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Abstract
A central question of machine learning is how deep nets manage to learn tasks in high dimensions.
An appealing hypothesis is that they achieve this feat by building a representation of the data where
information irrelevant to the task is lost. For image datasets, this view is supported by the
observation that after (and not before) training, the neural representation becomes less and less
sensitive to diffeomorphisms acting on images as the signal propagates through the network. This
loss of sensitivity correlates with performance and surprisingly correlates with a gain of sensitivity
to white noise acquired during training. Which are the mechanisms learned by convolutional
neural networks (CNNs) responsible for the these phenomena? In particular, why is the sensitivity
to noise heightened with training? Our approach consists of two steps. (1) Analyzing the layer-wise
representations of trained CNNs, we disentangle the role of spatial pooling in contrast to channel
pooling in decreasing their sensitivity to image diffeomorphisms while increasing their sensitivity
to noise. (2) We introduce model scale-detection tasks, which qualitatively reproduce the
phenomena reported in our empirical analysis. In these models we can assess quantitatively how
spatial pooling affects these sensitivities. We find that the increased sensitivity to noise observed in
deep ReLU networks is a mechanistic consequence of the perturbing noise piling up during spatial
pooling, after being rectified by ReLU units. Using odd activation functions like tanh drastically
reduces the CNNs’ sensitivity to noise.

1. Introduction

Deep learning algorithms can be successfully trained to solve a large variety of tasks [1–5], often revolving
around classifying data in high-dimensional spaces. If there was little structure in such tasks, the learning
procedure would be cursed by the dimension d of these spaces. Indeed, generic tasks like regression of a
continuous function [6] rely on sampling neighboring points in the data space to achieve good performance.
Since the typical distance δ between neighbors scales with the number of training points P as δ ∼ P−1/d, a
number of points exponential in d would be needed to reach low δ and consequently good performance. For
a benchmark dataset like Imagenet, the effective dimension is≈50 [7], implying that a number of points of
order e50 ≈ 1020 would be required for efficient sampling of the data space. However, modern machine
learning models achieve good performances with much fewer training data [8, 9]. Consequently, learnable
tasks on real datasets must have a specific internal structure that can be learned with fewer examples. It has
been then hypothesized that the effectiveness of deep learning lies in its ability to build ‘good’ representations
of this internal structure, which are insensitive to aspects of the data not related to the task [10–12], thus
effectively reducing the dimensionality of the problem.

In the context of image classification, [13, 14] proposed that neural networks lose irrelevant information
by learning representations that are insensitive to small deformations of the input, also called
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Figure 1. Left: example of a random diffeomorphism τ applied to an image. Center: test error vs relative sensitivity to
diffeomorphisms of the predictor for a set of networks trained on CIFAR10, adapted from [15]. Right: correlation
coefficient between test error ε and Df, Gf and Rf when training different architectures on noisy CIFAR10,

ρ(ϵ,X) = Cov(logϵ, logX)/
√

Var(logϵ)Var(logX). Increasing noise magnitudes are shown on the x-axis and
η∗ = Eτ,x∥τ(x)− x∥2 is the one used for the computation of Gf. Samples of a noisy CIFAR10 datum are shown on top. Notice
that Df and particularly Rf are positively correlated with ϵ, whilst Gf is negatively correlated with ϵ. The corresponding scatter
plots are in figure C3 in appendix C.

diffeomorphisms. These representations would simplify the task by effectively reducing its dimensionality.
This idea was tested in modern deep networks by [15], who introduced the following measures

Df =
Ex,τ∥f(τ (x))− f(x)∥2

Ex1,x2∥f(x1)− f(x2)∥2
, Gf =

Ex,η∥f(x+ η)− f(x)∥2

Ex1,x2∥f(x1)− f(x2)∥2
, Rf =

Df

Gf
, (1)

to probe the sensitivity of a function f—either the output or an internal representation of a trained
network—to random diffeomorphisms τ of x (see example in figure 1, left), to large white noise
perturbations η of magnitude ∥τ(x)− x∥, and in relative terms, respectively. Here the input images x, x1, and
x2 are sampled uniformly from the test set. In particular, the test error of trained networks is correlated with
Df when f is the network output. Less intuitively, the test error is anti-correlated with the sensitivity to white
noise Gf. Overall, it is the relative sensitivity Rf which correlates best with the error (figure 1, middle, adapted
from [15]), suggesting that the best networks are the ones less sensitive to diffeomorphisms, in relative terms.
This correlation is learned over training—as it is not seen at initialization—and built up layer by layer [15].
These phenomena are not simply due to benchmark data being noiseless, as they persist when input images
are corrupted by some small noise (figure 1, right). In our work we aim to understand which are the
mechanisms allowing convolutional neural networks (CNNs) to become insensitive to diffeomorphisms
while increasing their sensitivity to random noise.

Operations that grant insensitivity to diffeomorphisms in a deep network have been identified previously
(e.g. [16, section 9.3], sketched in figure 2). The first, spatial pooling, integrates local patches within the
image, thus losing the exact location of its features. The second, channel pooling, requires the interaction of
different channels, which allows the network to become insensitive to any local transformation by properly
learning filters that are transformed versions of one another. However, it is not clear whether these
operations are learned by deep networks and how they conspire in building good representations insensitive
to diffeomorphisms. Here, we address this question through a two-fold approach. First, we empirically
isolate the distinct impact of spatial pooling versus channel pooling in mitigating sensitivity to
diffeomorphisms while enhancing sensitivity to noise. Second, we introduce model scale-detection tasks,
which qualitatively replicate the phenomena observed in our empirical analysis. These models allow us to
quantitatively evaluate the impact of spatial pooling on sensitivity to both diffeomorphisms and noise. As a
result of our theoretical study, we understand that the sensitivity to noise increases with training due to the
cumulative effect of perturbing noise following the rectifying action of the ReLU activation function,
explaining the empirical observations of [15]. Below there is a detailed list of our contributions.

1.1. Our contributions

• In section 2 we empirically observe that deep networks trained on CIFAR10 and ImageNet reduce their
sensitivity to diffeomorphisms with training. We argue that both spatial and channel pooling are learned
andwe disentangle their role.More specifically, our experiments reveal the significant contribution of spatial
pooling in decreasing the sensitivity to diffeomorphisms.

• Since spatial pooling plays a relevant role in making the trained CNNs less sensitive to diffeomorphisms,
in section 3 we introduce idealized scale-detection tasks to isolate its contribution. In these tasks, data are
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Figure 2. Spatial vs. channel pooling. (a) Spatial average pooling (size 2× 2, stride 1) computed on a representation of size 3× 3.
One can notice that nearby pixel variations are smaller after pooling. (b) If the filters of different channels are identical up to e.g. a
rotation of angle θ, then, averaging the output of the application of such filters makes the result invariant to input rotations of θ.
This averaging is an example of channel pooling.

made of two active pixels and classified according to their distance: if they are close the label is+1, otherwise
−1. We observe that the solutions learned by deep CNNs perform spatial pooling, as we expected: if inside
the learned spatial pooling filter there are both active pixels, the label is 1, otherwise−1. Moreover, we find
the same correlations between test error and sensitivities of trained networks as found in [15]. In addition,
the neural networks that perform the best on real data tend to be the best on these tasks.

• Finally, in section 4 we theoretically analyze how simple CNNs with ReLU activation functions, made by
stacking convolutional layers with filter size F and stride s, learn the idealized tasks, and we ultimately show
why the sensitivity to noise increases with training. In particular, we find that the trained networks perform
spatial pooling for most of their layers. Based on a spatial pooling solution, we show and verify empirically
that the sensitivities Dk and Gk of the kth hidden layer follow Gk ∼ Ak and Dk ∼ A−αs

k , where Ak is the
effective receptive field size and αs = 2 if there is no stride, αs = 1 otherwise. We remark that replacing
the ReLU activation function with an odd sigmoidal one such as tanh results, as shown in appendix B in
Gk ∼ C, independently of the layer k. Therefore, the increase in the sensitivity to random transformations
is a mechanistic consequence of performing spatial pooling with ReLU activation functions.

The code and details for reproducing experiments are available online at github.com/leonardopetrini/
relativestability/blob/main/experiments.md.

1.2. Related work
In the neuroscience literature, the understanding of the relevance of pooling in building invariant
representations dates back to the pioneering work of [17]. By studying the cat visual cortex, they identified
two different kinds of neurons: simple cells responding to e.g. edges at specific angles and complex cells that
pool the response of simple cells and detect edges regardless of their position or orientation in the receptive
field. More recent accounts of the importance of learning invariant representations in the visual cortex can be
found in [18–20].

In the context of artificial neural networks, layers jointly performing spatial pooling and strides have
been introduced with the early CNNs of [21], following the intuition that local averaging and subsampling
would reduce the sensitivity to small input shifts. Reference [22] investigated the role of spatial pooling and
showed empirically that networks with and without pooling layers converge to similar deformation
sensitivity, suggesting that spatial pooling can be learned in deep networks. In our work, we further expand
in this direction by jointly studying diffeomorphisms and noise sensitivity and proposing a theory of spatial
pooling for a simple task.

In the context of tasks being invariant, for example to rotations, CNNs were developed to have internal
representations equivariant to these transformations [23–30]. Enforcing pooling operations in these
networks would presumably lead to networks quite stable to diffeomorphisms. Here instead we are
concerned with understanding how approximate invariance to diffeomorphisms is learned while training
standard CNNs, without imposing it at the initialization in the architecture. Indeed, most state-of-the-art
image classification CNNs do not enforce such invariance, supporting that it is better to let the network tune
its pooling operation.
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The depth-wise loss of irrelevant information in deep networks has been investigated by means of the
information bottleneck framework [11, 31] and the intrinsic dimension of the network’s internal
representations [10, 12]. However, these works do not specify what is the irrelevant information to be
disregarded, nor the mechanisms involved in such a process.

The stability of trained networks to noise is extensively studied in the context of adversarial
robustness [32–38]. Notice that our work differs from this literature by the fact that we consider typical
perturbations instead of worst-case ones.

2. Empirical observations on real data

In this section, we analyze the learned weights of deep CNNs trained on CIFAR10 and ImageNet, to
understand how they build representations insensitive to diffeomorphisms. All experiments are performed in
PyTorch [39]. The code with the instructions on how to reproduce experiments is found here: github.com/
leonardopetrini/relativestability/blob/main/experiments.md. Our primary focus is on evaluating the
performance of existing neural network architectures. For this reason, we used the default, off-the-shelf
values for parameters such as depth and number of channels. We aimed for a unified training process that
could effectively minimize training errors across diverse architectures within a reasonable time frame. For
CIFAR10 experiments, after a grid search among different optimizers, learning rates, schedulers, and
momentum values we found the following configuration to be the most effective for this goal: ADAM
optimizer with learning rate= 0.1 for fully connected networks while for CNNs we use SGD,
learning rate= 0.1 and momentum= 0.9. In the latter case, the learning rate follows a cosine annealing
scheduling. The networks are trained on the cross-entropy loss, with a batch size of 128 and for 250 epochs.
Early stopping at the best validation error is performed for selecting the networks to study. During training,
we employ standard data augmentation consisting of random translations and horizontal flips of the input
images. All results are averaged when training on 5 or more different network initializations. For ImageNet,
we used pre-trained models from PyTorch, torchvision.models.

Our analysis of the learned representations builds on two premises, the first being that insensitivity is
built layer by layer in the network, as shown in figure 3. Hence, we focus on how each of the layers of a deep
network contributes to creating an insensitive representation. More specifically, let us denote with fk(x) the
internal representation of an input x at the kth layer of the network. The entries of fk have three indices, one
for the channel c and two for the spatial location (i, j). The relation between fk and fk−1 is the following,

[fk (x)]c;i,j = ϕ

bkc +

Hk−1∑
c ′=1

wk
c,c ′ · pi,j

(
[fk−1 (x)]c ′

) (2)

for all c= 1, . . . ,Hk, where: Hk denotes the number of channels at the kth layer; bkc and w
k
c,c ′ the biases and

filters of the kth layer; each filter wk
c,c ′ is a F× F matrix with F the filter size; pi,j

(
[fk−1(x)]c ′

)
denotes a

F× F-dimensional patch of [fk−1(x)]c ′ centered at (i, j); ϕ the activation function. The second premise is that
a general diffeomorphism can be represented as a displacement field over the image, which indicates how
each pixel moves in the transformation. Locally, this displacement field can be decomposed into a constant
term and a linear part: the former corresponds to local translations, the latter to stretchings, rotations, and
shears1. We generate the random diffeomorphisms according to the implementation proposed in [15].
Specifically, the displacement field is sampled uniformly at random from all the displacement fields
compatible with a fixed average displacement. The spatial frequency content of the sampled
diffeomorphisms is cut off at a given high-frequency threshold to ensure the bijectivity of the transformation
(see [15] for further details). Each pixel of the input image grid is displaced according to the aforementioned
sampling. Generically it is mapped outside the original grid. To project back to the original grid, we employ a
bi-linear interpolation.

Representations insensitive to translations via spatial pooling. Due to weight sharing, i.e. the fact that the
same filter wk

c,c ′ is applied to all the local patches (i, j) of the representation, the output of a convolutional
layer is equivariant to translations by construction: a shift of the input is equivalent to a shift of the output.
To achieve an invariant representation it suffices to sum up the spatial entries of fk—an operation called

1 The displacement field around a pixel (u0,v0) is approximated as τ(u,v)≃ τ(u0,v0)+ J(u0,v0)[u− u0,v− v0]T, where τ(u0,v0) cor-
responds to translations and J is the Jacobianmatrix of τ whose trace, antisymmetric and symmetric traceless parts correspond to stretch-
ings, rotations and shears, respectively.
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Figure 3. Relative sensitivity Rk as a function of depth for VGG architectures trained on CIFAR10 (left) and ImageNet (right).
Solid lines refer to the original networks, and dashed lines to the ones with shuffled channels. K is the total depth of the networks.
Experiments with additional architectures are reported in figure C4 in appendix C.

pooling in CNNs, we refer to it as spatial pooling to stress that the sum runs over the spatial indices of the
representation. Even if there are no pooling layers at initialization, they can be realized by having
homogeneous filters, i.e. all the F× F entries of wk+1

c,c ′ are the same. Therefore, the closer the filters are to the
homogeneous filter, the more they decrease the sensitivity of the representation to local translations.

Representations insensitive to other transformations via channel pooling. The example of translations
shows that invariance can be built by first constructing an equivariant representation, and then pooling it.
Invariant representations can also be built by pooling across channels. A two-channel example is shown
figure 2, panel (b), where the filter of the second channel is built to produce the same output as the first
channel when applied to a rotated input. The same idea can be applied more generally, e.g. to the other
components of diffeomorphisms-such as local stretchings and shears. Below, we refer generically to any
operation that builds representations invariant to diffeomorphisms by assembling distinct channels as
channel pooling.

Disentangling spatial and channel pooling. The relative sensitivity to diffeomorphisms Rk of the kth layer
representation fk decreases after each layer, as shown in figure 3. This implies that spatial and channel pooling
are carried out along the whole network. To disentangle their contribution we perform the following
experiment: shuffle at random the connections between channels of successive convolutional layers, while
keeping the weights unaltered. Channel shuffling amounts to randomly permuting the values of c, c ′ in
equation (2), therefore it breaks any channel pooling while not affecting the individual filters. The values of
Rk for deep networks after channel shuffling are reported in figure 3 as dashed lines and compared with the
original values of Rk in solid lines. If only spatial pooling was present in the network, then the two curves
would overlap. Conversely, if the decrease in Rk was all due to the interactions between channels, then the
shuffled curves should be constant. Given that neither of these scenarios arises, we conclude that both kinds
of pooling are being performed.

Emergence of spatial pooling after training. To bolster the evidence for the presence of spatial pooling, we
analyze the filters of trained networks. Since spatial pooling can be built by having homogeneous filters, we
test for its presence by looking at the frequency content of learned filters wk

c,c ′ . In particular, we consider the
average squared projection of filters onto ‘Fourier modes’ {Ψl}l=1,...,F 2 , taken as the eigenvectors of the
discrete Laplace operator on the F× F filter grid2. The squared projections averaged over channels read

γk,l =
1

Hk−1Hk

Hk∑
c=1

Hk−1∑
c ′=1

[
Ψl ·wk

c,c ′
]2
, (3)

and are shown in figure 4, 1st and 2nd row. When training a deep network such as VGG11 (with and without
batch-norm) [40]3 on CIFAR10, filters of layers 2–6 become low-frequency with training, while layers 1, 7,
and 8 do not. Accordingly, larger gaps between dashed and solid lines in figure 3(left) open at layers 1, 7, 8:

2 The discrete Laplacian is defined on the adjacency matrix of a graph, where each node in an F× F grid is connected to its horizontal
and vertical neighbors, without considering the diagonal ones.
3 Our main analysis focuses on VGG architectures due to their foundational significance in computer vision. Introduced in 2014 by
[40], VGG models set the state-of-the-art upon their release, thanks to their straightforward yet effective design. Comprising essential
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Figure 4. Projections of the network filters for VGG11 and VGG11bn onto the 9 eigenvectors of the (3× 3)-grid Laplacian when
training on CIFAR10 (1st row), ImageNet, (2nd row) and the scale-detection task (3rd row): dotted and solid lines correspond to
initialization and trained networks, respectively. The x-axis reports low to high frequencies from left to right. Deeper layers are
reported in the rightmost panels. Low-frequency modes are the dominant components in layers 2–6 when training on CIFAR10,
in layers 2–8 for ImageNet. The first (constant) mode has most of the power throughout the network for scale-detection task 1.
An aggregate measure of the frequency content of filters is reported in figure C5 in appendix C together with experiments with
additional architectures (figures C6 and C7).

reduction in sensitivity is not due to spatial pooling in these layers. Moreover, the fact that the two dashed
curves overlap is consistent with the frequency content of filters being the same for the two architectures after
training. In the case of ImageNet, filters at all layers become low-frequency, except for k= 1.

3. Simple scale-detection tasks capture real-data observations

To sum up, the empirical evidence presented in section 2 indicates that (i) the generalization performance of
deep CNNs correlates with their insensitivity to diffeomorphisms and sensitivity to Gaussian noise (figure 1);
(ii) deep CNNs build their sensitivities layer by layer via spatial and channel pooling. We introduce now two
idealized scale-detection tasks where the phenomena (i) and(ii) emerge again, and we can isolate the
contribution of spatial pooling. Given that the structure of these tasks is simpler than real data, we can
understand quantitatively how spatial pooling builds up insensitivity to diffeomorphisms and sensitivity to
Gaussian noise, as we show in section 4.

Definition of scale-detection tasks. Consider input images x consisting of two active pixels on an empty
background.

Task 1: Inputs are classified by comparing the euclidean distance d between the two active pixels and some
characteristic scale ξ, as in figure 5, left. Namely, the label is y= sign(ξ− d).

Notice that a small diffeomorphism of such images corresponds to a small displacement of the active
pixels. Specifically, each of the active pixels is moved to either of its neighboring pixels or left in its original
position with equal probabilities4. By introducing a gap g such that d ∈ [ξ − g/2, ξ + g/2], task 1 yields an
invariance to displacements of size smaller than g. Therefore, we expect that a neural network trained on task
1 will lose any information on the exact location of the active pixels within the image, thus becoming
insensitive to diffeomorphisms. Intuitively, spatial pooling up to the scale ξ is the most direct mean to
achieve such insensitivity. The result of the integration depends on whether none, one, or both of the active
pixels lie within the pooling window, thus it is still informative of the task. We will show empirically that this
is indeed the solution reached by trained CNNs.

Task 2: Inputs are partitioned into nonoverlapping patches of size ξ, as in figure 5, right. The label y is+1 if
the active pixels fall within the same patch,−1 otherwise.

CNN components like convolutional and pooling layers, VGGs serve as ideal candidates for our study aimed at understanding the core
mechanisms of CNNs. Experiments with additional architectures are reported in appendix C.
4 We fix the length of these displacements to 1 pixel because(i) is the smallest value that prevents the use of pixel interpolation, which
would make one active pixel an extended object (ii) allows for the analysis of section 4.
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Figure 5. Example inputs for the scale-detection tasks. Task 1 (a): the label depends on whether the Euclidean distance d is larger
(left) or smaller (right) than the characteristic scale ξ. Task 2 (b): the label depends on whether the active pixels belong to the
same patch of size ξ (right) or not (left)—patches are shown in different colors.

In task 2, the irrelevant information is the location of the pixels within each of the non-overlapping
patches. The simplest means to lose such information requires to couple spatial pooling with a stride of the
size of the pooling window itself.

Same phenomenology as in real image datasets.We train the same networks used in section 2 on the
scale-detection tasks. We perform SGD on the hinge loss and learning rate of 0.05. Although these
scale-detection tasks are much simpler than standard benchmark datasets, deep networks trained on task 1
display the same phenomenology highlighted in section 2 for networks trained on CIFAR10 and ImageNet.
First, the test error is positively correlated with the sensitivity to diffeomorphisms of the network predictor
(figure C1, left panel, in appendix C) and negatively correlated with its sensitivity to Gaussian noise (middle
panel) for a whole range of architectures. As a result, the error correlates well with the relative sensitivity Rf

(right panel). Secondly, the internal representations of trained networks fk become progressively insensitive
to diffeomorphisms and sensitive to Gaussian noise through the layers, as shown in figure C2 in appendix C.
Importantly, the curves relating sensitivities to the relative depth remain essentially unaltered if the channels
of the networks are shuffled (shown as dashed lines in figure C2). We conclude that, on the one hand,
channel pooling is negligible, and, on the other hand, all channels are approximately equal to the mean
channel. Finally, direct inspection of the filters (figure 4, bottom row) shows that the 0-frequency component
grows much larger than the others over training for layers 1–7, which are the layers where Rk decreases the
most in figure C2. Filters are thus becoming nearly homogeneous, which means that the convolutional layers
become effectively pooling layers.

4. Theoretical analysis of sensitivities in scale-detection tasks

We now provide a scaling analysis of the sensitivities to diffeomorphisms and noise in the internal
representations of simple CNNs trained on the scale-detection tasks of section 3. It allows us to quantitatively
understand how spatial pooling makes the internal representations of the network progressively more
insensitive to diffeomorphisms and sensitive to Gaussian noise.

Setup.We consider simple CNNs made by stacking K̃ identical convolutional layers with generic filter size F,
stride s=1 or F and ReLU activation function ϕ(x)=max(0,x). In particular, we train CNNs with stride 1 on
task 1 and CNNs with stride F on task 2. For the sake of simplicity, we consider the one-dimensional version
of the scale-detection tasks, but our analysis carries unaltered to the two-dimensional case. Thus, input
images are sequences x= (xi)i=1,...,L of L pixels, where xi=0 for all pixels except two. For the active pixels
xi=

√
L/2, so that all input images have ∥x∥2=L. We will also consider single-pixel data δj=(δj,i)i=1,...,L. If

the active pixels in x are the ith and the jth, then x=
√

L/2
(
δi+δj

)
. For each layer k, the internal

representation fk(x) of the trained network is defined as in equation (2). The receptive field of the kth layer is
the number of input pixels contributing to each component of fk(x). We define the effective receptive field Ak

as the typical size of the representation of a single-pixel input, fk(δi), as illustrated in red in figure 6. We
denote the sensitivities of the kth layer representation with a subscript k (Dk for diffeomorphisms, Gk for
noise, Rk for relative).

Assumptions. All our results are based on the assumption that the first few layers of the trained network
behave effectively as a single channel with a homogeneous positive filter and no bias. The equivalence of all
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Figure 6. Hidden layers representations of simple CNNs for a scale-detection input for stride s=1 and filter size F=5 (left) and
s=F=2 (right) when having homogeneous filters at every layer. The effective receptive field size of the last layer in the two
different cases is shown in red. (Left) Every active pixel in the input becomes a Gaussian profile whose width increases throughout
the network. (Right) Every neuron in layer k has activity equal to the number of active pixels that are present in its receptive field
of width 2k. The dark blue in the last layer indicates that there are two active pixels in its receptive field, while the lighter blue of
the precedent layers indicates that there is just 1.

the channels with their mean is supported by figure C2 in appendix C, which shows how shuffling channels
does not affect the internal representations of VGGs. In addition, figure 4(bottom row) shows that the mean
filters of the first few layers are nearly homogeneous. We set the homogeneous value of each filter to keep the
norm of representations constant over layers. Moreover, we implement a deformation of the input x of our
scale-detection tasks as a random displacement of each active pixel at either left or right with probability 1/2.

4.1. Task 1, stride 1
For a CNN with stride 1, under the homogeneous filter assumption, the size of the effective receptive field Ak

grows as
√
k. A detailed proof is presented in the appendix A and figure 6, left panel, shows an illustration of

the process. Intuitively, applying a homogeneous filter to a representation is equivalent to making each pixel
diffuse, i.e. distributing its intensity uniformly over a neighborhood of size F. With a single-pixel input δi, the
effective receptive field of the kth layer fk(δi) is equivalent to a k-step diffusion of the pixel, thus it approaches
a Gaussian distribution of standard deviation

√
k centered at i. The size Ak is the standard deviation, thus

Ak ∼
√
k. In other words, using the language of digital image processing [41], applying kmoving averages is

equivalent to applying a Gaussian filter with standard deviation proportional to
√
k, for large enough k. The

proof we present in appendix A requires large depth K̃≫ 1 and large image width L≫ FK̃1/2 and the
empirical studies of section 3 satisfy these constraints (F∼ 3, L∼ 32 and K̃∼ 10).

We remark that at initialization, fk(x) behave, in the limit of large number of channels and width (and
small bias), as Gaussian random fields with correlation matrix E [fk(x)fk(y)]≈ δ(x− y), with δ the Dirac
delta [42, 43]. This spiky correlation matrix implies that for any perturbation y= x+ ε, the representation
fk(y) changes with respect to fk(x) independently on ε. This behavior is remarkably different to the smooth
case achieved by the diffusion, after training. Consequently, both Dk and Gk are constant with respect to k at
initialization. This is consistent with the observations reported in figure 7.

Sensitivity to diffeomorphisms. Let i and j denote the active pixels locations, so that x∝ δi + δj. Since both
the elements of the inputs and those of the filters are non-negative, the presence of ReLU nonlinearities is
irrelevant and the first few hidden layers are effectively linear. Hence the representations are linear in the
input, so that fk(x)= fk(δi + δj)= fk(δi)+ fk(δj). In addition, since the effect of a diffeomorphism is just a
1-pixel translation of the representation irrespective of the original positions of the pixels, the normalized
sensitivity Dk can be approximated as follows

Dk ∼
∥fk (δi+1)− fk (δi)∥22

∥fk (δi)∥22
. (4)

The denominator in equation (4) is the squared norm of a Gaussian distribution of width
√
k,

∥fk(vi)∥22 ∼ k−1/2. The numerator compares fk with a small translation of itself, thus it can be approximated
by the squared norm of the derivative of the Gaussian distribution, ∥fk(δi+1)− fk(δi)∥22 ∼ k−3/2.
Consequently, we have

Dk ∼ k−1 ∼ A−2
k . (5)

8
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Figure 7. Sensitivities of internal representations fk of simple CNNs against the kth layer receptive field size Ak for trained
networks (solid blue) and at initialization (solid gray). The top row refers to task 1 with s= 1 and F= 3; the bottom row to task 2
with F= s= 2. For the first large part of the network, the sensitivities obtained by replacing each layer with the mean channel
(blue dotted) overlap with the original sensitivities. Predictions equations (5) and (7) for task 1 and equations (8) and (9) for task
2 are shown as black dashed lines.

Note that this prediction does not depend on the activation function, as backed by the experimental results
in appendix B using the tanh activation function.

Sensitivity to Gaussian noise. To analyze Gk one must take into account the rectifying action of ReLU, which
sets all the negative elements of its input to zero. The first ReLU is applied after the first homogeneous filters,
thus the zero-mean noise is superimposed on a patch of F active pixels. Outside such a patch, only positive
noise terms survive. Within the patch, being summed to a positive background, negative terms can survive
the rectification of ReLU. Nevertheless, if the size of the image is much larger than the filter size, the
contribution from active pixels to Gk is negligible and we can approximate the difference between noisy and
original representations f1(x+ η)− f1(x) with the rectified noise ϕ(η). After the first layer, the
representations consist of non-negative numbers, thus we can forget again the ReLU and write

Gk ∼
Eη∥fk (ϕ(η))∥22

∥fk (δi)∥22
. (6)

Repeated applications of homogeneous filters to the rectified noise ϕ(η) result again in a diffusion of the
signal. Since ϕ(η) has different independent and identically distributed non-zero entries for different
realizations of η, averaging over η is equivalent to considering a homogeneous profile for fk(ϕ(η)). As a
result, the numerator in equation (6) is a constant independent of k. The denominator is the same as in
equation (4), ∥fk(δi)∥22 ∼ k−1/2, hence

Gk ∼ k1/2 ∼ Ak, (7)

i.e. the sensitivity to Gaussian noise grows as the size of the effective receptive fields. From the ratio of
equations (5) and (7), we get Rk ∼ A−3

k .
Without rectification, the entries of fk(η) are given by a sum of Gaussian numbers ηi within the effective

receptive field Ak ∼
√
k, rescaled by a factor 1/

√
k 5. Such sum, for the Central Limit Theorem, scales as

k−1/4 and consequently the numerator in equation (6) scales as k−1/2, yielding a constant Gk. We conclude
that the rectifying action of ReLU is crucial in building up sensitivity to noise. For an odd activation function
like tanh a spatial pooling solution is not sensitive to noise, as supported by our experiments in appendix B.
We expect that a given activation function makes the network less sensitive to noise according to how much
is close to being odd. For example, the swish(x) = x/(1+ e−βx) activation function, which is linear for β= 0
and a ReLU for β =∞, has a region Zβ around the origin where is approximately linear, whose width is
controlled by β. Given a value of β, the network will not sense noise of magnitude smaller than Zβ , while it
will be affected by noise with larger magnitude.

5 This is due to the aforementioned fact that fk(δi) approaches a Gaussian with standard deviation
√
k centered in i. The factor 1/

√
k is

the normalization of such Gaussian.
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4.2. Task 2, stride equal filter size
When the stride s equals to the filter size F the number of pixels of the internal representations is reduced by
a factor F at each layer, thus fk consists of L/F k pixels. Meanwhile, the effective size of the receptive fields
grows exponentially at the same rate: Ak = F k (see figure 6, left for an illustration).

Sensitivity to diffeomorphisms. For a given layer k, consider a partition of the input image into L/F k

patches. Each pixel of fk only looks at one such patch and its intensity coincides with the number of active
pixels within the patch. As a result, the only diffeomorphisms that change fk are those which move one of the
active pixels from one patch to another. Since active pixels move by 1, this can only occur if one of the active
pixels was originally located at the border of a patch, which in turn occurs with probability∼ 1/F k. In
addition, the norm ∥fk(δi)∥2 at the denominator does not scale with k, so that

Dk ∼ F−k ∼ A−1
k . (8)

Sensitivity to Gaussian noise. Each pixel of fk looks at a patch of the input of size Fk, thus fk is affected by the
sum of all the noises acting on such patch. Since these noises have been rectified by ReLU, by the central limit
theorem the sum scales as the number of summands Fk. Thus, the contribution of each pixel of fk to the
numerator of Gk scales as (F k)2. As there are L/F k pixels in fk, one has

Gk ∼
(
F k
)2 (

L/F k
)
∼ F k ∼ Ak. (9)

Without rectification, the sum of Fk independent noises would scale as the square root of the number of
summands Fk, yielding a constant Gk. The scaling Rk ∼ A−2

k follows from the ratio of equations (8) and (9).

4.3. Comparing predictions with experiments
We present the experimental setup used to train simple CNNs introduced in section 4, to test the predictions
for the sensitivities equations (5) and (7) for task 1 and equations (8) and (9) for task 2. For task 1, we use the
scale-detection task in the version of figure 5(b), with ξ= 11 and gap g= 4 and image size L= 32. For this
task, we use CNNs with stride s= 1 and filter size F= 3. The width of the CNN is fixed to 1000 channels
since we observe that a higher number of channels does not affect the training dynamics. The depth K has to
be such that the effective receptive field AK is wide enough to solve the task, recognizing the scale ξ− g.

For the training, we use P= 48 training points and SGD with learning rate of 0.01 and batch size 8. We
use weight decay for the L2 norm of the filter weights with ridge 0.01. These hyper-parameters are found by
an extensive search and they allow to solve the task in a reasonable computing time. We stop the training
after 500 times the interpolation time, which is the time required by the network to reach zero interpolation
error of the training set. The goal of this extended training time is to reach the solution with minimal norm
thanks to weight decay. The generalization error with that number of training points P of the trained CNNs
is exactly zero: they learn spatial pooling perfectly.

We show the sensitivities of the trained CNNs, averaged over 4 seeds, in the top panels of figure 7, where
we also successfully test the predictions equations (5) and (7). We remark that to compute Gk we inserted
Gaussian noise with already the ReLU applied on since we observe that without it we would see a
pre-asymptotic behavior for Gk with respect to Ak.

For the dataset in task 2, we use the block-wise version of the Scale-Detection task shown in figure 5(c),
fixing ξ = 25 and L= 27. We use CNNs with structure tuned to this task, with stride equal to filter size
s= F= 2. We use 7 layers and 1000 channels for the CNNs, fixed with the same logic as in task 1. The
training is performed using SGD and weight decay with the same parameters as in task 1. We use P= 210

training points since it allows reaching zero test error. In the bottom panels of figure 7 we show that the
predictions equations (8) and (9) capture the experimental results, averaged over 10 seeds.

Notice that if all the filters at a given layer are replaced with their average, the behavior of the sensitivities
as a function of depth does not change (compare solid and dotted blue curves in the figure). This confirms
our assumption that all channels behave like the mean channel. In addition, tables C2 and C3 in appendix C
show that the mean filters are approximately homogeneous. This is consistent with the spectral analysis of
the filters shown in the top row in figure B2.

5. Conclusion

The meaning of an image often depends on local features, as evidenced by the fact that artists only need a
small number of strokes to represent a visual scene. Since the exact locations of the features are not
important in determining the image class, diffeomorphisms of limited magnitude leave the class unchanged.
Indeed, as shown in [15], (former) state-of-the-art deep convolutional networks learn the insensitivity to

10
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diffeomorphisms during training. Here, we have shown how such insensitivity is built via learning a
combination of spatial and channel pooling. Interestingly, in ReLU networks, spatial pooling comes together
with an increased sensitivity to random noise in the image, as captured and quantified in our simple
scale-detection model of data. This phenomenon does not appear with an odd activation function like the
tanh, as shown in appendix B. Our analysis suggests that to build trained neural networks robust to random
noise with a given magnitude, it may be useful to use activation functions odd-shaped in a region with a
width larger than such magnitude. How this would affect the performance is left for future work.

It is commonly believed that the best architectures are those that extract the data features that are the
most relevant for the task. The pooling operations studied here, which allow the network to forget the exact
locations of these features, are probably more effective when features are better extracted. This point may be
responsible for the observed strong correlations between the network performance and its stability to
diffeomorphisms. Designing synthetic models of data whose features are combinatorial and stable to smooth
transformations is very much needed to clarify this relationship, and ultimately understand how deep
networks learn high-dimensional tasks with limited data.
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Appendix A. Task 1, stride 1: proofs

In section 4.1 we consider a simple CNN with stride s=1 and filter size F trained on scale-detection task 1.
We fix the total depth of these networks to be K̃. We postulated in section 4 that this network displays a
one-channel solution with homogeneous filter [1/F, . . . ,1/F] and no bias. We can understand the
representation fk(x) at layer k of an input datum x by using single-pixel inputs δi. Let us recall that these
inputs have all components to 0 except the ith, set to 1. Then, we have that a general datum x is given by
x∝ (δi + δj), where i and j are the locations of the active pixel in x. We have argued in the main text that the

representation fk(δi) is a Gaussian distribution with width
√
k. In this appendix, we prove this statement.

First, we observe that in this solution, since both the elements of the filters and those of the inputs are
non-negative, the network behaves effectively as a linear operator. In particular, each layer corresponds to the
application of a L× L circulant matrixM, which is obtained by stacking all the L shifts of the following row
vector,

1,1, . . . ,1︸ ︷︷ ︸
F

0,0,0, . . . ,0︸ ︷︷ ︸
L−F

 . (A.1)

with periodic boundary conditions. The first row of such a matrix is fixed as follows. If F is odd the patch of
size F is centered on the first entry of the first row, while if F is even we choose to have (F/2) ones at the left
of the first entry and (F/2)− 1 at its right. The output fk of the layer k is then the following: fk(δi) =Mkδi.

Proposition 1. Let’s consider the L× L matrix M and a given L vector δi, as defined above. For odd F⩾ 3, in the

limit of large depth K̃≫ 1 and large width L̃≫ F
√
K̃, we have that

(
Mk

)
ab
δi =

1

2
√
π
√
D(1)

√
k
e
− (a−i)2

4D(1)k ,

D(1) =
1

12F
(F− 1)3 ,

(A.2)
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while for even F:

(
Mk

)
ab
δi =

1

2
√
π
√
D(2)

√
k
e
− (v(2)k+a−i)

2

4D
(2)
F k ,

D(2) =
1

12F

(
F 3 − 3F 2 + 6F− 4

)
,

(A.3)

with v(2) = (1− F)/(2F).

Proof. The matrix M can be seen as the stochastic matrix of a Markov process, where at each step the ran-
dom walker has uniform probability 1/F to move in a patch of width F around itself. We write the following
recursion relation for odd F,

p(k+1)
a,i =

1

F

(
p(k)a−(F−1)/2,i + · · ·+ p(k)a,i + · · ·+ p(k)a+(F−1)/2,i

)
, (A.4)

and even F,

p(k+1)
a,i =

1

F

(
p(k)a−F/2,i + · · ·+ p(k)a,i + · · ·+ p(k)a+(F/2−1),i

)
. (A.5)

In any of these two cases, this is the so-called master equation of the randomwalk (see [44] in section 1.4, page
11 for a generalized version of the master equation). In the limit of large image width L and large depth K̃, we
can write the related equation for the continuous process pi(a,k), which is called Fokker–Planck equation in
physics and chemistry [44] or forward Kolmogorov equation in mathematics [45],

∂kp
(k)
a,i = v∂ap

(k)
a,i +D∂2

ap
(k)
a,i . (A.6)

where the drift coefficient v and the diffusion coefficientD are defined in terms of the probability distribution
Wi(x) of having a jump x starting from the location i

v=

ˆ
dxWi (x)x, D=

ˆ
dxWi (x)x

2. (A.7)

In our case we have Wi(x) = 1/F for x ∈ [i− (F− 1)/2, i+(F− 1)/2] for odd F and x ∈ [i− F/2, i+ F/2−
1] for even F, yielding the solutions for the Fokker–Planck equations for even and odd F reported in
equations (A.2) and (A.3).

We can better characterize the limits of large image width L and large network depth K̃ as follows. The
proof relies on the fact that a random walk, after a large number of steps, converges to a diffusion process.
Here the number of steps is given by the depth K̃ of the network. Consequently, we need K̃≫ 1. Moreover, we
want that the diffusion process is not influenced by the boundaries of the image, of width L. The average path
walked by the random walker after K̃ steps is given by F

√
K. Then, we require F

√
K≪ L.

Appendix B. Odd activation function

In this section, we investigate the learned solution and the sensitivities of vanilla CNNs with an odd
activation function such as tanh, trained on the first scale-detection task shown in figure 5, and how they
differ with respect to the ones of vanilla ReLU CNN presented in section 4.
Experimental setup The network setup is the same as in section 4 for task 1: we consider vanilla CNNs

made by stacking up convolutional layers with filter size F and stride s= 1, with tanh activation function.
The experimental scheme for the data and the network is the same as in section 4.3 for task 1. The differences
in the training scheme are the following: (i) we consider a learning rate of 0.003 instead of 0.01 since it yields
a more stable training and (ii) we train up to 200 times the interpolation time instead of 500 times since the
interpolation time is larger of a factor 10 with respect to ReLU CNNs.
Frequency content of filtersWe first look at the kind of solution learned by the CNN. As done in

section 2, we analyze the spatial frequency content of the learned filters of each layer of the CNN, to see
whether spatial pooling has been learned with training. We remind that a spatial pooling solution would
yield fully homogeneous filters. In particular, as in section 2, to perform the spectral analysis of the filters
wk
c,c ′ , where k is the index layer and c and c′ are the indices of theHk−1 andHk channels of the layer k− 1 and
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Figure B1. Projections γ̃k,l (defined in equation (B.1)) of vanilla ReLU (top row) and tanh (bottom row) CNN filters onto the 3
eigenvectors of the 3-grid Laplacian when training on the first scale-detection task presented in figure 5(a), before (dashed lines)
and after training (solid lines). Each plot is for a different layer with index k, going deeper in the network from left to right. For
each plot, eigenvector indices l are reported on the x-axis for increasing frequencies from left to right. The filters of each layer for
both ReLU and tanh CNNs acquire a dominant low-frequency component, which is less significant for layers 3–6 in the tanh
CNNs.

Figure B2. Sensitivities of internal representations fk of trained vanilla CNNs against the kth layer, using the ReLU activation
function (blue solid lines) and tanh activation function (orange solid lines). The dotted lines refer to the sensitivities of the same
networks where each layer is replaced by its mean channel (blue line for ReLU and orange line for tanh). The prediction
equation (5) of Dk (black dashed line) holds for both tanh and ReLU for the first part of the network. The behavior of Gk of the
trained tanh CNN is instead very close to flat in the first large part of the network, consistent with the analysis in section 4.1.

k, we look at the projections of the filters onto the eigenvectors {Ψl}l=1,...,F of the discrete Laplace operator
defined on the F−filter grid:

γ̃k,l = ⟨
[
Ψl ·wk

c,c ′
]2⟩Hk−1,Hk

/
⟨||wk

c,c ′ ||22⟩Hk−1,Hk , (B.1)

which is essentially the same as the one considered in the main text in equation (3), renormalized by the
layer-wise norm of the filters, averaged over the channel indices6. Since lower l stands for lower frequency,
the layer k will be closer to spatial pooling as γ̃k,l is larger for small l with respect to large l. We observe that
ReLU networks become remarkably low-frequency throughout all the network, as shown in the top row in
figure B1. Tanh CNNs, while learning solutions predominantly low-frequency, show instead for the
intermediate layers 3–6 a higher projection onto high-frequency components, in the bottom row in
figure B1. This suggests that the tanh CNN solution is dominated by spatial pooling, but not completely.
SensitivitiesWe look at the sensitivities of trained tanh and ReLU CNNs with respect to the index layer k

in figure B2. We observe that Dk of trained ReLU and tanh CNNs, in the left panel, are similar in the first part
of the network, consistently with the theoretical analysis in section 4.1 which is independent of the activation
function and it is solely based on the assumption of a spatial pooling solution. Such assumption is supported
empirically for ReLU networks by figure B1, whilst for tanh networks we observe that few layers learn a
significant projection also onto high-frequency components, even though the dominant projection is still the
lowest frequency one. This slight departure from a full spatial pooling solution has two consequences: (i) the
trained tanh Dk departs from the theoretical prediction after the very first few layers (ii) the sensitivity of the
tanh CNN where each layer is replaced by its mean channel shows a gap with the trained CNN sensitivity.

6 This renormalization is to cope with the vanishing gradient issue.
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The sensitivity Gk to white noise in the middle panel in figure B2 is significantly lower for the tanh with
respect to the ReLU network. Furthermore, the tanh sensitivity is almost constant for a large part of the
network. This observation supports the theoretical analysis carried out in section 4. According to that
analysis, the sensitivity to noise in ReLU networks increases due to the perturbing noise that, after being
rectified by the ReLU units, interferes constructively and piles up more and more throughout the network.
For odd activation functions like the tanh, both positive and negative noises pass through them, interfering
destructively and not affecting the network representations. Consequently, for such activation functions,
trained networks with a spatial pooling solution are not sensitive to noise. This is supported by the middle
panel in figure B2. Since the behavior of the tanh Gk is significantly sub-dominant with respect to the ReLU
Gk, while the Dk for both networks are similar, the tanh Rk decreases less with k than the ReLU Rk, as shown
in the right panel in figure B2.

Appendix C. Additional figures and tables

Table C1 provides a comprehensive summary of the main characteristics of the various neural network
architectures studied in this paper. It details essential features such as the depth of the network, the number
of parameters, and the activation functions used, among other attributes. This table serves as a quick
reference for understanding the configurations of each architecture.

To support the assumption done in section 4 that the trained CNNs are effectively behaving as one
channel with homogeneous positive filters, we report the numerical values of the average filter over channels
per layer in table C2 for task 1 and table C3 for task 2. They are positive in the first nine hidden layers, where
channel pooling is most pronounced.

Table C1. Network architectures and their main characteristics Summary of network architectures featured in this study, along with key
properties.

Features FullConn LeNet [46] AlexNet [47]

Depth 2, 4, 6 5 8
Num. Parameters 200k 62k 23 M
FC layers 2, 4, 6 3 3
Activation ReLU ReLU ReLU
Pooling — Max Max
Dropout — — Yes
Batch norm — — —
Skip connections — — —

Features VGG [40] ResNet [48] EfficientNetB0 [49]

Depth 11, 16, 19 18, 34, 50 18
Num. parameters 9–20 M 11–24 M 5
FC layers 1 1 1
Activation ReLU ReLU Swish
Pooling Max Avg. (last) Avg. (last)
Dropout — — Yes+ Dropconnect
Batch norm Conditional Yes Yes
Skip connections — Yes Yes (inv. residuals)
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Table C2. Average over channels of filters in layer k, before and after training, for simple CNNs with s= 1 and F= 3 trained on task 1.
The network learns filters that are much more homogeneous than initialization.

Init. After training

k= 1 [0.0132,0.0023,−0.0068] [0.2928,0.2605,0.2928]
k= 2 [0.0014,−0.0007,−0.0009] [0.0039,0.0035,0.0039]
k= 3 [−0.0006,−0.0001,0.0010] [0.0043,0.0038,0.0043]
k= 4 [3.4610× 10−5,6.5687× 10−4,−9.1634× 10−4] [0.0039,0.0033,0.0038]
k= 5 [−0.0006,0.0002,−0.0009] [0.0038,0.0032,0.0038]
k= 6 [0.0012,−0.0011,−0.0003] [0.0038,0.0031,0.0038]
k= 7 [−0.0006,0.0004,0.0003] [0.0041,0.0032,0.0040]
k= 8 [0.0005,−0.0012,0.0010] [0.0036,0.0024,0.0035]
k= 9 [0.0005,−0.0012,0.0010] [0.0021,0.0016,0.0017]
k= 10 [−0.0025,0.0015,−0.0006] [−0.0013,−0.0008,−0.0010]
k= 11 [−0.0006,0.0005,0.0009] 0.0002,0.0002,0.0002]
k= 12 [3.3418× 10−4,3.3521× 10−5,1.3936× 10−3] [0.0009,0.0008,0.0009]

Table C3. Average over channels of filters in layer k, before and after training, for simple CNNs with s= F= 2 trained on task 2. The
network learns filters that are much more homogeneous than initialization.

Init. After training

k= 1 [−0.0559,−0.0291] [0.3828,0.3737]
k= 2 [−0.0022,0.0010] [0.0060,0.0059]
k= 3 [0.0006,−0.0010] [0.0064,0.0065]
k= 4 [−0.0020,0.0009] [0.0059,0.0060]
k= 5 [0.0002,0.0008] [9.9935× 10−5,2.1380× 10−4]
k= 6 [−0.0003,−0.0010] [−0.0028,−0.0029]
k= 7 [−7.4610× 10−4,8.4595× 10−5] [−0.0009,−0.0009]

Figure C1. Generalization error ε versus sensitivity to diffeomorphisms Df (left), noise Gf (center) and relative sensitivity Rf

(right) for a wide range of architectures trained on scale-detection task 1 (train set size: 1024, image size: 32, ξ = 14,g= 2). As in
real data, ε is positively correlated with Df and negatively correlated with Gf. The correlation is the strongest for the relative
measure Rf. CNNs are trained in the setting described in section 2, while the FCN with the ADAM optimizer, a learning rate of 0.1
and no scheduler.

Figure C2. Sensitivities (Dk left, Gk middle and Rk right) of the internal representations vs relative depth for AlexNet (1st row)
and VGG networks (2nd row) trained on scale-detection task 1. Dot-dashed lines show the sensitivities of networks with shuffled
channels.
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Figure C3. Test error vs. sensitivities (columns) when training on noisy CIFAR10. The different rows correspond to increasing
noise magnitude η. Different points correspond to network architectures, see gray labels. The content of this figure∗ is also
represented in compact form in figure 1, right.

Figure C4. Analogous of figure 3 for different network architectures: relative sensitivity Rk as a function of depth for LeNet and
AlexNet architectures trained on CIFAR10 (left) and ImageNet (right). Full lines indicate experiments done on the original
networks, dashed lines the ones after shuffling channels. K indicates the network’s total depth.

Figure C5. Spatial frequency content of filters for CIFAR10 (left), ImageNet (center), and the scale-detection task (right). The

y-axis reports an aggregate measure among spatial frequencies: N(
∑N

i=1λl)
−1⟨∥wk

c∥2⟩−1
c

∑F 2

l=1λl⟨(Ψl ·wk
c )

2⟩c, whereΨl are
the 3× 3 Laplacian eigenvectors and λl the corresponding eigenvalues, wk

c the cth filter of layer k and ⟨·⟩c denotes the average over
c. This is an aggregate measure over frequencies, the frequency distribution is reported in the main text, figure 4.
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Figure C6. Analogous of figure 4 for deep VGGs trained on ImageNet. Dotted and full lines respectively correspond to
initialization and trained networks. The x-axis reports low to high frequencies from left to right. Deeper layers are reported in the
rightmost panels.

Figure C7. Analogous of figure 4 for AlexNet trained on CIFAR10 (1st row), ImageNet (2nd row) and the scale detection task
(3rd row). Dotted and full lines respectively correspond to initialization and trained networks. The x-axis reports low to high
frequencies from left to right. Deeper layers are reported in the rightmost panels.
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