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Abstract
Objective. Studying the neural components regulating movement in human locomotion is
obstructed by the inability to perform invasive experimental recording in the human neural
circuits. Neuromechanical simulations can provide insights by modeling the locomotor circuits.
Past neuromechanical models proposed control of locomotion either driven by central pattern
generators (CPGs) with simple sensory commands or by a purely reflex-based network regulated
by state-machine mechanisms, which activate and deactivate reflexes depending on the detected
gait cycle phases. However, the physiological interpretation of these state machines remains
unclear. Here, we present a physiologically plausible model to investigate spinal control and
modulation of human locomotion. Approach.We propose a bio-inspired controller composed of
two coupled CPGs that produce the rhythm and pattern, and a reflex-based network simulating
low-level reflex pathways and Renshaw cells. This reflex network is based on leaky-integration
neurons, and the whole system does not rely on changing reflex gains according to the gait cycle
state. The musculoskeletal model is composed of a skeletal structure and nine muscles per leg
generating movement in sagittal plane.Main results. Optimizing the open parameters for effort
minimization and stability, human kinematics and muscle activation naturally emerged.
Furthermore, when CPGs were not activated, periodic motion could not be achieved through
optimization, suggesting the necessity of this component to generate rhythmic behavior without a
state machine mechanism regulating reflex activation. The controller could reproduce ranges of
speeds from 0.3 to 1.9m s−1. The results showed that the net influence of feedback on
motoneurons (MNs) during perturbed locomotion is predominantly inhibitory and that the CPGs
provide the timing of MNs’ activation by exciting or inhibiting muscles in specific gait phases.
Significance. The proposed bio-inspired controller could contribute to our understanding of
locomotor circuits of the intact spinal cord and could be used to study neuromotor disorders.

1. Introduction

Limbs’ movements result from the complex inter-
action between brain centers, the spinal cord, and
the musculoskeletal system [45]. The spinal net-
work is essential in the control, coordination, and

modulation of locomotion [32]. While there is dir-
ect evidence of a central pattern generator (CPG)
in mammals and other vertebrates [1, 32], the lack
of direct experimental access in humans means that
there is only indirect evidence [39]. Furthermore,
sensory feedback pathways may play a major role
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compared to other mammals, and lower vertebrates
in humans [24–26, 28, 34]. Different studies sugges-
ted that the muscle activity observed during human
locomotion may be controlled by five locomotor
primitives that could be generated by rhythmic neural
circuits [14, 30]. Investigating these questions about
the roles of different spinal components in controlling
locomotion is challenging since we possess only par-
tial knowledge of the interactions between the dif-
ferent subsystems involved in this process. On top
of that, limited experimental access complicates the
observation of the sub-components functions lead-
ing to difficulties inmodel validation. Computer sim-
ulations are necessary and have been proven useful
in the past to evaluate the contribution of each con-
trol component by evaluating different models, and
parameters [3, 18, 19, 22, 29, 41, 48].

Various neuromechanical models have been pro-
posed in the past to address these questions. In 1995,
Taga proposed a musculoskeletal system controlled
by a neural rhythm generator (RG) composed of
seven pairs of neural oscillators and simple sensory-
motor signals [49]. Successively, in 2001, Ogihara
and Yamazaki developed a neural controller com-
posed of motoneurons (MNs) receiving inputs from
a common CPG and reflexes from stretch and force
receptors, where the spindle reflexes had inhibitory
inputs to antagonist’s muscles [40]. In the context
of locomotion controlled by CPG mechanisms, Aoi
et al (2010) constructed a CPG model based on a
two-layered hierarchical network composed of a RG
and a pattern formation (PF) layer. The RG model
produced rhythmic information using phase oscil-
lators and was regulated by phase resetting based
on foot-contact gait events, whereas the PF model
generated feedforward commands composed of five
motor primitives based on the muscle synergies ana-
lysis performed by Ivanenko et al [3, 30]. On the
other hand, Geyer and Herr demonstrated that the
kinematics and muscle activation observed in human
locomotion could be reproduced without CPG com-
mands by relying purely on sensory feedback activ-
ated at specific gait cycle phases [22]. The activa-
tion of sensory feedback was regulated by a state-
machine mechanism (i.e. a set of if–then–else rules)
that enabled and disabled specific reflexes depending
on the detection of stance or swing phases. A similar
controller with partial modifications has then been
proposed by Ong et al [41]. In these studies, the activ-
ation of sensory responses in the gait cycle is regu-
lated by a state-machine mechanism activating and
deactivating reflexes in five gait cycle subphases. The
necessity of including such state-machine mechan-
isms in reflex-based controllers hints at the need for a
more sophisticated circuit that controls the underly-
ing reflexes. Other studies have integrated CPG com-
mands on top of these purely sensory-based control-
lers, showing the benefits of rhythmic circuits in gait
modulation [19, 53].

In this study, we propose a novel bio-inspired
controller composed of a feedforward network
inspired by Aoi et al consisting of two CPGs that
produce the locomotor rhythm and patterns and
a new physiologically plausible implementation of
spinal reflexes based on neurophysiological studies
in locomotion [54, 56] without relying on any state
machine mechanism. This network controls nine
muscle actuators generating torques in a previously
assessed musculoskeletal model [17].

The performance of this controller in replicat-
ing the behavior of human locomotion and its mod-
ulation are investigated and compared with previ-
ous experimental and neuromechanical studies. In
addition, we investigate the performance of the sens-
ory feedback controller alone to verify whether it is
possible to generate human walking behavior with
a purely reflex-based controller without relying on
state machine mechanisms and to verify the benefit
of CPG mechanisms. Finally, we examine the con-
tribution given by pattern generation and reflex cir-
cuits to theMNs at slow, intermediate, and fast speeds
performing a correlation analysis to identify possible
parameters responsible for speed modulation. With
these experiments, we aim to address the following
questions:

• What is the role of CPGs and reflex circuits in the
generation of muscle activation in human loco-
motion?

• Can low-level feedback circuits produce stable
locomotion without a CPG or state-machine?

• Is the contribution of these two neural components
changing with increasing of gait speed?

Our results show that the reflex rules implemented in
previous models [22, 41] could be reproduced into
less abstract and more realistic models of neural cir-
cuits. The insights given by the proposed controller
suggest that spinal reflexes alone could not reproduce
rhythmic locomotion without a state machine mech-
anism regulating the activation of reflexes in specific
phases of the gait cycle. CPG networks appear to play
the role of state machines in previous models and to
be necessary to promote muscle activation in specific
gait cycle phases. In addition, the modulation of CPG
frequency seems necessary tomodulate step duration.
The modulation of either reflexes, CPG network, or
both could generate gaits in a wide speed range, high-
lighting the high level of versatility of the neurospinal
control of human locomotion.

2. Methods

This study used the Simulated Controller
OptimizatioN Environment (SCONE) software sim-
ulation framework [21]. SCONE is an open-source
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software performing predictive simulations of bio-
logical motion, allowing the investigation of indi-
vidual models and control parameters on themotion.
To perform a predictive simulation in SCONE, it is
necessary to run a scenario including the following
components:

• A mechanical model of the system to simulate.
• A controller that generates input for the model
actuators.

• An objective that describes the target task to optim-
ize, through a weighted combination of measures
(sub-components of the cost function).

• An optimizer that optimizes the free parameters in
a scenario for a specific objective.

In this study, SCONE softwarewas extended to imple-
ment and optimize the new spinal model generating
gait simulations of 10 s.

2.1. Musculoskeletal model
The musculoskeletal model (figure 1) has the skeletal
structure presented by Delp et al [17] with a height
of 1.8m and weight of 75.16 kg. The model is con-
strained in the sagittal plane and has a total of nine
degrees of freedom (DoFs): a three-DoFs planar joint
between the pelvis and the ground and three rota-
tional DoFs per leg: hip flexion/extension, knee flex-
ion/extension, and ankle dorsiflexion/plantarflexion.
Three spheres per leg are used as contact models with
the ground: one of radius 5 cm at the calcaneus and
two of radius 2.5 cm at the toes. The musculoskeletal
model is actuated by nine Hill-type muscle-tendon
units per leg: gluteus maximus (GMAX), biarticu-
lar hamstrings (HAMS), biceps femoris short head
(BFSH), rectus femoris (RF), iliopsoas (ILPSO), vasti
muscle group (VAS), gastrocnemius (GAS), soleus
(SOL), and tibialis anterior (TA).

2.2. Controller
Muscle activation is regulated by the excitation
provided by the MNs. The MNs are stimulated or
inhibited by the different components of the bio-
inspired controller: the balance controller of the trunk
and the spinal network, composed of the CPGs and
spinal reflexes. The balance controller and the CPGs
are modeled at an abstract level. Indeed, the former
provides balance inputs in specific phases of the gait
cycle with proportional derivative (PD) controllers,
and the latter is composed of two abstract oscillators
generating primitive patterns. By contrast, the spinal
reflexes are modeled more realistically at a lower level
of abstraction and are structured in different leaky
integrator neurons divided into three types: soma-
tosensory neurons (SNs), interneurons (INs), and
MNs. The overall structure of the controller is repor-
ted in figure 2. The balance controller of the trunk
regulates only the activation of hip muscles in spe-
cific phases of the gait cycle, whereas CPGs and spinal

Figure 1.Musculoskeletal model used to study human
locomotion. The model is constrained in the sagittal
plane and has nine DoFs: hip and knee
flexion/extension, ankle plantar/dorsal flexion for each
leg, and a three-DoFs planar joint between the pelvis
and the ground. Movements are generated by the
activation of nine muscles per leg: gluteus maximus
(GMAX), biarticular hamstrings (HAMS), biceps
femoris short head (BFSH), rectus femoris (RF),
iliopsoas (ILPSO), vasti (VAS), gastrocnemius medialis
(GAS), soleus (SOL), and tibialis anterior (TA).

reflex controllers provide inputs to all muscles and
are not regulated by any state-machine mechanism.
We chose to maintain the state machine for the bal-
ance controller in order to simplify the balance con-
trol since our main goal is the simulation of loco-
motor movement. A physiological neuromechanical
model of trunk balance control is a complex task that
is outside the scope of this study. Muscle excitation
is triggered by the MN output with values between
0 and 1 since MNs can only provide excitation to
muscle fibers and cannot have negative outputs. To
keep a reasonable level of abstraction and complexity,
we will assume that the neuron’s output (correspond-
ing to its firing rate) uoutput follows the dynamics of a
leaky integrator:

τ
dy

dt
=−y+ uinput

uoutput = f(y) ,
(1)

where y is the neuronal response, uinput is the neural
input, τ the time constant (typically 0.01), uoutput the
output of the neuron, and f the activation function.
The activation function used forMNs is themin–max
operator (f(x) =min(max(0,x),1)), and the neural
input is defined as:

uinput =
∑
j

wjuoutput j, (2)
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Figure 2. Control diagram: the bio-inspired controller is composed of the balance controller of the trunk and the spinal controller
divided into CPGs and spinal reflexes. The balance controller aims at keeping the balance of the trunk by stimulating the hip
muscles’ motoneurons, whereas CPGs and spinal reflexes generate rhythmic behavior stimulating all muscles’ motoneurons.
Reflexes and CPGs are integrated by motoneurons, whereas balance inputs are summed separately. Created with BioRender.com.

where wj is the weight associated with the jth connec-
tion, and uoutput j the output of the jth neuron. The
MN receives inputs from the CPGs’ network (uCPGs)
and the reflex circuit (ureflexes). These inputs are integ-
rated according to equations (1) and (2):

τ
dy

dt
=−y+(uCPGs + ureflexes) ,

moutput = f(y) (3)

and generate the MN outputmoutput. ILPSO, GMAX,
and HAMS also receive inputs from the balance con-
troller (ubalance). To avoid the activity of the balance
controller from being inhibited by the other neural
circuits possibly preventing the correct balance of the
trunk, ubalance is not integrated into the MN dynam-
ics, and the final MN output for hip muscles m̃output

is defined by the following equation:

m̃output =
(
ubalance +moutput

)
+

(4)

where moutput is the MN output resulting from the
integration of uCPGs and ureflexes and ubalance repres-
ents the balance controller effect on the hip muscles.
The operator ()+ represents only the positive part of
the selected signal. The amplitude of all components
is regulated by the controller’s parameters tuned by
the optimization algorithm. The muscle activation a
responds to the excitation moutput (or m̃output for hip
muscles) as defined by Thelen [51].

The following sections will describe in detail how
each neural input is computed (ubalance, uCPGs, and
ureflexes).

2.2.1. Balance controller of the trunk
The balance controller is the one proposed by Ong
et al [41], and it is the only controller part where a
state-machine mechanism is present. A PD control
strategy is used to activate the hip muscles balancing
the forward lean angle of the trunk. ILPSO, GMAX,
and HAMS receive inputs from the balance control-
ler during the stance phase. The excitation given by
the balance controller to the hip MNs is described in
equation (5).

ubalance = kp (θ (t− tD)− θ0)+ kvθ̇ (t− tD) , (5)

where kp and kv are the proportional and derivative
controller’s gains, and the constant θ0 is the desired
forward lean angle regulating the proportional feed-
back of the actual forward lean angle θ. tD represents
the time delay, corresponding to tD = 5ms for the hip
muscles. The balance controller has a total of nine
parameters.

2.2.2. CPGs
The CPGs were implemented as two coupled oscillat-
ors (one per side) composed of RG, and PF layers [36,
46] inspired by the work of Aoi et al [2, 3]. Among
the different CPGs models proposed for human loco-
motion, we chose to take inspiration from Aoi’s
model [3, 4] tomaintain a reasonable level of abstrac-
tion for a neural network for which the specific struc-
ture is not yet completely clear. Furthermore, the rep-
resentation of five locomotor synergies is supported
by past experimental studies [30].
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The RG dictates a periodic command synchron-
izedwith the environment through afferents triggered
by the heel-strike event. Based on Aoi’s model,
two coupled differential equations govern the CPG
dynamics:

ϕ̇left = ω− γ sin
(
ϕleft −ϕright −π

)
ϕ̇right = ω− γ sin

(
ϕright −ϕleft −π

)
,

(6)

where ϕleft/right denotes the phase of each leg, ω(t)
is the basic angular frequency, and γ is the coupling
constant.

The differential equation contains events that
reset ϕleft/right when the leg touches the ground in
order to synchronize the CPGs’ phases with the
environment. This is the only feedback mechanism
present in the CPGs model, and it is described in
equation (7):

ϕleft/right (t)

=

{
0, if the leg touches the ground

ϕleft/right (t) otherwise,

(7)

In our simulations, the angular frequency ω has a
constant value and represents one of the parameters
under optimization.

The pattern formation layer is composed of
phase-dependent primitive patterns. Each pat-
tern resembles a bell-shaped waveform with a
defined width that can be centered around a specific
phase value and is implemented as a raised-cosine
function:

p
(
ϕ̄;µ,σ

)
=

 1
2

(
1+ cos

(
ϕ−µ
σ π

))
, µ−σ <= ϕ <= µ+σ

0 otherwise,

(8)

where ϕ̄ is the normalized gait phase, µ is the value
corresponding to the peak of the bell shape, and σ
is the half-width of the curve. The pattern formation
layer is composed of five primitives of the same half-
width and centered at different times of the gait phase
(figure 3(a)):

• P0: µ= 0.1, σ= 0.2
• P1: µ= 0.3, σ= 0.2
• P2: µ= 0.5, σ= 0.2
• P3: µ= 0.7, σ= 0.2
• P4: µ= 0.9, σ= 0.2.

The choice of modeling the CPG network as the gen-
eration of five locomotor primitives has been taken

to have smooth and derivable shapes of CPG cir-
cuits inputs to MN. More precisely, we took inspir-
ation from the observations done in past experi-
mental studies where five bell-shaped synergies act-
ive at different phases of the gait cycle were identi-
fied in human studies [30, 31]. However, it should
be noted that those recorded synergies account for
the overall MN activity and not just the CPG sub-
component. Each MN receives a weighted neural
excitation or inhibition uCPGs from all primitive
patterns (figure 3(b)) according to the following
equation:

uCPGs =
4∑

k=0

wm,kpk (ϕ;µk,σk) , (9)

where wm,k is the weight parameter of the pattern k
to the MN m to be determined through optimiza-
tion. The total number of parameters to optimize cor-
responds to five weights per pattern to each specific
muscle and the oscillatory frequency. Therefore, the
number of parameters for the CPGnetwork is 48. The
possible values assigned to wm,k are [−1:1].

2.2.3. Spinal reflexes
To implement a physiologically realistic model of
sensory-motor control in human locomotion, we
model and investigate five spinal reflexes:

• Ia afferents provide monosynaptic excitation to
MNs innervating the same muscle and disynaptic
inhibition mediated by Ia inhibitory INs to antag-
onistic MNs (figure 4(a)) and model the velocity-
dependent response to stretch [11].

• II afferents provide disynaptic excitation to MNs
innervating the same muscle and disynaptic inhib-
ition to antagonistic MNs mediated by excitat-
ory and inhibitory INs, respectively (figure 4(b)).
This reflex models the excitatory role of group
II afferents [35] responding to changes in muscle
length during stretch.

• Ib afferents provide disynaptic inhibition to MNs
innervating the same muscle mediated by inhib-
itory INs. These INs reciprocally inhibit antagon-
istic Ib-IN (figure 4(c)). This reflex is triggered
by the Golgi tendon organs and it is introduced
to protect muscles when large forces are detected
[9]. Additionally, Ib afferents provide disynaptic
excitation to extensor MNs innervating the same
muscle mediated by excitatory INs. These connec-
tions model the positive force feedback reversal
commonly observed in experimental studies [23,
44, 46] (figure 4(d)).

• Renshaw cells (RCs) are inhibitory INs provid-
ing inhibitions to MNs and Ia-INs innervating the
same muscle. Additionally, these cells reciprocally
inhibit with antagonistic RCs [55] (figure 4(e)).
RCs are activated by MNs innervating the same
muscle through synaptic excitation inhibiting these

5
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Figure 3. CPG structure: (a) the CPG generates five bell-shaped primitives centered at different times of the gait cycle. (b) Each
k-pattern stimulates all them-motoneurons depending on the assigned weight wm,k that can be positive or negative. (a) and (b)
Created with BioRender.com.

MNs when a large activity is detected to prevent
excessive muscle activation.

The spinal sensory feedback network is composed of
three types of leaky integrator neurons: SNs, INs, and
MNs. Each of these neurons models the activities of
neural populations in the physiological spinal cord.
INs have the same properties of MNs responding to
the dynamics described in equations (1) and (2) and
with the same activation function f (x). SNs instead
presents a rectifier function (f(x) =max(0,x)) as
activation function, and also the neural input is
slightly different:

uinput = r(t−∆) , (10)

where r(t−∆) is the receptor function and ∆ the
delayed value of the receptor. Transmission delays are
known and can be determined according to the prox-
imity of the receptors [19]. The expressions of the
receptors follow the equations:

rIa (t) = 65/200
√
max(0, ṽm (t))

rII (t) = l̃m (t)

rIb (t) = f̃m (t)

rf (t) = f̃f (t) ,

(11)

where ṽm(t)), l̃m(t), f̃m(t), f̃f(t) are respectively
the normalized quantities for contraction velocity,
muscle length, muscle force, and cutaneous forces
due to ground-foot contact. We choose to consider
the normalized quantities to be able to easily scale for

different muscles with different values of length and
strength. Here, the expression for rIa was inspired by
Prochazka [43] and modified such that only length-
ening ṽm > 0 triggers a responsewhile ignoring length
and activity-dependent terms.Wedeliberately simpli-
fied these expressions because we wanted to capture
the general trend and prevent an excessive number of
physiological parameters. In figure 4, we present the
primitive reflex pathways that govern the connectiv-
ity within a single spinal cord segment. These rules
are used to build the topological network by assum-
ing that muscles can be categorized as agonists (A),
antagonists (N), and extensors (E) or flexors (F).

The relation between agonist and antagonist
muscles defines the mutual inhibitions described in
figures 4(a)–(c) and (e). In addition, a muscle can be
defined as extensor or flexor. In case it is an extensor
muscle, the additional connections of Ib disynaptic
extensor facilitation described in figure 4(d) are
included. Some bi-articular muscles can be con-
sidered both extensors and flexors since they have
different effects on different joints and the Ib disyn-
aptic extensor facilitation is included also in this case.
Table 1 describes the relations among agonist and ant-
agonist muscles assigned in our models. Accounting
for all the weighted connections, the sensory feedback
controller has a total of 183 parameters.

Finally, figure 5 shows the whole spinal net-
work implemented between agonist and antagon-
ist muscles including the reflex pathways and CPGs
inputs. On top of this network, ILPSO, GMAX,
and HAMS also receive inputs from the balance
controller.

6
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Figure 4. Reflex pathways. Green, blue and red stand for somatosensory (SNA/N), inter (INA/N), and motor neurons (MNA/N),
respectively. The connection tip o stands for inhibition while< is for excitation. Subscript letters A, N, and E denote agonist,
antagonist, and extensor muscles, respectively. The rules are repeated for all antagonist muscles. (a)–(e) Created with
BioRender.com.

2.3. Optimization process
In total, the controller’s parameters are 256, account-
ing also for 16 additional parameters regulating initial
positions and velocities of the model’s DoFs. Because
of the large size of the parameters’ space and the

difficulties in obtaining a stable solution when the
network is in an arbitrary state, the optimization
process is divided into three steps: imitation objective,
optimization for stability, and optimization of
metabolic energy. In the first stage, we try

7
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Table 1. Agonist–antagonist relationship among muscles modeled. Each antagonist relationship implies the corresponding reciprocal
inhibition of Ia, II, and Ib connections, and the reciprocal excitation connections of RC. The table specifies whether the agonist is
considered an extensor, which includes the disynaptic excitation from Ib+, or flexor.

Agonist–antagonist muscle relationship

Agonist Antagonist Role

ILPSO GMAX, HAMS Flexor
GMAX ILPSO Extensor
HAMS VAS, RF Extensor/flexor
RF HAMS, BFSH Extensor/flexor
BFSH VAS, RF Flexor
VAS HAMS, BFSH Extensor
GAS TA Extensor/flexor
SOL TA Extensor
TA GAS, SOL Flexor

Figure 5. Spinal network between a muscle and its antagonist. The network includes reflexes driven by Ia, II, Ib afferents and
Renshaw cells and inputs from CPGs’ patterns. Connections from patterns to motoneurons are represented by back arrows since
these connections can be both inhibitory and excitatory. ILPSO, GMAX, and HAMS also receive inputs from the balance
controller. Created with BioRender.com.

determining the network’s parameters such that
the output of neurons is within a plausible range
and MNs’ activity resembles normal gait solu-
tions. To achieve this, we begin with a previously
obtained stable gait simulation generated by a
simpler controller [41]. Given that we know the
whole state trajectories of the musculoskeletal sys-
tem, we can compute the sensory afferent inputs
required by the bio-inspired controller. Therefore,
we can optimize for network parameters efficiently

without numerically integrating the equations of the
musculoskeletal system. We call this step imitation
learning because we try to imitate a simulated beha-
vior without yet producing dynamically consistent
stable gaits. The optimization objective is defined as
follows:

minimize
p⃗

Nt∑
t

Nm∑
m

(
eSm (t)− eNm (t, x⃗(t) ; p⃗)

)2
, (12)
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where eSm(t) denotes the target simulated excitation of
muscle m at time t, and eNm the excitation of the net-
work that depends on time t, the known state vari-
ables x⃗(t), and parameters p⃗. The above parameter
solution does not produce stable gaits if we evaluate
themodel by numerically integrating the equations of
motion. Our initial goal was to calibrate the network
behavior within a reasonable range of operation in
order to avoid neuron activities that are extreme and
always make the model fall and optimization diverge.
In fact, the imitation is only done to obtain a first
usable solution for further optimization.

The second optimization aims at obtaining
dynamically consistent stable gaits. To do so, we start
integrating numerically the equation of motion pro-
ducing dynamical gaits by minimizing the distance
between the model’s and reference’s states as already
expressed in equation (12), penalizing unstable fall-
ing solutions and solutions outside the desired range
of speed, minimizing metabolic effort and joint limit
torques. With this process, we aim to obtain stable
solutions generated with our bio-inspired controller
with physiological kinematics and muscle activation.
The optimization is done using a CMA–ES algorithm
with parameters λ= 40 and σ= 5 [27]. The cost
function for this optimization is defined as follows:

minimize
p⃗

Jmimic + Jgait + Jeffort + Jlimit + Jhead.

(13)

The term Jmimic, represents the model mimicking the
reference states as expressed in equation (12), Jgait
penalizes the solution where the center of mass velo-
city is outside the [vmin,vmax] range (1.10–1.25m s−1

for healthy human gait at normal speed) and the fall-
ing solutions. The model is considered to fall when
the ratio between its center of mass height (hCOM) to
the initial state (hCOM,i) is smaller than a termination
height threshold set to 0.8 ( hCOM

hCOM,i
< 0.8). The term

Jeffort defines the rate ofmetabolic energy expenditure
[52] normalized by the product of body mass and
distance traveled. J limit is associated with joint min-
imization of soft joint limit torques at the knee and
ankle joints in order to avoid excessive joint angles
[18]. Finally, Jhead helps to maintain head stability by
minimizing horizontal and vertical head accelerations
outside the following ranges: [−4.90− 4.90]ms−2 in
the vertical direction, and [−2.45− 2.45]ms−2 in the
horizontal direction, as previously done by Ong et al
[41]. Concerning the weights, we assigned wmimic =
10, wgait = 100, weffort = 1, wlimit = 0.1, and whead =
0.25 in order to promote mainly stability and mim-
icking. Following this optimization, we use the res-
ulting stable solution as initial condition to find the
optimal solution that minimizesmetabolic energy. To
do so, we remove the mimicking component of the
cost function and optimize for

minimize
p⃗

Jgait + Jeffort + Jlimit + Jhead. (14)

Jgait allows the stability of future explored solu-
tions and Jeffort allows convergence toward gait effi-
ciency. In addition, we apply external perturbations
to the pelvis and randomized internal perturbations
to muscle excitation to obtain more robust and stable
gaits. The external perturbation is a force of 100N
applied in the forward and backward direction for
a duration of 0.2 s respectively after 3 s and 4 s after
the beginning of the simulation. The internal per-
turbations are applied to sensory receptors. For each
controller timestep, a random white Gaussian noise
is sampled from a normal distribution with a stand-
ard deviation of s ∗ noisep, where noisep is the propor-
tional standard deviation of the normal distribution,
and s is the perturbed sensory signal.

This three-step optimization process was used
only to find a proper local optimum to replicate
human gait behavior with a high number of para-
meters tuning the bio-inspired controller. However,
once the local optimum is found, different gait beha-
viors can be reached starting from this solution by
only optimizing according to equation (14) with the
different gait behaviors targeted by Jgait. The meth-
odology for these simulations is explored in the fol-
lowing section. Furthermore, we verified that similar
solutions for a specific gait speed could be achieved
from different initial conditions of the optimizer as
long as this initial condition represents a combina-
tion of parameters that has been obtained from the
optimal solution resulting from the three optimiza-
tion steps.

2.4. Gait modulation
To study the capability of the proposed bio-inspired
controller to reproduce different gait behaviors in
human locomotion, we focus mainly on the mod-
ulation of locomotor speed. In this way, we aim
to evaluate our controller’s performance, checking
the maximum and minimum speeds it can achieve.
Additionally, we evaluate gait analysis and muscle
activation for three selected solutions far from the
extremes of the achieved speed range since very slow
or very fast speeds aremore subject to producing arti-
facts in gait simulations. Therefore the three solutions
selected are at 0.6m s−1, 1.2m s−1, and 1.6m s−1 rep-
resenting slow, intermediate, and fast speeds, respect-
ively. To do so, we modulate the optimization para-
meters [vmin,vmax] in Jgait. Furthermore, we use the
data acquired from our model to have possible
insights into the contribution of CPGs and spinal
reflexes in the neuromotor control of human loco-
motion and gait modulation. To do so, first, we eval-
uate the inputs to MNs from CPGs and reflexes
and how these affect the MNs’ output at different
speeds. We then performed additional optimization
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where either CPG parameters or reflexes paramet-
ers were fixed to investigate the modulation capab-
ilities of each controller component. The fixed val-
ues of parameters are extracted from a reference solu-
tion of the model walking at 1.17m s−1 with 0.79m
of step length and 0.67 s of step duration. This solu-
tion is the onewhere the optimizer convergedwithout
imposing any restriction on the target speed. Finally,
we investigate which parameters majorly contribute
to gait modulation for the three controller configur-
ations: full control, fixed reflexes, and fixed CPGs.
These parameters are identified through a correla-
tion analysis with gait speed, step length, and step
duration, where parameters that have a high level
of positive or negative correlation with these three
gait characteristics (above 0.80 in absolute value) are
considered the potential major contributors to gait
modulation [18]. The correlation analysis is conduc-
ted over eight solutions obtained through different
target optimizations for each of the three controller
configurations.

In general, the variables under investigation are:

• Kinematic variables (measures in degrees).
• Normalized vertical ground reaction forces
(unitless).

• Muscle activation (unitless and bounded between
0 and 1).

• Neural inputs from reflex, balance, and CPG cir-
cuits (unitless and bounded between−2 and 2).

• The spatiotemporal variables speed (m s−1), step
length (m), and step duration (s).

• The correlation coefficients (unitless and bounded
between −1 and 1) between controller parameters
and spatiotemporal variables.

3. Results

Figure 6 shows the controller’s performance. The
averaged gait cycle shown is obtained from 6 gait
cycles. The first cycle has been removed to allow the
model to reach steady-state. When minimizing the
cost function without imposing restrictions on gait
speed, the model converges to a gait at 1.17m s−1 of
speed, 0.79m step length, and 0.67 s step duration.
Figure 6(a) shows qualitatively the different positions
of the model’s joints through the gait cycle. The sim-
ulated pelvis tilt, hip flexion, knee angle, and ground
reaction forces (GRFs) shown in figure 6(b) faithfully
represent the experimental observations from Bovi
et al [7] illustrated by the shaded gray areas. Some
discrepancies can be observed for the ankle angle that
tends to have excessive dorsiflexion and lacks proper
plantarflexion during push-off compared to experi-
mental observations. Indeed, the ankle angle mostly
maintains its values above the zero level of plantar-
flexion/dorsiflexion. This likely depends on the weak
activation of GAS and SOL observed in figure 6(c).

These muscles maintain a peak activation of 0.3 for
the SOL and 0.2 for the GAS.However, the simulation
replicates the temporal activations observed in exper-
iments from Perry and Burnfield [42] for TA, GMAX,
VAS, GAS, SOL, and HAMS. Concerning ILPSO, the
muscle is active also outside its time range, having
a consistent activation also in pre-swing. The model
converges to different behaviors compared to experi-
mental results for BFSH and RF that are active at the
beginning and at the end of the gait cycle, respectively,
rather than during swing.

3.1. Gait modulation
By optimizing the controller’s parameters, the
model could reproduce gaits from 0.3 to 1.9m s−1.
Figure 7(a) shows the modulation of gait kinemat-
ics and GRFs at 0.6, 1.2, and 1.6m s−1 representing
slow, intermediate, and fast gaits, respectively. The
averaged gait cycle in figure 7 is obtained through 5
gait cycles for the gait at 0.6m s−1, 7 gait cycles for
the one at 1.2m s−1, and 8 gait cycles for the one at
1.6m s−1. Also in this case, the first cycle has been
removed to allow the model to reach steady-state. As
speed increases, the pelvis tilt and the lean angle of the
trunk increase in the forward direction by 8◦, and the
hip flexion oscillates between 35◦ and −5◦ at slow
speed and 45◦ and−3◦ at fast speed. Increasing amp-
litudes of knee flexion are also observed at high speed,
having the peak flexion in swing of 53◦ at 0.6m s−1

and 68◦ at 1.6m s−1. Fast speed also presents a con-
sistent increase of ankle plantarflexion to −3◦ of the
ankle angle during ankle push-off, whereas this value
is maintained at around 10◦ of ankle dorsiflexion
at slow speed. Concerning GRFs, the characteristic
double peak shape is very weak at 0.6m s−1. Double
peak amplitudes increase with the increase of speed,
especially the first peak that shows the reaction with
the impact with the ground during heel strike. The
duration of the stance phase is reduced from 65%
of the gait cycle at 0.6m s−1 to 55% at 1.6m s−1.
The behaviors of kinematics and GRFs modulation
presented resemble the ones observed experimentally
by Bovi et al [7]. Some differences are observed with
the level of ankle dorsiflexion since themodel tends to
converge to a high-level of dorsiflexion that can dif-
fer from experimental data by 7◦ during heel strike
and by 12◦ during push-off at slow and fast speeds.
Additional differences are observed for the level of
hip extension at slow speed and knee extension at
high speed. In fact, Bovi et al observed that the max-
imumhip extension decreases at low speeds, and knee
extension during stance increases at high speeds. In
contrast, the model reproduced increased knee flex-
ion during stance at high speeds and a similar level
of maximum hip extension at 0.6m s−1 compared to
1.2 and 1.6m s−1.

Muscle activity is affected by gait modulation
mainly through the increase of activation with the
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Figure 6. Gait analysis of simulated gait at 1.17m s−1. The average and 95% confidence intervals have been calculated over six gait
cycles (a) Model position at different times of the gait cycle. (b) Kinematics and GRFs compared to experimental data [7]: gray
areas report the observed experimental ranges for pelvis tilt, hip flexion, knee flexion, ankle dorsiflexion, and vertical GRFs. (c)
Muscle activation analysis: muscle activity over a gait cycle for the nine muscles along the gait cycle. Blue curves represent the
means of the gait signals through the gait cycles and the shaded areas the standard deviations. The activation curves are compared
with the activation timing observed experimentally [42] and represented by the black horizontal bars on the top of the graphs.

increase in speed. In figure 7(b), ILPSO, GMAX,
HAMS, TA, and SOL are the muscles that more con-
sistently present an increment in muscle activation.
TA and HAMS pass from a maximum activation of
0.2 at slow speed to 0.5 at fast speed, whereas ILPSO
has a similar maximum activation at fast speed and a
higher activation of 0.3 at slow speed. GMAX has the
highest increment of muscle activation, passing from
a maximum activity of 0.1 to 0.7. SOL also presents a
consistent increase in its activity, passing from a value
smaller than 0.1 at slow speed to 0.4 at fast speed.
A lower increase is present for VAS at high speed,
whereas no consistent variation inmuscle activity can
be observed for BFSH, RF, and GAS. Therefore, the
increased plantarflexion with speed mainly depends
on the increased activity of the soleus. In general,
the activation amplitude of all muscles increases
with speed, as observed experimentally by Cappellini
et al [10].

3.2. Gait modulation: CPGs and reflexes
We tested our controller to check whether the spinal
connection implemented could generate rhythmic
locomotion without the state-machine regulation or
the presence of CPGs. With the removal of CPGs,
the remaining parameters to optimize are 208. Even
if the dimensional reduction could in principle sim-
plify the convergence to a stable solution, no rhythmic
gait could be reproduced, suggesting the need for the
CPG networks to provide rhythm and timing in the
absence of a state machine activating sensory feed-
back commands at specific times of the gait cycle (as
in previous models). The simulation resulting from
removing CPG parameters led to the human model
in a standing position with the right leg in front of the
left leg. The reflexes could generate the muscle activa-
tion necessary to maintain this position until the bal-
ance controller failed to stabilize the trunk, causing
the model to fall.
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Figure 7. Gait modulation at 0.6 (calculated over 5 gait cycles), 1.2 (calculated over 7 gait cycles), and 1.6m s−1 (calculated over 8
gait cycles). (a) Comparison of kinematics and GRFs among the three speeds. (b) Changing muscle activation at different speeds.
The activation curves are compared with the activation timing observed experimentally and represented by the black horizontal
bars on the top of the graphs.

Dzeladini et al [19] suggested that the tuning
of CPGs applied only to hip muscles could easily
modulate human locomotion where other muscles
were controlled by sensory feedback. In order to test
this hypothesis in our model, we set to 0 the CPG
parameters for all muscles except hip muscles and
re-optimized the parameters according to the step
explained in section 2.3. The resulting simulation
showed very similar behavior to the one obtained
without anyCPGparameters, suggestingCPGs inputs
may have an important contribution also for knee
and ankle muscles. It should be noted that our CPG
model provides only a rough waveform (made of
the five primitives), while Dzeladini’s CPG provided
a detailed waveform replicating the sensory-driven
control signals.

To investigate the contribution of each controller
component in gait modulation, we investigated the
inputs from CPG circuits, spinal reflexes, and balance
controller provided to the MNs. Figure 8 shows how
these signals contribute to generating MNs inputs
and outputs following equation (4). Generally, in
the model, the net effect of the reflex circuits tends
mainly to inhibit the MNs providing a negative stim-
ulation through the whole gait cycle with the excep-
tion of ILPSO and TA. Reflexes also facilitate the

activation of VAS and GAS during swing for all the
speed ranges and the activation of BFSH and HAMS
at slow speeds. Instead, for eachmuscle, CPGs present
specific regions of the gait cycle where they excite or
inhibit the MNs. In this regard, CPGs prevent the
activation of specific muscles in specific cycle phases,
such as VAS and GAS in swing that were stimulated
by the reflex circuits. CPGs’ patterns tend to increase
the amplitude of inhibition or excitationwith increas-
ing speed. This is especially the case for SOL, where
the growing muscle activation with speed is primar-
ily due to the increased excitation from CPG cir-
cuits. CPG activity also helps to have a consistent
muscle activation of ILPSO in swing, but it tends
to increase the activity at slow speed, and the lower
muscle activity in swing is achieved by reflexes that
inhibit ILPSO during swing at 0.6m s−1. The bal-
ance controller is applied only to ILPSO, GMAX, and
HAMS, and seems to be the leading cause of HAMS
activation since the CPGs excitation is entirely inhib-
ited by spinal reflexes.

Additionally, to investigate the modulation cap-
abilities of different neural circuits, we performed
optimizations for different target speeds by keep-
ing fixed reflexes parameters or CPGs parameters.
Table 2 compares the achieved ranges of speed, step
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Figure 8. CPGs, reflexes, and balance inputs at 0.6 (calculated over 5 gait cycles), 1.2 (calculated over 7 gait cycles), and 1.6m s−1

(calculated over 8 gait cycles). CPGs, reflexes, and balance generate motoneurons inputs and outputs according to equation (4).
The contribution of the three controller components is compared through the three speeds selected.

Table 2. Evaluation of speed, step length, and step duration ranges
achieved by the bio-inspired controller in three configurations:
full control where all parameters are optimized, fixed reflexes
where all reflexes parameters are fixed, and fixed CPGs where all
CPGs parameters are fixed.

Full control Fixed reflexes Fixed CPGs

Speed (m s−1) [0.30–1.91] [0.30–1.91] [0.44–1.91]
Step length (m) [0.23–1.08] [0.23–1.08] [0.30–1.21]
Step duration (s) [0.53–0.84] [0.56–0.84] [0.64–0.67]

length, and step duration for the controller optimiz-
ing all parameters (full control), maintaining reflexes
parameters fixed (fixed reflexes), and maintaining
CPGs parameters fixed (fixed CPGs). The optimiz-
ation of all parameters allows reaching wide ranges
of speed from 0.30 to 1.86m s−1 with small and large
step lengths (0.23–1.08m) and step durations (0.53–
0.84 s). Removing reflexes parameters’ optimization
allows reaching ranges similar to the ones obtained
in full control. However, the missing optimization
of CPG parameters significantly limits the control-
ler’s capabilities to modulate step duration, passing
from a range covering 0.53–0.84 s to 0.64–0.67 s.
Consequently, the optimization tends to achieve slow
or fast speeds, mainly modulating the step length
to reach large values of 1.21m at high speed. The
achieved value of step length is higher than the one
in full control because the model converges to a more
energetically efficient gait reducing the step duration
when all parameters are optimized. Furthermore, we
verified that the modulation of CPG frequency alone
is insufficient to converge to different gait behaviors.
This result implies that the modulation of CPG fre-
quency alone may be necessary but not sufficient to
modulate step duration.

3.2.1. Correlation analysis
The correlation analysis reported in table 3 gives
indications on which parameters had a correlation
coefficient higher than 0.8 with the main gait charac-
teristics and, therefore, those that could be the main
responsible for gait modulation in the three control-
lers configurations. Specific parameters are identified
as:

• Pk→M.MN for the input pattern Pk weighted
connections to MNM.MN, whereM is the muscle
name.

• ω for phase oscillator frequency.
• M.Ns

A →M.Nd
A for parameters regulating the

weighted synaptic connections between the source
neuron of a specific muscle (M.Ns

A) and the des-
tination neuron of the target muscle (M.Nd

A). N
represents the type of neuron and can be either SN,
IN, or MN, and A represents the type of afferent
and can be either Ia, II, Ib, Ib+, or RC

• M.NA.w0 is the activation offset of the neuron NA

regulating the neuronal response.

In full control, both reflexes and patterns’ connec-
tions seem to contribute to gait modulation. The first
(P0) and third (P2) patterns connections to extensor
muscles like GMAX and SOL positively correlate with
increasing speed and step length and decreasing step
duration. The CPGs’ frequency (ω) has a highly con-
sistent correlation with gait speed and step duration,
suggesting again the direct influence of this parameter
on gait frequency. The only reflex parameter rep-
resenting an excitatory connection is the monosyn-
aptic excitation of Ia afferents from TA (TA.SNIa →
TA.MN), having a negative correlation with speed
and favoring increased dorsiflexion during slow gaits.
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Table 3. Correlations coefficients of controller’s parameters
contributing to the modulation of speed, step length, and step
duration in the three controller’s configurations: full control, fixed
reflexes, and fixed CPGs.

Full control

Speed Step length
Step

duration

P0→ GMAX.MN 0.92 0.86 −0.9
P2→ SOL.MN 0.80 0.80 −0.87
GAS.INIa → TA.INIa −0.82 −0.86 0.81
GMAX.SNII.w0 0.82 0.81 −0.86
ILPSO.INII → GMAX.MN 0.96 0.89 −0.98
RF.INRC → HAMS.INRC 0.83 0.85 −0.8
TA.INII → SOL.MN 0.9 0.89 −0.87
TA.SNIa → TA.MN −0.92 −0.83 0.9
ω 0.97 0.88 −0.98

Fixed reflexes

Speed Step length Step duration

P0→ GAS.MN −0.84 −0.74 0.83
P0→ GMAX.MN −0.83 −0.8 0.83
P1→ SOL.MN 0.85 0.94 −0.54
P4→ TA.MN 0.79 0.70 −0.85
ω 0.92 0.83 −0.99

Fixed CPGs

Speed Step length Step duration

GAS.INRC → TA.INIa 0.81 0.83 −0.67
ILPSO.SNII.w0 0.91 0.91 −0.83
TA.INIb → SOL.INIb 0.89 0.87 −0.94
VAS.SNII → VAS.INII −0.85 −0.85 0.82

Another relevant parameter is the length offset of
the II SN of GMAX (GMAX.SNII.w0) with a posit-
ive correlation with speed and step length meaning
a higher level of stretch is needed to activate length
feedback from II afferents. The other reflex para-
meters presented are inhibitory connections, which
implies that a highly negative correlation with a gait
characteristic (either speed, step length, or step dura-
tion) means an increased inhibition with the increase
of that gait characteristic. The II IN of ILPSO tends to
decrease its inhibition to GMAXMN (ILPSO.INII →
GMAX.MN) when speed increases and step duration
increases, favoring the activation of GMAX in these
conditions. The same mechanism is involved in facil-
itating the activation of SOL through the decreasing
inhibition from II IN of TA (TA.INII → SOL.MN).
The last two reflex parameters for the controller
in full control configuration involve the reciprocal
inhibition mechanisms of INs and RCs. GAS’s Ia IN
increases the inhibition to TA’s Ia IN with increasing
speed (GAS.INIa → TA.INIa), enhancing the activa-
tion of GAS itself because of the decreased inhibition
from TA.INIa. Then, the RC of RF decreases its inhib-
ition to the RC of HAMS (RF.INRC →HAMS.INRC)
with increasing speed, favoring the inhibition of
the hamstrings muscle. Indeed, from the previous

analysis, the increased activation of HAMS with
speed was mainly due to the input from the balance
controller.

Concerning the configuration with fixed reflexes,
CPGs’ frequency (ω) highly correlates with speed and
step duration also in this case. Another modulator for
step duration is the input from the fifth pattern to TA’s
MN (P4→ TA.MN), which indeed increases its activ-
ation at the end of the gait cycle with increasing speed.
The first pattern (P0) tends to increase the inhibi-
tion to GAS and GMAX at the very beginning of the
gait cycle with increasing speed. Then, speed modu-
lation throughmodulation of step length is enhanced
by tuning the excitation from the second pattern (P1)
to SOL MN (SOL.MN) in order to increase propul-
sion in stance.

When CPG parameters are fixed, speed mod-
ulation happens mainly through changes of step
length because of the controller’s limited capability
to modulate step duration without tuning CPGs’ fre-
quency. The controller tends to increase step length
by increasing the offset to enhance the length feed-
back of ILPSO (ILPSO.SNII.w0). II afferents are also
involved with the decreased length feedback of VAS
muscle with speed rising through the excitation of
VAS.INII from VAS.SNII. The last two relevant para-
meters concern the inhibitory connections of RCs and
Ib afferents. The RC IN of GAS (GAS.INRC) decreases
its inhibition to the Ia IN of TA (TA.INIa), decreasing
the activation of GAS itself at fastest speeds. Higher
speeds should, in principle, increase the activation
of GAS, but in the modulation of muscle activa-
tion, we previously observed that the optimizer tends
to maintain the same activation level for the gast-
rocnemius muscle during speed modulation. Finally,
the Ib inhibitory IN of TA (TA.INIb) decreases its
inhibition to the Ib IN of SOL, allowing the inhibition
of this muscle. Indeed, we previously observed that
the increased muscle activation of soleus at higher
speeds was not due to the input from spinal reflexes
but primarily due to increasing excitatory inputs from
CPGs.

4. Discussion

In this study, we aim to investigate the possibility
of controlling human locomotion by relying only
on spinal reflexes not regulated by a state machine
mechanism and to investigate the contribution of
both CPGs and spinal reflexes in generating loco-
motor output. To do so, we developed a bio-inspired
controller composed of a balance controller, a CPG
network, and a sensory feedback network based
on physiological spinal reflexes maintaining a state-
machinemechanismonly for the balance of the trunk.
The proposed controller regulated the stimulation of
nine muscles per leg. The number of muscles was
chosen to find a reasonable compromise between
the controller performance and a limited number of
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parameters. However, the nine muscles do not rep-
resent the minimal number of muscles to obtain a
physiologically plausible model. Indeed, a prelimin-
ary version of the controller has been tested with a
musculoskeletal model actuated with seven muscles
per leg reproducing faithful but less optimal human
kinematics andmuscle activation. The proposed con-
troller could replicate human kinematics and GRFs
with some limitations in the ankle angle in which
the model converges to an excessive dorsiflexion
behavior. Regarding muscle activation, the model
could reproduce most of muscle activation timings
observed experimentally, with the exception of BFSH,
which is active outside its range in human record-
ing. The proposed network could probably gener-
ate muscle activation closer to physiological activity
with additional optimizations. However, finding this
global optimal solution remains challenging because
of the large number of parameters.

Many aspects of speed modulation from human
recordings, such as the increased amplitudes of flex-
ion/extension movements and the increased muscle
activation with growing speed, are also matched by
the model. Concerning the role of CPGs and spinal
reflexes in the neural control of humanmovement, we
investigated the possibility of finding stable solutions
without relying on CPGs as suggested by previous
neuromechanical studies [22, 41]. In our optimiza-
tions, we could not find any stable rhythmic behavior
in the absence of CPGs’ commands even if the num-
ber of parameters to optimize significantly decreased,
suggesting the need for the CPG network to provide
rhythm and timing in the absence of a state machine
activating sensory feedback commands at specific
times of the gait cycle. Therefore, reflex-based circuits
are always active through self-regulation by the affer-
ents, lacking any timing information without CPGs.
Similarly, a pure CPG network without reflexes leads
to unstable solutions. While we cannot rule out that
a different network topology might give rise to high-
quality gaits, our model highlights the need for both
types of neural mechanisms to achieve stable and nat-
ural movements. Indeed, natural locomotor behavior
emerges when both CPGs and spinal reflexes are act-
ive. Our study suggests that the state-machines used
in previous sensory-driven models [23, 41] could,
in fact, be replaced by CPGs and that one of the
main roles of CPGs, in addition to simplifying speed
control [19], is to serve as a gating mechanism that
ensures that reflexes do not affect muscles all the time
but only at specific moments of the locomotor cycle.

More specifically, the performances on gait mod-
ulation while either reflex circuits or CPG com-
mands were fixed, and the corresponding correla-
tion analysis highlighted the importance of CPGs’ fre-
quency in changing the step duration. Therefore, in
the model, CPGs have a crucial role in determining
gait timing. Additionally, the analysis of neural inputs
to MNs showed that the net inputs of reflexes are

mainly inhibitory through the gait cycle for the pro-
posed model, except for ILPSO and TA, which glob-
ally receive excitatory inputs. CPG patterns excite or
inhibitMNs in specific phases of the gait cycle to allow
or prevent muscle activation. Therefore, CPGs seem
to be important to determine activation timing other
than gait frequency. Such a control strategy is similar
to the one proposed by Laquaniti et al [33] where the
timing and magnitude of electromyography (EMG)
activity are tuned via proprioceptive feedback and
CPGs that control the basic rhythms and patterns of
MNactivation.However, it should be highlighted that
the five locomotor primitives described by Ivanenko
et al [30] and Laquaniti et al [33] were not equally
spaced in the gait cycle phase as they are in our con-
troller. This is because, in these studies, the primitives
were extractedwith factorization of EMGactivity. Yet,
this activity is the result of the global input received by
muscleswithout being able to distinguishwhich input
was coming from spinal reflexes and which one from
CPG circuits. Therefore, we decided to simplify the
distribution of the five primitives and equally space
the patterns through the gait cycle since the primit-
ives measured in experiments could hardly be gener-
ated by the CPG commands alone. This choice still
leads to largely reproducing the experimental activa-
tion timing.

The modulation of gait reflexes alone could still
regulate muscle activation to achieve different gait
behaviors, mainly through the modulation of step
length. The correlation analysis highlighted the pos-
sible parameters responsible for this behavior, such
as the offset of II fibers regulating the level of stretch
necessary to activate length feedback for ILPSO and
GMAX. Indeed, increasing these parameters allowed
larger amplitude for hip flexion/extension, promot-
ing larger step lengths.

In general, the proposed controller presents a
highly redundant systemwhere several different com-
binations of neural inputs can generate the same
muscle activation. The correlation analysis gave pos-
sible insights into which parameters could be the
most relevant in the control of gait modulation. Yet,
given the high redundancy, a separate and more
extensive study would be necessary. Possibly, this
study should include a large dataset of optimizations
and additional elements of the cost function that
could guide toward the best combination of neural
inputs to generate specific muscle excitation, such
as the minimization of the total neuronal activation.
Then, the results should ideally be validated by exper-
imental measurements.

Some limitations of the proposed controller
should be considered. Because of the large number
of parameters, finding a stable solution replicating
human walking with the proposed controller may
be challenging since it requires the three optimiza-
tion stages described in section 2.3. However, once
this solution is found, it can be used as a starting

15



J. Neural Eng. 20 (2023) 066006 A Di Russo et al

point to explore different gait behaviors by only per-
forming the last optimization stage. In this way, we
could reproduce a wide range of speeds comparable
to or larger than the ones previously obtained by
other neuromechanical controllers [18, 41, 47]. Yet,
the used cost function is very sensitive to the changing
of optimization variables. Therefore, the optimiza-
tion method used might require a good initial guess.
For this reason, the initial stage of the optimization
requires the imitation objective from a previous solu-
tion found with a different neuromechanical control-
ler. Without these steps, there is a low probability
that a random initialization of parameters can make
the convergence to a stable solution. However, the
use of the imitation objective implies that any lack
of performance from the imitated solution in replic-
ating human movement will probably reflect a lack
of performance of the bio-inspired controller. This
could be the cause of the excessive dorsiflexion beha-
vior performed by our model since many solutions
of the reflex-based controller proposed by Ong et al
[41] that we used as imitation objective presented the
excessive dorsiflexion behavior. Therefore, the proper
choice of the initial imitation objective is crucial for
the correct optimization of our model.

Further considerations should also be made for
the design of the reflex controller. In paragraph 2.2.3,
we explained how we simplified the expressions for
the sensory receptors to capture the general trend and
prevent an excessive number of physiological para-
meters. In reality, the dynamics of these receptors are
very complex [37, 38], and there is little evidence why
the same model identified in specific animal exper-
iments can generalize to humans in the presence of
dynamic movements.

Another aspect currently not captured by our
model is the spatial organization of muscles neural
control in the spinal cord [31]. Indeed, past studies
suggested that MN pools innervating muscles per-
forming synergistic action are co-localized in the
spinal cord, and nearby MN pools are likely to
share the proprioceptive feedback from the muscles
they innervate [50]. The model we propose in this
study could potentially be extended by coding specific
spinal segments including the facilitatory and inhib-
itory mechanisms among synergistic and antagonist
muscles presented in this study and having their MN
pools located in that specific segment.

Despite these limitations, the bio-inspired con-
troller we propose is a promising tool for investigating
spinal circuits in human locomotion. Indeed, we have
already shown the insights this model could give into
the relationship between CPGs and spinal reflexes.
Further suggestions could be provided in investig-
ating pathological gaits. Past studies tried reprodu-
cing neural pathologies with neuromechanical sim-
ulation by extending previous controllers, includ-
ing specific connections to model the pathology in
the desired degree of freedom [8]. However, the

controller proposed could bemore suitable for study-
ing neuropathologies like hyperreflexia considering
the effects of both excessive inputs from Ia fibers and
the lack of reciprocal inhibition. Furthermore, fur-
ther aspects of gait modulation regulating standing-
to-walking transitions and acceleration and deceler-
ation mechanisms can be investigated. Additionally,
this controller could be used as a starting point to fur-
ther extend the modeling of the neuromotor system
by including the implementation of additional spinal
neural connections like γ-MNs [20] and descending
inputs from the brainstem and other supra spinal
brain areas, even though this would increase even
more the controller’s complexity and the total num-
ber of parameters. Additionally, future implementa-
tions could include less abstract and more realistic
CPG models, for instance, based on more detailed
models previously proposed for mammalian circuits
that could potentially be taken as a reference for
modeling human locomotion [5, 6, 12, 13, 15, 16].
Additional connections between CPGs and spinal
reflexes may be implemented, allowing SNss to inter-
act and modulate CPGs’ patterns and CPGs’ patterns
to interact with spinal INs other than MNs.

5. Conclusions

This study proposes a novel physiologically plaus-
ible neuromechanical controller maintaining a good
balance between complexity and realism to investig-
ate the spinal components governing human loco-
motion. The controller is composed of a balance con-
troller from Ong et al [41], a CPG network inspired
by Aoi et al [3], and a sensory feedback network
that takes into account the main reflex connections
in the spinal cord without being tuned by a state
machine. The controller demonstrated the ability to
reproduce key behaviors of human locomotion and
its modulation in simulations. Results from optim-
izations suggested that rhythmic locomotion could
not be achieved with the only contribution of spinal
reflexeswithout accounting for a statemachinemech-
anism. This suggests the possible need for CPG net-
works to generate rhythmic movements by guiding
muscle activation timing in specific phases of the
gait cycle. The modulation of either CPGs or reflexes
parameters or both could reproduce wide ranges of
gait behaviors, highlighting the high level of redund-
ancy in human locomotor control. The modulation
of CPGs’ frequency appeared to be crucial for reg-
ulating gait cycle duration. The proposed controller
demonstrated to be a promising tool to provide many
other indications on how the spinal cord may pro-
duce locomotor outputs. Additionally, to the authors’
knowledge, no previous neuromechanical controller
for human locomotion modeled the human proprio-
ceptive feedback at a low level of abstraction like
in this model. Extensions of the proposed controller
could potentially test if more detailed spinal networks
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observed in mammalian circuits [5, 6, 12, 13, 15, 16]
could reproduce human biped movements in closed
loop.
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