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Exploratory behaviors are central to the
study of curiosity, since they allow us to
infer an otherwise hidden state of being
curious from quantitative, experimental
observations.

Reactive orienting behaviors reflect a fun-
damental form of curiosity and are driven
by the immediate novelty and/or surprise
of stimuli.

Operant tasks probe curiosity by offering
experimental subjects explicit action
choices to collect information, in a man-
Curiosity refers to the intrinsic desire of humans and animals to explore the
unknown, even when there is no apparent reason to do so. Thus far, no single,
widely accepted definition or framework for curiosity has emerged, but there is
growing consensus that curious behavior is not goal-directed but related to
seeking or reacting to information. In this review, we take a phenomenological
approach and group behavioral and neurophysiological studies which meet
these criteria into three categories according to the type of information seeking
observed. We then review recent computational models of curiosity from the
field of machine learning and discuss how they enable integrating different
types of information seeking into one theoretical framework. Combinations of
behavioral and neurophysiological studies along with computational modeling
will be instrumental in demystifying the notion of curiosity.
ner that is either neutral or costly/useful
with regards to overall gains/losses.

Recently developed computational
models of curiosity, based on intrinsically
motivated reinforcement learning, de-
scribe different expressions of curiosity
in a unified theoretical framework.
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An urge to explore the unknown
The scientific study of curiosity emerged in the late 19th and early 20th centuries with the advent
of experimental psychology which recognized curiosity early on as a major factor influencing
human and animal behavior [1,2]. Experimental observations – such as rats foregoing food
in favor of spontaneously exploring a novel environment – were interpreted as evidence for a
motivational drive which needs to be satisfied by acquiring information [3].

A prominent conceptual framework developed by Daniel Berlyne further discriminates between
‘perceptual’ and ‘epistemic’ curiosity [4]. Perceptual curiosity describes the phenomenon
observed in all animals, including humans, that novel sensory stimuli elicit arousal (see Glossary),
sensory inspection, and exploration. Epistemic curiosity, by contrast, refers to curiosity that creates
‘manifestations of knowledge’, considered to be exclusive to humans. However, the boundaries
between perceptual and epistemic curiosity appear rather blurry, since long-lasting stimulus
memories caused by perceptual curiosity may be considered knowledge, and knowledge acquisi-
tion is also observed in animals other than humans [5]. Parallel conceptual frameworks introduced
the notion of violated expectations as the cause of curiosity [6,7]. Building on this idea, the informa-
tion gap framework describes the main cause of curiosity as the difference between ‘what one
knows and what one wants to know’ [8]. Collectively, past conceptual frameworks have been
instrumental in highlighting different aspects of curiosity, yet no single, widely accepted definition
or framework has emerged. In this review, we therefore take an approach that is agnostic about
specific conceptual frameworks.

There is a growing consensus that curious behavior is (i) related to seeking or reacting to informa-
tion, and (ii) not goal-directed (i.e., exploratory actions are not aimed toward a goal or completion
of a task). Hence, we focus on behavioral and neurophysiological studies which satisfy these two
conditions and group them into three categories according to the type of information-seeking
observed (Figure 1). The first category includes curious behavior indicated by reactive orienting.
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Figure 1. Categorization of behavioral paradigms to study curiosity. Left: reactive orienting occurs spontaneously in
response to curiosity-evoking stimuli. Examples of exploratory orienting behaviors include gaze shifts towards novel or
informative stimuli in humans and non-human primates. Right: curiosity revealed through active choices for information. In
an example task, an agent prefers fixating on an image that has been associated with the possibility of receiving new
information over a second image with no such associations. The second image can be reward-neutral (‘–‘) leading to a
paradigm of reward-neutral information gathering; or it can potentially give access to a positive reward (‘$’) or loss leading
to a paradigm where curiosity is costly/useful in terms of overall gain.
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Glossary
Active choice for information: active
exploratory actions to collect anticipated
information or intrinsic rewards.
Depending on the experimental design,
the association between curiosity-driven
actions and the tasks’ extrinsic rewards
can be averted (neutral curiosity) or be
positive/negative (useful/costly curiosity).
Arousal: physiological and neuronal
state of heightened activity or alertness.
Arousal is evoked by surprise and
novelty, but it is not restricted to that; for
example, arousal can be evoked by fully
expected large rewards.
Attention: allocation of neural
processing resources to relevant stimuli.
The extent to which a stimulus is
processed depends on the amount of
attentional capacity available, which is
among other things determined by levels
of arousal. Surprising and novel stimuli
attract processing resources.
Empowerment: quantifies the
potential an agent perceives about how
much it can control the environment.
Extrinsic rewards: in this review we
use the term ‘extrinsic rewards’ to refer
to gains or penalties in experimental
setups.
Habituation: the decrement of
behavioral or neuronal responses due to
repeated stimulation and not caused by
motor fatigue or nonspecific sensory
adaptation.
Information gain: refers to the impact
a stimulus has on an agent's expectation
about upcoming stimuli. It is a type of
progress rate and is sometimes
considered as a form of surprise.
Intrinsic rewards: refers to appealing
aspects of a stimulus that are different
from the stimulus association with the
task’s extrinsic rewards. Examples of
intrinsic rewards are novelty, surprise,
progress rate, information gain, and
empowerment. Curiosity-driven actions
are often interpreted as actions towards
collecting intrinsic rewards.
Multistep tasks with sparse reward:
tasks where extrinsic rewards (and
punishments) are delivered only after
several actions of the agents, as
opposed to simple tasks with immediate
frequent extrinsic rewards (e.g., bandit
tasks). These tasks are particularly
important to study useful/costly
curiosity.
Neuromodulatory systems: clusters
of neurons which have widespread
projection pathways and regulate
cellular excitability and synaptic plasticity
In the second category, we include specific tasks involving an active choice for information, where,
similar to reactive orienting, information seeking does not confer any extrinsic gains or losses (neutral
information). In the third category, we include tasks with active choices for costly or useful informa-
tion, that is, tasks where exploratory actions affect the amount of reward or punishment received.
We finally review recent computational models emerging from the field of artificial intelligence and
discuss how they help link different experimental studies in psychology and neuroscience.

Reactive orienting
The most fundamental form of curiosity may be found among orienting behaviors. Across animal
species, novel or surprising stimuli spontaneously elicit arousal and evoke sensory inspection and
exploration with very short latency [9–13] (Figure 2). The ubiquity of orienting behaviors in the
animal kingdom suggests that behavioral reactions are hardwired by evolution to induce explora-
tion independently of other goals. Orienting responses show habituation after a few exposures,
suggesting a rapid form of non-associative learning. When encountering multiple stimuli, animals
and humans have the innate tendency to investigate novel or surprising stimuli longer than familiar,
expected ones [14]. This preference for novel stimuli, also referred to as novelty-seeking, has been
widely used as a measure of curiosity [15]. However, avoidance of novel stimuli has also been well
described, indicating considerable variability among individuals and experimental paradigms with
regard to novelty preference [16].

Reactive orienting requires neural pathways that process sensory stimuli to detect novelty or
surprise and initiate orienting movements. Moreover, orienting has been linked to the activation
of neuromodulatory systems. In the following, we review findings related to these three
aspects of the neurophysiology of reactive orienting.

Evaluating surprise and novelty signals
Both novelty and surprise broadly impact neural activity in a wide variety of neural circuits [17,18].
We distinguish two different ways in which this can happen (Figure 3). First, novelty and surprise
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Figure 2. Surprise and novelty
evoke curiosity. The novelty of
a stimulus depends on whether it
has been encountered before, how
frequently it has been encountered,
and how similar it is to previously
encountered stimuli (familiarity
dimension) [17,18,22,49,78]. The
surprise of a stimulus, however,
depends on how predictable the
stimulus is given contextual cues
(e.g., a conditioned stimulus) and the
extent of its influence on an agent’s
expectation of upcoming stimuli
(expectation dimension) [122,123].
The two dimensions are highly
correlated in typical experiments
(e.g., oddball tasks [124]), leading
to maximal orienting responses.
However, novelty and surprise can
be dissociated by specific experiment
designs (see [17] for a review). For
example, consider two sequences
of binary stimuli: (i) the repeating se-
quence of ‘AAABAAAB…’ and (ii) a

purely random sequence with occurrence probability of 75% for ‘A’ and 25% for ‘B’. Stimulus ‘A’ is more familiar/frequent
than ‘B’ in both cases. However, while ‘A’ is more expected than ‘B’ in the random sequence, the two stimuli are equally
expected in the repeating sequence (because of the deterministic regularity). Several formal definitions have been suggested
for how expectation and familiarity can be quantified [122,125], and the neural signatures of many of these definitions have
been found in the brain [17]. While novelty and surprise are dissociable concepts, we do not exclude the possibility that
some neuronal populations are activated by both. We further note that progress rate and information gain, as two other main
proposed drives of curiosity [87,92,102], can also be categorized as measures of surprise [122].
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in their projection targets by modulating
rather than directly exciting or inhibiting
neural activity. Major neuromodulators
include noradrenaline, serotonin,
dopamine, and acetylcholine.
Novelty: subjective stimulus quality
related to the frequency with which a
stimulus has been experienced in the
past. Forgetting increases the novelty of
a stimulus, whereas similarity to other
frequently encountered stimuli lowers it.
The term ‘familiarity’ refers to the
opposite situations.
Progress rate: the influence that a
stimulus has on the predictions and
policy adjustments of an agent upon
observation.
Reactive orienting: spontaneous
reaction to curiosity-evoking stimuli
which includes arousal, sensory
inspection, and orienting of sensory
organs or the whole body to the
stimulus. Reactive orienting can be
modeled by a fixed action policy to seek
immediately available intrinsic rewards.
Surprise: measures how unexpected a
stimulus is based on contextual cues
such as conditioned stimuli or specific
environmental circumstances. The term
‘expectedness’ refers to the opposite
effect.
can modulate sensory responses in structures along sensory pathways of different modalities,
including the thalamus, subcortical nuclei, and sensory cortices [19,20]. As with behavioral
orienting reactions, neuronal responses habituate with recurring experience. The modulation of
sensory responses can occur already very early during sensory processing, as has been demon-
strated for mitral cells in the mouse olfactory bulb, only one synapse away from the chemical
receptors [21]. In a recent study using large-scale electrical recordings in macaque monkeys,
all of 22 investigated brain regions contained at least a few per cent of neurons which showed
larger visual responses when stimuli were either novel and surprising or just surprising [22].
Frequently, the same neurons were modulated in both conditions. Consistent with the magnitude
of behavioral responses, the combination of novelty and surprise evoked the largest response
modulation (Figure 2).

Aside from having amodulatory influence on sensory responses, novelty and surprise can also be
explicitly encoded in a manner which is invariant to stimulus identity or the sensory modality
(Figure 3). This has been observed less widely (outside neuromodulatory systems) (see next
subsection). Selective responses to novelty have been identified in primates late in the ventral
visual stream, in the anterior ventral medial temporal cortex, in the perirhinal cortex [23,24], as
well as in the hippocampus and amygdala [25,26]. While lesions of the neocortex typically disrupt
orienting behaviors [27], lesions of perirhinal [28,29] and hippocampal [30] areas leave orienting
intact but disrupt recognition memory [31–33]. This suggests that the medial temporal lobe struc-
tures evaluate novelty signals in the context of memory formation rather than for mediating
orienting behaviors.
1056 Trends in Neurosciences, December 2023, Vol. 46, No. 12
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Figure 3. Hypothetical neuronal encoding schemes related to novelty and surprise. Schematic representation of
four neurons (1–4) encoding four different stimuli (a–d), which have different degrees of novelty or surprise. While stimulus ‘a’
is highly novel and/or surprising, stimulus ‘d’ is expected and/or familiar. (A) Neurons encode sensory stimulus identity but are
also modulated by familiarity and/or expectation. This has been observed, for example, in visual cortical areas [126]. While in
the illustrated simplified case, each neuron responds to only one stimulus, in reality neurons typically respond to multiple
stimuli in a combinatorial manner. (B) Neuron 1 responds to novelty and/or surprise but is invariant to the sensory stimulus
identity. Example neurons reside in the locus coeruleus (LC) [41].
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Initiating orienting movements
The successful detection of a novel and/or surprising stimulus evokes a cascade of orienting
reactions. These commonly include reactions associated with arousal – such as transient
changes in skin conductance, respiration, pupil diameter, and heart rate [34] – but also explor-
atory movements of sensory organs such as the eyes or the whiskers, and even the whole
body [9]. Neural effector circuits for initiating orienting and exploratory movements have been
localized to the superior colliculus in the midbrain [35], and some of its major inputs including
the subthalamic nucleus zona incerta [14] and the substantia nigra pars reticulata [36,37], as
well as various brainstem nuclei [38]. Importantly, stimuli of different sensory modalities evoke
broadly similar orienting responses: for example, mice start sniffing in response to not only
novel odorants but also novel sounds or lights [39,40]. This suggests that the premotor brain
areas involved in orienting behaviors are multimodal, that is, they are shared between different
sensory modalities.

Activation of neuromodulatory systems
A third aspect of the neurophysiology of reactive orienting involves catecholaminergic neuromod-
ulation, which can be functionally linked to both evaluating surprise/novelty and initiating move-
ments. Catecholaminergic neurons exhibit selective responses to novel stimuli with latencies of
<150 ms [41,42], which is consistent with their involvement in early processing of curiosity-
evoking stimuli. Specifically, neurons in the pontine locus coeruleus (LC) – which is the source
of noradrenaline in the neocortex and hippocampus and has been implicated in the control of
arousal [43] – respond to novel stimuli with bursts of action potentials, which habituate rapidly
[44]. LC neurons also co-release dopamine in novel environments, leading to memory enhance-
ment [45]. Pharmacological evidence further suggests that noradrenaline actively promotes
orienting-related exploratory behaviors [46]. Activation of the LC has also been linked to the
initiation of the distinct cortical electroencephalographic potential elicited by novel stimuli, called
Trends in Neurosciences, December 2023, Vol. 46, No. 12 1057
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‘novelty P3’ [34]. The novelty P3 habituates with subsequent presentations of novel items and
is markedly reduced for expected compared with unexpected novel stimuli, suggesting an
enhancement by surprise [18,47,48].

Novel environments and novel stimuli have further been shown to stimulate dopamine neuron
activity in rodents, non-human primates, and humans [42,49–53]. Dopamine responses to
novelty facilitate associative learning of novel stimuli [49], underlie novelty-induced exploration
[54], and may be related more generally to movement initiation [55]. However, dopamine release
specifically in the tail of striatum during assessment of a novel object has been related to avoid-
ance of novel objects, which was interpreted to be based on an individual animal's estimation
of threat [56].

Interestingly, there is little direct evidence that surprise alone activates dopamine neurons.
Pharmacological manipulations of dopamine in rats have been shown to influence surprise
processing in the auditory midbrain [57]. However, in an olfactory oddball experiment in mice,
rare stimuli, which did cause a behavioral orienting reaction, failed to activate dopamine neurons
[49]. Further studies are needed to characterize how dopamine neurons respond to surprise and
novelty.

Active choice for neutral information
In the second category of information-seeking behaviors, we review studies using behavioral
tasks, also referred to as non-instrumental information-gathering tasks [15], in which experimen-
tal subjects actively choose to collect anticipated information: for example, monkeys actively take
actions that are followed by novel visual stimuli [58]. Contrary to innate reactive orienting, such
information-gathering behaviors require action policies which are based on the learned associa-
tions between possible actions and expected future information. To keep subjects engaged,
extrinsic rewards (often food in the context of animal studies or monetary compensation in
humans) are commonly used, but any association between curiosity-driven exploratory actions
and the tasks’ extrinsic rewards are averted by either delivering extrinsic rewards randomly or
as one-offs, independently of experimental subjects’ action choices [59–61]. Even though final
extrinsic rewards are thus the same for all action-selection strategies, and seeking information
is neutral with respect to extrinsic rewards, animals (including humans) consistently choose
to collect information about unknown stimuli [58], unfamiliar facts [62], or upcoming extrinsic
rewards [61,63].

Active choices for neutral information are often accompanied by reactive orienting reactions: for
example, human eye movements are modulated by interest in symbolic, semantic information
[64]. This highlights the close interplay between reactive orienting and active information seeking,
also present at the level of neural circuits. Many brain areas involved in orienting (e.g., the medial
temporal cortex, amygdala, or zona incerta) are similarly activated when selecting task-related
actions to seek novel information [22].

Even though, by design, extrinsic rewards play no role in tasks involving active choices for neutral
information, evidence suggests an important role for the extrinsic reward system. Dopamine neu-
rons respond to information-predicting cues [63] and neurons in the lateral habenula, a major
input to dopamine neurons, are activated by sensory cues that are repeatedly presented before
novel stimuli [65]. This anticipatory activity has also been referred to as ‘information prediction
error’ [65], akin to the concept of reward prediction errors [66]. Consistent with this, neuroimaging
revealed an activation of the substantia nigra pars compacta/ventral tegmental area (SNc/VTA) in
anticipation of novel stimuli [67]. Novelty further enhances reward responses in the ventral
1058 Trends in Neurosciences, December 2023, Vol. 46, No. 12
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striatum, a major projection target of dopamine neurons [68], which has also been implicated
in the choice of novel over familiar stimuli [69]. Finally, activation of the SNc/VTA and striatum
in humans has been shown to be correlated with the degree to which human participants feel
curious [62,70].

While information and extrinsic rewards thus seem to be processed in a similar manner, there are
also important differences in the neuronal populations andmechanisms underlying active choices
for neutral information and reward-seeking. While all SNc/VTA dopamine neurons tend to
respond to unpredicted reward or reward-predicting cues, only a subset of them is activated
by novel or novelty-predicting stimuli [49,58,71]. Moreover, in the dorsal striatum of macaque
monkeys, and its likely afferent projections from the anterior cingulate cortex, a group of neurons
displayed information-anticipatory activity which was largely unaffected by extrinsic reward value
[72]. Consistent with this, pharmacological manipulations of this cortico-basal ganglia network
affect gaze reaction time specifically for informative cues but not non-informative cues, without
affecting overall motivation to perform the task [72].

Distinct processing of information and extrinsic reward has also been demonstrated in the lateral
intraparietal cortex (LIP) of macaque monkeys. The LIP is involved in identifying significant
locations in visual space and shifting gaze towards them. Stimulus novelty or the expected
information gain associated with visual cues reliably enhance the activity of LIP neurons, but
independently of the value of upcoming rewards [73–76]. Similarly, human neuroimaging
reveals a modulation of parietal cortex by the uncertainty about outcomes but not by expected
reward [77].

Active choice for costly/useful information
In the third category of information-seeking behaviors, we include studies in which the choice to
collect information has a consequence for the overall gains and losses of the experimental
subject. These tasks are motivated by the fact that in the real world, curious exploration often
comes at a price. Seeking new information takes time and metabolic energy and might distract
curious agents from pursuing extrinsic rewards. To study how agents balance their desires for
both extrinsic rewards and information, specific tasks have been developed which introduce
positive or negative associations between curiosity-driven actions and the tasks’ extrinsic
rewards. These experiments demonstrate that humans and animals robustly engage in informa-
tion seeking while searching for extrinsic rewards [73,78–80]. They even exhibit curiosity in exper-
imental paradigms where curiosity-driven behavior is explicitly penalized by, for example, adding
physical punishment [81], delay periods [77], or reward reduction [82]. In a particularly striking
example, humans take the risk of receiving a mild electrical shock to get the chance of knowing
the secret of a magic trick [81]. In tasks with active choices for costly/useful curiosity, the curiosity
level is indeed balanced by both the strength and the direction of the association between
curiosity-driven actions and the tasks’ extrinsic rewards: for example, the preference for informa-
tion or novelty decreases by increasing the chance of punishments [81,82] or by decreasing the
agents’ level of optimism about novel objects [83,84].

The systematic preference for novelty is particularly advantageous in complex environments
where rewards are sparse and delivered only after long sequences of actions. In such environ-
ments, involving multistep decision-making, human explorers reach rewarding states up to
two orders of magnitude faster than artificial agents searching randomly [78]. A preference for
exploring novel actions has also been observed in simple tasks with immediate frequent extrinsic
rewards (e.g., bandit tasks), which enable humans to efficiently explore different actions and find
the one with the highest average reward [79,85,86]. However, whether the principles underlying
Trends in Neurosciences, December 2023, Vol. 46, No. 12 1059
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curious exploration inmultistep taskswith sparse rewards also apply to exploration in simpler
tasks with immediate frequent rewards needs further investigation.

In general, it has been debated whether useful/costly curiosity is ‘purely’ information-driven or, at
least in part, motivated by external incentives [15]. Agents may simply use their curiosity as a heu-
ristic tool to reach task-related goals [87]. For example, in tasks where a reward is associatedwith a
specific location, just searching for new objects and locations would eventually lead to discovering
the reward location. Accordingly, a single ‘curiosity mechanism’might be sufficient to explain both
active choices for costly/useful information [78] and ‘purely’ information-driven choices for neutral
information [88]. This argument is supported by the observation that similar exploration strategies
are used by humans and animals even when such strategies are not optimal or useful for collecting
rewards. For example, humans seek novelty to search for rewards even when novelty-seeking
leads to distraction by reward-independent stochasticity [83] (also known as the ‘noisy-TV’
problem [89]), and monkeys keep looking for reward-informative cues even when there is no
reward-uncertainty [73]. These results suggest that humans and animals employ at least two
separate action policies in parallel, one for curiosity and one for seeking reward. In other words,
information gets assigned a value on its own, rather than merely modulating reward value.

Consistent with this, reward and information can also be distinguished at the neural level for costly
or useful curiosity [90]. Neurons in the orbitofrontal cortex of monkeys trading reward for informa-
tion about gamble outcomes signaled both the amount of extrinsic reward and informativeness,
but in an independent manner [82]. Importantly, since animals can weigh information against or in
addition to extrinsic rewards in experimental tasks with costly or useful curiosity, these tasks
enable us to study how and where in the brain preferences for extrinsic rewards and information
are integrated to influence the behavior. A recent preprint reports a possible site for such integra-
tion in the macaque brain. In a decision-making task involving a trade-off between information
and reward, neurons in the lateral habenula combined the value of information and extrinsic
reward to signal the subjective value of possible choices using a common code [91]. Moreover,
perturbation of neural activity in the lateral habenula biased choice behavior in a manner consis-
tent with reducing subjective value.

Computational models of curiosity
In the final section of this reviewwe discuss recent computationalmodels emerging from the field of
artificial intelligence and discuss how they can help organize the richness and diversity of experi-
mental findings in a unified theoretical framework. Consistent with brain imaging and neurophysiol-
ogy findings, theories of curiosity often interpret curiosity-driven behaviors as actions driven by
an intrinsic reward-like signal (i.e., a signal generated inside the brain) [4,15,92]. Many modern
theories rely on this idea and use intrinsically motivated reinforcement learning (RL) algorithms as
computational models of curiosity [87,93]. RL describes the behavior of artificial agents that
maximize some ‘primary’ extrinsic rewards (e.g., nutrition or money) by interacting with their
environments [94]. Intrinsically motivated RL algorithms [95] assume that there exists one or
more additional ‘secondary’ (intrinsically generated) reward signals (e.g., novelty) that are inde-
pendent of the primary (extrinsic) reward but help exploration for collecting primary rewards
[96,97] and learning complex skills [98,99]. In this section we discuss how intrinsically moti-
vated RL can describe different expressions of curiosity (reviewed earlier) and what challenges
they face in doing so.

Integrating different expressions of curiosity in one theoretical framework
All three categories of curiosity-driven behavior that we have reviewed can be formally described
in the intrinsically motivated RL framework: innate, reactive orienting does not need the learning
1060 Trends in Neurosciences, December 2023, Vol. 46, No. 12
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component of RL algorithms and can be modeled by a fixed action policy to seek immediately
available intrinsic rewards defined as surprise, novelty, or a combination of the two (e.g., the
surprise-seeking models of visual attention [100,101]). However, active choices for neutral
information have to be modeled by a learned action policy that maximizes future intrinsic rewards
by interacting with the environment: for example, models of seeking progress rate in experiments
where subjects freely choose which task to complete [59,102]. Hence, models of reactive
orienting and active choices for neutral information differ with respect to the flexibility of their
action policies (i.e., fixed versus learned throughout a task) and the time-scales of intrinsic
reward-seeking (i.e., one-step versus multistep reward-seeking), but both can be modeled by
action policies that are purely driven by intrinsic rewards.

By contrast, modeling exploration in tasks where curiosity is useful or costly needs action policies
that are jointly driven by both intrinsic and extrinsic rewards: for example, novelty-seeking models
of exploration in environments with sparse rewards [78,83]. Even in the simplistic case of having
only one intrinsic reward signal, there are multiple possibilities for how the relationship between
intrinsic and extrinsic reward signals can be described in the RL framework (Figure 4). The tradi-
tional approach in machine learning is to use a weighted sum of the intrinsic and extrinsic rewards
as a single scalar reward signal that drives action selection [89] (Figure 4A). A successful example
of using this approach in neuroscience has been in explaining the joint dopamine response to
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Figure 4. Modern computational models of curiosity use reinforcement learning (RL) and characterize curiosity
as a desire for an intrinsic reward signal. An assumption of many models of curiosity is that the reward signal is
composed of an intrinsic part and an extrinsic part. Models of the joint influence of extrinsic and intrinsic rewards on action
policy either (A) use a weighted sum (with weighting factor β) of the two reward signals as a single scalar reward signa
that drives action selection, or (B) assume that different reward signals are processed in parallel and result in separate
action policies which are only then combined to drive action selection. (C) The latter can be generalized to include
N parallel reward signals (e.g., nutrition, sex, novelty, surprise, etc.) that result in different action policies. Actions are taken
based on competition between these policies.
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extrinsic rewards and novelty, in a single ‘reward’-seeking framework [103]. Although the excep-
tional simplicity of this approach makes it attractive for computational modeling, it is not consis-
tent with the experimental evidence reviewed herein for separate neural pathways of reward-
and information-driven behavior in the brain [58,73,78,82,91,104], and does not allow for rapid
and flexible arbitration between seeking different reward signals observed in human experimental
subjects [78,83]. Hence, despite its initial success, this approach cannot explain all different
expressions of curiosity reviewed in the previous sections.

An alternative approach is to consider two parallel processing pathways for the two reward
signals, resulting in two separate action policies that are only in later processing steps combined
for action-selection [78,104,105] (Figure 4B). From the perspective of viewing the brain as a
‘mixture of experts’ [106], each action policy can be seen as an expert, where one advocates
for curiosity-driven exploration (seeking intrinsic reward) and the other for seeking extrinsic
rewards. The competition between the two experts and their weights on decision-making can
be controlled by multiple factors such as optimism about availability of rewards [83], reliability of
different experts [107], and cognitive load [108]. Importantly, this approach can be generalized
to include more than two parallel action policies and to model action-selection in tasks where
behavior is driven by multiple parallel intrinsic and extrinsic reward signals [14,61] (Figure 4C).
In principle, each parallel action policy can be driven by a complex reward signal that is a different
weighted combination of multiple simple intrinsic and extrinsic reward signals. The joint dopamine
response to extrinsic reward and novelty [103] is an example mechanism for evaluating such
complex reward signals.

What is the ’intrinsic reward’?
The central challenge in modeling any of the three categories of curiosity-driven behavior is (i) to
characterize the intrinsic reward signals in different tasks, to answer the question ‘what are we
curious about?’, and (ii) to identify the benefits of seeking intrinsic rewards in various tasks, to
answer the question ‘why are we curious?’. Depending on which question is prioritized, different
computational models of curiosity can be classified into bottom-up and top-down models.

Bottom-up models of curiosity start with the question ‘what are we curious about?’ and charac-
terize the intrinsic reward signal based on inspirations from experimental observations [93]. These
models have been successful in explaining and predicting many aspects of curiosity-driven
behavior in humans and animals by considering novelty [78], surprise [61], information gain
[109,110], progress rate [59,102], or empowerment [111,112] as the intrinsic reward signal.
However, a drawback of the existing bottom-up models has been their limited focus on individual
experimental tasks: for example, showing that human exploration is best explained by novelty-
seeking models in some experiments [78,83] but by models driven by information gain or prog-
ress rate in some other tasks [59,109]. Importantly, no single unifying bottom-up model has
been proposed to explain the rich and diverse experimental findings reviewed herein, and it has
remained unclear why and how intrinsic rewards driving exploration differ from one task to
another. Simultaneous modeling of multiple experiments with potentially many drives of curiosity
is necessary to address these questions. A potential candidate model of multiple experiments
includes parallel action policies (similar to Figure 4C), where each action policy is driven by a
different intrinsic reward signal (or a different mixture of them).

The question ‘why are we curious?’ in bottom-up models is often approached by heuristic
reasoning. For example, it has been argued that seeking novelty allows agents to explore their
environment efficiently and discover otherwise unknown states with high primary reward values
[78,83], seeking progress rate enables agents to develop skills that can be used for planning in
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Outstanding questions
How do sensory areas detect novelty
and surprise?

How do dynamic signals in neural
circuits implement computations related
to curiosity?

Where in the brain are different neuronal
networks shared and where are they
distinct between reactive orienting and
active choices for information?

Is there a single ‘curiosity mechanism’

to explain both active choices for
costly/useful information and active
choices for neutral information?

Aremechanisms underlying curiosity the
same or different between multistep
decision-making tasks with sparse
rewards, on the one hand, and simple
exploration tasks with immediate, fre-
quent rewards on the other hand?

How many principally different types of
intrinsic reward are involved in different
behavioral patterns of curiosity? How
do these intrinsic reward signals interact
to drive action-selection?

How can computational models be
used to design hypothesis-driven ex-
periments and potentially link otherwise
separated experimental phenomena?
future [87], and seeking empowerment enables agents to gain control over their environment
[112]. While these arguments are supported by the success of modern machine-learning
algorithms [96,113,114] and have some theoretical foundations [115], bottom-up models do
not directly address why curiosity has evolved in humans and animals.

Top-downmodels, however, start with the question ‘why are we curious?’, define an overarching
long-term goal for agents (i.e., assuming the answer to the ‘why’ question), and derive curiosity as
a near-optimal mechanism to achieve this goal. Top-down models do not directly describe
curiosity-driven behavior but rather describe the process through which such behaviors would
emerge.

Typical examples of top-down models start with the assumption that an agent’s goal is to gain
knowledge of how to predict ‘the correct action’ (e.g., the action with the highest average extrin-
sic reward) from incomplete knowledge of the environment [84,116]. Even if there is an optimal
strategy for achieving this goal, it is a priori unclear how this strategy is linked to curiosity. For
example, seeking novelty and seeking information gain can be seen as special cases of a more
general optimal exploration strategy, but with different assumptions about the task’s structure
[116]. If this can be generalized further, then the fact that humans seek novelty in some tasks
but information gain in others can be explained by the observation that the optimal exploration
strategy is different for different tasks. In a model with parallel action policies driven by different
intrinsic rewards (Figure 4C), such a variable strategy can be implemented as a task-dependent
modulation of how much different policies influence action selection. The main challenge in top-
down models of curiosity is to formulate assumptions on the task structure and the agents’ prior
knowledge thereof, which is non-trivial. Moreover, since humans have been shown to not always
choose the optimal exploration strategy [83], top-down models of curiosity also face a challenge
for explaining the reasons for suboptimality (see [117] for an example).

Conceptual evolution-based examples of top-down models consider curiosity as the outcome of
an evolutionary process for maximizing population-level performance [95] (e.g., survival rate of the
species). Measures of evolutionary performance are evaluated for an entire population of agents
and only after several generations. Therefore, the actions of an individual cannot simply be
optimized with respect to such a performance measure. However, an individual agent’s internal
reward signal can serve as an approximate indicator of the evolutionary performance measure
and guide the agent’s actions, throughout its life, such that the population’s cumulative behavior
maximizes the population-level performance over generations. Accordingly, evolution-based
models of curiosity assume that evolution optimizes the agents’ internal intrinsic reward signals
over generations [95]. While recent studies in machine learning have shown that such ap-
proaches can lead to intrinsic reward signals that can be interpreted as drives of curiosity
(e.g., signals similar to surprise [118,119]), it is not trivial whether evolution-based reward signals
are necessarily linked to curiosity. Overall, evolution-based models should be seen at this stage
as conceptual theories, and it is difficult to see experimental predictions of these models that
can be definitively tested using existing tools.

Concluding remarks
Exploratory behaviors are central to the study of curiosity, since they allow us to infer an otherwise
hidden state of being curious from quantitative, experimental observations. Much progress has
been made in identifying neural circuits related to curiosity. However, many fundamental ques-
tions remain to be addressed (see Outstanding questions). What is the specific contribution of
a particular brain region or cellular ensemble to measurable outcomes such as orienting? Is an
area just relaying information from input to output structures? Or is it involved in a critical
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computation such as detecting novelty, detecting surprise, or integrating information and
reward? Causal neuroscience tools do not necessarily resolve these questions since any
manipulation along the critical path from sensory input to motor output will have disruptive con-
sequences. It is thus crucial to collect high-resolution neural data [120] to begin to understand
how dynamic signals in neural circuits implement computations related to curiosity. Complemen-
tary brain-wide measurements [121] provide the opportunity to differentiate neuronal networks
that are specifically involved in processing novelty, surprise, and neutral, costly, or useful informa-
tion from those that are shared across different types of curiosity-driven exploration.

Recently developed computational models of curiosity which are based on intrinsically motivated
reinforcement learning promise to inform our understanding of behavioral performance and neu-
ral signals. These models describe curiosity-driven behavior as actions driven by some intrinsic
reward signals that are either defined based on experimental observations (bottom-up theories)
or derived as optimal solutions to some optimization problems (top-down theories). Both
approaches face multiple challenges (see Outstanding questions). Importantly, is there a single
intrinsic reward signal that drives all different patterns of behavior? Or are there multiple reward
signals, one for each behavioral pattern? If the latter is true, then how do different reward signals
interact? Different answers to these questions lead to different experimental predictions concern-
ing both behavioral expressions and neural mechanisms of curiosity. Computational models may
thus help design hypothesis-driven experiments and potentially link otherwise separated experi-
mental phenomena.

In conclusion, we suggest that a phenomenological approach centered on behavioral expressions
of curiosity might be useful to inform future studies of curiosity, aimed at connecting behavior,
neural circuit investigations, and computational modeling.
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