the 
trapping of vacancies (responsible for mediating transport of 
solute elements in the alloy) in small 10–14 atom Mg-Si clus-
ters. While long speculated to be the case, direct experimental 
evidence is difficult and hence the use of a near-chemically-
accurate NNP is enabling insight into critical aspects of alloy 
processing.

Hill and Mannstadt perform a systematic comparison of 
different machine-learned potentials by investigating predicted 
structures, thermal expansion coefficients, and ionic conduc-
tivities of α- and β-eucryptite, which attracted interest in the 
glass industry due to their very low thermal expansion [119]. 
Despite significant differences of the fit errors produced by dif-
ferent methods calculated cell parameters and thermal expan-
sion coefficients are of similar quality.

Perspectives
Insight into mechanisms and the quantitative prediction of 
materials properties can be considered as main goals of com-
putational materials science. To this end, reliable simulations 
are needed that reach from macroscopic engineering scales to 
atomic-scale phenomena. In this context, MLPs are beginning 
to play a critical role in taking the accuracy of ab initio quan-
tum mechanical computations from the scale of models with a 
few hundred atoms and sampling of a few thousand configura-
tions to the level of potentially millions of atoms in millions 
of configurations. The linear scaling of simulations with MLPs 
and their computational parallelization are additional benefits 
of great practical value.

Current applications of MLPs, as shown in the present 
Focus Issue, clearly demonstrate the exciting possibilities of 
this approach but they also expose a number of remaining chal-
lenges. It is probably fair to say that the representative sampling 
of the configuration space in the construction of training sets is 
of critical, if not the most urgent, importance. Possibly for this 
reason so far, the most successful applications of MLPs have 
been in areas where the configurational space is reasonably well 
confined. For example, considering dislocations or crack for-
mations in an fcc metal, most of the atoms in models of such 
systems are in the atomic environment of the perfect lattice and 
only a relatively small number of atoms are in different sur-
roundings. Hence, useful training sets can be constructed from 
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unit cells of the dominant crystal structure augmented by mod-
els representing atoms at surfaces, dislocation cores, and grain 
boundaries. In addition, information about other lattice types, 
e.g., hcp and bcc is needed to train an MLP.

The situation is dramatically different considering, for 
example, organic liquids, and polymers. The absence of any 
translational periodicity is aggravated by the fact that there are 
numerous ways to break bonds. Hence, training an MLP for 
such systems is exceedingly challenging. Even if an MLP exhibits 
amazingly accurate reproduction of the reference energies and 
forces, practical applications of such an MLP in long molecular 
dynamics simulations as needed to compute liquid properties 
such as diffusion and viscosity encounter stability problems.

Generality and transferability of MLPs is another important 
issue which can be expected to drive research and development 
efforts. A recently published work [120] shows the develop-
ment of a general neural network based MLP using over 30 
million DFT calculations as training set. The universality of 
this approach seems to be promising, but the robustness and 
predictive power of this potential remains to be seen.

The accuracy of MLPs hinges on the quality of the under-
lying training set. While standard DFT calculations using 
exchange–correlation potentials such as the GGA in the form 
of the Perdew, Burke, Ernzerhof are extremely useful, in final 
analysis this type of approximation to the many-body problem 
can lead to significant errors in predicted properties, for exam-
ple binding energies of molecules on surfaces. To overcome the 
difficulties originating from this dependence on the accuracy 
of the underlying quantum mechanical calculations, methods 
such as Δ-learning [56] are extremely interesting. At the same 
time, the need for highly accurate yet computationally efficient 
ab initio calculations provides a stimulus to advance the field of 
electronic structure theory.

Given the relatively early stages of MLP technology and its 
undeniable successes, we can expect that this field will be very 
active for many years to come. Systematic applications to an 
increasingly wider class of systems and applications will move 
the field forward. MLPs are poised to become an indispensable 
part in the arsenal of methods available to the materials mod-
eling community. As editors of this Focus Issue we hope that the 
selection of articles will provide a better appreciation of the cur-
rent capabilities as well as showing the challenges, thus stimulat-
ing further research of this exciting field.
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