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Abstract
The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number
of processes) communication complexity in the worst case: given a systemwith n processes and at most f < n/3 failures, any
solution to Byzantine consensus exchanges �

(
n2

)
words, where a word contains a constant number of values and signatures.

While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol
with quadratic communication complexity can be obtained in partial synchrony where the network alternates between (1)
asynchronous periods, with unbounded message delays, and (2) synchronous periods, with δ-bounded message delays. Until
now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication
complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad, a partially synchronous
Byzantine consensus protocol with O

(
n2

)
worst-case communication complexity. In addition, SQuad is optimally-resilient

(tolerating up to f < n/3 failures) and achieves O( f · δ) worst-case latency complexity. The key technical contribution
underlying SQuad lies in the way we solve view synchronization, the problem of bringing all correct processes to the same
view with a correct leader for sufficiently long. Concretely, we present RareSync, a view synchronization protocol with
O

(
n2

)
communication complexity and O( f · δ) latency complexity, which we utilize in order to obtain SQuad.

Keywords Optimal Byzantine consensus · Communication complexity · Latency complexity

B Pierre Civit
pierrecivit@gmail.com

B Jovan Komatovic
jovan.komatovic@epfl.ch

B Manuel Vidigueira
manuel.ribeirovidigueira@epfl.ch

Muhammad Ayaz Dzulfikar
ayaz.dzulfikar@u.nus.edu

Seth Gilbert
seth.gilbert@comp.nus.edu.sg

Vincent Gramoli
vincent.gramoli@sydney.edu.au

Rachid Guerraoui
rachid.guerraoui@epfl.ch

1 LIP6, Sorbonne University, 4 Place Jussieu, 75005 Paris,
France

2 Department of Computer Science, National University of
Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore
119077, Singapore

1 Introduction

Byzantine consensus [1] is a fundamental distributed com-
puting problem. In recent years, it has become the target
of widespread attention due to the advent of blockchain
[2–4] and decentralized cloud computing [5], where it acts
as a key primitive. The demand of these contexts for high
performance has given a new impetus to research towards
Byzantine consensus with optimal communication guaran-
tees.

Intuitively, Byzantine consensus enables processes to
agree on a common value despite Byzantine failures. For-
mally, each process is either correct or faulty; correct
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processes follow a prescribed protocol, whereas faulty pro-
cesses (up to 0 < f < n/3) can arbitrarily deviate from it.
Each correct process proposes a value, and should eventually
decide a value (no more than once). The following properties
are guaranteed:

• Validity: If all correct processes propose the same value,
then only that value can be decided by a correct process.

• Agreement: No two correct processes decide different
values.

• Termination: All correct processes eventually decide.

The celebrated Dolev-Reischuk bound [6] on message
complexity implies that any deterministic solution of the
Byzantine consensus problem incurs �(n2) communication
complexity: correct processes must send �(n2) words in the
worst case, where a word contains a constant number of val-
ues and signatures. It has been shown that the bound is tight in
synchronous environments [7, 8]. However, for the partially
synchronous environments [9] in which the network initially
behaves asynchronously and starts being synchronous with
δ-bounded message delays only after some unknown Global
Stabilization Time (GST ), no Byzantine consensus protocol
achieving quadratic communication complexity is known.1

(Importantly, the communication complexity of partially syn-
chronous Byzantine consensus protocols only counts words
sent after GST as the number of words sent before GST is
unbounded [11]). Therefore, the question remains whether
a partially synchronous Byzantine consensus with quadratic
communication complexity exists [12]. Until now, the most
efficient known solutions in partially synchronous environ-
ments had O(n3) communication complexity (e.g., HotStuff
[13], binary DBFT [2]).

We close the gap by introducing SQuad, a partially
synchronous Byzantine consensus protocol with O(n2)
worst-case communication complexity, matching the Dolev-
Reischuk [6] bound. In addition, SQuad is optimally-
resilient (tolerating up to f < n/3 failures) and achieves
O( f · δ) worst-case latency (measured from GST onwards).

1.1 Partially synchronous“leader-based” Byzantine
consensus

Partially synchronous “leader-based” consensus protocols
[13–16] operate in views, each with a designated leader
whose responsibility is to drive the system towards a deci-
sion. If a process does not decide in a view, the processmoves
to the next view with a different leader and tries again. Once
all correct processes overlap in the same view with a cor-
rect leader for sufficiently long, a decision is reached. Sadly,

1 No deterministic protocol solvesByzantine consensus in a completely
asynchronous environment [10].

ensuring such an overlap is non-trivial; for example, pro-
cesses can start executing the protocol at different times or
their local clocks may drift before GST , thus placing them
in views which are arbitrarily far apart.

Typically, these protocols contain two independent mod-
ules:

1. View core: The core of the protocol, responsible for exe-
cuting the protocol logic of each view.

2. View synchronizer: Auxiliary to the view core, respon-
sible for “moving” processes to new views with the goal
of ensuring a sufficiently long overlap to allow the view
core to decide.

Immediately afterGST , the view synchronizer brings all cor-
rect processes together to the view of the most advanced
correct process and keeps them in that view for sufficiently
long. At this point, if the leader of the view is correct, the
processes decide. Otherwise, they “synchronously” transit to
the next view with a different leader and try again. Figure1
illustrates this mechanism in HotStuff [13]. In summary, the
communication complexity of such consensus protocols can
be approximated by n · C + S, where:

• C denotes the maximum number of words a correct pro-
cess sendswhile executing its viewcore during [GST , td ],
where td is the first time by which all correct processes
have decided,2 and

• S denotes the communication complexity of the view
synchronizer during [GST , td ].

Since the adversary can corrupt up to f processes, cor-
rect processes must transit through at least f + 1 views
after GST , in the worst case, before reaching a correct
leader. In fact, PBFT [15] and HotStuff [13] show that pass-
ing through f + 1 views is sufficient to reach a correct
leader. Furthermore, HotStuff employs the “leader-to-all, all-
to-leader” communication pattern in each view. As (1) each
process is the leader of at most one view during [GST , td ],
and (2) a process sends O(n) words in a view if it is the
leader of the view, and O(1) words otherwise, HotStuff
achieves C = 1 · O(n) + f · O(1) = O(n). Unfortunately,
S = ( f + 1) · O(n2) = O(n3) in HotStuff due to “all-to-
all” communication exploited by its view synchronizer in
every view.3 Thus, S = O(n3) dominates the communica-
tion complexity of HotStuff, preventing it frommatching the
Dolev-Reischuk bound. If we could design a consensus algo-
rithm for which S = O(n2) while preserving C = O(n), we

2 “d” in “td” stands for decide/decision.
3 While HotStuff [13] does not explicitly state how the view synchro-
nization is achieved, we have that S = O(n3) in Diem BFT [14], which
is a mature implementation of the HotStuff protocol.
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Fig. 1 Overview of HotStuff
[13]: Processes change views
via the view synchronizer. After
GST , once a correct leader is
reached all correct processes are
guaranteed to decide (by time
td ). In the worst case, the first
f ∈ O(n) leaders after GST are
faulty and O(n) view
synchronizations are executed,
resulting in O(n3)
communication complexity

would obtain a Byzantine consensus protocol with optimal
communication complexity. The question is if a view syn-
chronizer achieving S = O(n2) in partial synchrony exists.

1.2 Warm-up: View synchronization in complete
synchrony

Solving the synchronization problem in a completely syn-
chronous environment is not hard. As all processes start
executing the protocol at the same time and their local clocks
do not drift, the desired overlap can be achieved without any
communication: processes stay in each view for the fixed,
overlap-required time. However, this simple method cannot
be used in a partially synchronous setting as it is neither guar-
anteed that all processes start at the same time nor that their
local clocks do not drift (before GST ). Still, the observation
that, if the system is completely synchronous, processes are
not required to communicate in order to synchronize plays
a crucial role in developing our view synchronizer which
achieves O(n2) communication complexity in partially syn-
chronous environments.

1.3 RARESYNC

The main technical contribution of this work is RareSync,
a partially synchronous view synchronizer that achieves
synchronization within O( f · δ) time after GST , and has
O(n2) worst-case communication complexity. In a nutshell,
RareSync adapts the “no-communication” technique of
synchronous view synchronizers to partially synchronous
environments.

Namely,RareSyncgroups views into epochs; each epoch
contains f + 1 sequential views. Instead of performing “all-
to-all” communication in each view (like the “traditional”
view synchronizers [14]), RareSync performs a single “all-
to-all” communication step per epoch. Specifically, only at
the end of each epoch do all correct processes communicate
to enable further progress. Once a process has entered an
epoch, the process relies solely on its local clock (without

any communication) tomove forward to the next viewwithin
the epoch.

Let us give a (rough) explanation of how RareSync
ensures synchronization. Let E be the smallest epoch entered
by all correct processes at or after GST ; let the first correct
process enter E at time tE ≥ GST . Due to (1) the “all-to-
all” communication step performed at the end of the previous
epoch E−1, and (2) the fact thatmessage delays are bounded
by a known constant δ after GST , all correct processes enter
E by time tE + δ. Hence, from the epoch E onward, pro-
cesses do not need to communicate in order to synchronize:
it is sufficient for processes to stay in each view for δ + �

time to achieve �-time overlap. In brief, RareSync uses
communication to synchronize processes, while relying on
local timeouts (and not communication!) to keep them syn-
chronized.

1.4 SQUAD

The second contribution of ourwork isSQuad, an optimally-
resilient partially synchronous Byzantine consensus protocol
with (1) O(n2) worst-case communication complexity, and
(2) O( f · δ) worst-case latency complexity. The view core
module of SQuad is the same as that of HotStuff; as its view
synchronizer, SQuad uses RareSync. The combination of
HotStuff’s view core and RareSync ensures thatC = O(n)

and S = O(n2). By the aforementioned complexity formula,
SQuad achieves n ·O(n)+O(n2) = O(n2) communication
complexity. SQuad’s linear latency is a direct consequence
of RareSync’s ability to synchronize processeswithinO( f ·
δ) time after GST .

1.5 Roadmap

We discuss related work in Sect. 2. In Sect. 3, we define the
system model. We introduce RareSync in Sect. 4. In Sect.
5, we present SQuad. We conclude the paper in Sect. 6.
Detailed proofs of the most basic properties of RareSync
are delegated to Appendix B.
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2 Related work

In this section, we discuss existing results in two related con-
texts: synchronous networks and randomized algorithms. In
addition, we discuss some precursor (and concurrent) results
to our own.

2.1 Synchronous networks

The first natural question is whether we can achieve syn-
chronous Byzantine agreement with optimal latency and
optimal communication complexity.Momose andRenanswer
that question in the affirmative, giving a synchronous Byzan-
tine agreement protocol with optimal n/2 resiliency, optimal
O(n2) worst-case communication complexity and optimal
O( f ) worst-case latency [8]. Optimality follows from two
lower bounds: Dolev and Reischuk show that any Byzantine
consensus protocol has an execution with quadratic commu-
nication complexity [6]; Dolev and Strong show that any
synchronous Byzantine consensus protocol has an execution
with f +1 rounds [17]. Various other works have tackled the
problem of minimizing the latency of Byzantine consensus
[18–20].

2.2 Randomization

A classical approach to circumvent the FLP impossibility
[10] is using randomization [21], where termination is not
ensured deterministically. Exciting recent results by Abra-
ham et al. [22] and Lu et al. [23] give fully asynchronous ran-
domized Byzantine consensus with optimal n/3 resiliency,
optimal O(n2) expected communication complexity and
optimal O(1) expected latency complexity. Spiegelman [11]
took a neat hybrid approach that achieved optimal results for
both synchrony and randomized asynchrony simultaneously:
if the network is synchronous, his algorithm yields optimal
(deterministic) synchronous complexity; if the network is
asynchronous, it falls back on a randomized algorithm and
achieves optimal expected complexity.

Recently, it has been shown that even randomized Byzan-
tine agreement requires �(n2) expected communication
complexity, at least for achieving guaranteed safety against
an adaptive adversary in an asynchronous setting or against
a strongly rushing adaptive adversary in a synchronous set-
ting [22, 24]. (See the papers for details). Amazingly, it is
possible to break the O(n2) barrier by accepting a non-zero
(but o(1)) probability of disagreement [25–27].

2.3 Authentication

Most of the results above are authenticated: they assume a
trusted setup phase4 wherein devices establish and exchange
cryptographic keys; this allows for messages to be signed
in a way that proves who sent them. Recently, many of
the communication-efficient agreement protocols (such as
[22, 23]) rely on threshold signatures (such as [28]). The
Dolev-Reischuk [6] lower bound shows that quadratic com-
munication is needed even in such a case (as it looks at the
message complexity of authenticated agreement).

Amongdeterministic, non-authenticatedByzantine agree-
ment protocols, DBFT [2] achieves O(n3) communication
complexity. For randomized non-authenticated Byzantine
agreement protocols, Abraham et al. [29] generalize and
refine the findings of Mostefaoui et al. [30] to achieve O(n2)
communication complexity; however they assume a weak
commoncoin, forwhich an implementationwithO(n2) com-
munication complexity may also require signatures (as far as
we are aware, known implementations without signatures,
such as [31, 32], have higher than O(n2) communication
complexity).

We note that it is possible to (1) work towards an authen-
ticated setting from a non-authenticated one by rolling out
a public key infrastructure (PKI) [33–35], (2) setting up a
threshold scheme [36] without a trusted dealer, and (3) asyn-
chronously emulating a perfect common coin [37] used by
randomized Byzantine consensus protocols [22, 23, 30, 38],
or implementing it without signatures [31, 32].

2.4 Other related work

In this paper, we focus on the partially synchronous setting
[9], where the question of optimal communication com-
plexity of Byzantine agreement has remained open. The
question can be addressed precisely with the help of rigorous
frameworks [39–41] that were developed to express par-
tially synchronous protocols using a round-based paradigm.
More specifically, state-of-the-art partially synchronous BFT
protocols [13, 14, 16, 42] have been developed within a
view-based paradigm with a rotating leader, e.g., the sem-
inal PBFT protocol [15]. While many approaches improve
the complexity for some optimistic scenarios [43–47], none
of them were able to reach the quadratic worst-case Dolev-
Reischuk bound.

The problem of view synchronization was defined in [48].
An existing implementation of this abstraction [42] was
based on Bracha’s double-echo reliable broadcast at each
view, inducing a cubic communication complexity in total.
This communication complexity has been reduced for some

4 A trusted setup phase is notably different from randomized algorithms
where randomization is used throughout.
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optimistic scenarios [48] and in terms of expected complex-
ity [49]. The problem has been formalized more precisely in
[50] to facilitate formal verification of PBFT-like protocols.

It might be worthwhile highlighting some connections
between the view synchronization abstraction and the leader
election abstraction � [51, 52], capturing the weakest fail-
ure detection information needed to solve consensus (and
extended to the Byzantine context in [53]). Leaderless par-
tially synchronous Byzantine consensus protocols have also
been proposed [54], somehow indicating that the notion of
a leader is not necessary in the mechanisms of a consensus
protocol, even if � is the weakest failure detector needed to
solve the problem. Clock synchronization [55, 56] and view
synchronization are orthogonal problems.

2.5 Concurrent research

We have recently discovered concurrent and independent
research by Lewis-Pye [57]. Lewis-Pye appears to have dis-
covered a similar approach to the one that we present in
this paper, giving an algorithm for state machine replication
in a partially synchronous model with quadratic message
complexity. As in this paper, Lewis-Pye makes the key
observation that we do not need to synchronize in every
view; views can be grouped together, with synchroniza-
tion occurring only once every fixed number of views. This
yields essentially the same algorithmic approach. Lewis-Pye
focuses on state machine replication, instead of Byzantine
agreement (though state machine replication is implemented
via repeatedByzantine agreement). The other useful property
of his algorithm is optimistic responsiveness, which applies
to the multi-shot case and ensures that, in good portions of
the executions, decisions happen as quickly as possible. We
encourage the reader to look at [57] for a different presenta-
tion of a similar approach.

Moreover, the similar approach to ours and Lewis-Pye’s
has been proposed in the first version of HotStuff [58]: pro-
cesses synchronize once per level, where each level consists
of n views. The authors mention that this approach guaran-
tees the quadratic communication complexity; however, this
claim was not formally proven in their work. The claim was
dropped in later versions ofHotStuff (including the published
version). We hope readers of our paper will find an increased
appreciation of the ideas introduced by HotStuff.

3 Systemmodel

3.1 Processes

We consider a static set {P1, P2, . . . , Pn} of n = 3 f + 1
processes out of which at most f can be Byzantine, i.e.,
can behave arbitrarily. If a process is Byzantine, the pro-

cess is faulty; otherwise, the process is correct. Processes
communicate by exchanging messages over an authenticated
point-to-point network. The communication network is reli-
able: if a correct process sends amessage to a correct process,
themessage is eventually received.We assume that processes
have local hardware clocks. Furthermore, we assume that
local steps of processes take zero time, as the time needed for
local computation is negligible compared to message delays.
Finally, we assume that no process can take infinitely many
steps in finite time.

3.2 Partial synchrony

We consider the partially synchronous model introduced in
[9]. For every execution, there exists a Global Stabilization
Time (GST ) and a positive duration δ such that message
delays are bounded by δ after GST . Furthermore, GST is not
known to processes, whereas δ is known to processes. We
assume that all correct processes start executing their pro-
tocol by GST . The hardware clocks of processes may drift
arbitrarily before GST , but do not drift thereafter.

3.3 Cryptographic primitives

We assume a (k, n)-threshold signature scheme [28], where
k = 2 f + 1 = n − f . In this scheme, each process
holds a distinct private key and there is a single public
key. Each process Pi can use its private key to produce an
unforgeable partial signature of a message m by invoking
ShareSigni (m). A partial signature tsignature of a mes-
sage m produced by a process Pi can be verified by
ShareVerifyi (m, tsignature). Finally, set S = {tsignaturei } of
partial signatures, where |S| = k and, for each tsignaturei ∈
S, tsignaturei = ShareSigni (m), can be combined into a
single (threshold) signature by invokingCombine(S); a com-
bined signature tcombined of message m can be verified by
CombinedVerify(m, tcombined). Where appropriate, invoca-
tions of ShareVerify(·) and CombinedVerify(·) are implicit in
our descriptions of protocols. P_Signature and T_Signature
denote a partial signature and a (combined) threshold signa-
ture, respectively. A formal treatment of the aforementioned
threshold signature scheme is relegated to Appendix A.

3.4 Complexity of Byzantine consensus

Let Consensus be a partially synchronous Byzantine con-
sensus protocol and let E(Consensus) denote the set of all
possible executions. Let α ∈ E(Consensus) be an execution
and td(α) be the first time bywhich all correct processes have
decided in α.

A word contains a constant number of signatures and
values. Each message contains at least a single word. We
define the communication complexity of α as the number of
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words sent in messages by all correct processes during the
time period [GST , td(α)]; if GST > td(α), the communica-
tion complexity of α is 0. The latency complexity of α is
max(0, td(α) − GST).

The communication complexity of Consensus is defined
as

max
α∈E(Consensus)

{
communication complexity of α

}
.

Similarly, the latency complexity of Consensus is defined
as

max
α∈E(Consensus)

{
latency complexity of α

}
.

We underline that the number of words sent by correct
processes before GST is unbounded in any partially syn-
chronous Byzantine consensus protocol [11]. Moreover, not
a single correct process is guaranteed to decide before GST
in any partially synchronous Byzantine consensus protocol
[10]; that is why the latency complexity of such protocols is
measured from GST .
Note on communication complexity. The communication
complexity metric as defined above is sometimes referred
to as word complexity [59, 60]. Another traditional commu-
nication complexity metric is bit complexity [7, 61], which
counts bits (and not words) sent by correct processes. Note
that the Dolev-Reischuk lower bound on exchanged mes-
sages implies �(n2) (with f ∈ �(n)) lower bound on both
word (a message contains at least one word) and bit com-
plexity (a message contains at least one bit). We underline
that Quad is not optimal with respect to the bit complexity
as it achieves O(n2L + n2κ) bit complexity, where L is the
size of the values and κ is the security parameter (e.g., size
of a signature).

4 RARESYNC

This section presents RareSync, a partially synchronous
view synchronizer that achieves synchronization within
O( f · δ) time after GST , and has O(n2) worst-case com-
munication complexity. First, we define the problem of view
synchronization (Sect. 4.1). Then, we describe RareSync,
and present its pseudocode (Sect. 4.2). Finally, we reason
about RareSync’s correctness and complexity (Sect. 4.3)
before presenting a formal proof (Sect. 4.4).

4.1 Problem definition

View synchronization is defined as the problem of bringing
all correct processes to the same view with a correct leader
for sufficiently long [48–50]. More precisely, let View =

{1, 2, . . .} denote the set of views. For each view v ∈ View,
we define leader(v) to be a process that is the leader of view
v. The view synchronization problem is associated with a
predefined time � > 0, which denotes the desired duration
during which processes must be in the same view with a
correct leader in order to synchronize. View synchronization
provides the following interface:

• Indication advance(View v): The process advances to a
view v.

We say that a correct process enters a view v at time t if and
only if the advance(v) indication occurs at time t . Moreover,
a correct process is in view v between the time t (including
t) at which the advance(v) indication occurs and the time t ′
(excluding t ′) at which the next advance(v′ �= v) indication
occurs. If an advance(v′ �= v) indication never occurs, the
process remains in the view v from time t onward.

Next, we define a synchronization time as a time at which
all correct processes are in the sameviewwith a correct leader
for (at least) � time.

Definition 1 (Synchronization time) Time ts is a synchro-
nization time if (1) all correct processes are in the same view
v from time ts to (at least) time ts + �, and (2) leader(v) is
correct.

View synchronization ensures the eventual synchroniza-
tion property which states that there exists a synchronization
time at or after GST .

4.1.1 Complexity of view synchronization

Let Synchronizer be a partially synchronous view synchro-
nizer and let E(Synchronizer) denote the set of all possible
executions. Let α ∈ E(Synchronizer) be an execution and
ts(α) be the first synchronization time at or after GST in α

(ts(α) ≥ GST ). We define the communication complexity of
α as the number of words sent in messages by all correct pro-
cesses during the time period [GST , ts(α) + �]. The latency
complexity of α is ts(α) + � − GST .

The communication complexity ofSynchronizer is defined
as

max
α∈E(Synchronizer)

{
communication complexity of α

}
.

Similarly, the latency complexity of Synchronizer is
defined as

max
α∈E(Synchronizer)

{
latency complexity of α

}
.
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Algorithm 1 RareSync: Variables (for process Pi ), con-
stants, and functions
1: Variables:
2: Epoch epochi ← 1 � current epoch
3: View viewi ← 1 � current view within the current epoch; viewi ∈ [1, f + 1]
4: Timer view_timeri � measures the duration of the current view
5: Timer dissemination_timeri � measures the duration between two

communication steps
6: T_Signature epoch_sigi ← ⊥ � proof that epochi can be entered

7: Constants:
8: Time view_duration = � + 2δ � duration of each view

9: Functions:
10: leader(View v) ≡ P(v mod n)+1 � a round-robin function

4.2 Protocol

This subsection detailsRareSync (Algorithm2). In essence,
RareSync achieves O(n2) communication complexity and
O( f · δ) latency complexity by exploiting “all-to-all” com-
munication only once per f + 1 views instead of once per
view.

4.2.1 Intuition

We group views into epochs, where each epoch contains
f + 1 sequential views; Epoch = {1, 2, . . .} denotes the set
of epochs. Processesmove through an epoch solely bymeans
of local timeouts (without any communication). However, at
the end of each epoch, processes engage in an “all-to-all”
communication step to obtain permission to move onto the
next epoch: (1) Once a correct process has completed an
epoch, it broadcasts a message informing other processes
of its completion; (2) Upon receiving 2 f + 1 of such mes-
sages, a correct process enters the future epoch. Note that
(2) applies to all processes, including those in arbitrarily
“old” epochs. Overall, this “all-to-all” communication step
is the only communication processes perform within a single
epoch, implying that per-process communication complex-
ity in each epoch is O(n). Figure2 illustrates the main idea
behind RareSync.

Roughly speaking, afterGST , all correct processes simul-
taneously enter the same epoch within O( f · δ) time. After
entering the same epoch, processes are guaranteed to syn-
chronize in that epoch, which takes (at most) an additional
O( f ·δ) time. Thus, the latency complexity of RareSync is
O( f · δ). The communication complexity of RareSync is
O(n2) as every correct process executes at most a constant
number of epochs, each with O(n) per-process communica-
tion, after GST .

4.2.2 Protocol description

We now explain how RareSync works. The pseudocode of
RareSync is given in Algorithm 2, whereas all variables,
constants, and functions are presented in Algorithm 1.

Algorithm 2 RareSync: Pseudocode (for process Pi )
1: upon init: � start of the protocol
2: view_timeri .measure(view_duration) � measure the duration of the first view
3: trigger advance(1) � enter the first view

4: upon view_timeri expires:
5: if viewi < f + 1: � check if the current view is not the last view of the

current epoch
6: viewi ← viewi + 1
7: View view_to_advance ← (epochi − 1) · ( f + 1) + viewi
8: view_timeri .measure(view_duration) � measure the duration of the view
9: trigger advance(view_to_advance) � enter the next view
10: else:
11: � inform other processes that the epoch is completed
12: broadcast 〈epoch- completed, epochi , ShareSigni (epochi )〉
13: upon exists Epoch e such that e ≥ epochi and

〈epoch- completed, e, P_Signature sig〉 is received from 2 f + 1 processes:
14: epoch_sigi ← Combine

({sig | sig is received in an epoch- completed message})

15: epochi ← e + 1
16: view_timeri .cancel()
17: dissemination_timeri .cancel()
18: dissemination_timeri .measure(δ) � wait δ time before broadcasting

enter- epoch

19: upon reception of 〈enter- epoch, Epoch e, T_Signature sig〉 such that e >

epochi :
20: epoch_sigi ← sig � sig is a threshold signature of epoch e − 1
21: epochi ← e
22: view_timeri .cancel()
23: dissemination_timeri .cancel()
24: dissemination_timeri .measure(δ) � wait δ time before broadcasting

enter- epoch

25: upon dissemination_timeri expires:
26: broadcast 〈enter- epoch, epochi , epoch_sigi 〉
27: viewi ← 1 � reset the current view to 1
28: View view_to_advance ← (epochi − 1) · ( f + 1) + viewi
29: view_timeri .measure(view_duration) � measure the duration of the view
30: trigger advance(view_to_advance) � enter the first view of the new epoch

We explain RareSync’s pseudocode (Algorithm 2) from
the perspective of a correct process Pi . Process Pi utilizes
two timers: view_timeri and dissemination_timeri . A timer
has two methods:

1. measure(Time x): After exactly x time as measured by
the local clock, an expiration event is received by the
host. Note that, as local clocks can drift before GST , x
time as measured by the local clock may not amount to
x real time (before GST ).

2. cancel(): This method cancels all previously invoked
measure(·) methods on that timer, i.e., all pending expi-
ration events (pertaining to that timer) are removed from
the event queue.

In RareSync, leader(·) is a round-robin function (line 10
of Algorithm 1).

Once Pi starts executing RareSync (line 1), it instructs
view_timeri to measure the duration of the first view (line 2)
and it enters the first view (line 3).

Once view_timeri expires (line 4), Pi checks whether the
current view is the last view of the current epoch, epochi
(line 5). If that is not the case, the process advances to the next
view of epochi (line 9). Otherwise, the process broadcasts an
epoch- completed message (line 12) signaling that it has
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Fig. 2 Intuition behind
RareSync: Processes
communicate only in the last
view of an epoch; before the last
view, they rely solely on local
timeouts

completed epochi . At this point in time, the process does not
enter any view.

If, at any point in time, Pi receives either (1) 2 f + 1
epoch- completed messages for some epoch e ≥ epochi
(line 13), or (2) an enter- epoch message for some epoch
e′ > epochi (line 19), the process obtains a proof that a
new epoch E > epochi can be entered. However, before
entering E and propagating the information that E can be
entered, Pi waits δ time (either line 18 or line 24). This δ-
waiting step is introduced to limit the number of epochs Pi
can enter within any δ time period after GST and is crucial
for keeping the communication complexity of RareSync
quadratic. For example, suppose that processes are allowed
to enter epochs and propagate enter- epochmessages with-
out waiting. Due to an accumulation (from before GST )
of enter- epoch messages for different epochs, a process
might end up disseminating an arbitrary number of these
messages by receiving them all at (roughly) the same time.
To curb this behavior, given that message delays are bounded
by δ after GST , we force a process to wait δ time, during
which it receives all accumulated messages, before entering
the largest known epoch.

Finally, after δ time has elapsed (line 25), Pi disseminates
the information that the epoch E can be entered (line 26) and
it enters the first view of E (line 30).

4.3 Proof overview

This subsection presents an overview of the proof of the cor-
rectness, latency complexity, and communication complexity
of RareSync.

In order to prove the correctness of RareSync, we must
show that the eventual synchronization property is ensured,
i.e., there is a synchronization time ts ≥ GST . For the
latency complexity, it suffices to bound ts + � − GST by
O( f · δ). This is done by proving that synchronization
happens within (at most) 2 epochs afterGST . As for the com-
munication complexity, we prove that any correct process
enters a constant number of epochs during the time period
[GST , ts+�]. Since every correct process sends O(n)words
per epoch, the communication complexity of RareSync is
O(1)·O(n)·n = O(n2).Wework towards these conclusions
by introducing some key concepts and presenting a series of
intermediate results.

A correct process enters an epoch e at time t if and only
if the process enters the first view of e at time t (either line 3

or line 30). We denote by te the first time a correct process
enters epoch e.
Result 1: If a correct process enters an epoch e > 1, then (at
least) f +1 correct processes have previously entered epoch
e − 1.
The goal of the communication step at the end of each epoch
is to prevent correct processes from arbitrarily entering future
epochs. In order for a new epoch e > 1 to be entered, at
least f + 1 correct processes must have entered and “gone
through” each view of the previous epoch, e − 1. This is
indeed the case: in order for a correct process to enter e, the
process must either (1) collect 2 f + 1 epoch- completed
messages for e−1 (line 13), or (2) receive an enter- epoch
message for e, which contains a threshold signature of e− 1
(line 19). In either case, at least f +1 correct processes must
have broadcast epoch- completedmessages for epoch e−1
(line 12), which requires them to go through epoch e − 1.
Furthermore, te−1 ≤ te; recall that local clocks can drift
before GST .
Result 2: Every epoch is eventually entered by a correct
process.
By contradiction, consider the greatest epoch ever entered by
a correct process, e∗. In brief, every correct processwill even-
tually (1) receive the enter- epochmessage for e∗ (line 19),
(2) enter e∗ after its dissemination_timer expires (lines 25
and 30), (3) send an epoch- completed message for e∗
(line 12), (4) collect 2 f + 1 epoch- completed messages
for e∗ (line 13), and, finally, (5) enter e∗ + 1 (lines 15, 18, 25
and 30), resulting in a contradiction. Note that, if e∗ = 1,
no enter- epochmessage is sent: all correct processes enter
e∗ = 1 once they start executing RareSync (line 3).

We now define two epochs: emax and efinal = emax + 1.
These two epochs are the main protagonists in the proof of
correctness and complexity of RareSync.
Definition of emax: Epoch emax is the greatest epoch entered
by a correct process before GST ; if no such epoch exists,
emax = 0.5

Definition of efinal: Epoch efinal is the smallest epoch first
entered by a correct process at or after GST . Note that
GST ≤ tefinal .Moreover, efinal = emax + 1 (by Result 1).
Result 3: For any epoch e ≥ efinal, no correct process
broadcasts an epoch- completed message for e (line 12)
before time te + epoch_duration, where epoch_duration =
( f + 1) · view_duration.
5 Epoch 0 is considered as a special epoch. Note that 0 /∈ Epoch,where
Epoch denotes the set of epochs (see Sect. 4.2).
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This statement is a direct consequence of the fact that, after
GST , it takes exactly epoch_duration time for a process to
go through f + 1 views of an epoch; local clocks do not
drift afterGST . Specifically, the earliest a correct process can
broadcast an epoch- completed message for e (line 12) is
at time te + epoch_duration, where te denotes the first time
a correct process enters epoch e.
Result 4: Every correct process enters epoch efinal by time
tefinal + 2δ.
Recall that the first correct process enters efinal at time
tefinal . If efinal = 1, all correct processes enter efinal at
tefinal . Otherwise, by time tefinal + δ, all correct processes
will have received an enter- epoch message for efinal and
started the dissemination_timeri with epochi = efinal (either
lines 15, 18 or 21, 24). By results 1 and 3, no correct process
sends an epoch- completed message for an epoch ≥ efinal
(line 12) before time tefinal + epoch_duration, which implies
that the dissemination_timer will not be cancelled. Hence,
the dissemination_timer will expire by time tefinal +2δ, caus-
ing all correct processes to enter efinal by time tefinal + 2δ.
Result 5: In every view of efinal, processes overlap for (at
least) � time. In other words, there exists a synchronization
time ts ≤ tefinal + epoch_duration − �.
By Result 3, no future epoch can be entered before time
tefinal + epoch_duration. This is precisely enough time for
the first correct process (the one to enter efinal at tefinal ) to go
through all f + 1 views of efinal, spending view_duration
time in each view. Since clocks do not drift after GST and
processes spend the same amount of time in each view, the
maximumdelay of 2δ between processes (Result 4) applies to
every view in efinal. Thus, all correct processes overlap with
each other for (at least) view_duration − 2δ = � time in
every view of efinal. As the leader(·) function is round-robin,
at least one of the f + 1 views must have a correct leader.
Therefore, synchronization must happen within epoch efinal,
i.e., there is a synchronization time ts such that tefinal + � ≤
ts + � ≤ tefinal + epoch_duration.
Result 6: tefinal ≤ GST + epoch_duration + 4δ.
If efinal = 1, all correct processes started executing
RareSync at time GST . Hence, tefinal = GST . Therefore,
the result trivially holds in this case.

Let efinal > 1; recall that efinal = emax + 1. (1) By
time GST + δ, every correct process receives an enter-
epoch message for emax (line 19) as the first correct
process to enter emax has broadcast this message before
GST (line 26). Hence, (2) by time GST + 2δ, every cor-
rect process enters emax .6 Then, (3) every correct process
broadcasts an epoch- completed message for emax at time
GST + epoch_duration + 2δ (line 12), at latest. (4) By time
GST + epoch_duration+ 3δ, every correct process receives
2 f + 1 epoch- completed messages for emax (line 13),

6 If emax = 1, every correct process enters emax by time GST .

and triggers themeasure(δ) method of dissemination_timer
(line 18). Therefore, (5) by timeGST+epoch_duration+4δ,
every correct process enters emax+1 = efinal. Figure3 depicts
this scenario.

Note that for the previous sequence of events not to unfold
would imply an even lower bound on tefinal : a correct process
would have to receive 2 f + 1 epoch- completedmessages
for emax or an enter- epoch message for emax + 1 = efinal
before step (4) (i.e., before timeGST+epoch_duration+3δ),
thus showing that tefinal < GST + epoch_duration + 4δ.
Latency: Latency complexity of RareSync is O( f · δ).
By Result 5, ts ≤ tefinal + epoch_duration − �. By Result
6, tefinal ≤ GST + epoch_duration + 4δ. Therefore, ts ≤
GST + epoch_duration + 4δ + epoch_duration − � =
GST + 2epoch_duration+ 4δ −�. Hence, ts +�−GST ≤
2epoch_duration + 4δ = O( f · δ).
Communication:Communication complexity of RareSync
is O(n2).
Roughly speaking, every correct process will have entered
emax (or potentially efinal = emax + 1) by time GST + 2δ
(as seen in the proof of Result 6). From then on, it will
enter at most one other epoch (efinal) before synchronizing
(which is completed by time ts + �). As for the time inter-
val [GST ,GST + 2δ), due to dissemination_timer’s interval
of δ, a correct process can enter (at most) two other epochs
during this period. Therefore, a correct process can enter
(and send messages for) at most O(1) epochs between GST
and ts + �. The individual communication cost of a cor-
rect process is bounded by O(n) words per epoch: O(n)

epoch- completedmessages (each with a single word), and
O(n) enter- epochmessages (each with a single word, as a
threshold signature counts as a single word). Thus, the com-
munication complexity of RareSync is O(1) · O(n) · n =
O(n2).

4.4 Formal proof

This section formally proves the correctness and establishes
the complexity of RareSync (Algorithm 2). We start by
defining the concept of a process’ behavior and timer history.

Behaviors & timer histories. A behavior of a process
Pi is a sequence of (1) message-sending events performed
by Pi , (2) message-reception events performed by Pi , and
(3) internal events performed by Pi (e.g., invocations of the
measure(·) and cancel() methods on the local timers). If an
event e belongs to a behavior βi , we write e ∈ βi ; otherwise,
we write e /∈ βi . If an event e1 precedes an event e2 in a

behavior βi , we write e1
βi≺ e2. Note that, if e1

βi≺ e2 and e1
occurs at some time t1 and e2 occurs at some time t2, t1 ≤ t2.

A timer history of a process Pi is a sequence of (1)
invocations of the measure(·) and cancel() methods on
view_timeri and dissemination_timeri , and (2) processed
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Fig. 3 Worst-case latency of
RareSync: ts + � − GST ≤
2epoch_duration + 4δ

expiration events of view_timeri and dissemination_timeri .
Observe that a timer history of a process is a subsequence
of the behavior of the process. We further denote by hi |view
the greatest subsequence of hi associated with view_timeri ,
where hi is a timer history of a process Pi . If an expiration
event Exp of a timer is associated with an invocation Inv of
themeasure(·)method on the timer, we say that Inv produces
Exp. Note that a single invocation of themeasure(·) method
can produce at most one expiration event.

Given an execution, we denote by βi and hi the behavior
and the timer history of the process Pi , respectively.

4.4.1 Proof of correctness

In order to prove the correctness of RareSync, we need to
prove that RareSync ensures the eventual synchronization
property (Sect. 4.1).

We start by establishing some basic properties of Algo-
rithm 2. These are encapsulated by several lemmas (specif-
ically, Lemmas 1–8) which can be verified by simple visual
code inspection. As such, we summarize them here but del-
egate their formal proofs to Appendix B.

First, notice that the value of viewi variable at a correct
process Pi is never smaller than 1 or greater than f + 1.

Lemma 1 Let Pi be a correct process. Then, 1 ≤ viewi ≤
f + 1 throughout the entire execution.

It is also ensured that, if an invocation of the measure(·)
method on dissemination_timeri produces an expiration
event, the expiration event immediately follows the invoca-
tion in the timer history hi of a correct process Pi .

Lemma 2 Let Pi be a correct process. Let Expd be any expi-
ration event of dissemination_timeri that belongs to hi and
let Invd be the invocation of the measure(·) method (on
dissemination_timeri ) that has produced Expd . Then, Expd
immediately follows Invd in hi .

The next lemma shows that views entered by a correct
process are monotonically increasing, as intended.

Lemma 3 (Monotonically increasing views) Let Pi be a cor-
rect process. Let e1 = advance(v), e2 = advance(v′) and
e1

βi≺ e2. Then, v′ > v.

Thenext lemmashows that an invocationof themeasure(·)
method cannot be immediately followed by another invo-
cation of the same method in a timer history (of a correct
process) associated with view_timeri .

Lemma 4 Let Pi be a correct process. Let Invv be any invo-
cation of themeasure(·)method on view_timeri that belongs
to hi . Invocation Invv is not immediately followed by another
invocation of the measure(·) method on view_timeri in
hi |view.

As a direct consequence of Lemma 4, an expiration event
of view_timeri immediately follows (in a timer history asso-
ciated with view_timeri ) themeasure(·) invocation that has
produced it.

Lemma 5 Let Pi be a correct process. Let Expv be any expi-
ration event that belongs to hi |view and let Invv be the
invocation of the measure(·) method (on view_timeri ) that
has produced Expv . Then, Expv immediately follows Invv in
hi |view.

Consequently, the statement of Lemma 2 also holds for
view_timeri :

Lemma 6 Let Pi be a correct process. Let Expv be any expi-
ration event of view_timeri that belongs to hi and let Invv

be the invocation of themeasure(·)method (on view_timeri )
that has producedExpv . Then, Expv immediately follows Invv

in hi .

Next, we show that the values of the epochi and viewi

variables of a correct process Pi do not change between an
invocation of themeasure(·)method on view_timeri and the
processing of the expiration event the invocation produces.

Lemma 7 Let Pi be a correct process. Let Invv denote an
invocation of the measure(·) method on view_timeri which
produces an expiration event, and let Expv denote the expi-
ration event produced by Invv . Let epochi = e and viewi = v

when Pi invokes Invv . Then, when Pi processes Expv (line 4),
epochi = e and viewi = v.

Finally,we show that correct processes cannot “jump” into
an epoch, i.e., they must go into an epoch by going into its
first view.

Lemma 8 Let Pi be a correct process. Let advance(v) ∈ βi ,
where v is the j-th view of an epoch e and j > 1. Then,

advance(v − 1)
βi≺ advance(v).

With the previous lemmas in place, the basic intended
properties of Algorithm 2 are ensured. We now focus on the
overarching properties of RareSync, such as the concept of
entering an epoch.
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We say that a correct process enters an epoch e at time t
if and only if the process enters the first view of e (i.e., the
view (e − 1) · ( f + 1) + 1) at time t . Furthermore, a correct
process is in epoch e between the time t (including t) at which
it enters e and the time t ′ (excluding t ′) at which it enters (for
the first time after entering e) another epoch e′. If another
epoch is never entered, the process is in epoch e from time
t onward. Recall that, by Lemma 3, a correct process enters
each view at most once, which means that a correct process
enters each epoch at most once.

The following lemma shows that, if a correct process
broadcasts an epoch- completed message for an epoch
(line 12), then the process has previously entered that epoch.

Lemma 9 Let a correct process Pi send an epoch-
completedmessage for an epoch e (line 12); let this sending

event be denoted by esend. Then, advance(v)
βi≺ esend, where

v is the first view of the epoch e.

Proof At the moment of sending the message (line 12), the
following holds: (1) epochi = e, and (2) viewi = f + 1
(by the check at line 5 and Lemma 1). We denote by Invv the
invocation of themeasure(·)method on view_timeri produc-
ing the expiration event Expv leading to Pi broadcasting the
epoch- completed message for e. Note that Invv precedes
the sending of the epoch- completed message in βi .

When processingExpv (line 4), the followingwas the state
of Pi : epochi = e and viewi = f +1. By Lemma 7, when Pi
invokes Invv , epochi = e and viewi = f +1 > 1. Therefore,
Invv must have been invoked at line 8: Invv could not have
been invoked either at line 2 or at line 29 since viewi =
f + 1 �= 1 at that moment. Immediately after invoking Invv ,
Pi enters the ( f + 1)-st view of e (line 9), which implies
that Pi enters the ( f + 1)-st view of e before it sends the
epoch- completedmessage. Therefore, the lemma follows
from Lemma 8. ��

The next lemma shows that, if a correct process Pi updates
its epochi variable to e > 1, then (at least) f + 1 correct
processes have previously entered epoch e − 1.

Lemma 10 Let a correct process Pi update its epochi vari-
able to e > 1 at some time t. Then, at least f + 1 correct
processes have entered e − 1 by time t.

Proof Since Pi updates epochi to e > 1 at time t , it does so
at either:

• Line 15: In this case, Pi has received 2 f + 1 epoch-
completed messages for epoch e − 1 (line 13), out of
which (at least) f + 1 were sent by correct processes.

• Line 21: In this case, Pi has received a threshold signature
of epoch e− 1 (line 19) built out of 2 f + 1 partial signa-
tures, out of which (at least) f + 1 must have come from

correct processes. Such a partial signature from a correct
process can only be obtained by receiving an epoch-
completed message for epoch e − 1 from that process.

In both cases, f + 1 correct processes have sent epoch-
completed messages (line 12) for epoch e − 1 by time t .
By Lemma 9, all these correct processes have entered epoch
e − 1 by time t . ��

Note that a correct process Pi does not enter an epoch
immediately upon updating its epochi variable, but only upon
triggering the advance(·) indication for the first view of that
epoch (line 3 or line 30). We now prove that, if an epoch
e > 1 is entered by a correct process at some time t , then
epoch e − 1 is entered by a (potentially different) correct
process by time t .

Lemma 11 Let a correct process Pi enter an epoch e > 1 at
time t. Then, epoch e − 1 was entered by a correct process
by time t.

Proof Since Pi enters e > 1 at time t (line 30), epochi = e at
time t . Hence, Pi has updated its epochi variable to e > 1 by
time t . Therefore, the lemma follows directly from Lemma
10. ��

The next lemma shows that all epochs are eventually
entered by some correct processes. In other words, correct
processes keep transiting to new epochs forever.

Lemma 12 Every epoch is eventually entered by a correct
process.

Proof Epoch 1 is entered by a correct process since every
correct process initially triggers the advance(1) indication
(line 3). Therefore, it is left to prove that all epochs greater
than 1 are entered by a correct process. By contradiction, let
e+ 1 be the smallest epoch not entered by a correct process,
where e ≥ 1.
Part 1. No correct process Pi ever sets epochi to an epoch
greater than e.
Since e + 1 is the smallest epoch not entered by a correct
process, no correct process ever enters any epoch greater
than e (by Lemma 11). Furthermore, Lemma 10 shows that
no correct process Pi ever updates its epochi variable to an
epoch greater than e + 1.

Finally, Pi never sets epochi to e + 1 either. By contra-
diction, suppose that it does. In this case, Pi invokes the
measure(δ) method on dissemination_timeri (either line 18
or line 24). Since Pi does not update epochi to an epoch
greater than e + 1 (as shown in the previous paragraph), the
previously invoked measure(δ) method will never be can-
celed (neither at line 17 nor at line 23). This implies that
dissemination_timeri eventually expires (line 25), and Pi
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enters epoch e+ 1 (line 30). Hence, a contradiction with the
fact that epoch e + 1 is never entered by a correct process.
Part 2. Every correct process eventually enters epoch e.
If e = 1, every correct process enters e as every correct
process eventually executes line 3.

Let e > 1. Since e > 1 is entered by a correct pro-
cess (line 30), the process has disseminated an enter- epoch
message for e (line 26). This message is eventually received
by every correct process since the network is reliable. If a
correct process Pi has not previously set its epochi variable
to e, it does so upon the reception of the enter- epochmes-
sage (line 21). Hence, Pi eventually sets its epochi variable
to e.

Immediately after updating its epochi variable to e (line 15
or line 21), Pi invokesmeasure(δ) on dissemination_timeri
(line 18 or line 24). Because Pi never updates epochi to
an epoch greater than e (by Part 1), dissemination_timeri
expires while epochi = e. When this happens (line 25), Pi
enters epoch e (line 30). Thus, all correct processes eventu-
ally enter epoch e.
Epilogue. By Part 2, a correct process Pi eventually enters
epoch e (line 3 or line 30); when Pi enters e, epochi = e
and viewi = 1. Moreover, just before entering e, Pi invokes
the measure(·) method on view_timeri (line 2 or line 29);
let this invocation be denoted by Inv1v . As Pi never updates
its epochi variable to an epoch greater than e (by Part 1),
Inv1v eventually expires. When Pi processes the expiration
of Inv1v (line 4), epochi = e and viewi = 1 < f + 1 (by
Lemma 7). Hence, Pi then invokes the measure(·) method
on view_timeri (line 8); when this occurs, epochi = e and
viewi = 2 (by line 6). Following the same argument as for
Inv1v , view_timeri expires for each view of epoch e.

Therefore, every correct process Pi eventually broadcasts
an epoch- completed message for epoch e (line 12) when
view_timeri expires for the last view of epoch e. Thus,
a correct process Pj eventually receives 2 f + 1 epoch-
completed messages for epoch e (line 13), and updates
epoch j to e + 1 (line 15). This contradicts Part 1, which
implies that the lemma holds. ��

We now introduce efinal, the first new epoch entered at or
after GST .

Definition 2 We denote by efinal the smallest epoch such that
the first correct process to enter efinal does so at time tefinal ≥
GST .

Note that efinal exists due to Lemma 12; recall that, by
GST , an execution must be finite as no process is able to
perform infinitely many steps in finite time. It is stated in
Algorithm 1 that view_duration = �+2δ (line 8). However,
technically speaking, view_duration must be greater than
�+2δ in order to notwaste the “very last”moment of a�+2δ
time period, i.e., we set view_duration = �+2δ+ε, where ε

is any positive constant. Therefore, in the rest of the section,
we assume that view_duration = � + 2δ + ε > � + 2δ.

We now show that, if a correct process enters an epoch
e at time te ≥ GST and sends an epoch- completed mes-
sage for e, the epoch- completed message is sent at time
te + epoch_duration, where epoch_duration = ( f + 1) ·
view_duration.

Lemma 13 Let a correct process Pi enter an epoch e at time
te ≥ GST and let Pi send an epoch- completed message
for epoch e (line 12). The epoch- completed message is
sent at time te + epoch_duration.

Proof We prove the lemma by backwards induction. Let t∗
denote the time at which the epoch- completed message
for epoch e is sent (line 12).
Base step: The ( f + 1)-st view of the epoch e is entered by
Pi at time t f +1 such that t∗ − t f+1 = 1 · view_duration.
When sending the epoch- completedmessage (line 12), the
following holds: epochi = e and viewi = f + 1 (due to the
check at line 5 and Lemma 1). Let Exp f+1

v denote the expira-
tion event of view_timeri processed just before broadcasting
the message (line 4). When processing Exp f+1

v , we have that
epochi = e and viewi = f +1.When Pi has invoked Inv

f +1
v ,

where Inv f +1
v is the invocation of the measure(·) method

which has produced Exp f +1
v , we have that epochi = e and

viewi = f + 1 (by Lemma 7). As f + 1 �= 1, Inv f +1
v is

invoked at line 8 at some time t f +1 ≤ t∗. Finally, Pi enters
the ( f + 1)-st view of the epoch e at line 9 at time t f +1. By
Lemma 8, we have that t f +1 ≥ te ≥ GST . As local clocks do
not drift afterGST , we have that t∗ − t f+1 = view_duration
(due to line 8), which concludes the base step.
Induction step: Let j ∈ [1, f ]. The j-th view of the epoch
e is entered by Pi at time t j such that t∗ − t j = ( f + 2 −
j) · view_duration.
Induction hypothesis: For every k ∈ [ j + 1, f + 1], the k-
th view of the epoch e is entered by Pi at time tk such that
t∗ − tk = ( f + 2 − k) · view_duration.
Let us consider the ( j + 1)-st view of the epoch e; note that
j + 1 �= 1. Hence, the ( j + 1)-st view of the epoch e is
entered by Pi at some time t j+1 at line 9, where t∗ − t j+1 =
( f +2− j−1)·view_duration = ( f +1− j)·view_duration
(by the induction hypothesis). LetExp j

v denote the expiration
event of view_timeri processed at time t j+1 (line 4). When
processing Exp j

v , we have that epochi = e and viewi = j

(due to line 6). When Pi has invoked Inv jv at some time t j ,
where Inv jv is the invocation of themeasure(·)methodwhich
has produced Exp j

v , we have that epochi = e and viewi = j

(by Lemma 7). Inv jv could have been invoked either at line 2,
or at line 8, or at line 29:

• Line 2: In this case, Pi enters the j-th view of the epoch e
at time t j at line 3, where j = 1 (by line 3).Moreover, we
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have that t j ≥ GST as t j = te (by definition). As local
clocks do not drift after GST , we have that t j+1 − t j =
view_duration, which implies that t∗ − t j = t∗ − t j+1 +
view_duration = ( f + 1 − j + 1) · view_duration =
( f + 2 − j) · view_duration. Hence, in this case, the
induction step is concluded.

• Line 8: Pi enters the j-th view of the epoch e at line 9
at time t j , where j > 1 (by Lemma 1 and line 6). By
Lemmas 3 and 8, we have that t j ≥ te ≥ GST . As local
clocks do not drift after GST , we have that t j+1 − t j =
view_duration, which implies that t∗ − t j = ( f + 2 −
j)·view_duration. Hence, the induction step is concluded
even in this case.

• Line 29: In this case, Pi enters the j-th view of the epoch
e at time t j at line 30, where j = 1 as viewi = 1 (by
line 27). Moreover, t j = te ≥ GST (by definition). As
local clocks do not drift after GST , we have that t j+1 −
t j = view_duration, which implies that t∗ − t j = t∗ −
t j+1+view_duration = ( f +1− j+1)·view_duration =
( f + 2 − j) · view_duration. Hence, even in this case,
the induction step is concluded.

As the induction step is concluded in all possible scenarios,
the backwards induction holds. Therefore, Pi enters the first
view of the epoch e (and, thus, the epoch e) at time te (recall
that the first view of any epoch is entered at most once by
Lemma 3) such that t∗ − te = ( f + 1) · view_duration =
epoch_duration, which concludes the proof. ��

The following lemma shows that no correct process broad-
casts an epoch- completed message for an epoch ≥ efinal
before time tefinal + epoch_duration.

Lemma 14 No correct process broadcasts an epoch-
completedmessage for an epoch e′ ≥ efinal (line 12) before
time tefinal + epoch_duration.

Proof Let t∗ be the first time a correct process, denoted
by Pi , sends an epoch- completed message for an epoch
e′ ≥ efinal (line 12); if t∗ is not defined, the lemma triv-
ially holds. By Lemma 9, Pi has entered epoch e′ at some
time te′ ≤ t∗. If e′ = efinal, then te′ ≥ tefinal ≥ GST . If
e′ > efinal, by Lemma 11, te′ ≥ tefinal ≥ GST . Therefore,
t∗ = te′ + epoch_duration (by Lemma 13), which means
that t∗ ≥ tefinal + epoch_duration. ��

Next, we show during which periods a correct process is
in which view of the epoch efinal.

Lemma 15 Consider a correct process Pi .

• For any j ∈ [1, f ], Pi enters the j-th view of the epoch
efinal at some time t j , where t j ∈ [

tefinal + ( j − 1) ·
view_duration, tefinal +( j−1) ·view_duration+2δ

]
, and

stays in the view until (at least) time t j + view_duration
(excluding time t j + view_duration).

• For j = f + 1, Pi enters the j-th view of the
epoch efinal at some time t j , where t j ∈ [

tefinal + f ·
view_duration, tefinal + f ·view_duration+2δ

]
, and stays

in the view until (at least) time tefinal + epoch_duration
(excluding time tefinal + epoch_duration).

Proof Note that no correct process broadcasts an epoch-
completed message for an epoch ≥ efinal (line 12) before
time tefinal + epoch_duration (by Lemma 14). We prove the
lemma by induction.
Base step: The statement of the lemma holds for j = 1.
If efinal > 1, every correct process receives an enter-
epoch message (line 19) for epoch efinal by time tefinal + δ

(since tefinal ≥ GST ). As no correct process broadcasts an
epoch- completed message for an epoch ≥ efinal before
time tefinal + epoch_duration > tefinal + δ, Pi sets its epochi
variable to efinal (line 21) and invokes themeasure(δ)method
on dissemination_timeri (line 24) by time tefinal + δ. Because
of the same reason, the dissemination_timeri expires by time
tefinal + 2δ (line 25); at this point in time, epochi = efinal.
Hence, Pi enters the first view of efinal by time tefinal + 2δ
(line 30). Observe that, if efinal = 1, Pi enters efinal at time
tefinal (as every correct process starts executing Algorithm 2
at GST = tefinal ). Thus, t

1 ∈ [tefinal , tefinal + 2δ].
Prior to entering the first view of efinal, Pi invokes the

measure(view_duration) method on view_timeri (line 2 or
line 29); we denote this invocation by Invv . By Lemma
14, Invv cannot be canceled (line 16 or line 22) as tefinal +
epoch_duration > tefinal + 2δ + view_duration. Therefore,
Invv produces an expiration event Expv which is processed
by Pi at time t1 + view_duration (since t1 ≥ GST and local
clocks do not drift after GST ).

Let us investigate the first time Pi enters another view
after entering the first view of efinal. This could happen at the
following places of Algorithm 2:

• Line 9: By Lemma 6, we conclude that this occurs at
time t∗ ≥ t1 + view_duration. Therefore, in this case,
Pi is in the first view of efinal during the time period
[t1, t1 + view_duration). The base step is proven in this
case.

• Line 30: By contradiction, suppose that this happens
before time t1 + view_duration. Hence, the measure(·)
method was invoked on dissemination_timeri (line 18 or
line 24) before time t1 + view_
duration and after the invocation of Invv (by Lemma
2). Thus, Invv is canceled (line 16 or line 22), which
is impossible (as previously proven). Hence, Pi is in
the first view of efinal during (at least) the time period
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[t1, t1+view_duration), which implies that the base step
is proven even in this case.

Induction step: The statement of the lemma holds for j ,
where 1 < j ≤ f + 1.
Induction hypothesis: The statement of the lemma holds for
every k ∈ [1, j − 1].
Consider the ( j − 1)-st view of efinal denoted by v j−1.
Recall that t j−1 denotes the time at which Pi enters v j−1.
Just prior to entering v j−1 (line 3 or line 9 or line 30),
Pi has invoked the measure(view_duration) method on
view_timeri (line 2 or line 8 or line 29); let this invocation
be denoted by Invv . When Pi invokes Invv , we have that
epochi = efinal and viewi = j − 1. As in the base step,
Lemma 14 shows that Invv cannot be canceled (line 16 or
line 22) as tefinal + epoch_duration > t j−1 + view_duration
since t j−1 ≤ tefinal + ( j − 2) · view_duration + 2δ (by the
induction hypothesis). We denote by Expv the expiration
event produced by Invv . By Lemma 7, when Pi processes
Expv (line 4), we have that epochi = efinal and viewi =
j − 1 < f + 1. Hence, Pi enters the j-th view of efinal
at time t j = t j−1 + view_duration (line 9), which means
that t j ∈ [

tefinal + ( j − 1) · view_duration, tefinal + ( j − 1) ·
view_duration + 2δ

]
.

We now separate two cases:

• Let j < f + 1. Just prior to entering the j-th view of
efinal (line 9), Pi invokes the measure(view_duration)
methodon view_timeri (line 8);we denote this invocation
by Inv′

v . By Lemma 14, Inv′
v cannot be canceled (line 16

or line 22) as tefinal + epoch_duration > tefinal + ( j −
1) ·view_duration+2δ+view_duration. Therefore, Inv′

v

produces an expiration event Exp′
v which is processed by

Pi at time t j + view_duration (since t j ≥ GST and local
clocks do not drift after GST ). Let us investigate the first
time Pi enters another view after entering the j-th view
of efinal. This could happen at the following places of
Algorithm 2:

– Line 9: By Lemma 6, we conclude that this occurs at
time ≥ t j + view_duration. Therefore, in this case,
Pi is in the j-th view of efinal during the time period
[t j , t j+view_duration). The induction step is proven
in this case.

– Line 30: By contradiction, suppose that this hap-
pens before time t j + view_duration. Hence, the
measure(·) method was invoked on dissemination_
timeri (line 18or line 24) before time t j+view_duration
and after the invocation of Inv′

v (by Lemma 2). Thus,
Inv′

v is canceled (line 16 or line 22), which is impos-
sible (as previously proven). Hence, Pi is in the
j-th view of efinal during (at least) the time period

[t j , t j +view_duration), which concludes the induc-
tion step even in this case.

• Let j = f + 1. Just prior to entering the j-th view of
efinal (line 9), Pi invokes the measure(view_duration)
methodon view_timeri (line 8);we denote this invocation
by Inv′

v . When Inv′
v was invoked, epochi = efinal and

viewi = f + 1. By Lemma 14, we know that the earliest
time Inv′

v can be canceled (line 16 or line 22) is tefinal +
epoch_duration. Let us investigate the first time Pi enters
another view after entering the j-th view of efinal. This
could happen at the following places of Algorithm 2:

– Line 9: This means that, when processing the expira-
tion event of view_timeri (denoted by Exp∗

v) at line 4
(before executing the check at line 5), viewi < f +1.
Hence, Exp∗

v is not produced by Inv′
v (by Lemma

7). By contradiction, suppose that Exp∗
v is processed

before time tefinal +epoch_duration. In this case,Exp∗
v

is processed before the expiration event produced
by Inv′

v would (potentially) be processed (which is
tefinal + epoch_duration at the earliest). Thus, Inv′

v

must be immediately followed by an invocation of the
cancel() method on view_timeri in hi |view (by Lem-
mas 4 and 5). As previously shown, the earliest time
Inv′

v can be canceled is tefinal +epoch_duration, which
implies that Exp∗

v cannot be processed before time
tefinal +epoch_duration. Therefore, Exp∗

v is processed
at tefinal +epoch_duration (at the earliest), which con-
cludes the induction step for this case.

– Line 30: Suppose that, by contradiction, this hap-
pens before time tefinal + epoch_duration. Hence, the
measure(·) method was invoked on dissemination_
timeri (line 18 or line 24) before time tefinal +
epoch_duration (by Lemma 2) and after Pi has
entered the j-th view of efinal, which implies that
Inv′

v is canceled before time tefinal + epoch_duration
(line 16 or line 22). However, this is impossible as
the earliest time for Inv′

v to be canceled is tefinal +
epoch_duration. Hence, Pi enters another view at
time tefinal + epoch_duration (at the earliest), which
concludes the induction step in this case.

The conclusion of the induction step concludes the proof of
the lemma. ��

Finally, we prove that RareSync ensures the eventual
synchronization property.

Theorem 1 (Eventual synchronization) RareSync ensures
eventual synchronization.Moreover, the first synchronization
time at or afterGST occurs by time tefinal+ f ·view_duration+
2δ.
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Proof Lemma 15 proves that all correct processes overlap
in each view of efinal for (at least) � time. As the leader of
one view of efinal must be correct (since leader(·) is a round-
robin function), the eventual synchronization is satisfied by
RareSync: correct processes synchronize in (at least) one
of the views of efinal. Finally, as the last view of efinal is
entered by every correct process by time t∗ = tefinal + f ·
view_duration+2δ (by Lemma 15), the first synchronization
time at or after GST must occur by time t∗. ��

4.4.2 Proof of complexity

Westart by showing that, if a correct process sends an epoch-
completed message for an epoch e, then the “most recent”
epoch entered by the process is e.

Lemma 16 Let Pi be a correct process and let Pi send an
epoch- completed message for an epoch e (line 12). Then,
e is the last epoch entered by Pi in βi before sending the
epoch- completed message.

Proof By Lemma 9, Pi enters e before sending the epoch-
completed message for e. By contradiction, suppose that
Pi enters some other epoch e∗ after entering e and before
sending the epoch- completed message for e. By Lemma
3, e∗ > e.

When Pi enters e∗ (line 30), epochi = e∗. As the value of
the epochi variable only increases throughout the execution,
Pi does not send the epoch- completedmessage for e after
entering e∗ > e. Thus, we reach a contradiction, and the
lemma holds. ��

Next, we show that, if a correct process sends an enter-
epochmessage for an epoch e at time t , the process enters e
at time t .

Lemma 17 Let a correct process Pi send an enter- epoch
message (line 26) for an epoch e at time t. Then, Pi enters e
at time t.

Proof When Pi sends the enter- epoch message, we have
that epochi = e. Hence, Pi enters e at time t (line 30). ��

Next, we show that a correct process sends (at most) O(n)

epoch- completed messages for a specific epoch e.

Lemma 18 For any epoch e and any correct process Pi ,
Pi sends at most O(n) epoch- completed messages for e
(line 12).

Proof LetExpv denote thefirst expiration event of view_timeri
which Pi processes (line 4) in order to broadcast the epoch-
completed message for e (line 12); if Expv does not exist,
the lemma trivially holds. Hence, let Expv exist.

When Expv was processed, epochi = e. Let Inv′
v denote

the first invocation of themeasure(·)method on view_timeri

after the processing of Expv . If Inv
′
v does not exist, there does

not exist an expiration event of view_timeri processed after
Expv (by Lemma 6), which implies that the lemma trivially
holds.

Let us investigate where Inv′
v could have been invoked:

• Line 8: By Lemma 6, we conclude that the processing
of Expv leads to Inv′

v . However, this is impossible as
the processing of Expv leads to the broadcasting of the
epoch- completed messages (see the check at line 5).

• Line 29: In this case, Pi processes an expiration event
Expd of dissemination_timeri (line 25). By Lemma
2, the invocation Invd of the measure(·) method on
dissemination_timeri immediately precedes Expd in hi .
Hence, Invd follows Expv in hi and Invd could have been
invoked either at line 18 or at line 24. Just before invoking
Invd , Pi changes its epochi variable to a value greater than
e (line 15 or line 21; the value of epochi only increases
throughout the execution).

Therefore, when Inv′
v is invoked, epochi > e. As the value of

the epochi variable only increases throughout the execution,
Pi broadcasts the epoch- completedmessages for e at most
once (by Lemma 6), which concludes the proof. ��

The following lemma shows that a correct process sends
(at most) O(n) enter- epochmessages for a specific epoch
e.

Lemma 19 For any epoch e and any correct process Pi , Pi
sends at most O(n) enter- epoch messages for e (line 26).

Proof Let Expd denote the first expiration event of
dissemination_timeri which Pi processes (line 25) in order to
broadcast the enter- epochmessage for e (line 26); if Expd
does not exist, the lemma trivially holds. When Expd was
processed, epochi = e. Let Inv′

d denote the first invocation
of themeasure(·) method on dissemination_timeri after the
processing ofExpd . If Inv

′
d does not exist, there does not exist

an expiration event of dissemination_timeri processed after
Expd (by Lemma 2), which implies that the lemma trivially
holds.

Inv′
d could have been invoked either at line 18 or at line 24.

However, before that (still after the processing of Expd ), Pi
changes its epochi variable to a value greater than e (line 15
or line 21). Therefore, when Inv′

d is invoked, epochi > e. As
the value of the epochi variable only increases throughout
the execution, Pi broadcasts the enter- epochmessages for
e at most once (by Lemma 2), which concludes the proof. ��

Next, we show that, after GST , two “epoch-entering”
events are separated by at least δ time.

Lemma 20 Let Pi be a correct process. Let Pi trigger
advance(v) at time t ≥ GST and let Pi trigger advance(v′)
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at time t ′ such that (1) advance(v)
βi≺ advance(v′), and (2)

v (resp., v′) is the first view of an epoch e (resp., e′). Then,
t ′ ≥ t + δ.

Proof Let advance(v∗), where v∗ is the first viewof an epoch
e∗, be the first “epoch-entering” event following advance(v)

in βi (i.e., advance(v)
βi≺ advance(v∗)); let advance(v∗) be

triggered at time t∗. In order to prove the lemma, it suffices
to show that t∗ ≥ t + δ.

The advance(v∗) upcall is triggered at line 30. Let Expd
denote theprocessed expiration event ofdissemination_timeri
(line 25) which leads Pi to trigger advance(v∗). Let Invd
denote the invocationof themeasure(δ)ondissemination_timeri
that has produces Expd . By Lemma 2, Invd immediately pre-
cedes Expd in the timer history hi of Pi . Note that Invd was
invoked after Pi has entered e (this follows from Lemma 2
and the fact that Pi enters e after invoking measure(·) on
view_timeri ), which means that Invd was invoked at some
time ≥ t ≥ GST . As local clocks do not drift after GST ,
Expd is processed at some time≥ t +δ, which concludes the
proof. ��

Next, we define ts as the first synchronization time at or
after GST .

Definition 3 We denote by ts the first synchronization time
at or after GST (i.e., ts ≥ GST ).

The next lemma shows that no correct process enters any
epoch greater than efinal by ts + �. This lemma is the conse-
quence of Lemma 14 and Theorem 1.

Lemma 21 No correct process enters an epoch greater than
efinal by time ts + �.

Proof By Lemma 14, no correct process enters an epoch >

efinal before time tefinal + epoch_duration. By Theorem 1, we
have that ts < tefinal + epoch_duration − �, which implies
that tefinal + epoch_duration > ts + �. Hence, the lemma. ��

Next, we define emax as the greatest epoch entered by a
correct process before time GST . Note that emax is properly
defined in any execution as only finite executions are possible
until GST .

Definition 4 We denote by emax the greatest epoch entered
by a correct process before GST . If no such epoch exists,
emax = 0.

The next lemma shows that efinal (Definition 2) is emax+1.

Lemma 22 efinal = emax + 1.

Proof If emax = 0, then efinal = 1. Hence, let emax > 0 in
the rest of the proof.

By the definitions of efinal (Definition 2) and emax (Defi-
nition 4) and by Lemma 11, efinal ≥ emax + 1. Therefore, we
need to prove that efinal ≤ emax + 1.

By contradiction, suppose that efinal > emax + 1. By
Lemma 11, epoch efinal − 1 was entered by the first cor-
rect process at some time tprev ≤ tefinal . Note that efinal − 1 ≥
emax + 1. Moreover, tprev ≥ GST ; otherwise, we would con-
tradict the definition of emax . Thus, the first new epoch to be
entered by a correct process at or after GST is not efinal, i.e.,
we contradict Definition 2. Hence, the lemma holds. ��

Next, we show that every correct process enters epoch
emax by time GST + 2δ or epoch efinal = emax + 1 by time
GST + 3δ.

Lemma 23 Every correct process (1) enters epoch emax by
GST + 2δ, or (2) enters epoch emax + 1 by GST + 3δ.

Proof Lemma 22 shows that efinal is emax + 1. Recall that
tefinal ≥ GST . Consider a correct process Pi . If emax = 1
(resp., efinal = 1), then Pi enters emax (resp., efinal) by time
GST , which concludes the lemma. Hence, let emax > 1; thus,
efinal > 1 by Lemma 22.

Lemma 14 proves that no correct process broadcasts an
epoch- completedmessage for an epoch≥ emax +1 before
time tefinal + epoch_duration ≥ GST + epoch_duration.

By time GST + δ, every correct process Pi receives
an enter- epoch message for epoch emax > 1 (line 19)
sent by the correct process which has entered emax before
GST (the message is sent at line 26). Therefore, by time
GST + δ, epochi is either emax or emax + 1; note that
epochi cannot take a value greater than emax + 1 before time
GST + epoch_duration > GST + δ since no correct pro-
cess broadcasts an epoch- completedmessage for an epoch
≥ emax + 1 before this time.

Let us consider both scenarios:

• Let epochi = emax + 1 by time GST + δ. In this case,
dissemination_timeri expires in δ time (line 25), and Pi
enters emax + 1 by time GST + 2δ (line 30) as GST +
epoch_duration > GST + 2δ. Hence, the statement of
the lemma is satisfied in this case.

• Let epochi = emax by time GST + δ. If, within δ

time from updating epochi to emax , Pi does not cancel
its dissemination_timeri , dissemination_timeri expires
(line 4), and Pi enters emax by time GST + 2δ. Oth-
erwise, epochi = emax + 1 by time GST + 2δ as
dissemination_timeri was canceled; epochi cannot take
any other value as epoch- completed messages are
not broadcast before time GST + epoch_duration >

GST +2δ. As in the previous case, dissemination_timeri
expires in δ time (line 25), and Pi enters emax +1 by time
GST+3δ (line 30) asGST+epoch_duration > GST+3δ.
Hence, the statement of the lemma holds in this case, as
well.
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Since the lemma is satisfied in both possible scenarios, the
proof is concluded. ��

The direct consequence of Lemma 22 is that tefinal ≤
GST + epoch_duration + 4δ.

Lemma 24 tefinal ≤ GST + epoch_duration + 4δ.

Proof By contradiction, let tefinal > GST+epoch_duration+
4δ. Lemma 23 proves that every correct process enters epoch
emax by time GST + 2δ or epoch efinal = emax + 1 by time
GST + 3δ. Additionally, Lemma 14 proves that no correct
process broadcasts an epoch- completed message for an
epoch≥ efinal (line 12) before time tefinal +epoch_duration >

GST + 2 · epoch_duration + 4δ.
If any correct process enters emax + 1 by time GST + 3δ,

we reach a contradiction with the fact that tefinal > GST +
epoch_duration+4δ since efinal = emax +1 (by Lemma 22).
Therefore, all correct processes enter emax by timeGST+2δ.

Since tefinal > GST + epoch_duration + 4δ, no correct
process Pi updates its epochi variable to emax + 1 (at line 15
or line 21) by timeGST+epoch_duration+3δ (otherwise, Pi
would have entered emax+1 by timeGST+epoch_duration+
4δ, which contradicts tefinal > GST + epoch_duration+ 4δ).
By time GST + epoch_duration + 2δ, all correct processes
broadcast an epoch- completedmessage for emax (line 12).
By time GST + epoch_duration + 3δ, every correct process
Pi receives 2 f + 1 epoch- completed messages for emax
(line 13), and updates its epochi variable to emax+1 (line 15).
This represents a contradiction with the fact that Pi does
not update its epochi variable to emax + 1 by time GST +
epoch_duration + 3δ, which concludes the proof. ��

The final lemma shows that no correct process entersmore
than O(1) epochs during the time period [GST , ts + �].
Lemma 25 No correct process entersmore than O(1) epochs
in the time period [GST , ts + �].
Proof Consider a correct process Pi . Process Pi enters epoch
emax by time GST + 2δ or Pi enters epoch emax + 1 by time
GST + 3δ (by Lemma 23). Lemma 22 shows that efinal =
emax + 1. Finally, no correct process enters an epoch greater
than efinal = emax + 1 by time ts + � (by Lemma 21).

Let us consider two scenarios according to Lemma 23:

1. By time GST + 2δ, Pi enters emax; let Pi enter emax at
time t∗ ≤ GST + 2δ. By Lemma 3, during the time
period [t∗, ts + �], Pi enters (at most) 2 = O(1) epochs
(epochs emax and emax+1). Finally, during the timeperiod
[GST , t∗), Lemma 20 shows that Pi enters (at most) 2 =
O(1) epochs (as t∗ ≤ GST + 2δ). Hence, in this case, Pi
enters (at most) 4 = O(1) epochs during the time period
[GST , ts + �].

2. By time GST + 3δ, Pi enters emax + 1; let Pi enter
emax + 1 at time t∗ ≤ GST + 3δ. By Lemma 3, during
the time period [t∗, ts +�], Pi enters (at most) 1 = O(1)
epoch (epoch emax + 1). Finally, during the time period
[GST , t∗), Lemma 20 shows that Pi enters (at most)
3 = O(1) epochs (as t∗ ≤ GST + 3δ). Hence, in this
case, Pi enters (at most) 4 = O(1) epochs during the
time period [GST , ts + �].

Hence, during the time period [GST , ts + �], Pi enters (at
most) 4 = O(1) epochs. ��

Finally, we prove that RareSync achieves O(n2) com-
munication and O( f · δ) latency.

Theorem 2 (Complexity) RareSync achieves O(n2) com-
munication complexity and O( f · δ) latency complexity.

Proof Fix a correct process Pi . For every epoch e, Pi sends
(at most) O(n) epoch- completed and enter- epochmes-
sages for e (by Lemmas 18 and 19). Moreover, if Pi sends an
epoch- completedmessage for an epoch e at time t , then e
is the last epoch entered by Pi prior to sending the message
(by Lemma 16). ��

5 SQUAD

This section introduces SQuad, a partially synchronous
Byzantine consensus protocol with optimal resilience [9].
SQuad simultaneously achieves (1) O(n2) communication
complexity, matching the Dolev-Reischuk bound [6], and
(2) O( f · δ) latency complexity, matching the Dolev-Strong
bound [17].

First, we present Quad, a partially synchronous Byzan-
tine consensus protocol ensuring weak validity (Sect. 5.1).
Quad achieves quadratic communication complexity and
linear latency complexity. We provide a short overview of
the proof of Quad’s correctness and complexity, followed
by the complete formal proof (Sect. 5.2). Then, we construct
SQuad by adding a simple preprocessing phase to Quad
(Sect. 5.3), which we then formally prove (Sect. 5.4).

5.1 QUAD

Quad is a partially synchronous Byzantine consensus pro-
tocol satisfying the weak validity property:

• Weak validity: If all processes are correct, then a value
decided by a process was proposed.

Quad achieves (1) quadratic communication complexity,
and (2) linear latency complexity. Interestingly, the Dolev-
Reischuk lower bound [6] does not apply to Byzantine
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protocols satisfying weak validity; hence, we do not know
whether Quad has optimal communication complexity. As
explained in Sect. 5.3, we accompany Quad by a prepro-
cessing phase to obtain SQuad.

Quad (Algorithm 3) uses the same view core module as
HotStuff [13], i.e., the view logic of Quad is identical to
that of HotStuff. Moreover, Quad uses RareSync as its
view synchronizer, achieving synchronization with O(n2)
communication. The combination of HotStuff’s view core
and RareSync ensures that each correct process sends O(n)

words afterGST (and before the decision), i.e.,C = O(n) in
Quad. Following the formula introduced in Sect. 1, Quad
indeed achieves n · C + S = n · O(n) + O(n2) = O(n2)
communication complexity. Due to the linear latency of
RareSync,Quad also achieves O( f ·δ) latency complexity.

5.1.1 View core

We now give a brief description of the view core module
of Quad. The complete pseudocode of this module can be
found in Sect. 5.2 (and in [13]).

Each correct process keeps track of two critical variables:
(1) the prepare quorum certificate (QC), and (2) the locked
QC. Each of these represents a process’ estimation of the
value that will be decided, although with a different degree
of certainty. For example, if a correct process decides a value
v, it is guaranteed that (at least) f + 1 correct processes
have v in their locked QC. Moreover, it is ensured that no
correct process updates (from this point onward) its prepare
or locked QC to any other value, thus ensuring agreement.
Lastly, a QC is a (constant-sized) threshold signature.

The structure of a view follows the “all-to-leader, leader-
to-all” communication pattern. Specifically, each view is
comprised of the following four phases:

1. Prepare: A process sends to the leader a view- change
message containing its prepare QC. Once the leader
receives 2 f + 1 view- change messages, it selects the
prepare QC from the “latest” view. The leader sends this
QC to all processes via a preparemessage. Once a pro-
cess receives the prepare message from the leader, it
supports the received prepare QC if (1) the received QC
is consistent with its locked QC, or (2) the received QC
is “more recent” than its locked QC. If the process sup-
ports the received QC, it acknowledges this by sending a
prepare- vote message to the leader.

2. Precommit: Once the leader receives 2 f + 1 prepare-
vote messages, it combines them into a cryptographic
proof σ that “enough” processes have supported its
“prepare-phase” value; σ is a threshold signature. Then,
it disseminates σ to all processes via a precommitmes-
sage. Once a process receives the precommit message

carrying σ , it updates its prepare QC to σ and sends back
to the leader a precommit- vote message.

3. Commit: Once the leader receives 2 f + 1 precommit-
vote messages, it combines them into a cryptographic
proof σ ′ that “enough” processes have adopted its
“precommit-phase” value (by updating their prepare
QC); σ ′ is a threshold signature. Then, it disseminates σ ′
to all processes via a commit message. Once a process
receives the commit message carrying σ ′, it updates its
locked QC to σ ′ and sends back to the leader a commit-
vote message.

4. Decide: Once the leader receives 2 f + 1 commit- vote
messages, it combines them into a threshold signature
σ ′′, and relays σ ′′ to all processes via a decidemessage.
When a process receives the decide message carrying
σ ′′, it decides the value associated with σ ′′.

As a consequence of the “all-to-leader, leader-to-all” com-
munication pattern and the constant size of messages, the
leader of a view sends O(n) words, while a non-leader pro-
cess sends O(1) words.

The view core module provides the following interface:

• Request start_executing(View v): The view core starts
executing the logic of view v and abandons the pre-
vious view. Concretely, it stops accepting and sending
messages for the previous view, and it starts accepting,
sending, and replying to messages for view v. The state
of the view core is kept across views (e.g., the prepare
and locked QCs).

• Indicationdecide(Value decision): Theviewcoredecides
value decision (this indication is triggered at most once).

5.1.2 Protocol description

The protocol (Algorithm 3) amounts to a composition of
RareSync and the aforementioned viewcore. Since the view
core requires 8 communication steps in order for correct pro-
cesses to decide, a synchronous overlap of 8δ is sufficient.
Thus, we parameterize RareSync with � = 8δ (line 3). In
short, the view core is subservient to RareSync, i.e., when
RareSync triggers the advance(v) event (line 7), the view
core starts executing the logic of view v (line 8). Once the
view core decides (line 9), Quad decides (line 10).

5.1.3 Proof overview

The agreement and weak validity properties of Quad are
ensured by the view core’s implementation. As for the ter-
mination property, the view core, and therefore Quad, is
guaranteed to decide as soon as processes have synchronized
in the same view with a correct leader for � = 8δ time at or
after GST . Since RareSync ensures the eventual synchro-
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Algorithm 3 Quad: Pseudocode (for process Pi )
1: Modules:
2: View_Core core
3: View_Synchronizer sync ← RareSync(� = 8δ)

4: upon init(Value proposal): � propose proposal
5: core.init(proposal) � initialize the view core
6: sync.init � start RareSync

7: upon synchronizer.advance(View v):
8: core.start_executing(v)

9: upon core.decide(Value decision):
10: trigger decide(decision) � decide decision

nization property, this eventually happens, which implies that
Quad satisfies termination. As processes synchronize within
O( f · δ) time after GST , the latency complexity of Quad is
O( f · δ).

As for the total communication complexity, it is the sum
of the communication complexity of (1) RareSync, which
is O(n2), and (2) the view core, which is also O(n2). The
view core’s complexity is a consequence of the fact that:

• Each process executes O(1) epochs between GST and
the time by which every process decides,

• Each epoch has f + 1 views,
• Aprocess can be the leader in only one viewof any epoch,
and

• A process sends O(n) words in a view if it is the leader,
and O(1)words otherwise, for an average of O(1)words
per view in any epoch.

Thus, the view core’s communication complexity is O(n2) =
O(1) · ( f + 1) · O(1) · n. Therefore, Quad indeed achieves
O(n2) communication complexity. In summary:
Theorem:Quad is a Byzantine consensus protocol ensuring
weak validity with (1) O(n2) communication complexity, and
(2) O( f · δ) latency complexity.

5.2 QUAD: formal proof

In this section, we give the complete pseudocode of Quad’s
view core module (algorithms 4 and 5), and we formally
prove that Quad solves consensus (with weak validity) with
O(n2) communication complexity and O( f ·δ) latency com-
plexity.

5.2.1 Proof of correctness

In this paragraph, we show that Quad ensures weak valid-
ity, termination and agreement. Recall that the main body of
Quad is given in Algorithm 3, whereas its view synchronizer
RareSync is presented in Algorithm 2 and its view core in
Algorithm 5. We underline that the proofs concerned with
the view core of Quad can be found in [13], as Quad uses
the same view core as HotStuff.

Algorithm 4 Quad: View core’s utilities (for process Pi )
1: function msg(String type,Value value,Quorum_Certificate qc,View view):
2: m.type ← type; m.value ← value; m.qc ← qc; m.view ← view
3: return m

4: function vote_msg(String type,Value value,Quorum_Certificate qc,View view):
5: m ← msg(type, value, qc, view)

6: m.partial_sig ← ShareSigni ([m.type,m.value,m.view])
7: return m

8: � All the messages in M have the same type, value and view
9: function qc(Set(Vote_Message) M):
10: qc.type ← m.type, where m ∈ M
11: qc.value ← m.value, where m ∈ M
12: qc.view ← m.view, where m ∈ M
13: qc.sig ← Combine

({partial_sig |
partial_sig is in a message that belongs to M})

14: return qc

15: function matching_msg(Message m, String type,View view):
16: return m.type = type and m.view = view

17: function matching_qc(Quorum_Certificate qc, String type,View view):
18: return qc.type = type and qc.view = view

We start by proving that Quad ensures weak validity.

Theorem 3 (Weak validity) Quad ensures weak validity.

Proof Suppose that all processes are correct. Whenever a
correct process updates its prepareQC variable (line 25 of
Algorithm 5), it updates it to a quorum certificate vouching
for a proposed value. Therefore, leaders always propose a
proposed value since the proposed value is “formed” out of
prepareQCs of processes (line 9 of Algorithm 5). Given that
a correct process executes line 43 of Algorithm 5 for a value
proposed by the leader of the current view, which is proposed
by a process (recall that all processes are correct), the weak
validity property is ensured. ��

Next, we prove agreement.

Theorem 4 (Agreement) Quad ensures agreement.

Proof Two conflicting quorum certificates associated with
the same view cannot be obtained in the view core of Quad
(Algorithm 5); otherwise, a correct process would vote for
both certificates, which is not possible according to Algo-
rithm 5. Therefore, two correct processes cannot decide
different values from the viewcore of Quad in the sameview.
Hence, we need to show that, if a correct process decides v

in some view view in the view core (line 43 of Algorithm 5),
then no conflicting quorum certificate can be obtained in the
future views.

Since a correct process decides v in view view in the
view core, the following holds at f + 1 correct processes:
lockedQC.value = v and lockedQC.view = view (line 34 of
Algorithm 5). In order for another correct process to decide
a different value in some future view, a prepare quorum
certificate for a value different than v must be obtained in
a view greater than view. However, this is impossible as
f + 1 correct processes whose lockedQC.value = v and
lockedQC.view = view will not support such a prepare quo-
rum certificate (i.e., the check at line 16 of Algorithm 5 will
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Algorithm 5 Quad: View core (for process Pi )
1: upon init(Value proposal):
2: proposali ← proposal � Pi ’s proposal

3: upon start_executing(View view):
4: � Prepare phase
5: send msg(view- change,⊥, prepareQC, view) to leader(view)

6: as leader(view):
7: wait for 2 f + 1 view- change messages:
8: M ← {m | matching_msg(m,view- change, view)}
9: Quorum_Certificate highQC ← qc with the highest qc.view in M
10: Value proposal ← highQC.value
11: if proposal = ⊥:
12: proposal ← proposali � proposali denotes the proposal of Pi
13: broadcast msg(prepare, proposal, highQC, view)

14: as a process: � every process executes this part of the pseudocode
15: wait for message m: matching_msg(m, prepare, view) from

leader(view)

16: if m.qc.value = m.value and (lockedQC.value = m.value or m.qc.view >

lockedQC.view):
17: send vote_msg(prepare,m.value,⊥, view) to leader(view)

18: � Precommit phase
19: as leader(view):
20: wait for 2 f + 1 votes: V ← {vote |

matching_msg(vote, prepare, view)}
21: Quorum_Certificate qc ← qc(V )

22: broadcast msg(precommit, ⊥, qc, view)

23: as a process: � every process executes this part of the pseudocode
24: wait for message m: matching_qc(m.qc, prepare, view) from

leader(view)

25: prepareQC ← m.qc
26: send vote_msg(precommit,m.qc.value, ⊥, view) to leader(view)

27: � Commit phase
28: as leader(view):
29: wait for 2 f + 1 votes: V ← {vote |

matching_msg(vote, precommit, view)}
30: Quorum_Certificate qc ← qc(V )

31: broadcast msg(commit,⊥, qc, view)

32: as a process: � every process executes this part of the pseudocode
33: wait for message m: matching_qc(m.qc, precommit, view) from

leader(view)

34: lockedQC ← m.qc
35: send vote_msg(commit,m.qc.value,⊥, view) to leader(view)

36: � Decide phase
37: as leader(view):
38: wait for 2 f +1 votes: V ← {vote | matching_msg(vote, commit, view)}
39: Quorum_Certificate qc ← qc(V )

40: broadcast msg(decide,⊥, qc, view)

41: as a process: � every process executes this part of the pseudocode
42: wait for message m: matching_qc(m.qc, commit, view) from

leader(view)

43: trigger decide(m.qc.value)

return false). Thus, it is impossible for correct processes to
disagree in the view core even across multiple views. The
agreement property is ensured by Quad. ��

Finally, we prove termination.

Theorem 5 (Termination) Quad ensures termination.

Proof RareSync ensures that, eventually, all correct pro-
cesses remain in the same view view with a correct leader
for (at least) � = 8δ time after GST . When this happens, all
correct processes decide in the view core.

Indeed, the leader of view learns the highest obtained
locked quorum certificate through the view- change mes-
sages (line 9 of Algorithm 5). Therefore, every correct
process supports the proposal of the leader (line 17 of Algo-
rithm 5) as the check at line 16 of Algorithm 5 returns true.

After the leader obtains a prepare quorum certificate in view,
all correct processes vote in the following phases of the same
view. Thus, all correct processes decide from the view core
(line 43 of Algorithm 5), which concludes the proof. ��

Thus,Quad indeed solves the Byzantine consensus prob-
lem with weak validity.

Corollary 1 Quad is a partially synchronous Byzantine con-
sensus protocol ensuring weak validity.

5.2.2 Proof of complexity

Next, we show that Quad achieves O(n2) communication
complexity and O( f · δ) latency complexity. Before we start
the proof, we clarify one point about Algorithm 3: as soon
as advance(v) is triggered (line 7), for some view v, the
process immediately stops accepting and sending messages
for the previous view. In other words, it is as if the “stop
accepting and sendingmessages for the previous view”action
immediately follows the advance(·) upcall in Algorithm 2.7

We begin by proving that, if a correct process sends a
message of the view core associated with a view v which
belongs to an epoch e, then the last entered epoch prior to
sending the message (in the behavior of the process) is e
(this result is similar to the one of Lemma 16). A message is
a view-core message if it is of the view- change, prepare,
precommit, commit or decide type.

Lemma 26 Let Pi be a correct process and let Pi send a view-
core message associated with a view v, where v belongs to an
epoch e. Then, e is the last epoch entered by Pi in βi before
sending the message.

Proof Process Pi enters the view v before sending the view-
core message (since start_executing(v) is invoked upon Pi
entering v; line 8 of Algorithm 3). By Lemma 8, Pi enters the
first view of the epoch e (and, hence, e) before sending the
message. By contradiction, suppose that Pi enters another
epoch e′ after entering e and before sending the view-core
message.

By Lemma 3, we have that e′ > e. However, this means
that Pi does not send any view-coremessages associatedwith
v after entering e′ (since (e′ − 1) · ( f + 1) + 1 > v and Pi
enters monotonically increasing views by Lemma 3). Thus,
a contradiction, which concludes the proof. ��

Next, we show that a correct process sends (at most) O(n)

view-core messages associated with a single epoch.

Lemma 27 Let Pi be a correct process. For any epoch e, Pi
sends (at most) O(n) view-core messages associated with
views that belong to e.

7 Note that this additional action does not disrupt RareSync (nor its
proof of correctness and complexity).
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Proof Recall that Pi enters monotonically increasing views
(by Lemma 3), which means that Pi never invokes
start_executing(v) (line 8 of Algorithm 3) multiple times
for any view v.

Consider a view v that belongs to e. We consider two
cases:

• Let Pi be the leader of v. In this case, Pi sends (at most)
O(n) view-core messages associated with v.

• Let Pi not be the leader of v. In this case, Pi sends (at
most) O(1) view-core messages associated with v.

Given that Pi is the leader of at most one view in every
epoch e (since leader(·) is a round-robin function), Pi sends
(at most) 1 · O(n) + f · O(1) = O(n) view-core messages
associated with views that belong to e. ��

Finally, we prove the complexity of Quad.

Theorem 6 (Complexity) Quad achieves O(n2) communi-
cation complexity and O( f · δ) latency complexity.

Proof As soon as all correct processes remain in the same
view for 8δ time, all correct processes decide from the view
core. As RareSync uses � = 8δ in the implementation
of Quad (line 3 of Algorithm 3), all processes decide by
time ts + 8δ, where ts is the first synchronization time after
GST (Definition 3). Given that ts + 8δ − GST is the latency
of RareSync (see Sect. 4.1) and the latency complexity of
RareSync is O( f ·δ) (by Theorem 2), the latency complex-
ity of Quad is indeed O( f · δ).

Fix a correct process Pi . For every epoch e, Pi sends
(at most) O(n) view-core messages associated with views
that belong to e (by Lemma 27). Moreover, if Pi sends a
view-core message associated with a view that belongs to
an epoch e, then e is the last epoch entered by Pi prior to
sending the message (by Lemma 26). Hence, in the time
period [GST , ts + 8δ], Pi sends view-core messages asso-
ciated with views that belong to (at most) O(1) epochs (by
Lemma 25). Thus, Pi sends (at most) O(1) · O(n) = O(n)

view-core messages in the time period [GST , ts + 8δ], each
containing a single word. Moreover, during this time period,
the communication complexity of RareSync is O(n2) (by
Theorem 2). Therefore, the communication complexity of
Quad is n · O(n) + O(n2) = O(n2). ��

As a final note, while our definition of communication
complexity considers the words exchanged between GST
until td(α) (i.e., when the last correct process has decided), it
is straightforward to extend our results to account for all mes-
sages exchanged between GST and infinity. This is achieved
by having correct processes halt the sending of messages
of the underlying RareSync protocol immediately after
deciding, and rebroadcasting (once) the first correct decide

message they see. This is because, by the time the first cor-
rect process decides, every correct process is also guaranteed
to decide regardless of the continued use of RareSync, as
termination is now solely dependent on the reception of the
decide message. This once-per-process rebroadcast incurs
only an additional O(n2) words exchanged in total, with
latency remaining unaffected, so all results continue to hold.

5.3 SQUAD: protocol description

At last, we present SQuad, which we derive from Quad.

5.3.1 Deriving SQUAD fromQUAD

Imagine a locally-verifiable, constant-sized cryptographic
proof σv vouching that value v is valid. Moreover, imagine
that it is impossible, in the case in which all correct processes
propose v to Quad, for any process to obtain a proof for a
value different from v:

• Computability: If all correct processes propose v to
Quad, then no process (even if faulty) obtains a cryp-
tographic proof σv′ for a value v′ �= v.

If such a cryptographic primitivewere to exist, then theQuad
protocol could be modified in the following manner in order
to satisfy the validity property introduced in Sect. 1:

• A correct process accompanies each value by a crypto-
graphic proof that the value is valid.

• A correct process ignores any message with a value not
accompanied by the value’s proof.

Suppose that all correct processes propose the same value v

and that a correct process Pi decides v′ from the modified
version of Quad. Given that Pi ignores messages with non-
valid values, Pi has obtained a proof for v′ before deciding.
The computability property of the cryptographic primitive
guarantees that v′ = v, implying that validity is satisfied.
Given that the proof is of constant size, the communication
complexity of the modified version of Quad remains O(n2).

Therefore, the main challenge in obtaining SQuad from
Quad, while preserving Quad’s complexity, lies in imple-
menting the introduced cryptographic primitive.

5.3.2 Certification phase

SQuad utilizes its certification phase (Algorithm6) to obtain
the introduced constant-sized cryptographic proofs; we call
these proofs certificates.8 Formally, Certificate denotes the

8 Note the distinction between certificates and prepare and locked QCs
of the view core.
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set of all certificates. Moreover, we define a locally com-
putable function verify: Value×Certificate → {true, false}.
We require the following properties to hold:

• Computability: If all correct processes propose the same
value v toSQuad, then no process (even if faulty) obtains
a certificate σv′ with verify(v′, σv′) = true and v′ �= v.

• Liveness: Every correct process eventually obtains a cer-
tificate σv such that verify(v, σv) = true, for some value
v.

The computability property states that, if all correct processes
propose the same value v to SQuad, then no process (even if
Byzantine) can obtain a certificate for a value different from
v. The liveness property ensures that all correct processes
eventually obtain a certificate. Hence, if all correct processes
propose the same value v, all correct processes eventually
obtain a certificate for v and no process obtains a certificate
for a different value.

In order to implement the certification phase, we assume
an ( f + 1, n)-threshold signature scheme (see Sect. 3)
used throughout the entirety of the certification phase. The
( f + 1, n)-threshold signature scheme allows certificates to
count as a singleword, as each certificate is a threshold signa-
ture. Finally, in order to not disrupt Quad’s communication
and latency, the certification phase itself incurs O(n2) com-
munication and O(1) latency.

Algorithm 6 Certification Phase: Pseudocode (for process
Pi )
1: upon init(Value proposal): � propose value proposal
2: � inform other processes that proposal was proposed
3: broadcast 〈disclose, proposal, ShareSigni (proposal)〉
4: upon existsValue v such that 〈disclose, v, P_Signature sig〉 is received from f +1

processes:
5: � a certificate for v is obtained
6: Certificate σv ← Combine

({sig | sig is received in a disclose message})
7: broadcast 〈certificate, v, σv〉 � disseminate the certificate
8: exit the certification phase

9: upon for the first time (1) disclose message is received from 2 f + 1 processes,
and (2) not exist Value v such that 〈disclose, v, P_Signature sig〉 is received from
f + 1 processes:

10: � inform other processes that any value can be “accepted”
11: broadcast 〈allow- any, ShareSigni (“any value”)〉
12: upon 〈allow- any, P_Signature sig〉 is received from f + 1 processes :
13: � a certificate for “any value” is obtained
14: Certificate σ⊥ ← Combine

({sig |
sig is received in an allow- any message})

15: broadcast 〈certificate, ⊥, σ⊥〉 � disseminate the certificate
16: exit the certification phase

17: � a certificate for v is obtained; v can be⊥, meaning that σv vouches for any value
18: upon reception of 〈certificate,Value v,Certificate σv〉:
19: broadcast 〈certificate, v, σv〉 � disseminate the certificate
20: exit the certification phase

21: function verify(Value v,Certificate σ):
22: if CombinedVerify(“any value”, σ ) = true: return true
23: else if CombinedVerify(v, σ ) = true: return true
24: else return false

Acertificate σ vouches for a value v (the verify(·) function
at line 21) if (1) σ is a threshold signature of the predefined
string “any value” (line 22), or (2) σ is a threshold signature
of v (line 23). Otherwise, verify(v, σ ) returns false.

Once Pi enters the certification phase (line 1), Pi informs
all processes about the value it has proposed by broadcasting
a disclose message (line 3). Process Pi includes a partial
signature of its proposed value in the message. If Pi receives
disclose messages for the same value v from f + 1 pro-
cesses (line 4), Pi combines the received partial signatures
into a threshold signature of v (line 6), which represents a
certificate for v. To ensure liveness, Pi disseminates the cer-
tificate (line 7).

If Pi receives 2 f + 1 disclose messages and there does
not exist a “common” value received in f + 1 (or more)
disclose messages (line 9), the process concludes that it is
fine for a certificate for any value to be obtained. Therefore,
Pi broadcasts an allow- any message containing a partial
signature of the predefined string “any value” (line 11).

If Pi receives f + 1 allow- any messages (line 12), it
combines the received partial signatures into a certificate that
vouches for any value (line 14), and it disseminates the cer-
tificate (line 15). Since allow- any messages are received
from f + 1 processes, there exists a correct process that has
verified that it is indeed fine for such a certificate to exist.

If, at any point, Pi receives a certificate (line 18), it adopts
the certificate, and disseminates it (line 19) to ensure liveness.

Given that eachmessage of the certification phase contains
a single word, the certification phase incurs O(n2) commu-
nication. Moreover, each correct process obtains a certificate
after (at most) 2 = O(1) rounds of communication. There-
fore, the certification phase incurs O(1) latency.

We explain below why the certification phase (Algorithm
6) ensures computability and liveness:

• Computability: If all correct processes propose the same
value v to SQuad, all correct processes broadcast a
disclose message for v (line 3). Since 2 f + 1 pro-
cesses are correct, no process obtains a certificate σv′
for a value v′ �= v such that CombinedVerify(v′, σv′) =
true (line 23). Moreover, as every correct process
receives f + 1 disclose messages for v within any
set of 2 f + 1 received disclose messages, no cor-
rect process sends an allow- any message (line 11).
Hence, no process obtains a certificate σ⊥ such that
CombinedVerify(“any value”, σ⊥) = true (line 22).
Thus, computability is ensured.

• Liveness: If a correct process receives f + 1 disclose
messages for a value v (line 4), the process obtains a
certificate for v (line 6). Since the process disseminates
the certificate (line 7), every correct process eventually
obtains a certificate (line 18), ensuring liveness in this
scenario. Otherwise, all correct processes broadcast an
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allow- any message (line 11). Since there are at least
2 f + 1 correct processes, every correct process eventu-
ally receives f +1 allow- anymessages (line 12), thus
obtaining a certificate. Hence, liveness is satisfied in this
case as well.

5.3.3 SQUAD = Certification phase +QUAD

We obtain SQuad by combining the certification phase with
Quad. The pseudocode of SQuad is given in Algorithm 7.

Algorithm 7 SQuad: Pseudocode (for process Pi )
1: upon init(Value proposal): � propose value proposal
2: start the certification phase with proposal

3: upon exiting the certification phase with a certificate σv for a value v:
4: � inQuadcer , processes ignoremessages with values not accompanied by their

certificates
5: start executing Quadcer with the proposal (v, σv)

6: upon Quadcer decides Value decision:
7: trigger decide(decision) � decide value decision

A correct process Pi executes the following steps in
SQuad:

1. Pi starts executing the certification phase with its pro-
posal (line 2).

2. Once the process exits the certification phase with a cer-
tificate σv for a value v, it proposes (v, σv) to Quadcer ,
a version of Quad “enriched” with certificates (line 5).
While executingQuadcer , correct processes ignoremes-
sages containing values not accompanied by their certifi-
cates.

3. Once Pi decides from Quadcer (line 6), Pi decides the
same value from SQuad (line 7).

In summary:
Theorem:SQuad is a Byzantine consensus protocol with (1)
O(n2) communication complexity, and (2) O( f · δ) latency
complexity.

5.4 SQUAD: formal proof

First, we show that the certification phase of SQuad ensures
computability and liveness.

Lemma 28 (Computability & liveness) Certification phase
(Algorithm 6) ensures computability and liveness. Moreover,
every correct process sends (atmost) O(n)words andobtains
a certificate by time GST + 2δ.

Proof As every correct process broadcasts disclose, cer-
tificate or allow- any messages at most once and each
message contains a single word, every correct process sends

(atmost) 3·n·1 = O(n)words.Next,we prove computability
and liveness.
Computability. Let all correct processes propose the same
value v to SQuad. Since no correct process broadcasts a
disclosemessage for a value v′ �= v, no process ever obtains
a certificate σv′ for v′ such that CombinedVerify(v′, σv′) =
true (line 23).

Since all correct processes broadcast a disclosemessage
for v (line 3), the rule at line 9 never activates at a correct
process. Thus, no correct process ever broadcasts an allow-
anymessage (line 11), which implies that no process obtains
a certificateσ⊥ such thatCombinedVerify(“allow any”, σ⊥) =
true (line 22). The computability property is ensured.
Liveness. Every correct process receives all disclose mes-
sages sent by correct processes by time GST + δ (since
message delays are δ after GST ; see Sect. 3). Hence, all cor-
rect processes receive (at least) 2 f + 1 disclose messages
by timeGST+δ. Therefore, by timeGST+δ, all correct pro-
cesses send either (1) a certificatemessage upon receiving
f +1disclosemessages for the same value (line 7), or (2) an
allow- anymessage upon receiving 2 f +1 disclosemes-
sages without a “common value” (line 11). Let us consider
two possible scenarios:

• There exists a correct process that has broadcast a
certificate message upon receiving f + 1 disclose
messages for the same value (line 7) by time GST + δ.
Every correct process receives this message by time
GST + 2δ (line 18) and obtains a certificate. Liveness
is satisfied by time GST + 2δ in this case.

• Every correct process broadcasts an allow- any mes-
sage (line 11) by time GST + δ. Hence, every correct
process receives f + 1 allow- any messages by time
GST+2δ (line 12) and obtains a certificate (line 14). The
liveness property is guaranteed by time GST + 2δ in this
case as well.

The liveness property is ensured by time GST + 2δ. ��

Finally, we show that SQuad is a Byzantine consensus
protocolwithO(n2) communication complexity andO( f ·δ)
latency complexity.

Theorem 7 SQuad is a Byzantine consensus protocol with
(1) O(n2) communication complexity, and (2) O( f · δ)

latency complexity.

Proof If a correct process decides a value v′ and all correct
processes have proposed the same value v, then v′ = v since
(1) correct processes ignore values not accompanied by their
certificates (line 5), and (2) the certification phase of SQuad
ensures computability (by Lemma 28). Therefore, SQuad
ensures validity.
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Fix an execution ESQuad of SQuad. We denote by tlast
the time the last correct process starts executing Quadcer
(line 5) in ESQuad; i.e., by tlast every correct process has
exited the certification phase.Moreover, we denote the global
stabilization time of ESQuad byGST1. Now, we consider two
possible scenarios:

• Let GST1 ≥ tlast . Quadcer solves the Byzantine consen-
sus problem with O(n2) communication and O( f · δ)

latency (by Theorem 6). As processes send (at most)
O(n) words associated with the certification phase (by
Lemma 28), consensus is solved in ESQuad with n ·
O(n)+O(n2) = O(n2) communication complexity and
O( f · δ) latency complexity.

• Let GST1 < tlast . Importantly, tlast − GST1 ≤ 2δ (by
Lemma 28). Now, we create an execution EQuad of the
original Quad protocol in the following manner:

1. EQuad ← ESQuad. If a process sends a value with
a valid accompanying certificate, then just the cer-
tificate is removed in EQuad (i.e., the corresponding
message stays in EQuad). Otherwise, the entire mes-
sage is removed. Note that no message sent by a
correct process in ESQuad is removed from EQuad
as correct processes only send values accompanied
by their valid certificates.

2. We remove from EQuad all events associated with the
certification phase of SQuad.

3. The global stabilization time of EQuad is set to tlast .
We denote this time by GST2 = tlast . Note that we
can set GST2 to tlast as tlast > GST1.

In EQuad, consensus is solved with O(n2) communi-
cation and O( f · δ) latency. Therefore, the consensus
problem is solved in ESQuad. Let us now analyze the
complexity of ESQuad:

– The latency complexity of ESQuad is tlast − GST1 +
O( f · δ) = O( f · δ) (as tlast − GST1 ≤ 2δ).

– The communication complexity of ESQuad is the sum
of (1) the number of words sent in the time period
[GST1, tlast), and (2) the number of words sent at
and after tlast and before the decision, which is O(n2)
since that is the communication complexity of EQuad
and each correct process sends (at most) O(n) words
associated with the certification phase (by Lemma
28).
Fix a correct process Pi . Let us take a closer look at
the time period [GST1, tlast):

• Let epochsRareSync denote the number of epochs
forwhich Pi sendsepoch- completedor enter-
epochmessages in this time period. By Lemma

20, Pi enters (at most) 2 = O(1) epochs in this
time period.Hence, epochsRareSync = O(1) (by
Lemmas 16 and 17).

• Let epochsQuadcer denote the number of epochs
for which Pi sends view-core messages in this
time period. By Lemma 20, Pi enters (at most)
2 = O(1) epochs in this time period. Hence,
epochsQuadcer = O(1) (by Lemma 26).

For every epoch e, Pi sends (at most) O(n) epoch-
completed and enter- epoch messages (by Lem-
mas 18 and 19).Moreover, for every epoch e, Pi sends
(at most) O(n) view-core messages associated with
views that belong to e (by Lemma 27).9 As each
epoch- completed, enter- epoch and view-core
message contains a single word and Pi sends at most
O(n)words during the certification phase (byLemma
28), we have that Pi sends (at most) epochsRareSync ·
O(n) + epochsQuadcer · O(n) + O(n) = O(n)

words during the time period [GST1, tlast). There-
fore, the communication complexity of ESQuad is
n · O(n) + O(n2) + O(n2) = O(n2).10

Hence, consensus is indeed solved in ESQuad with O(n2)
communication complexity and O( f · δ) latency com-
plexity.

The theorem holds. ��

6 Concluding remarks

This paper shows that the Dolev-Reischuk lower bound can
be met by a partially synchronous Byzantine consensus pro-
tocol. Namely, we introduce SQuad, an optimally-resilient
partially synchronous Byzantine consensus protocol with
optimal O(n2) communication complexity, and optimal
O( f · δ) latency complexity. SQuad owes its complexity to
RareSync, an “epoch-based” view synchronizer ensuring
synchronization with quadratic communication and linear
latency in partial synchrony. In the future, we aim to address
the following limitations of RareSync.

9 Note that Lemmas 16, 17, 18, 19, 20, 26 and 27, whichwe use to prove
the theorem, assume that all correct processes have started executing
RareSync and Quad by GST . In Theorem 7, this might not be true
as some processes might start executing RareSync after GST (since
tlast > GST ). However, it is not hard to verify that the claims of these
lemmas hold even in this case.
10 The first “n · O(n)” term corresponds to the messages sent during
the time period [GST1, tlast), the second “O(n2)” term corresponds to
the messages sent during the certification phase, and the third “O(n2)”
term corresponds to the messages sent at and after tlast and before the
decision has been made.
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6.1 Lack of adaptiveness

RareSync is not adaptive, i.e., its complexity does not
depend on the actual number b, but rather on the upper bound
f , of Byzantine processes. Consider a scenario S in which
all processes are correct; we separate them into three dis-
joint groups: (1) group A, with |A| = f , (2) group B, with
|B| = f , and (3) group C , with |C | = f +1. AtGST , group
A is in the first view of epoch emax , group B is in the second
view of emax , and group C is in the third view of emax .11

Unfortunately, it is impossible for processes to synchronize
in epoch emax . Hence, they will need to wait for the end of
epoch emax in order to synchronize in the next epoch: thus, the
latency complexity is O( f · δ) (since emax has f + 1 views)
and the communication complexity is O(n2) (because of the
“all-to-all” communication step at the end of emax). In con-
trast, the view synchronizer presented in [49] achieves O(1)
latency and O(n) communication complexity in S. Lastly,
since our algorithm is not adaptive in terms of latency, i.e.,
its latency is O( f · δ), where (crucially) f denotes the upper
bound on the number of tolerated failures, and not the num-
ber of actual failures, our algorithm is also not optimistically
responsive [13]: the latency of SQuad depends on the max-
imum network delay δ and not on the actual speed of the
network.

6.2 Suboptimal expected complexity

A second limitation of RareSync is that its expected com-
plexity is the same as its worst-case complexity. Namely,
the expected complexity considers a weaker adversary which
does not have a knowledge of the leader(·) function. There-
fore, this adversary is unable to corrupt f processes that are
scheduled to be leaders right after GST .

As the previously introduced scenario S does not include
any Byzantine process, we can analyze it for the expected
complexity of RareSync. Therefore, the expected latency
complexity of RareSync is O( f · δ) and the expected com-
munication complexity of RareSync is O(n2). On the other
hand, the view synchronizer ofNaor andKeidar [49] achieves
O(1) expected latency complexity and O(n) expected com-
munication complexity.

6.3 Limited clock drift tolerance

A third limitation of RareSync is that its latency is suscep-
tible to clock drifts. Namely, let φ > 1 denote the bound
on clock drifts after GST . To accommodate for the bounded
clock drifts after GST , RareSync increases the duration of
a view. The duration of the i-th view of an epoch becomes

11 Recall that emax is the greatest epoch entered by a correct process
before GST ; see Sect. 4.3.

φi ·view_duration (instead of only view_duration). Thus, the
latency complexity of RareSync becomes O( f · δ · φ f ).
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A Threshold signature scheme: formal defini-
tion

This section defines a (k, n)-threshold signature scheme (k =
2 f +1 = n− f ), whichwe (informally) introduced in Sect. 3.
The threshold signature scheme and its properties are defined
with respect to a security parameter κ ∈ N. In the rest of the
section, we say that a local protocol is efficient if and only if
its complexity belongs to poly(κ). Moreover, String denotes
the set of all strings,P denotes the set of all partial signatures
and T denotes the set of all threshold signatures.

Formally, a (k, n)-threshold signature scheme is a tuple
consisting of:

1. Keys = (
PK, SK = (sk1, . . . , skn),VK = (vk1, . . . , vkn)

)
,

where:

• PK is a public key stored by every correct process.
• SK is a vector of private key shares such that, for every
correct process Pi , Pi stores its (and only its) private
key share ski ; ski is hidden from the adversary.

• VK is a vector of verification keys and the entire vector
is stored by every correct process.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


P. Civit et al.

2. ShareSign(m ∈ String, ski ) is an efficient local (poten-
tially probabilistic) protocol that takes (1) a string m,
and (2) the private key share ski of a process Pi as the
input. The protocol outputs a partial signature σ

p
i ∈ P

of (at most) κ bits. In the main body of the paper,
we used ShareSigni (m) to abbreviate ShareSign(m, ski ):
ShareSigni (m) ≡ ShareSign(m, ski ).

3. ShareVerify(m ∈ String, vki , σ
p
i ∈ P) is an efficient

local deterministic protocol that takes (1) a string m, (2)
the verification key vki of a process Pi , and (3) a par-
tial signature σ

p
i as the input. The protocol outputs either

true or false depending on whether σ
p
i is deemed as a

valid partial signature of process Pi for m. In the main
body of the paper, we used ShareVerifyi (m, σ

p
i ) to abbre-

viate ShareSign(m, vki , σ
p
i ): ShareVerifyi (m, σ

p
i ) ≡

ShareVerify(m, vki , σ
p
i ).

4. Combine(m ∈ String, P ⊂ P), where P is a set of |P| =
k partial signatures of k distinct processes, is an efficient
local protocol that takes (1) a string m, and (2) a set P
of |P| = k partial signatures as the input. The protocol
outputs a threshold signature σ t ∈ T .

5. CombinedVerify(m ∈ String, PK, σ t ∈ T ) is an effi-
cient local deterministic protocol that takes (1) a string
m, (2) the public key PK, and (3) a threshold sig-
nature σ t as the input. The protocol outputs true or
false depending on whether σ t is deemed as a valid
threshold signature for m. In the main body of the
paper, we used CombinedVerify(m, σ t ) to abbreviate
CombinedVerify(m, PK, σ t ): CombinedVerify(m, σ t ) ≡
CombinedVerify(m, PK, σ t ).

The following guarantees are provided:

• Correctness of partial signatures: For every i ∈ [1, n],
ShareVerifyi

(
m ∈ String, ShareSigni (m) ∈ P

)
returns

true.
• Unforgeability of partial signatures: If ShareVerifyi (m ∈

String, σ
p
i ∈ P) returns true, then (1) σ

p
i ←

ShareSigni (m) has been executed by the process Pi , or
(2) Pi is faulty.

• Correctness of threshold signatures: Let m ∈ String be
any string and let S be any set of |S| = k processes.
Let P = {σ p

i | σ p
i ← ShareSigni (m) ∧ Pi ∈ S}. Then,

CombinedVerify
(
m,Combine(m, P)

)
returns true.

• Unforgeability of threshold signatures: If Verify(m ∈
String, σ t ∈ T ) returns true, then there exists a set S
of |S| = k processes such that, for every process Pi ∈ S,
(1) ShareSigni (m) has been executed by Pi , or (2) Pi is
faulty.

B RARESYNC: basic properties

This section is dedicated to the correctness of RareSync
(Algorithm 2). Concretely, we now formally prove Lemmas

1–8, which are merely stated in Sect. 4.4 without accompa-
nying proofs for brevity.

Lemma 1 Let Pi be a correct process. Then, 1 ≤ viewi ≤
f + 1 throughout the entire execution.

Proof First, viewi ≥ 1 throughout the entire execution since
(1) the initial value of viewi is 1 (line 3 of Algorithm 1), and
(2) the value of viewi either increases (line 6) or is set to 1
(line 27).

By contradiction, suppose that viewi = F > f + 1 > 1
at some time during the execution. The update of viewi to
F > f + 1 must have been done at line 6. This means that,
just before executing line 6, viewi ≥ f + 1. However, this
contradicts the check at line 5, which concludes the proof. ��

Lemma 2 Let Pi be a correct process. Let Expd be any expi-
ration event of dissemination_timeri that belongs to hi and
let Invd be the invocation of the measure(·) method (on
dissemination_timeri ) that has produced Expd . Then, Expd
immediately follows Invd in hi .

Proof In order to prove the lemma, we show that only Expd
can immediately follow Invd in hi .We consider the following
scenarios:

• Let an invocation Inv′
d of the measure(·) method on

dissemination_timeri immediately follow Invd inhi : Inv′
d

could only have been invoked either at line 18 or at
line 24. However, an invocation of the cancel() method
on dissemination_timeri (line 17 or line 23) must imme-
diately precede Inv′

d in hi , which contradicts the fact that
Invd immediately precedes Inv′

d . Therefore, this scenario
is impossible.

• Let an invocation Inv′
d of the cancel() method on

dissemination_timeri immediately follow Invd in hi :
Inv′

d could only have been invoked either at line 17
or at line 23. However, an invocation of the cancel()
method on view_timeri (line 16 or line 22) must imme-
diately precede Inv′

d in hi , which contradicts the fact that
Invd immediately precedes Inv′

d . Hence, this scenario is
impossible, as well.

• Let an expiration eventExp′
d �= Expd ofdissemination_timeri

immediately follow Invd in hi : As Invd could have been
invoked either at line 18 or at line 24, an invocation of
the cancel() method on dissemination_timeri (line 17 or
line 23) immediately precedes Invd in hi . This contradicts
the fact that Exp′

d �= Expd is produced and immediately
follows Invd , which renders this scenario impossible.

• Let an invocation Invv of the measure(·) method on
view_timeri immediately follow Invd in hi : Invv could
have been invoked either at line 8 or at line 29. We fur-
ther consider both cases:

123



Byzantine consensus is�(n2): the Dolev-Reischuk bound is tight even in partial synchrony!

– If Invv was invoked at line 8, then Invv is immedi-
ately preceded by an expiration event of view_timeri
(line 4). This case is impossible as Invv is not imme-
diately preceded by Invd .

– If Invv was invoked at line 29, then Invv is immedi-
ately preceded by an expiration event of
dissemination_timeri (line 25). This case is also
impossible as Invv is not immediately preceded by
Invd .

As neither of the two cases is possible, Invv cannot imme-
diately follow Invd .

• Let an invocation Invv of the cancel() method on
view_timeri immediately follow Invd in hi : Invv could
have been invoked either at line 16 or at line 22. In
both cases, an invocation of the cancel() method on
dissemination_timer (line 17 or line 23) immediately
follows Invv in hi . This contradicts the fact that Invd pro-
duces Expd , which implies that this case is impossible.

• Let an expiration event Expv of view_timeri immediately
follow Invd in hi : As Invd could have been invoked either
at line 18 or at line 24, invocations of the cancel()method
on view_timeri and dissemination_timeri (lines 16, 17 or
lines 22, 23) immediately precede Invd in hi . This con-
tradicts the fact that Expv is produced and immediately
follows Invd , which renders this scenario impossible.

As any other option is impossible, Expd must immediately
follow Invd in hi . Thus, the lemma. ��
Lemma 3 (Monotonically increasing views) Let Pi be a cor-
rect process. Let e1 = advance(v), e2 = advance(v′) and
e1

βi≺ e2. Then, v′ > v.

Proof Let epochi = e and viewi = j when Pi triggers
advance(v). Moreover, let epochi = e′ and viewi = j ′ when
Pi triggers advance(v′). As the value of the epochi variable
only increases throughout the execution (lines 13, 15 and
lines 19, 21), e′ ≥ e.

We investigate both possibilities:

• Let e′ > e. In this case, the lemma follows fromLemma 1
and the fact that (e′−1)·( f +1)+ j ′ > (e−1)·( f +1)+ j ,
for every j, j ′ ∈ [1, f + 1].

• Let e′ = e. Just before triggering advance(v) (line 3 or
line 9 or line 30), Pi has invoked themeasure(·) method
on view_timeri (line 2 or line 8 or line 29); we denote
this invocation of themeasure(·) method by Invv .
Now, we investigate two possible scenarios:

– Let Pi trigger advance(v′) at line 9. By contradiction,
suppose that j ′ ≤ j . Hence, just before trigger-
ing advance(v′) (i.e., just before executing line 6),
we have that viewi < j . Thus, line 27 must have

been executed by Pi after triggering advance(v) and
before triggering advance(v′), which means that an
expiration event of dissemination_timeri (line 25)
follows Invv in hi . By Lemma 2, the measure(·)
method on dissemination_timeri was invoked by Pi
after the invocation of Invv . Hence, when the afore-
mentioned invocation of the measure(·) method on
dissemination_timeri was invoked by Pi (line 18 or
line 24), the epochi variable had a value greater than
e (line 15 or line 21) since epochi ≥ e when pro-
cessing line 13 or line 19; recall that the value of the
epochi variable only increases throughout the execu-
tion. Therefore, we reach a contradictionwith the fact
that e′ = e, which means that j ′ > j and the lemma
holds in this case.

– Let Pi trigger advance(v′) at line 30. In this case, Pi
processes an expiration event ofdissemination_timeri
(line 25); therefore, the measure(·) method on
dissemination_timeri was invoked by Pi after the
invocation of Invv (by Lemma 2). As in the pre-
vious case, when the aforementioned invocation of
themeasure(·)method on dissemination_timeri was
invoked by Pi (line 18 or line 24), the epochi variable
had a value greater than e (line 15 or line 21); recall
that the value of the epochi variable only increases
throughout the execution. Thus, we reach a contra-
diction with the fact that e′ = e, which renders this
case impossible.

In the only possible scenario, we have that j ′ > j , which
implies that v′ > v.

The lemma holds as it holds in both possible cases. ��
Lemma 4 Let Pi be a correct process. Let Invv be any invo-
cation of themeasure(·)method on view_timeri that belongs
to hi . Invocation Invv is not immediately followed by another
invocation of the measure(·) method on view_timeri in
hi |view.
Proof Wedenote by Inv′

v thefirst invocationof themeasure(·)
method on view_timeri after Invv in hi |view. If Inv′

v does not
exist, the lemma trivially holds. Hence, let Inv′

v exist in the
rest of the proof. We examine two possible cases:

• Let Inv′
v be invoked at line 8: In this case, there exists an

expiration event of view_timeri (line 4) separating Invv

and Inv′
v in hi |view.

• Let Inv′
v be invoked at line 29: In this case, Inv′

v

is immediately preceded by an expiration event Expd
of dissemination_timeri (line 25) in hi . By Lemma
2, an invocation Invd of the measure(·) method on
dissemination_timeri immediately precedes Expd in hi .
As Invd could have been invoked either at line 18
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or at line 24, Invd is immediately preceded by invo-
cations of the cancel() methods on view_timeri and
dissemination_timeri (lines 16, 17 or lines 22, 23).
Hence, in this case, an invocation of the cancel()method
on view_timeri separates Invv and Inv′

v in hi |view.

The lemma holds since Inv′
v does not immediately follow

Invv in hi |view in any of the two cases. ��
A direct consequence of Lemma 4 is that an expiration

event of view_timeri immediately follows (in a timer history
associated with view_timeri ) themeasure(·) invocation that
has produced it.

Lemma 5 Let Pi be a correct process. Let Expv be any expi-
ration event that belongs to hi |view and let Invv be the
invocation of the measure(·) method (on view_timeri ) that
has produced Expv . Then, Expv immediately follows Invv in
hi |view.
Proof We prove the lemma by induction.
Base step: Let Inv1v be the first invocation of themeasure(·)
method in hi |view that produces an expiration event, and let
Exp1v be the expiration event produced by Inv1v . Expiration
event Exp1v immediately follows Inv1v in hi |view.
Since Inv1v produces the expiration event Exp

1
v , an invocation

of the cancel() method does not immediately follow Inv1v in
hi |view. Moreover, no invocation of the measure(·) method
immediately follows Inv1v in hi |view (by Lemma 4). Finally,
no expiration event produced by a different invocation of
themeasure(·) method immediately follows Inv1v in hi |view
since Inv1v is the first invocation of the method in hi |view that
produces an expiration event. Therefore, the statement of the
lemma holds for Inv1v and Exp1v .

Induction step: Let Inv jv be the j-th invocation of the
measure(·) method in hi |view that produces an expiration
event, where j > 1, and let Exp j

v be the expiration event
produced by Inv jv . Expiration event Exp j

v immediately fol-
lows Inv jv in hi |view.
Induction hypothesis: For every k ∈ [1, j −1], the k-th invo-
cation of the measure(·) method in hi |view that produces
an expiration event is immediately followed by the produced
expiration event in hi |view.
An invocation of the cancel() method does not immediately
follow Inv jv in hi |view since Inv jv produces Exp j

v . Moreover,
no invocation of the measure(·) method immediately fol-
lows Inv jv in hi |view (by Lemma 4). Lastly, no expiration
event produced by a different invocation of the measure(·)
method immediately follows Inv jv in hi |view by the induction
hypothesis. Therefore, the statement of the lemma holds for
Inv jv and Exp j

v , which concludes the proof. ��
Lemma 6 Let Pi be a correct process. Let Expv be any expi-
ration event of view_timeri that belongs to hi and let Invv

be the invocation of themeasure(·)method (on view_timeri )
that has producedExpv . Then, Expv immediately follows Invv

in hi .

Proof Let us consider all possible scenarios (as in the proof
of Lemma 2):

• Let an invocation Invd of the measure(·) method on
dissemination_timeri immediately follow Invv in hi :
Invd could have been invoked either at line 18 or at
line 24. However, an invocation of the cancel() method
on dissemination_timeri (line 17 or line 23) must imme-
diately precede Invd in hi , which contradicts the fact that
Invv immediately precedes Invd . Therefore, this scenario
is impossible.

• Let an invocation Invd of the cancel() method on
dissemination_timeri immediately follow Invv in hi :
Invd could have been invoked either at line 17 or at
line 23. However, an invocation of the cancel() method
on view_timeri (line 16 or line 22) must immediately
precede Invd in hi , which contradicts the fact that
Invv immediately precedes Invd . Hence, this scenario is
impossible, as well.

• Let an expiration event Expd of dissemination_timeri
immediately follow Invv in hi : This is impossible due
to Lemma 2.

• Let the event immediately following Invv be (1) an invo-
cation of the measure(·) method on view_timeri , or (2)
an invocation of the cancel() method on view_timeri ,
or (3) an expiration event Exp′

v of view_timeri , where
Exp′

v �= Expv: This case is impossible due to Lemma 5.

As any other option is impossible, Expv must immediately
follow Invv in hi . ��

Lemma 7 Let Pi be a correct process. Let Invv denote an
invocation of the measure(·) method on view_timeri which
produces an expiration event, and let Expv denote the expi-
ration event produced by Invv . Let epochi = e and viewi = v

when Pi invokes Invv . Then, when Pi processes Expv (line 4),
epochi = e and viewi = v.

Proof By contradiction, suppose that epochi �= e or viewi �=
v when Pi processes Expv . Hence, the value of the variables
of Pi must have changed between invoking Invv and process-
ing Expv . Let us investigate all possible lines of Algorithm
2 where Pi could have modified its variables for the first
time after invoking Invv (the first modification occurs before
processing Expv):

• The viewi variable at line 6: If Pi has modified its
viewi variable here, there exists an expiration event of
view_timeri (line 4) which follows Invv in hi . By Lemma
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6, this expiration event cannot occur before processing
Expv , which implies that this case is impossible.

• The epochi variable at line 15: If Pi updates its epochi
variable here, an invocation of the cancel() method on
view_timeri (line 16) separates Invv andExpv in hi . How-
ever, this is impossible due to Lemma 6, which renders
this case impossible.

• The epochi variable at line 21: If Pi updates its epochi
variable here, an invocation of the cancel() method on
view_timeri (line 22) separates Invv andExpv in hi . How-
ever, this is impossible due to Lemma 6, which implies
that this case is impossible.

• The viewi variable at line 27: If Pi updates its viewi vari-
able here, an expiration event of dissemination_timeri
(line 25) separates Invv and Expv in hi , which contra-
dicts Lemma 6.

Given that Pi does not change the value of neither epochi
nor viewi between invoking Invv and processing Expv , the
lemma holds. ��
Lemma 8 Let Pi be a correct process. Let advance(v) ∈ βi ,
where v is the j-th view of an epoch e and j > 1. Then,

advance(v − 1)
βi≺ advance(v).

Proof Since Pi enters view v, which is not the first view
of epoch e, Pi triggers advance(v) at line 9: Pi could not
have triggered advance(v) neither at line 3 nor at line 30
since v is not the first view of epoch e. Due to line 4,
the measure(·) method was invoked on view_timeri before
advance(v) is triggered; we denote by Invv this specific invo-
cation of themeasure(·)method on view_timeri and byExpv

its expiration event (processed by Pi just before triggering
advance(v)).

When Pi triggers advance(v) (at line 9), we have that
epochi = e and viewi = j . Moreover, when processing
Expv , we have that epochi = e and viewi = j − 1 (due to
line 6). By Lemma 7, when Pi has invoked Invv , we had the
same state: epochi = e and viewi = j − 1. Process Pi could
have invoked Invv either (1) at line 2, or (2) at line 8, or (3)
at line 29. Since Pi triggers advance(·) immediately after
(line 3, line 9, or line 30), that advance(·) indication is for
v −1 (as epochi = e and viewi = j −1 at that time). Hence,

advance(v − 1)
βi≺ advance(v). ��
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