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Abstract
In this paper, we characterize the class of extremal points of the unit ball of the Hessian–
Schatten total variation (HTV) functional. The underlying motivation for our work stems
from a general representer theorem that characterizes the solution set of regularized linear
inverse problems in terms of the extremal points of the regularization ball. Our analysis is
mainly based on studying the class of continuous and piecewise linear (CPWL) functions.
In particular, we show that in dimension d = 2, CPWL functions are dense in the unit ball
of the HTV functional. Moreover, we prove that a CPWL function is extremal if and only if
its Hessian is minimally supported. For the converse, we prove that the density result (which
we have only proven for dimension d = 2) implies that the closure of the CPWL extreme
points contains all extremal points.
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1 Introduction

Broadly speaking, the goal of an inverse problem is to reconstruct an unknown signal of
interest from a collection of (possibly noisy) observations. Linear inverse problems, in par-
ticular, are prevalent in various areas of signal processing, such as denoising, impainting, and
image reconstruction. They are defined via the specification of three principal components:
(i) a hypothesis space F from which we aim to reconstruct the unknown signal f ∗ ∈ F ; (ii)
a linear forward operator ν : F → R

M that models the data acquisition process; and, (iii) the
observed data that is stored in an array y ∈ R

M with the implicit assumption that y ≈ ν( f ∗).
The task is then to (approximately) reconstruct the unknown signal f ∗ from the observed
data y. From a variational perspective, the problem can be formulated as a minimization of
the form

f ∗ ∈ argmin
f ∈F

(E (ν( f ), y) + λR( f )) , (1)

where E : RM ×R
M → R is a convex loss function that measures the data discrepancy,R :

F → R is the regularization functional that enforces prior knowledge on the reconstructed
signal, and λ > 0 is a tunable parameter that adjusts the two terms.

The use of regularization for solving inverse problems dates back to the 1960s, when
Tikhonov proposed a quadratic (�2-type) functional for solving finite-dimensional problems
[46]. More recently, Tikhonov regularization has been outperformed by �1-type functionals
in various settings [28, 45]. This is largely due to the sparsity-promoting effect of the latter,
in the sense that the solution of an �1-regularized inverse problem can be typically written
as the linear combination of a few predefined elements, known as atoms [17, 27]. Sparsity
is a pivotal concept in modern signal processing and constitutes the core of many celebrated
methods. The most notable example is the framework of compressed sensing [19, 26, 29],
which has brought lots of attention in the past decades.

In general, regularization enhances the stability of the problem and alleviates its inherent
ill-posedness, especially when the hypothesis space is much larger than M . While this can
happen in the discrete setting (e.g. when F = R

d with d � M), it is inevitable in the
continuum where F is an infinite-dimensional space of functions. Since naturally occurring
signals and images are usually indexed over the whole continuum, studying continuous-
domain problems is, therefore, undeniably important. It thus comes with no surprise to see
the rich literature on this class of optimization problems. Among the classical examples are
the smoothing splines for interpolation [39, 43] and the celebrated framework of learning
over reproducing kernel Hilbert spaces [42, 50]. Remarkably, the latter laid the foundation
of numerous kernel-based machine learning schemes such as support-vector machines [31].
The key theoretical result of these frameworks is a “representer theorem” that provides a
parametric form for their optimal solutions. While these examples formulate optimization
problems over Hilbert spaces, the representer theorem has been recently extended to cover
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Linear inverse problems with Hessian–Schatten total variation Page 3 of 28 9

generic convex optimization problems over Banach spaces [12, 15, 47, 49]. In simple terms,
these abstract results characterize the solution set of (1) in terms of the extreme points of the
unit ball of the regularization functional BR = { f ∈ F : R( f ) ≤ 1}. Hence, the original
problem can be translated in finding the extreme points of the unit ball BR.

In parallel, Osher–Rudin–Fatemi’s total-variation has been systematically explored in the
context of image restoration and denoising [20, 32, 40]. The total-variation of a differentiable
function f : � → R can be computed as

TV( f ) =
ˆ

�

‖∇ f (x)‖�2dx. (2)

The notion can be extended to cover non-differentiable functions using the theory of functions
with bounded variation [2, 21]. In this case, the representer theorem states that the solution
can be written as the linear combination of some indicator functions [15]. This adequately
explains the so called “stair-case effect” of TV regularization. Subsequently, higher-order
generalizations of TV regularization have been proposed by Bredies et al. [13, 14, 16].
Particularly, the second-order TV has been used in various applications [9, 33, 34]. By
analogy with (2), the second-order TV is defined over the space of functions with bounded
Hessian [25]. In particular, it can be computed for twice-differentiable functions f : � → R

as

TV(2)( f ) =
ˆ

�

‖∇2 f (x)‖Fdx, (3)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Lefkimiatis et al. generalized the notion
by replacing the Frobenius norm with any Schatten-p norm for p ∈ [1,+∞] [35, 36]. While
this had been only defined for twice-differentiable functions, it has been recently extended
to the space of functions with bounded Hessian [6]. The extended seminorm—the Hessian–
Schatten total variation (HTV)—has also been used for learning continuous and piecewise
linear (CPWL) mappings [18, 38]. The motivation and importance of the latter stems from
the following observations:

(1) The CPWL family plays a significant role in deep learning. Indeed, it is known that
the input–output mapping of any deep neural networks (DNN) with rectified linear unit
(ReLU) activation functions is a CPWL function [37]. Conversely, any CPWL mapping
can be exactly represented by a DNN with ReLU activation functions [4]. These results
provide a one-to-one correspondence between the CPWL family and the input–output
mappings of commonly used DNNs.

(2) For one-dimensional problems (i.e., when � ⊆ R), the HTV seminorm coincides with
the second-order TV. Remarkably, the representer theorem in this case states that the
optimal solution can be achieved by a linear spline; that is, a univariate CPWL function.
The latter suggests the use of TV(2) regularization for learning univariate functions [5,
8, 11, 23, 41, 48].

(3) It is known from the literature on low-rank matrix recovery that the Schatten-1 norm
(also known as the nuclear norm) promotes low rank matrices [22]. Hence, by using the
HTV seminorm with p = 1, one expects to obtain a mapping whose Hessian has low
rank at most points, with the extreme case being the CPWL family whose Hessian is
zero almost everywhere.

The aim of this paper is to identify the solution set of linear inverse problems with HTV
regularization. Motivated by recent general representer theorems (see, [12, 47], we focus
on the characterization of the extreme points of the unit ball of the HTV functional. After

123



9 Page 4 of 28 L. Ambrosio et al.

recalling some preliminary concepts (Sect. 2), we study the HTV seminorm and its associated
native space from a mathematical perspective (Sect. 3). Next, we prove our main theoretical
result on density of CPWL functions in the unit ball of the HTV seminorm (Theorem 21) in
Sect. 4. Finally, we invoke a variant of the Krein–Milman theorem to characterize the extreme
points of the unit ball of the HTV seminorm (Sect. 5).

2 Preliminaries

Throughout the paper, we shall use fairly standard notations for various objects, such as
function spaces and sets. For example, Ln and Hk denote the Lebesgue and k-dimensional
Hausdorff measures on R

n , respectively. Below, we recall some of the concepts that are
foundational for this paper.

2.1 Schatten norms

Definition 1 (Schatten norm) Let p ∈ [1,+∞]. If M ∈ R
n×n and s1(M), . . . , sn(M) ≥ 0

denote the singular values of M (counted with their multiplicity), we define the Schatten
p-norm of M by

|M |p := ‖(s1(M), . . . , sn(M))‖�p .

We recall that the scalar product between M, N ∈ R
n×n is defined by

M · N := tr(Mt N ) =
∑

i, j=1,...,n

Mi, j Ni, j

and induces theHilbert–Schmidt norm.Next, we enumerate several properties of the Schatten
norms that shall be used throughout the paper. We refer to standard books on matrix analysis
(such as [10]) for the proof of these results.

Proposition 2 The family of Schatten norms satisfies the following properties.

(1) If M ∈ R
n×n is symmetric, then its singular values s1(M), . . . , sn(M) are equal to

|λ1(M)|, . . . , |λn(M)|, where λ1(M), . . . , λn(M) denote the eigenvalues of M (counted
with their multiplicity). Hence |M |p = ‖(λ1(M), . . . , λn(M))‖�p .

(2) If M ∈ R
n×n and N ∈ O(Rn), then |MN |p = |NM |p = |M |p.

(3) If M, N ∈ R
n×n, then |MN |p ≤ |M |p|N |p.

(4) If M ∈ R
n×n, then |M |p = supN M · N, where the supremum is taken among all

N ∈ R
n×n with |N |p∗ ≤ 1, for p∗ the conjugate exponent of p.

(5) If M has rank 1, then |M |p coincides with the Hilbert–Schmidt norm of M for every
p ∈ [1,+∞].

(6) If p ∈ (1,+∞), then the Schatten p-norm is strictly convex [7, Corollary 1].
(7) If M ∈ R

n×n, then |M |p ≤ C |M |q , where C = C(n, p, q) depends only on n, p and q.

Definition 3 (Lr -Schatten p-norm) Let p, r ∈ [1,+∞] and let M ∈ (Lr (Rn))n×n . We
define the Lr -Schatten p-norm of M as

‖M‖p,r := ‖|M |p‖Lr (Rn).

An analogous definition can be given when the reference measure for the Lr space is not the
Lebesgue measure.
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2.2 Poincaré inequalities

We recall that for a Borel set A ⊆ R
n with Ln(A) > 0 and f ∈ L1(A), then

−
ˆ
A
f dLn := 1

Ln(A)

ˆ
A
f dLn .

Definition 4 Let A ⊆ R
n be an open domain. We say that A supports Poincaré inequalities

if for every q ∈ [1, n) there exists a constant C = C(A, q) depending on A and q such that
(

−
ˆ
A

∣∣∣ f − −
ˆ
A
f
∣∣∣
q∗
dLn

)1/q∗

≤ C

(
−
ˆ
A

|∇ f |qdLn
)1/q

for every f ∈ W 1,q(A),

where 1/q∗ = 1/q − 1/n.

We recall that any ball in R
n supports Poincaré inequalities [30, Theorem 4.9].

Remark 5 Let A be a bounded open domain supporting Poincaré inequalities. We recall
the following fact: if f ∈ W 1,1

loc (A) is such that
´
A |∇ f |qdLn < +∞, then f ∈ Lq∗

(A),
where 1/q∗ = 1/q − 1/n. To show this, apply a Poincaré inequality to fm := ( f ∧ m) ∨
−m ∈ W 1,q(A), with

´
A |∇ fm |qdLn ≤ ´

A |∇ f |qdLn , and deduce that, for a constant
cm := −́A fmdLn , it holds

(
−
ˆ
A

| fm − cm |q∗
dLn

)1/q∗

≤ C

(
−
ˆ
A

|∇ f |qdLn
)1/q

.

Now, if B ⊆ A is a ball with B̄ ⊆ A, we have that ‖ fm‖L1(B) ≤ ‖ f ‖L1(B) < +∞ and
‖ fm −cm‖L1(B) is bounded inm, so that supm |cm | < ∞. We also have that ‖ fm −cm‖Lq∗

(A)

is uniformly bounded. Thus,we infer that ‖ fm‖Lq∗
(A) is bounded inm, whence f ∈ Lq∗

(A).��

2.3 Distributions

We denote, as usual, D(�) = C∞
c (�) the space of test functions and D′(�) its dual, i.e. the

space of distributions [44]. If T ∈ D′(�), we denote with ∇2T the distributional Hessian of
T , i.e. the matrix of distributions {∂2i, j T }i, j∈1,...,n where (∂2i, j T )( f ) := T (∂i∂ j f ) for every
f ∈ D(�). In a natural way, if F ∈ D(�)n×n , we denote

∇2T (F) :=
∑

i, j=1...,n

∂2i, j T (Fi, j ).

Remark 6 Let T be a distribution on � such that for every i = 1, . . . , n, ∂i T is a Radon
measure. Then T is induced by a BVloc(�) function.

The proof of this fact is classical. Here, we sketch it for the reader’s convenience.
We let {ρk}k be a sequence of Friedrich mollifiers. Let B ⊆ � be a ball such that B̄ ⊆ �,

so that, if k is big enough (that we will implicitly assume in what follows), we have a
well defined distribution ρk ∗ T on B, which is induced by a C∞(B̄) function, say tk . It is
immediate to show that for every i = 1, . . . , n,

´
B |∂i tk |dLn are uniformly bounded in k, as

T has derivatives that are Radon measures. Therefore, using a Poincaré inequality on B, we
have that for some q∗ > 1, ‖tk −ck‖Lq∗

(B) is uniformly bounded in k, where ck := −́B tkdLn .

Hence, up to non-relabelled subsequences, tk − ck converges to an Lq∗
(B) function f in the

weak topology of Lq∗
(B) and then in the weak topology of D′(B). Also, tk converges in the
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topology ofD′(B) to T . Hence ck = tk − (tk − ck) converges in the weak topology ofD′(B)

to T − f ∈ D′(B). This forces {ck}k ⊆ R to be bounded, so that also tk was bounded in
Lq∗

(B) and hence T is induced by an Lq∗
(B) function on B. A partition of unity argument

shows that T is induced by an L1
loc(�) function, whence the conclusion. ��

3 Hessian–Schatten total variation

In this section, we fix � ⊆ R
n to be an open set and p ∈ [1,+∞]. We let p∗ denote the

conjugate exponent of p. First, we recall the definition of the HTV seminorm, presented in
[6], in the spirit of the classical theory of functions of bounded variation. Next, we review
some known results for the space of functions with bounded Hessian (see, [25]), proposing
at the same time a few refinements and/or extensions.

3.1 Definitions and basic properties

Definition 7 (Hessian–Schatten total variation) Let f ∈ L1
loc(�). For every A ⊆ � open

we define the Hessian–Schatten total variation of f as

|D2
p f |(A) := sup

F

ˆ
A

∑

i, j=1,...,n

f ∂i∂ j Fi, jdLn, (4)

where the supremum runs among all F ∈ C∞
c (A)n×n with ‖F‖p∗,∞ ≤ 1. We say that f has

bounded p-Hessian–Schatten variation in � if |D2
p f |(�) < ∞.

Remark 8 If f has bounded p-Hessian–Schatten variation in�, then the set function defined
in (4) is the restriction to open sets of a finite Borel measure, that we still call |D2

p f |. This
can be proved with a classical argument, building upon [24] (see also [2, Theorem 1.53]).

By its very definition, the p-Hessian–Schatten variation is lower semicontinuous with
respect to L1

loc convergence. ��

For any couple p, q ∈ [1,+∞], f has bounded p-Hessian–Schatten variation if and only
if f has bounded q-Hessian–Schatten variation and moreover

C−1|D2
p f | ≤ |D2

q f | ≤ C |D2
p f |

for some constant C = C(p, q) depending only on p and q . Hence, the induced topology
is independent of the choice of p. For this reason, in what follows, we will often implicitly
take p = 1 (omitting thus to write p), and we will stress p when this choice plays a role.

We prove now that having bounded Hessian–Schatten variation measure is equivalent
to membership in W 1,1

loc with gradient with bounded total variation. Also, we compare the
Hessian–Schatten variation measure to the total variation measure of the gradient. This will
be a key observation, as it will allow us to use the classical theory of functions of bounded
variation, see e.g. [2].

Proposition 9 Let f ∈ L1
loc(�). Then the following are equivalent:

(1) f has bounded Hessian–Schatten variation in �,
(2) f ∈ W 1,1

loc (�) and ∇ f ∈ BVloc(�) with |D∇ f |(�) < ∞.

123



Linear inverse problems with Hessian–Schatten total variation Page 7 of 28 9

If this is the case, then, as measures,

|D2
p f | =

∣∣∣∣
dD∇ f

d|D∇ f |
∣∣∣∣
p
|D∇ f |. (5)

In particular, there exists a constant C = C(n, p) depending only on n and p such that

C−1|D∇ f | ≤ |D2
p f | ≤ C |D∇ f |

as measures.

Proof We divide the proof in two steps.
Step 1.We prove 1 ⇒ 2. Let T ∈ D′(�) denote the distribution induced by f ∈ L1

loc(�). For
i = 1, . . . , n, define Si := ∂i T ∈ D′(�). By the fact that f has bounded Hessian–Schatten
variation in �, we can apply Riesz Theorem and deduce that for every j = 1, . . . , n, ∂ j Si is
induced by a finite measure on �. Indeed, if ϕ ∈ C∞

c (�), it holds

∂ j Si (ϕ) =
ˆ

�

f ∂ j∂iϕ ≤ C‖ϕ‖∞,

where C is independent of ϕ. Then, by Remark 6, Si is induced by an L1
loc(�) function,

which proves the claim.
Step 2. We prove 2 ⇒ 1 and (5). First, we can write D∇ f = Mμ, where |M(x)|p = 1 for
μ-a.e. x ∈ �. Namely,

M = dD∇ f

d|D∇ f |
∣∣∣∣
dD∇ f

d|D∇ f |
∣∣∣∣
−1

p
and μ =

∣∣∣∣
dD∇ f

d|D∇ f |
∣∣∣∣
p
|D∇ f |.

This decomposition depends on p, but we will not make this dependence explicit.
Let A ⊆ � be open and let F ∈ C∞

c (A)n×n with ‖F‖p∗,∞ ≤ 1. Thenˆ
A

∑

i, j

f ∂i∂ j Fi, j =
ˆ
A

∑

i, j

Mi, j Fi, jdμ ≤ μ(A),

so that f has bounded p-Hessian–Schatten variation and |D2
p f | ≤ μ as measures on �.

We show now that μ(�) ≤ |D2
p f |(�). Fix now ε > 0. By Lusin’s Theorem, we can find

a compact set K ⊆ � such that μ(� \ K ) < ε and the restriction of M to K is continuous.
Since

sup
|N |p∗≤1

M(x) · N = 1 for every x ∈ K ,

by the continuity of M we can find a Borel function N with finitely many values such that
|N (x)|p∗ ≤ 1 for every x ∈ � and M · N ≥ 1 − ε on K . Now we take ψ ∈ C∞

c (�) with
‖ψ‖∞ ≤ 1 and we let {ρk}k be a sequence of Friedrich mollifiers. We consider (if k is big
enough) ψ(ρk ∗ N ) ∈ C∞

c (�), which satisfies ‖ψ(ρk ∗ N )‖p∗,∞ ≤ 1 on � (by convexity of
the Schatten p∗-norm). Therefore,

|D2
p f |(�) ≥

ˆ
�

∑

i, j

Mi, jψ(ρk ∗ Ni, j )dμ ≥
ˆ
K

∑

i, j

Mi, jψ(ρk ∗ Ni, j )dμ − ε.

We let k → ∞, taking into account that x �→ N (x) is continuous on K and we recall that ψ
was arbitrary to infer that

|D2
p f |(�) ≥

ˆ
K

∑

i, j

Mi, j Ni, jdμ − ε ≥ (1 − ε)μ(K ) − ε ≥ (1 − ε)μ(�) − 2ε.
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As ε > 0 was arbitrary, the proof is concluded as we have shown that |D2
p f | = μ. ��

Remark 10 One may wonder what happens if, instead of defining the Hessian–Schatten
total variation only on L1

loc functions, we define it on the bigger space of distributions,
extending, in a natural way, (4) to distributions, i.e. interpreting the right hand side as
supF

∑n
i, j=1 ∂i∂ j T (Fi, j ) = supF

∑n
i, j=1 T (∂i∂ j Fi, j ).

It turns out that the difference is immaterial: distributions with bounded Hessian–Schatten
total variation are induced by L1

loc functions, and, of course, the two definitions of p-
Hessian–Schatten total variation coincide. This is proved exactly as in Step 1 of the proof of
Proposition 9, using Remark 6 once more. ��

The following proposition is basically taken from [25] and is a density (in energy) result
akin to Meyers–Serrin Theorem.

Proposition 11 Let f ∈ L1
loc(�). Then, for every A ⊆ � open, it holds

|D2
p f |(A) = inf

{
lim inf

k

ˆ
A

|∇2 fk |pdLn
}

where the infimum is taken among all sequences { fk}k ⊆ C∞(A) such that fk → f in
L1
loc(A). If moreover f ∈ L1(A), the convergence in L1

loc(A) above can be replaced by
convergence in L1(A).

Proof The (≤) inequality is trivial by lower semicontinuity. The proof of the opposite inequal-
ity is due to a Meyers–Serrin argument, and can be obtained adapting [25, Proposition 1.4]
(we know that f ∈ W 1,1

loc (�) thanks to Proposition 9). Notice that in the proof of [25] Hilbert–
Schmidt norms instead of Schatten norms are used. The proof can be adapted with no effort to
any norm. Alternatively, one may notice that the result with Hilbert–Schmidt norms implies
the result for any other matrix norm, thanks to the Reshetnyak continuity Theorem (see e.g.
[2, Theorem 2.39]), taking into account that D∇ fk → D∇ f in the weak* topology and (5).

��
Now we show that Hessian–Schatten total variations decrease under the effect of convo-

lutions, that is a a well-known property in the BV context.

Lemma 12 Let f ∈ L1
loc(�)with boundedHessian–Schatten variation in�. Let also A ⊆ R

n

open and ε > 0 with Bε(A) ⊆ �. Then, if ρ ∈ Cc(R
n) is a convolution kernel with

supp ρ ⊆ Bε(0), it holds

|D2
p(ρ ∗ f )|(A) ≤ |D2

p f |(Bε(A)).

Proof Let F ∈ C∞
c (A)n×n with ‖F‖p∗,∞ ≤ 1. We computeˆ

A

∑

i, j

(ρ ∗ f )∂i∂ j Fi, j =
ˆ
A

∑

i, j

f ∂i∂ j (ρ̌ ∗ Fi, j ), (6)

where ρ̌(x) := ρ(−x). Notice that, defining the action of the mollification component-wise,
ρ̌ ∗ F ∈ C∞

c (�) (by the assumption on the support of ρ) with (by duality)

|(ρ̌ ∗ F)(x)|p = sup
M

M · (ρ̌ ∗ F)(x) = sup
M

(ρ̌ ∗ (M · F))(x) ≤ (ρ̌ ∗ 1)(x) ≤ 1,

where the supremum is taken among all M ∈ R
n×n with |M |p∗ ≤ 1. Here we used that

|F |p∗(x) ≤ 1 for every x ∈ �. Hence ‖(ρ̌ ∗ F)‖p∗,∞ ≤ 1. Also, ρ̌ ∗ F is supported in Bε(A),
so that the right hand side of (6) is bounded by |D2

p f |(Bε(A)) and the proof is concluded as
F was arbitrary. ��
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In the following proposition we obtain an analogue of the classical Sobolev embedding
Theorems tailored for our situation. Recall Definition 4.

Proposition 13 (Sobolev embedding)Let f ∈ L1
loc(�)with boundedHessian–Schatten vari-

ation in �. Then

f ∈ Ln/(n−2)
loc (�) ∩ W 1,n/(n−1)

loc (�) if n ≥ 3,

f ∈ L∞
loc(�) ∩ W 1,2

loc (�) if n = 2,

f ∈ L∞
loc(�) ∩ W 1,∞

loc (�) if n = 1

and, if n = 2, f has a continuous representative.
More explicitly, for every bounded domain A ⊆ � that supports Poincaré inequalities

and r ∈ [1,+∞), there an affine map g = g(A, f ) such that, setting f̃ := f − g, it holds
that

‖ f̃ ‖Ln/(n−2)(A) + ‖∇ f̃ ‖Ln/(n−1)(A) ≤ C(A)|D2 f |(A) if n ≥ 3, (7)

‖ f̃ ‖Lr (A) + ‖∇ f̃ ‖L2(A) ≤ C(A, r)|D2 f |(A) if n = 2, (8)

‖ f̃ ‖L∞(A) + ‖∇ f̃ ‖L∞(A) ≤ C(A)|D2 f |(A) if n = 1. (9)

Proof The case n = 1 is readily proved by direct computation (as, if a domain of R supports
Poincaré inequality has to be an interval) so that in the following we assume n ≥ 2. Also,
recall that Proposition 9 states that f ∈ W 1,1

loc (�) with ∇ f ∈ BVloc(�). Therefore we can
apply [25, Proposition 3.1] to have continuity of f in the case n = 2, which also implies
L∞
loc(�) membership.
As balls satisfy Poincaré inequalities, it is enough to establish the estimates of the second

part of the claim to conclude. Fix then A and r as in the second part of the statement.
Let now { fk}k be given by Proposition 11 for f on A. Iterating Poincaré inequalities,

taking into account Remark 5, we obtain affine maps gk so that, setting f̃k := fk − gk , f̃k
satisfies (7) or (8), depending on n. Arguing as for Remark 5, we see that gk is bounded in
L1(B) for any ball B ⊆ A. This implies that gk and ∇gk are bounded in L∞(A). Therefore,
up to extracting a further non relabelled subsequence, f̃k converges in L1

loc(A) to f − g, for
an affine function g. Lower semicontinuity of the norms at the left hand sides of (7) or (8)
allows us to conclude the proof. ��
Remark 14 (Linear extension domains) Let n = 2, we keep the same notation as for Propo-
sition 13. Assume also that A has the following property: there exists an open set V ⊆ R

2

with Ā ⊆ V and a bounded linear map E : W 1,2(A) → W 1,2(V ) satisfying, for every u
with bounded Hessian–Schatten variation (hence u ∈ W 1,2(A) by Proposition 13):

(1) Eu = u a.e. on A,
(2) Eu is supported in V ,
(3) |D2Eu|(V ) ≤ C |D2u|(A) for some constant C .

Then we show that (8) can be improved to

‖ f̃ ‖L∞(A) + ‖∇ f̃ ‖L2(A) ≤ C |D2
p f |(A),

where we possibly modified the constant C .
First, by (8) it holds that ‖ f̃ ‖W 1,2(A) ≤ C |D2 f |(A). Now take ψ ∈ C∞

c (R2) with support
contained in V and such that ψ = 1 on A. Then we have

|D2(ψE f̃ )|(V ) ≤ C
(|D2(E f̃ )|(V ) + ‖E f̃ ‖W 1,2(V )

) ≤ C |D2 f̃ |(A).
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Then we use the continuous representative of ψE f̃ as in [25, Proposition 3.1] and, from its
very definition, the claim follows.

It is easy to see that (0, 1)2 is suitable for the above argument, see Lemma 17 below and
its proof. ��

The strict convexity of the Schatten p-norm, for p ∈ (1,+∞) has, as a consequence, the
following rigidity result.

Lemma 15 (Rigidity) Let f , g ∈ L1
loc(�) with bounded Hessian–Schatten variation and

assume that

|D2
p( f + g)|(�) = |D2

p f |(�) + |D2
pg|(�).

Then

|D2
p( f + g)| = |D2

p f | + |D2
pg|

as measures on �. If moreover, p ∈ (1,+∞), then

D∇ f = ρ fD∇( f + g) and D∇g = ρgD∇( f + g)

for a (unique) couple ρ f , ρg ∈ L∞(|D∇( f +g)|) such that 0 ≤ ρ f , ρg ≤ 1 |D∇( f +g)|-a.e.
and satisfying ρ f + ρg = 1 |D∇( f + g)|-a.e. In particular, for every q ∈ [1,+∞],

|D2
q( f + g)| = |D2

q f | + |D2
qg|

as measures on �.

Proof The first claim follows from the triangle inequality and the equality in the assumption.
Now assume p ∈ (1,+∞). Take then ρ f and ρg , the Radon–Nikodym derivatives:

|D2
p f | = ρ f |D2

p( f + g)| and |D2
pg| = ρg|D2

p( f + g)|
as measures on �, where ρ f + ρg = 1 |D2

p( f + g)|-a.e. We can apply Proposition 9 and
write the polar decompositions D∇ f = Mp|D2

p f |, D∇g = Np|D2
pg| and D∇( f + g) =

Op|D∇( f + g)| where |Mp|p, |Np|p, |Op|p are identically equal to 1. Therefore D∇ f =
Mpρ f |D2

p( f + g)|, D∇g = Npρg|D2
p( f + g)| and D∇( f + g) = Op|D2

p( f + g)| and by
linearity we obtain that

Mpρ f |D2
p( f + g)| + Npρg|D2

p( f + g)| = Op|D2
p( f + g)|

which implies that ρ f Mp + ρgNp = Op |D2
p( f + g)|-a.e. Taking p-Schatten norms,

1 = |Op|p = |ρ f Mp + ρgNp|p ≤ ρ f |Mp|p + ρg|Np|p = 1 |D2
p( f + g)|-a.e.

which implies the claim by strict convexity. The last assertion is due to Proposition 9. ��

3.2 Boundary extension

[25, Theorem 2.2] provides us with an extension operator for bounded domains with C2

boundary. However, we need the result for parallelepipeds. This can be obtained following
[25, Remark 2.1]. However, we sketch the argument as we are going also to need a slightly
more refined result compared to the one stated in [25]. This extension result (namely, its
corollary Proposition 18) will play a key role in the proof of Theorem 21 below.
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Lemma 16 Let � = (a0, a1) × �′ be a parallelepiped in R
n and let f ∈ L1

loc(�) with
bounded Hessian–Schatten variation in �. Then, if we set

�̃ := (a0 − (a1 − a0)/2, a1) × �′,

there exists f̃ ∈ L1
loc(�̃) with bounded Hessian–Schatten variation in �̃ such that f̃ = f

a.e. on �,

|D2 f̃ |({a0} × �′) = 0 (10)

and

|D2 f̃ |(�̃) ≤ C |D2 f |(�), (11)

where C is a scale invariant constant that depends only on � (and �̃) but not on f .

Proof Up to a linear change of coordinates, we can assume that� = (0, 1)n . Set�1 = � and
�2 = (−1/2, 0)×(0, 1)n−1 = M(�), for M(x, y) := (−x/2, y), where we use coordinates
R × R

n−1 � (x, y) for Rn . Set also

f̃ (x, y) :=
{
f (x, y) if (x, y) ∈ �1,

3 f (−x, y) − 2 f (−2x, y) if (x, y) ∈ �2.

An application of the theory of traces ( [2, Theorem 3.87 and Corollary 3.89]) together with
Proposition 9 yields that |D∇ f̃ |(∂�1 ∩ ∂�2) = 0, hence (10). Then, we compute

|D2 f̃ |(�1 ∪ �2 ∪ (∂�1 ∩ ∂�2)) = |D2 f̃ |(�1) + |D2 f̃ |(�2) ≤ C |D2 f |(�1),

where C is a constant, so that (11) follows. ��
Lemma 17 Let � = (0, 1)n and let f ∈ L1

loc(�) with bounded Hessian–Schatten variation
in �. Then there exist a neighbourhood �̃ of �̄ and f̃ ∈ L1

loc(�̃) with bounded Hessian–
Schatten variation in �̃ such that f̃ = f a.e. on �,

|D2 f̃ |(∂�) = 0 (12)

and

|D2 f̃ |(�̃) ≤ C |D2 f |(�), (13)

where C is a scale invariant constant that depends only on � (and �̃) but not on f .

Proof Apply several times (a suitable variant) of Lemma 16, extending � along each side.
Notice that at each step, we are extending a parallelepiped which contains �. ��
Proposition 18 Let � = (0, 1)n and let f ∈ L1

loc(�) with bounded Hessian–Schatten vari-
ation in �. Then there exists a sequence { fk}k ⊆ C∞(�̃), where �̃ is a neighbourhood of �̄
such that

fk → f in L1(�)

|D2
p fk |(�) → |D2

p f |(�)
(14)

for any p ∈ [1,+∞].
Proof Take f̃ as in Lemma 17 and, if {ρk}k is a sequence of Friedrich mollifiers, set fk :=
f̃ ∗ ρk . The claim follows from lower semicontinuity and Lemma 12. ��
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4 A density result for CPWL functions

In this section, we study the density of CPWL functions in the unit ball of the HTV functional.
As usual, we let � ⊆ R

n open and p ∈ [1,+∞].

4.1 Definitions and themain result

Definition 19 We say that f ∈ C(�) belongs to CPWL(�) if there exists a decomposition
{Pk}k of Rn in n-dimensional convex polytopes (with convex polytope we mean the closed
convex hull of finitely many points), intersecting only at their boundaries (their intersection
being either empty or a common face) such that for every k, f|Pk∩� is affine and such that
for every ball B, only finitely many Pk intersect B.

Notice that CPWL functions defined on bounded sets have automatically finite Hessian–
Schatten variation, by Proposition 9.

In the particular case n = 2, we can and will assume that the convex polytopes {Pk}k as
in the definition of CPWL function are triangles.

Remark 20 Let f ∈ CPWL(�), where � ⊆ R
n is open. Notice that ∇ f is constant on each

Pk , call this constant ak .
Thanks to Proposition 9, we can deal with |D2

p f | and |D∇ f | exploiting the theory of
vector valued functions of bounded variation [2]. In particular, |D∇ f | will charge only 1-
codimensional faces of Pk . Then, take a non degenerate face σ = Pk ∩ Pk′ for k �= k′ (i.e.
σ is the common face of Pk and Pk′ ). Then the Gauss–Green Theorem gives D∇ f σ =
(ak′ − ak) ⊗ νHn−1 σ , where ν is the unit normal to σ going from Pk to Pk′ (hence
(ak − ak′) ⊥ σ ). Then,

|D2 f | σ = |(ak′ − ak) ⊗ ν|1Hn−1 σ = |ak′ − ak |Hn−1 σ, (15)

where, as usual, |ak′ −ak | denotes the Euclidean norm. Let us remark that (15) has also been
shown in [6], directly relying on Definition 7, which paved the way of developing numerical
schemes for learning CPWL functions [18, 38]. Since dD∇ f

d|D∇ f | has rank one |D∇ f |-a.e. we
obtain also

∣∣∣∣
dD∇ f

d|D∇ f |
∣∣∣∣
p

=
∣∣∣∣
dD∇ f

d|D∇ f |
∣∣∣∣ = 1 |D∇ f |-a.e.

(we recall that the matrix norm | · | without any subscript denotes the Hilbert–Schmidt
norm). It follows from (5) that |D2

p f | = |D∇ f | for every p ∈ [1,+∞], in particular, |D2
p f |

is independent of p.
Notice also that the rank one structure of D∇ f is a particular case of the celebrated

Alberti’s theorem [1], for vector-valued BV functions. According to this theorem the rank
one structure holds for the singular part of the distributional derivative. ��

The following theorem on the density of CPWL functions is the main theoretical result of
this paper. Its proof is deferred to Sect. 4.2. In view of it, notice that by Lemma 17 together
with Proposition 13, if f ∈ L1

loc((0, 1)
2) has bounded Hessian–Schatten variation in (0, 1)2,

then f ∈ L∞((0, 1)2). Also, notice that the statement of the theorem is for p = 1 only. This
will be discussed in the forthcoming Remark 22.
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Theorem 21 Let n = 2, let � = (0, 1)2 and let p = 1. Then CPWL(�) functions are dense
in energy |D2

1 · |(�) in
{
f ∈ L1

loc(�) : f has bounded Hessian–Schatten variation
}

with respect to the L∞(�) topology. Namely, for any f ∈ L1
loc(�) with bounded Hessian–

Schatten variation in� there exist fk ∈ CPWL(�) convergent in L∞(�) to f with |D2
1 fk |(�)

convergent to |D2
1 f |(�).

Remark 22 Theorem 21 shows in particular density in energy |D2
1 · |(�) of CPWL(�) func-

tions with respect to the L1
loc(�) convergence. Notice that this conclusion is false if we take

instead the |D∇ · |(�) seminorm, and this provides one more theoretical justification of the
relevance of the Schatten 1-norm.

We now justify this claim. By Remark 20, it is easy to realize that the two seminorms
above coincide for CPWL(�) functions, but are, in general, different for arbitrary functions.

For example, take f ((x, y)) := x2+y2

2 . Then |D2
1 f | = 2L2, whereas |D∇ f | = √

2L2. Now
assume by contradiction that there exists a sequence { fk}k ⊆ CPWL(�) such that fk → f
in L1

loc(�) and |D∇ fk |(�) → |D∇ f |(�). Then

lim inf
k

|D∇ fk |(�) = lim inf
k

|D2
1 fk |(�) ≥ |D2

1 f |(�) > |D∇ f |(�),

which is absurd. This also gives the same conclusion for |D2
p · |, in the case p ∈ (1,+∞].��

We conjecture that the result of Theorem 21 can be extended to arbitrary dimensions (i.e.
� = (0, 1)n ⊆ R

n). Notice that, in the general case n ≥ 3, the natural choice for the topology
is L1(�) (or Ln/(n−2)(�)), as any f ∈ L1

loc(�) with bounded Hessian–Schatten variation in
� belongs to Ln/(n−2)(�), see the discussion right before Theorem 21.

Conjecture 1 The density result of Theorem 21 remains valid when the input domain is
chosen to be any n-dimensional hypercube, � = (0, 1)n, provided that the L∞(�) topology
is replaced by the L1(�) topology.1

4.2 Proof of Theorem 21

This whole section is devoted to the proof of Theorem 21. Remarkably, our proof is con-
structive and provides an effective algorithm to build such approximating sequence.

Take f ∈ L1
loc(�) with finite Hessian–Schatten variation. We remark again that indeed

f ∈ L∞(�). We notice that we can assume with no loss of generality that f is the restriction
to � of a C∞

c (R2) function. This is due to Proposition 18 (and its proof), a cut off argument
and and a diagonal argument. Still, we only have to bound Hessian–Schatten variations only
on �.

We want to find a sequence { f j } j ⊆ CPWL(�) such that f j → f in L∞(�) and
lim sup j |D2

1 f j |(�) ≤ |D2
1 f |(�). This will suffice, by lower semicontinuity.

Overview.As the proof is rather long and involved, it is divided in ten steps. We start with an
overview, to explain the strategy of the proof and the main constructions that will be detailed
in the following steps.

Our approximating sequence as abovewill be obtained as a sequence of affine interpolation
of f on a suitable sequence of triangulations of �. In other words (Step 1), we fix ε ∈ (0, 1)

1 During the revision process of this manuscript, the fist and third named author, tougher with S. Conti ( [3]),
proved that this conjecture holds in any dimension.
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and we build a triangulation such that, if g is the affine interpolation of f obtained using that
triangulation, then g is ε-close to f and the Hessian–Schatten total variation of g is ε-close
to the one of f . The construction of the triangulation is carried out in two main parts and the
building blocks are two successive choice of grids (grids are rigorously defined in Step 2).

In the first part, we consider GN , the dyadic subdivision of� in 22N squares of sidelength
2−N which will be called {QN

k }k (Step 3). The choice of N is fixed almost at the beginning
of the proof (Step 5), and depends morally on the modulus of continuity of the Hessian of
f : the guiding principle here is item (a) below.

(a) On each of the squares QN
k , the Hessian of f , read in suitable coordinates (these coordi-

nates depending on k), will be close enough to a diagonal matrix DN
k . See Step 4.

Having fixed the parameter N , we suppress the superscript N for the sake of readability.
In the second part we want to further refine the grid, arguing on each of the squares Qk

separately, namely we are going to build, for each Qk , a second grid GK
k (Step 6). Here a

second parameter K enters into play (once that N has been fixed). The guiding principles, in
this refining procedures, are in item (b) and item (c) below.

(b) On Qk , we would like the grid GK
k to follow the coordinates that induce the matrix Dk ,

i.e. reading theHessian of f in the system of coordinates given byGK
k , wewant to recover

a matrix that is very close to Dk . This is because, if we interpolate on a grid (actually,
we have to interpolate on a triangulation induced in the most natural way by the grid),
the optimal result, in terms of lowest Hessian–Schatten total variation, is obtained when
the sides of the grid are oriented as just described (see the computations in Step 10).

The issue now is that different squares Qk have different associated systems of coordinates,
so we will have to carefully merge the triangulations to take into account of the different
rotations. Hence what follows.

(c) We want all the triangulations obtained starting from {GK
k }k to merge in a controlled

way at the boundaries of the squares {Qk}k , in particular, we want that all the angles in
the merged triangulations are bounded from below independently of K , so that letting
K → ∞ will not cause any problem. The reason is that, with such property of the
triangulations, we can control the Hessian–Schatten variation on the merging regions in
a way that does not deteriorate as K → ∞ (see the computations in Step 9).

Notice that we still have to discuss the width of the gridGK
k , which will be called h

K
k . In order

to obtain such properties, we consider a grid GK
k that is almost the one as in item (b) above

(i.e. the one inducing the matrix Dk), but is slightly tilted (in a quantitatively controlled way)
so that the smallest angle it forms with the x-axis has a non null rational tangent. We centre
the grid GK

k at a vertex of Qk (say the top left one) and we show that it is possible to choose
widths {hKk }k (with hKk → 0 as K → ∞) in such a way that the intersections of the grid GK

k
with the sides of the square Qk match the intersections of the grid GK

h with the sides of the
square Qh , whenever Qk and Qh are neighbouring squares and moreover the vertices of Qk

are also vertices of the grid GK
k . This is possible thanks to the slight tilt that we made to the

grid, see Step 6.
We conclude then by obtaining a triangulation of Qk starting from the grid GK

k (Step 7).
In the region of Qk that is close to the boundary (this region shrinks as K → ∞) we adopt
a careful self-similar construction, taking into account the choice of the widths {hKk }k , in
order to ensure the compatibility condition of item (c) above. In the remaining part of GK

k ,
we build the triangulation in the most natural way, i.e. considering also the diagonals of the
squares, in order to have a triangulation that is close to the one looked for in item (b) above.
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Then, if K is taken large enough, the interpolation along the just built triangulation satisfies
the requests made at the beginning of the proof and this is shown in Step 8. Notice that the
bulk of the proof is to show that the Hessian–Schatten total variation of the interpolating
function g is close to the one of f , as trivially g is close to f if K is large enough (as hKk → 0
when K → ∞).
Step 1. Fix now ε > 0 arbitrarily. The proof will be concluded if we find g ∈ CPWL(�)with
‖ f − g‖L∞(�) ≤ ε and |D2

1g|(�) ≤ |D2
1 f |(�) + C f ε, where C f is a constant that depends

only on f (via its derivatives, even of second and third order) that still has to be determined.
In what follows we will allow C f to vary from line to line.
Step 2.We add a bit of notation. Let v,w ∈ S1 with v ⊥ w, s ∈ R

2 and h ∈ (0,∞). We call
G(v,w, s, h) the grid of R2

G(v,w, s, h) := {s + tv + zhw : t ∈ R, z ∈ Z} ∪ {s + zhv + tw : t ∈ R, z ∈ Z} .

The grid consist in boundaries of squares (open or closed) that are called squares of the grid.
Vertices of squares of the grid are called vertices of the grid and the same for edges. Notice
that G(v,w, s, h) contains a square with vertex s and whose squares have sides of length h
and are parallel either to v or to w.
Step 3. For N ∈ N, we consider the grid

GN := G((1, 0), (0, 1), 0, 2−N )

and we let QN
k denote the closed squares of this grid that are contained in �̄. Here k =

1, . . . , 22N .
Step 4. For every N we find two collections of matrices {DN

k }k and {UN
k }k satisfying the

following properties, for every k:

(1) DN
k is diagonal.

(2) UN
k ∈ O(Q2) is a rotation matrix of angle θk ∈ (0, π/2), θk �= {π/4}.

(3) It holds that

lim
N→∞ sup

k
sup
x∈QN

k

|(UN
k )t∇2 f (x)UN

k − DN
k |1 → 0.

To build such sequences, first build {DN
k }k and {Ũ N

k }k with DN
k diagonal and Ũ N

k ∈ O(R2)

such that

(Ũ N
k )t∇2 f (xNk )Ũ N

k = DN
k , (16)

where xNk is the centre of the square QN
k . We can do this thanks to the symmetry of Hessians

of smooth functions.
We denote Rθ the rotation matrix of angle θ . We set Û N

k := Ũ N
k Ak , where Ak is a matrix

of the type
(

0 ±1
±1 0

)
or

(±1 0
0 ±1

)

defined in such a way that Û N
k = R

θ̂k
, for some θ̂k ∈ [0, π/2). Notice that (16) still holds

for Û N
k in place of Ũ N

k .
Now notice that points with rational coordinates are dense in S1 ⊆ R

2, as a consequence
of the well known fact that the inverse of the stereographic projection maps Q into Q

2.
Therefore we can find θk ∈ (0, π/2), θk �= π/4 so close to θ̂k so that |Rθk − R

θ̂k
|1 ≤ N−1
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and such that Rθk ∈ Q
2×2. Then, set UN

k := Rθk . Items (1) and (2) hold by the construction
above, whereas item (3) can be proved taking into account also the smoothness of f .

We write

UN
k =

⎛

⎝
| |

vN
k wN

k| |

⎞

⎠ .

Notice that vN
k ⊥ wN

k and vN
k , wN

k ∈ S1. Also, θk is the angle formed by the x-axis with vN
k

so that tan(θk) = (vN
k )2/(vN

k )1 ∈ Q by (2).
Step 5. By item (3) of Step 4, we take N big enough so that

sup
k

sup
x∈QN

k

|(UN
k )t∇2 f (x)UN

k − DN
k | ≤ ε. (17)

We suppress the dependence on N in what follows as from now N will be fixed. Also, we
can, and will, assume 2−N ≤ ε.
Step 6. We consider grids on Qk , for every k and depending on K ∈ N, free parameter. We
recall that Qk has been defined in Step 3. These grids will be called

GK
k := G(vk, wk, sk, h

K
k ),

where hKk will be determined in this step and sk is any of the vertices of Qk (the choice of
the vertex will not affect the grid).

For every k, we write

Q � tan(θk) = qk
pk

,

where MCD(pk, qk) = 1. We can do this as we chose θk ∈ (0, π/2), θk �= π/4 satisfying
Rθk ∈ Q

2×2, notice also that our choice implies, in particular, qk �= 0. We define also

hKk := 1

2N
1

2K
1√

p2k + q2k
∏

h �=k qh
.

Notice that

Uk = 1√
p2k + q2k

(
pk −qk
qk pk

)
,

and, as Uk is an orthogonal matrix, we have that
√
p2k + q2kU

−1
k =

(
pk qk

−qk pk

)
∈ Z

2×2.

This ensures that the vertices of Qk are also vertices of GK
k . Now notice that lines in GK

k
parallel to vk intersect the horizontal edges of Qk in points spaced hKk /sin(θk ) and also lines
in GK

k parallel to wk intersect the vertical edges of Qk in points spaced hKk /sin(θk ). We now
compute

hKk
sin(θk)

= hKk
√
1 + cot2(θk) = 1

2N2K
√
p2k + q2k

∏
h �=k qh

√

1 + p2k
q2k

= 1

2N
1

2K
1∏
h qh

and we notice that this quantity depends only on K (and on N ) but not on k.
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A B

CD

E

F
G

H

A B

CD

M

N

O

P

Fig. 1 An illustration of the proposed triangulation in the square Qk

Step 7.Nowwewant to build a triangulation for the square Qk , such triangulationwill depend
on the free parameter K and will be called �K

k . We will then glue all the triangulations {�K
k }k

to obtain �K , a triangulation for �̄. We call edges and vertices of triangulation the edges and
vertices of its triangles. We refer to Fig. 1 for an illustration of the proposed triangulation.

Fix for the moment k. By symmetry, we can reduce ourselves to the case of θk ∈
(π/4, π/2). Indeed, if θk ∈ (0, π/4), consider S to be the reflection against the axis passing
through the top left and bottom right vertex of Qk , let v′

k := −Svk and w′
k := Swk , build

the triangulation (�K
k )′ according to v′

k and w′
k and finally set �K

k := S(�K
k )′.

Our building block for the triangulation is the triangle T 0
u , which corresponds to the

starting case K = 0. The triangle T 0
u will be then suitably rotated to obtain also the triangles

T 0
r , T 0

d , T
0
l . Then, with a suitable rescaling, we will obtain the corresponding elements for

the successive steps K , i.e. T K
u , T K

r , T K
d , T K

l . We denote A, B,C, D the vertices of the
square Qk , with A corresponding to the top left vertex and the other named clockwise. Let
M, N , O, P denote the midpoints of AB, BC,CD, DA respectively. Then T 0

u = ABE is
the right triangle with hypotenuse AB and such that its angle in A is π/2− θk and such that
E lies inside Qk . We notice that E is a vertex of G0

k by what proved in Step 6. Now we
consider the intersections of lines of G0

k parallel to vk with the hypotenuse of T 0
u (these are

not, in general, vertices of G0
k) and the vertices of G0

k that lie on the short sides of T 0
u (it

may be useful to recall that, by construction, the short sides of T 0
u are along G0

k). Then we
triangulate T 0

u in such a way that the vertices of the triangulation on the sides T 0
u are exactly

at the points just considered. Any finite triangulation is possible, but it has to be fixed. Now
we rotate a copy of T 0

u (together with its triangulation) clockwise by π/2 and we translate
it so that the point corresponding to A moves to B. We thus obtain a triangulated triangle
T 0
r = BCF . By construction, the triangulation on T 0

r has the following property: its vertices
on the hypotenuse ofT 0

u correspond to the intersection points of lines ofG0
k parallel towk with

the hypotenuse and its vertices on the short sides are exactly the vertices of G0
k on the short

sides. Then we continue in this fashion to obtain four triangulated triangles, T 0
u , T 0

r , T 0
d , T 0

l ,
as in the left side of Fig. 1 (we shaded T 0

u ). Notice that T 0
u ∪ T 0

r ∪ T 0
d ∪ T 0

l , together with its
triangulation is invariant by rotations of π/2 with centre the centre of Qk . Notice also that
Qk\

(
T 0
u ∪ T 0

r ∪ T 0
d ∪ T 0

l

)
is formed by a square which is itself a union of squares, each
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9 Page 18 of 28 L. Ambrosio et al.

with sides parallel to vk or wk and of length h0k . We triangulate Qk\
(
T 0
u ∪ T 0

r ∪ T 0
d ∪ T 0

l

)

in the standard way, where by standard way we mean the triangulation obtained considering
the grid GK

k (now K = 0) and, for every square of the grid, the diagonal with direction
(vk − wk)/

√
2. This is step 0 and this triangulation will be called �0

k .
We show now how to build the triangulation at step K + 1, �K+1

k starting from the
one at step K , �K

k , see the right side of Fig. 1 (we shaded T 1
u ). At step K we will have

T K
u , T K

r , T K
d , T K

l . Now T K+1
u will be union of two copies of T K

u scaled by a factor 1/2 but
not rotated nor reflected, but translated so that the vertices corresponding to Awill correspond
to A and M respectively. Also the triangulation of T K

u is scaled and maintained. We do the
same for T K

r , T K
d , T K

l , so that T K+1
u ∪T K+1

r ∪T K+1
d ∪T K+1

l together with its triangulation
is invariant by rotations of π/2 with centre the centre of Qk .
We triangulate Qk\

(
T K+1
u ∪ T K+1

r ∪ T K+1
d ∪ T K+1

l

)
using the standard triangulation, with

respect toGK+1
k . We remark that Qk\

(
T K+1
u ∪T K+1

r ∪T K+1
d ∪T K+1

l

)
is formed by union of

squares, each with sides parallel to vk orwk and of length h
K+1
k . Notice that if σ is a segment

that is part of the boundary of one of T K+1
u , T K+1

r , T K+1
d , T K+1

l and σ is not contained in
the boundary of Qk , then the vertices of the triangulations on σ coincide exactly with vertices
of GK+1

k on σ , so that we have a well defined triangulation, of Qk that we call �
K+1
k .

Now we define �K as the triangulation of �̄ obtained by considering all the triangulations
in {�K

k }k . Notice that, by Step 6, the triangulations in {�K
k }k can be joined, as their vertices

on the boundaries of {Qk}k match. Notice that for every K , T K
u ∪T K

r ∪T K
d ∪T K

l is contained
in a 2−N2−K neighbourhood of the lines ofGN , and this neighbourhood (in�) has vanishing
area as K → ∞. Therefore, squares of the grid that are triangulated by �K in the standard
way and such that also their eight neighbours are triangulated in the standard way by �K

eventually cover monotonically �, up to the axes of the grid GN . Notice also that triangles
in �K have edges of length smaller that 2−N2−K .

We add here this crucial remark on which we will heavily rely in the sequel and which
will be the occasion to introduce the angle θ̄ . There exists an angle, θ̄ > 0, such that every
angle in the triangles of �K is bounded from below by θ̄ , uniformly in K (θ̄ depends on
the choice of the various triangulations of T 0

u , that, in turn, depend on N , so that θ̄ depends
only on N and f ). This property is ensured by the self-similarity construction, that provides
at each step K two families of triangles, those arising from self-similarity and those arising
from the bisection of a (tilted) square with sides parallel to those of Qk , as in Fig. 1.
Step 8. For every K , we set gK as the CPWL interpolant of f according to �K . Recall
that CPWL functions on � have finite Hessian–Schatten total variation. We can compute
|D2

1g
K | = |D∇gK | explicitly, that will be concentrated on jump points of the ∇gK , i.e. on

the edges of the triangulation �K (Remark 20).
The computations of Step 9 below ensure that {gK }K are equi-Lipschitz functions,

so that it is clear that as K → ∞ it holds that ‖ f − gK ‖L∞(�) → 0. We claim that
lim supK→∞ |D2

1g
K |(�) ≤ |D2 f |(�) + C f ε. Let U δ denote the open δ neighbourhood of

GN , intersected with �.
Recall the definition of θ̄ given at the end of Step 7. Some of our estimates depend on

θ̄ (see, in particular, the first item below and Step 9) whose value essentially depends on
N . Since N has been fixed, depending on ε and the modulus of continuity of ∇2 f , we may
absorb the θ̄ dependence into the f dependence.

The claim, hence the conclusion, will be a consequence of these two following facts, stated
for T closed triangle in �K , say T ∈ Qk :
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(1) it holds

|D2
1g

K |(T ∩ �) ≤ C f L2(T );
(2) whenever T does not intersect U 2·2−N 2−K

, then

1

2
|D2

1g
K |(T ) ≤ (|Dk |1 + C f ε)L2(T ).

We recall that Dk is the diagonal matrix introduced in Step 4 for the closed square Qk .

Notice that in the first item we have a constant C f which depends on f , and hence we have
to take K big enough so that the contributions of these terms are small enough.

Recall that in our estimates we allow C f to vary line to line.
We defer the proof of items 1 and 2 to Step 9 and Step 10 respectively, now let us show

how to conclude the proof using these facts. Fix for the moment K and k. Now consider
{Ti }i , the (finite) collection (depending on K and k, but we will not make such dependence
explicit) of all the closed triangles in the triangulation �K that are contained in Q̄k . Notice
that

i) The interiors of {Ti }i are pairwise disjoint.
ii) If σ is an edge of �K that lies on the boundary of Qk , then there exists exactly one

element of {Ti }i having σ as edge. This is due to the fact that we are taking triangles
contained in Q̄k

iii) If σ is an edge of �K that does not lie on the boundary of Qk , then there exist exactly
two elements of {Ti }i having σ as edge.

We order the collection {Ti }i in such a way that T1, . . . , TI are contained in U 4·2−N 2−K

and TI+1, . . . do not intersectU 2·2−N 2−K
(if there is a triangle Ti contained inU 4·2−N 2−K

and
not intersecting U 2·2−N 2−K

, we agree that it belongs to the first set of triangles T1, . . . , TI ,
even though this choice makes no difference in the end). We explain the motivation for this
distinction. The triangles T1, . . . , TI are the ones contained a small neighbourhood of the
grid GN (the measure of such neighbourhood vanishes as K → ∞) so that their contribution
to the Hessian–Schatten variation vanishes as K → ∞. The remaining triangles, TI+1, . . .

are far enough from the grid GN : this ensures that they (as well as their neighbours) belong
to the region that has been triangulated in the standard way, hence their contribution to the
Hessian–Schatten variation remains manageable. Notice also that this distinction covers any
possible case, as the lengths of the edges of the triangles in {Ti }i are bounded from above by
2−N2−K , hence any of these triangles that intersects U 2·2−N 2−K

is contained in U 4·2−N 2−K
.

We compute, using items 1 and 2, recalling iii) above for what concerns the factor 1/2 in the
first line,

|D2
1g

K |(� ∩ Q̄k) ≤
∑

i≤I

|D2
1g

K |(Ti ) + 1

2

∑

i>I

|D2
1g

K |(Ti )

≤
∑

i≤I

C f L2(Ti ) +
∑

i>I

(|Dk |1 + C f ε)L2(Ti )

≤ C f L2(U 4·2−N 2−K ∩ Qk) + (|Dk |1 + C f ε)L2(Qk).

Therefore, repeating the procedure for every k,

|D2
1g

K |(�) ≤
∑

k

|D2
1g

K |(� ∩ Q̄k)
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9 Page 20 of 28 L. Ambrosio et al.

≤
∑

k

C f L2(U 4·2−N 2−K ∩ Qk) + C f ε
∑

k

L2(Qk) +
∑

k

|Dk |1L2(Qk)

≤ C f L2(U 4·2−N 2−K
) + C f εL2(�) +

∑

k

|Dk |1L2(Qk).

Fix now K big enough so that C f L2(U 4·2−N 2−K
) ≤ ε, we have

|D2
1g

K |(�) ≤ C f ε +
∑

k

|Dk |1L2(Qk).

Now we compute, for every k, taking into account (17),

|Dk |1L2(Qk) =
ˆ
Qk

|Dk |1 ≤
ˆ
Qk

(|(UN
k )t∇2 f (x)UN

k |1 + ε
) =

ˆ
Qk

(|∇2 f (x)|1 + ε
)

= |D2
1 f |(Qk) + εL2(Qk)

so that we can continue our previous computation to see that

|D2
1g

K |(�) ≤ C f ε +
∑

k

|Dk |1L2(Qk) ≤ C f ε +
∑

k

|D2 f |(Qk) +
∑

k

εL2(Qk)

= C f ε + |D2
1 f |(�) + εL2(�) ≤ C f ε + |D2

1 f |(�)

thus concluding the proof.
Step 9.We prove item 1 of Step 8. For definiteness, assume that K is fixed. We will heavily
use Remark 20 with no reference.

Say T = ABC ⊆ Qk . It is enough to show that |D2
1g

K |(AB) ≤ C f L2(T ), under the
assumption that AB does not lie in the boundary of �, so that there exists another triangle
T ′ = ABC ′ of �K (possibly inside an adjacent cube to Qk , recall also that the mesh size
parameter K is independent of k), so that T and T ′ have disjoint interiors.

Call a = ∇gK on T and a′ = ∇gK on T ′. Then,
{
a · (B − C) = f (B) − f (C)

a · (A − C) = f (A) − f (C)
and

{
a′ · (B − C ′) = f (B) − f (C ′)
a′ · (A − C ′) = f (A) − f (C ′).

The mean value theorem gives
(

(B − C)t

(A − C)t

)
a =

(∇ f (C)(B − C) + 1
2 (B − C)t∇2 f (ξ1)(B − C)

∇ f (C)(A − C) + 1
2 (A − C)t∇2 f (ξ2)(A − C)

)
, (18)

where ξ1, ξ2 ∈ T . Now notice that as the angles of ABC are bounded below by θ̄ , the matrix
(

(B − C)t

(A − C)t

)

is invertible and its inverse has norm bounded above by
cθ̄

|AB| , for a suitable constant cθ̄ .

Also, possibly choosing a larger constant cθ̄ , the bound from below of the angles yields that
|BC | ≤ cθ̄ |AB| and |AC | ≤ cθ̄ |AB|. Similar considerations hold for the triangle T ′. As cθ̄

depends only on θ̄ , we will absorb this dependence into the f dependence, as announced
above.

We rewrite then (18) as

a = ∇ f (C) + 1

2

(
(B − C)t

(A − C)t

)−1 (
(B − C)t∇2 f (ξ1)(B − C)

(A − C)t∇2 f (ξ2)(A − C)

)
.
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Fig. 2 An illustration of the
notations introduced in the Step
10 of the proof

A

B

C

D

E

Fa
a'

a"

Similarly,

a′ = ∇ f (C ′) + 1

2

(
(B − C ′)t
(A − C ′)t

)−1 (
(B − C ′)t∇2 f (η1)(B − C ′)
(A − C ′)t∇2 f (η2)(A − C ′)

)
,

for η1, η2 ∈ T ′. Hence

|D2
1g

K |(AB) = |a − a′||AB| ≤
(

|∇ f (C) − ∇ f (C ′)| + C f

|AB| |AB|2
)

|AB|.

Now, |∇ f (C) − ∇ f (C ′)| ≤ max |∇ f |(|AC | + |AC ′|) so that

|D2
1g

K |(AB) ≤ C f |AB|2
and the right hand side is bounded above by C f L2(T ) as the angles of T are bounded below
by θ̄ .
Step 10. We prove item 2 of Step 8. For definiteness, assume that K and k are fixed, for
T ⊆ Qk . We will heavily use Remark 20 with no reference again. Notice that T lies in a
closed square of GK

k and this square, together with the other squares of GK
k intersecting it (at

the boundary), is triangulated in the standard way, by the assumption that T does not intersect
U 2·2−N 2−K

. Notice that the square mentioned before is divided by �K into two triangles. For
definiteness, assume that T is the one whose barycentre has smaller y coordinate, the other
case being similar. Also, for definiteness, assume that θk ∈ (π/4, π/2), the case θk ∈ (0, π/4)
being similar.

Call T = ACD, such that the angles are named clockwise and the angle at D is of π/2.
Call B the other vertex of the square of the grid in which T lies. Call E the vertex of �K

such that C = (B + E)/2. Call a = ∇gK on T , a′ = ∇gK on ACB and a′′ = ∇gK on
CDE . Finally, call F := (B + D)/2 and � = |AD|. We refer to Fig. 2 for an illustration on
the introduced notations.

We first estimate |D2
1g

K |(AC):

|D2
1g

K |(AC) = |a − a′|H1(AC) = √
2�|a − a′|.

Now we compute

(gK (D) − gK (F)) − (gK (F) − gK (B)) = f (D) + f (B) − f (A) − f (C)

= ( f (D) − f (A)) − ( f (C) − f (B)).
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Now,

∣∣ f (D) − f (A) − ( − �∂wk f (A) + �2

2
∂2wk ,wk

f (A)
)∣∣ ≤ �3

6
‖∂3wk ,wk ,wk

f ‖∞,

∣∣ f (C) − f (B) − ( − �∂wk f (B) + �2

2
∂2wk ,wk

f (B)
)∣∣ ≤ �3

6
‖∂3wk ,wk ,wk

f ‖∞.

and

|∂2wk ,wk
f (B) − ∂2wk ,wk

f (A)| ≤ �‖∂3vk ,wk ,wk
f ‖∞,

|∂wk f (B) − ∂wk f (A) − �∂2vk ,wk
f (A)| ≤ �2

2
‖∂3vk ,vk ,wk

f ‖∞.

Then we can compute

|a − a′| =
√
2

�

∣∣(gK (D) − gK (F)) − (gK (F) − gK (B))
∣∣ ≤

√
2

�

(
�2|∂2vk ,wk

f (A)| + C f �
3).

All in all, recalling 2−N ≤ ε,

|D2
1g

K |(AC) ≤ 2�2
(|∂2vk ,wk

f (A)| + C f ε
)
.

Now

∂2vk ,wk
f (A) = wt

k∇2 f (A)vk = (0, 1)tU t
k∇2 f (A)Uk(1, 0)

so that, by (17),

|∂2vk ,wk
f (A)| ≤ |(0, 1)t Dk(1, 0)| + |(0, 1)t (Ut

k∇2 f (A)Uk − Dk)(1, 0)| ≤ C f ε

and this gives

|D2
1g

K |(AC) ≤ �2C f ε.

We turn to |D2
1g

k |(CD):

|D2
1g

K |(CD) = |a − a′′|H1(CD) = �|a − a′′|.
Now we compute

(gK (E) − gK (C)) − (gK (D) − gK (A)) = ( f (E) − f (C)) + ( f (A) − f (D)).

Now

∣∣ f (E) − f (C) − ( − �∂wk f (C) + �2

2
∂2wk ,wk

f (C)
)∣∣ ≤ �3

6
‖∂3wk ,wk ,wk

f ‖∞,

∣∣ f (A) − f (D) − (
�∂wk f (D) + �2

2
∂2wk ,wk

f (D)
)∣∣ ≤ �3

6
‖∂3wk ,wk ,wk

f ‖∞.

and

|∂wk f (C) − ∂wk f (D) − �∂2vk ,wk
f (D)| ≤ �2

2
‖∂3vk ,vk ,wk

f ‖∞.

Then we can compute

|a − a′′| = 1

�

∣∣(gK (E) − gK (C)) − (gK (D) − gK (A))
∣∣

≤ 1

�

(�2

2
|∂2wk ,wk

f (C)| + �2

2
|∂2wk ,wk

f (D)| + �2|∂2vk ,wk
f (D)| + C f �

3).
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All in all, recalling again 2−N ≤ ε,

|D2
1g

K |(CD) ≤ �2(
1

2
|∂2wk ,wk

f (C)| + 1

2
|∂2wk ,wk

f (D)| + |∂2vk ,wk
f (D)| + C f ε).

As before, |∂2vk ,wk
f (D)| ≤ C f ε. Also, with similar computations as before,

|∂2wk ,wk
f (C)| ≤ |(0, 1)t Dk(0, 1)| + |(0, 1)t (Ut

k∇2 f (D)Uk − Dk)(0, 1)|
≤ |(0, 1)t Dk(0, 1)| + C f ε,

and similarly

|∂2wk ,wk
f (D)| ≤ |(0, 1)t Dk(0, 1)| + |(0, 1)t (Ut

k∇2 f (D)Uk − Dk)(0, 1)|
≤ |(0, 1)t Dk(0, 1)| + C f ε.

Therefore,

|D2
1g

K |(CD) ≤ �2
(|(0, 1)t Dk(0, 1)| + C f ε

)
.

With similar computations we arrive at

|D2
1g

K |(AD) ≤ �2
(|(1, 0)t Dk(1, 0)| + C f ε

)
.

Summing all the three contributions,

|D2
1g

K |(T ) = |D2
1g

K |(AC) + |D2
1g

K |(CD) + |D2
1g

K |(AD)

≤ �2C f ε + �2
(|(0, 1)t Dk(0, 1)| + C f ε

) + �2
(|(1, 0)t Dk(1, 0)| + C f ε

)

≤ �2(C f ε + |(0, 1)t Dk(0, 1)| + |(1, 0)t Dk(1, 0)|)
= 2L2(T )(C f ε + |Dk |1)

which concludes the proof. ��

5 Extremal points of the unit ball

Let � := (0, 1)n ⊆ R
n . In this section, we investigate the extremal points of the set

{ f ∈ L1
loc(�) : |D2 f |(�) ≤ 1}.

Notice that elements of the set above are indeed in L1(�), by Proposition 13, as cubes
support Poincaré inequalities. In order to carry out our investigation, we will consider a
suitable quotient space. We describe now our working setting.

We consider the Banach space L1(�), endowed with the standard L1 norm. We let A ⊆
L1(�) denote the (closed) subspace of affine functions. Therefore, L1(�)/A, endowed with
the quotient norm, is still a Banach space. We call π : L1(�) → L1(�)/A the canonical
projection. We define

B := {
g ∈ L1(�)/A : |D2g|(�) ≤ 1

}
,

where we notice that the |D2 · |(�) seminorm factorizes to the quotient, so that B = π({ f ∈
L1(�) : |D2 f |(�) ≤ 1}). We endow B with the subspace topology, hence, in the end,
its topology is the one induced by the L1 topology. Also, by Proposition 13 and standard
functional analytic arguments (in particular, theRellich–KondrachovTheorem),we can prove
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that the convex set B is compact. We will then be able to apply the Krein–Milman Theorem,
for M ⊆ B:

B = co(M) if and only if ext(B) ⊆ M. (KM)

We set

E := π(CPWL(�)) ∩ ext(B) ⊆ S,

where

S := {
g ∈ L1(�)/A : |D2g|(�) = 1

}
.

Thus, B corresponds to the unit ball with respect to the |D2 · |(�) norm whereas S to the
unit spere with respect to the same norm.

Even though we do not have an explicit characterization of extremal points of B, it is easy
to establish whether a function g ∈ π(CPWL(�)) is extremal or not.

Proposition 23 (CPWL Extreme Points) A function g ∈ π(CPWL(�)) ∩ S belongs to E if
and only if h ∈ span(g) for all h ∈ B with supp (|D2 h|) ⊆ supp (|D2 g|).
Proof The “only if” implication follows easily from Proposition 15.

We prove now the converse implication via a perturbation argument, recall Remark 20:
we will use the same notation.

Let g ∈ E and let h ∈ B with supp (|D2 h|) ⊆ supp (|D2 g|). We have to prove that
h ∈ span(g). Assume by contradiction that h /∈ span(g). We call now {Pg

k }k (resp. {Ph
k }k)

the triangles associated to g (resp. h) and {agk }k (resp. {ahk }k) the values associated to ∇g
(resp. ∇h). As we are assuming supp (|D2 h|) ⊆ supp (|D2 g|), we can and will assume that
{Pg

k }k and {Ph
k }k have the same cardinality and Pg

k = Ph
k for every k, so that we will drop

the superscripts g and h on these triangles. Also, we assume that for every k, Pk ⊆ �̄. Call

δ := min
{|agk − ag� | : H1(∂Pk ∩ ∂P�) > 0, agk �= ag�

}

and

� := max
{
|ahk − ah� | : H1(∂Pk ∩ ∂P�) > 0

}

and set finally ε := δ/� (if � = 0, then h = 0 and hence there is nothing to prove). Now
we write

g1 := g + εh

|D2(g + εh)|(�)
and g2 := g − εh

|D2(g − εh)|(�)
,

notice that g1, g2 ∈ S are well defined as we are assuming h /∈ span(g). Clearly g =
c1g1 + c2g2, where

c1 := |D2(g + εh)|(�)

2
and c2 := |D2(g − εh)|(�)

2
.

If we show that c1 + c2 = 1, then we have concluded the proof, as this will show that g was
not extremal (recall we are assuming that h /∈ span(g)) and hence a contradiction.

We prove now the claim. We compute

|D2(g + εh)|(�) =
∑

k<�

|(agk + εahk ) − (ag� + εah� )|H1(∂Pk ∩ ∂P�)
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=
∑

k<�

|(agk − ag� ) + ε(ahk − ah� )|H1(∂Pk ∩ ∂P�)

and similarly we compute |D2(g − εh)|. Notice now that for every k, � satisfyingH1(∂Pk ∩
∂P�) > 0, there exists λk,� with ε|λk,�| ≤ 1 such that ahk −ah� = λk,�(a

g
k −ag� ). This follows

from Remark 20 and the fact that agk = ag� implies ahk = ah� . Therefore,

|D2(g + εh)|(�) + |D2(g − εh)|(�)

=
∑

k<�

(|(agk − ag� ) + ε(ahk − ah� )| + |(agk − ag� ) − ε(ahk − ah� )|)H1(∂Pk ∩ ∂P�)

=
∑

k<�

(|agk − ag� |(1 + ελk,�) + |agk − ag� |(1 − ελk,�)
)
H1(∂Pk ∩ ∂P�)

= 2
∑

k<�

|agk − ag� |H1(∂Pk ∩ ∂P�) = 2|D2g|(�) = 2,

which concludes the proof. ��
Proposition 24 It holds that

co(E) = π(CPWL(�)) ∩ B.

Proof Being the inclusion ⊆ trivial by convexity, we focus on the opposite inclusion. We
will heavily rely on Remark 20. Take g ∈ π(CPWL(�)) ∩ B, g �= 0. Now consider the set

T := {
h ∈ E ∩ S : supp (|D2h|) ⊆ supp (|D2g|)} ,

and notice that by Proposition 23 and the fact that g ∈ CPWL(�), then T is finite (we will
show that T �= ∅ in Step 1). Also notice that h ∈ T if and only if −h ∈ T , so that we write
T = {±t1, . . . ,±t�}. We aim at showing that g ∈ co(T ), this will conclude the proof.
Step 1. We claim that T �= ∅. First, if g ∈ RE , then the whole proof is concluded, as
g/|D2 g|(�) ∈ T so that g ∈ co(T ). Otherwise, thanks to Proposition 23, we can take
h1 ∈ B with supp (|D2h1|) ⊆ supp (|D2g|) but h1 /∈ span(g). Notice that this forces h1 ∈
π(CPWL(�)). We can then take λ1 ∈ R such that

0 < H1(supp (|D2(g − λ1h1)|)) ≤ H1(supp (|D2g|)) − �,

where

� := min{H1(∂Pk ∩ ∂P�) : H1(∂Pk ∩ ∂P�) > 0, k �= �}
and we are using the same notation as for Proposition 23 (here the finitely many triangles are
relative to g). If g − λ1h1 ∈ RE then we have concluded the proof of this step. Otherwise,
take h2 ∈ B with supp (|D2h2|) ⊆ supp (|D2(g − λ1h1)|) but h2 /∈ span(g − λ1h1). Take
then λ2 ∈ R such that

0 < H1(supp (|D2(g − λ1h1 − λ2h2)|)) ≤ H1(supp (|D2(g − λ1h1)|))
−� ≤ H1(supp (|D2g|)) − 2�.

If g−λ1h1 −λ2h2 ∈ RE , then the proof of this step is concluded. Otherwise we continue in
this way, but, by the uniform decay posed on Hessian–Schatten total variations, this process
must stop, and this forces eventually g − λ1h1 − λ2h2 − . . . − λshs ∈ RE .
Step 2.We claim that g ∈ span(T ). The proof of this fact is identical to the one of Step 1, but
we take hi ∈ T instead of hi ∈ B. The possibility of doing so is ensured by Step 1 (applied
to g, g − λ1h1, . . .) and process would stop when g − λ1g1 − λ2h2 − . . . − λshs = 0.
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Step 3. We consider the finite dimensional vector subspace V := span(T ) ⊆ L1(�)/A,
endowed with the subspace topology. Consider also B ∩ V , compact and convex, notice that
g ∈ B ∩ V , by Step 2. We claim that ext(B ∩ V) ⊆ T . This will conclude the proof by the
Krein–Milman Theorem, as in (KM), with T in place ofM and B ∩ V in place of B. We are
using that T is closed and that co(T ) = co(T ) as T is finite. Take h ∈ ext(B∩V), write then
h = λ1t1+· · ·+λ�t�. Then there exists j ∈ {1, . . . , �} such that supp (|D2t j |) ⊆ supp (|D2h|),
as supp (|D2h|) ⊆ supp (|D2g|) and byStep 1 applied to h instead of g. The sameperturbation
argument of Proposition 23 shows that, in order for h to be extremal in B ∩ V , we must have
h = ±t j , which concludes the proof. ��
Theorem 25 (Density of CPWL extreme points) If n = 2, then ext(B) ⊆ E . In particular,
the extreme points of

{ f ∈ L1
loc(�) : |D2 f |(�) ≤ 1}

are contained in π−1(E) (recall that the closure is taken with respect to the quotient topology
of L1(�)/A). If Conjecture 1 holds, this is true for any number n of space dimensions.

Proof By Proposition 24,

co(E) = π(CPWL(�)) ∩ B,

so that the density Theorem 21 gives

co(E) = π(CPWL(�)) ∩ B = B.

Then the claim follows from the Krein–Milman Theorem as recalled in (KM). ��
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