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Abstract
We construct non-unique Leray solutions of the forced Navier-Stokes equations in
bounded domains via gluing methods. This demonstrates a certain locality and robust-
ness of the non-uniqueness discovered by the authors in [1].
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1 Introduction

In the recentwork [1], we constructed non-uniqueLeray solutions of theNavier-Stokes
equations in the whole space with forcing:
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∂t u + u · ∇u − �u + ∇ p = f

div u = 0 .
(NS)

The non-unique solutions are driven by the extreme instability of a “background”
solution ū, which has a self-similar structure:

ū(x, t) = 1√
t
Ū

(
x√
t

)
. (1.1)

In particular, the non-uniqueness “emerges” from the irregularity at the space-time
origin and is expected to be local. However, while ū is compactly supported, the non-
uniqueness in [1] involves another solution whose support is R

3 × [0, T ]. Below,
we demonstrate a certain locality and robustness of the non-uniqueness discovered
in [1] by gluing it into any smooth, bounded domain � ⊂ R

3 with no-slip boundary
condition u|∂� = 0 and into the torusT3 := R

3/(2πZ)3, i.e., the fundamental domain
[−π, π ]3 with periodic boundary conditions.

Theorem 1.1 (Non-uniqueness in bounded domains) Let � be a smooth, bounded
domain in R

3 or the torus T
3. There exist T > 0, f ∈ L1

t L2
x (� × (0, T )), and

two distinct suitable Leray–Hopf solutions u, ū to the Navier–Stokes equations on
�×(0, T ) with body force f , initial condition u0 ≡ 0, and no-slip boundary condition.

We assume a certain familiarity with the conventions of [1], although it will be
convenient to recall the basics below. For x ∈ R

3 and t ∈ (0,+∞), define the
similarity variables

ξ = x√
t
, τ = log t . (1.2)

A velocity field u and its similarity profile U are related via the transformation

u(x, t) = 1√
t
U (ξ, τ ) . (1.3)

The pressure p, force f , and their respective profiles P , F transform according to

p(x, t) = 1

t
P(ξ, τ ) , f (x, t) = 1

t3/2
F(ξ, τ ) . (1.4)

The Navier-Stokes equations in similarity variables are

∂τ U − 1

2

(
1 + ξ · ∇ξ

)
U − �U + U · ∇U + ∇ P = F

divU = 0 .

(1.5)
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Then Ū ∈ C∞
0 (B1) constructed in [1] (see (1.1) above) is an unstable steady state

of (1.5) with suitable smooth, compactly supported forcing term F̄ , and the non-
unique solutions are trajectories on the unstable manifold associated to Ū .

In this paper, we take the following perspective. The force f and one solution ū
are exactly the ones from [1]. They are self-similar, smooth for positive times, and
compactly supported inside the domain�, whichwe assume contains the ball of radius
1/2 centered at the origin. Each non-unique solution in [1] constitutes then an “inner
solution” which lives at the self-similar scaling |x | ∼ t1/2, and this solution can be
glued to an “outer solution” (namely, u ≡ 0), which lives at the scaling |x | ∼ 1. The
boundary conditions are satisfied by the outer solution. The solutions are glued by
truncating on an intermediate scale |x | ∼ 1/10. Let η(x) be a suitable cut-off function
with η ≡ 1 on B1/9 and η ≡ 0 on R

3 \ B1/7. Our main ansatz is

u = ū + φη + ψ , (1.6)

where ū is the compactly supported self-similar solution of the previous work, φ is the
inner correction defined on the whole R3 (although only the values in supp η matter
for the definition of u), and ψ is the outer correction defined on the torus. Since φ

is the inner correction, it will be natural to track its similarity profile � (we keep the
lower and uppercase convention). We likewise decompose the pressure

p = p̄ + πη + q , (1.7)

although p̄ = 0 from the construction in [1].
The PDE to be satisfied in � by φ and ψ is

∂t (φη) − �(φη) + ū · ∇(φη) + ηφ · ∇ū + η div(ηφ ⊗ φ) + ū · ∇ψ + ψ · ∇ū

+ ∂tψ − �ψ + η div(φ ⊗ ψ + ψ ⊗ φ) + div(ψ ⊗ ψ) + ηφ(φ · ∇η)

+ φ(ψ · ∇η) + ψ(φ · ∇η) + ∇(πη + q) = 0 ,

(1.8)

together with div(φη + ψ) = 0. We distribute the terms into an “inner equation”,
which we think of as an equation for φ involving some terms in ψ , localized around
the origin, and an “outer equation”, thought of as an equation for ψ . The inner and
outer equations, when satisfied separately, imply that (1.8) is satisfied.

1.1 Inner Equation

The inner equation has to be satisfied on the support of η, which is contained in B1/7:

∂tφ − �φ + ū · ∇φ + φ · ∇ū + div(ηφ ⊗ φ)

+ div(ψ ⊗ φ + φ ⊗ ψ) + ū · ∇ψ + ψ · ∇ū + ∇π = 0 ,
(1.9)

and it is coupled to the divergence-free condition

div φ = 0 . (1.10)
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We introduce the operator Lss, i.e., the linearized operator of (1.5) around Ū :

− Lss� = −1

2

(
1 + ξ · ∇ξ

)
� − �� + P

(
Ū · ∇� + � · ∇Ū

)
. (1.11)

In self-similar variables, we rewrite the cut-off η(x) = N (ξ, τ ). We rewrite the inner
equation (1.9) as

∂τ� − Lss� + � · ∇(�N ) + div(Ñ� ⊗ � + Ñ� ⊗ �)

+ Ū · ∇� + � · ∇Ū + ∇
 = 0 ,
(1.12)

where Ñ (ξ, τ ) = N (ξ/3, τ ). We now require that it is satisfied in the whole R3, not
merely on the support of N .

1.2 Outer Equation

Using that (ū ·∇η)φ = 0 and ∂tη = 0, as a consequence of our choice of η, we deduce
the following system for the outer equation:

⎧⎪⎨
⎪⎩

∂tψ − �ψ + div(ψ ⊗ ψ) + (ψ · ∇η)φ + (φ · ∇η)ψ

−φ�η − 2∇φ · ∇η + ηφ(φ · ∇η) + π∇η + ∇q = 0

divψ = −∇η · φ

(1.13)

The problem (1.13) is to be solved in � with the boundary condition ψ |∂� = 0.
We now consider the PDEs (1.9) and (1.13) as a system for (�,ψ). The two

components will be controlled using two different linear operators, Lss and P�.
In dividing the terms of (1.8) into the inner and outer equations, we put the “bound-

ary terms”, i.e., terms involving derivatives of η, into the outer equation, whereas the
we put the terms Ū · ∇� and � · ∇Ū into the inner equation.

Crucially, we expect that the boundary terms are small because solutions of the
inner equation are well localized. Consequently, ψ decouples from φ as t → 0+, and
therefore the linear part of the system should be invertible.1 For this to work, it is
necessary to show that the boundary terms are negligible, which requires knowledge
of the inner correction � in weighted spaces.

With this knowledge, we solve the full nonlinear system via a fixed point argument.
The details of the scheme will be discussed in Section 3.

Our method is inspired by the parabolic “inner-outer” gluing technique exploited
in [3] to analyze bubbling and reverse bubbling in the two-dimensional harmonic map
heat flow into S2. The reverse bubbling in [3] is also an example of gluing techniques
applied to non-uniqueness, although its mechanism is quite different. It is worth noting

1 One can compare this to the matrix

[
a b
ε d

]
where ε represents the boundary terms, b represents the

Ū · ∇� +� · ∇Ū terms, and the diagonal elements a and d are O(1). In fact, eventually we will see that ψ
decays faster than φ as t → 0+, so the terms corresponding to b are small, and the whole system decouples.
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that, in that setting, the harmonic map heat flow actually has a natural uniqueness
class [9].

We expect that Theorem 1.1 may be extended in a number of ways. Our techniques
extend with minimal effort to non-uniqueness centered at k points. We expect that the
conditionally non-unique solutions of Jia and Šverák [7] can also be glued.2 Finally, it
would be interesting to glue the two-dimensional Euler constructions of [11, 12] (see
also [2]) into the torus or bounded domains. This is likely to be more challenging than
the present work, since the Euler equations are quasilinear and the construction of the
unstable manifold more involved. We leave these and other extensions to future work.

2 Preliminaries

Consider p ∈ (1,+∞) and � = R
3,T3, or a smooth, bounded domain in R3.

We define

L p
σ (�) := {φ ∈ C∞

c (�;R3) : div φ = 0}L p(�;R3)
, (2.1)

which can be understood as the space of L p velocity fields with div φ = 0 on � and
φ · ν = 0 on ∂�, where ν is the exterior normal to �. See [5, Chapter III] or [10,
Lemma 1.4]. Notice that the boundary condition is vacuous when � = R

3,T3.
There exists a bounded projection P : L p(�;R3) → L p

σ (�) satisfying Pφ =
φ − ∇�−1

N div φ for any φ ∈ C∞
c (�;R3), where �N is the Neumann Laplacian.

This is the Leray projection. By density of divergence-free test fields, it agrees across
L p spaces and, in particular, with the extension of the L2-orthogonal projection onto
divergence-free fields; see [5, Chapter III] or [10, Theorem 1.5].

2.1 Linear Instability

The following theorem provides an unstable background for the 3D Navier-Stokes
equations. We refer the reader to [1] for its proof.

Theorem 2.1 (Linear instability) There exists a divergence-free vector field Ū ∈
C∞(R3;R3) with supp Ū ⊂ B1(0) such that the linearized operator Lss : D(Lss) ⊂
L2

σ (R3) → L2
σ (R3) defined by

− LssU = −1

2

(
1 + ξ · ∇ξ

)
U − �U + P(Ū · ∇U + U · ∇Ū ) , (2.2)

where D(Lss) := {U ∈ L2
σ : U ∈ H2(R3), ξ · ∇U ∈ L2(R3)}, has a maximally

unstable eigenvalue λ with non-trivial smooth eigenfunction ρ belonging to Hk(R3)

for all k ≥ 0:

2 For this, it may be necessary to assume that the self-similar solution is just barely unstable, as is done in
the truncation procedure in [7]. Typically, the background solution ū must be cut in the gluing procedure,
but we avoid this because in our setting ū is already compactly supported.
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Lssρ = λρ and a := Re λ = sup
z∈σ(Lss)

Re z > 0 . (2.3)

The construction in [1] allows Ū to be chosen to make a arbitrarily large, and it
will be convenient, though not strictly necessary, to enforce that a ≥ 10.

We can now define

U lin(·, τ ) = Re(eλτ ρ) , (2.4)

a solution of the linearized PDE ∂τU lin = LssU lin, with maximal growth rate a ≥ 10.
The following lemma, borrowed from [1, Lemma 4.4], provides sharp growth esti-

mates on the semigroup eτ Lss .

Lemma 2.2 Let Ū be as in Theorem 2.1. Then, for any σ2 ≥ σ1 ≥ 0 and δ > 0, it
holds

‖eτ LssU‖Hσ2 �σ1,σ2,δ τ− (σ2−σ1)

2 eτ(a+δ)‖U‖Hσ1 , (2.5)

for any U ∈ L2
σ ∩ Hσ1(R3).

2.2 Improved Space Decay

For ζ ∈ R and p ∈ [1,+∞], define L p
ζ (R3) to be the space of f ∈ L p

loc(R
3) satisfying

‖ f ‖L p
ζ

:= ‖〈·〉ζ f ‖L p < +∞ , (2.6)

where 〈ξ 〉 = (1 + |ξ |2)1/2 is the Japanese bracket notation. We further define

L p
w(R3) := L p

4 (R3) . (2.7)

Lemma 2.3 Let ζ ∈ (3, 4], p ∈ (3,+∞] and δ > 0. Then

‖eτ LssP div ‖L p
ζ →L∞

ζ
�δ,ζ,p τ

−( 12+ 3
2p )e(a+δ)τ . (2.8)

Remark 2.4 For M ∈ L p(R3;R3×3) and p ∈ [1,+∞], the solution operator
eτ LssP div M is easily shown to be well defined by standard arguments. Namely, con-
sider the solution u to the following PDE:

∂t u − �u + P div(ū ⊗ u + u ⊗ ū) = 0 , u(·, 1) = P div M . (2.9)

The mild solution theory of the above PDE can be developed using properties of
the semigroup et�

P div (whose kernel consists of derivatives of the Oseen kernel,
see (2.14)–(2.15) below) by considering P div(ū ⊗ u + u ⊗ ū) as a perturbation in
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Duhamel’s formula. In particular, it is standard to demonstrate that, for all T > 1 and
t ∈ (1, T ], we have

‖u(·, t)‖Lq �T ,p,q (t − 1)−[ 12+ 3
2 ( 1

p − 1
q )]‖M‖L p , (2.10)

for all 1 ≤ p ≤ q ≤ +∞. Finally, we define eτ LssP div M := U : R3 × [0,+∞) →
R
3 according to

u(x, t) = 1√
t
U (ξ, τ ) . (2.11)

With this in mind, we focus below on growth estimates for the semigroup.

Proof of Lemma 2.3 To begin, we establish weighted estimates for the semigroup
eτ A

P div, where

− A := −1

2
(1 + ξ · ∇) − � . (2.12)

For M ∈ L p
ζ (R3;R3×3) ⊂ L2, consider the solution u : R3 × [1,+∞) → R

3 to

∂t u − �u = 0 , u(·, 1) = P div M . (2.13)

We have the representation formula

u(x, t) = g(·, t − 1) ∗ M , (2.14)

where g is tensor-valued and consists of derivatives of the Oseen kernel (see, e.g., [10,
p. 80]),

g = 1

t2
G

(
x√
t

)
, (2.15)

satisfying the pointwise estimate

|G(ξ)| � 〈ξ 〉−4 . (2.16)

Define e·A
P div M := U : R3 × [0,+∞) → R

3 according to

u(x, t) = 1√
t
U (ξ, τ ) . (2.17)

Using the representation formula and elementary estimates for convolution (see
Lemma 7.1 and Remark 7.2), we have two estimates. First, we have the short-time
estimate

‖u‖L∞
ζ

�ζ,p (t − 1)−( 12+ 3
2p )‖M‖L p

ζ
, t ∈ (1, e] , (2.18)

123



17 Page 8 of 25 D. Albritton et al.

which implies that

‖U‖L∞
ζ

�ζ,p τ
−( 12+ 3

2p )‖M‖L p
ζ
, τ ∈ (0, 1] . (2.19)

Moreover, we have the long-time estimate

‖U‖L∞
ζ

�ζ,p ‖M‖L p
ζ
, τ ∈ [1,+∞) . (2.20)

This completes the semigroup estimates for eτ A
P div.

We now turn our attention to the growth estimate for eτ LssP div. First, we prove

‖eτ LssP div M‖L∞ �δ,p τ
−( 12+ 3

2p )eτ(a+δ)‖M‖L p , τ > 0 . (2.21)

We already have this estimate for τ ∈ (0, 2], see (2.10) in Remark 2.4, so we focus
on τ ≥ 2. This is done by splitting eτ LssP div = e(τ−1)LssP ◦ eLssP div, using esti-
mate (2.10) (with p = q = 2) for the operator eLssP div, and using the growth
estimate

‖eτ LssP‖L2→H2 �δ τ−1eτ(a+δ) , τ > 0 , (2.22)

from Lemma 2.2, for the operator e(τ−1)LssP, along with Sobolev embedding H2 ⊂
L∞ in dimension three.With (2.21) in hand, we proceed with the desired L∞

ζ estimate.

Define U := eτ LssP div M and write

U (·, τ ) = eτ A
P div M −

∫ τ

0
e(τ−s)A

P div(Ū ⊗ U + U ⊗ Ū ) ds . (2.23)

We will combine the semigroup estimates (2.19) and (2.20) for A with (2.21) and the
fact that Ū is compactly supported. We end up with

‖U‖L∞
ζ

�δ,p max(τ−( 12+ 3
2p )

, 1)‖M‖L p
ζ

+
∫ τ

0
max((τ − s)−

1
2 , 1)‖(Ū ⊗ U + U ⊗ Ū )(·, s)‖L∞

ζ
ds

�δ,p max(τ−( 12+ 3
2p )

, 1)‖M‖L p
ζ

+
∫ τ

0
max((τ − s)−

1
2 , 1)‖U (·, s)‖L∞ ds

�δ,p max(τ−( 12+ 3
2p )

, 1)‖M‖L p
ζ

+
∫ τ

0
max((τ − s)−

1
2 , 1)s−( 12+ 3

2p )es(a+δ)‖M‖L p ds

�δ,p max(τ−( 12+ 3
2p )

, 1)eτ(a+δ) ds ,

(2.24)

where we used that p > 3. This holds for all δ > 0, completing the proof. ��
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Lemma 2.5 The eigenfunction ρ in Theorem 2.1 belongs to L∞
w (R3).

Proof The proof is akin to [1, Corollary 3.3]: ρ ∈ D(Lss) solves

λρ − 1

2
(1 + ξ · ∇ξ )ρ − �ρ = P div F (2.25)

where−F = Ū ⊗ρ+ρ⊗Ū . Notably, local elliptic regularity implies that ρ is smooth
on the support of Ū . Hence, F ∈ L∞

w . Next, we ‘undo’ the similarity variables by
defining

h(x, t) = tλ− 1
2 ρ

(
x√
t

)
, M(x, t) = tλ−1F

(
x√
t

)
. (2.26)

Then

∂t h − �h = P div M , h(·, 0) = 0 , (2.27)

and we have the representation formula

ρ = h(·, 1) =
∫ 1

0
e�(1−s)

P div M(·, s) ds , (2.28)

which yields (see (2.18))

‖ρ‖L∞
w

�
∫ 1

0
(1 − s)−

1
2 ‖M(·, s)‖L∞

w
ds �

∫ 1

0
(1 − s)−

1
2 sRe λ−1 ds‖F‖L∞

w
< +∞

(2.29)

since Re λ > 0. Here, we used that ‖ f (x/�)‖L∞
w

≤ ‖ f ‖L∞
w

for � ∈ (0, 1]. This
completes the proof. ��

2.3 Stokes Equations in Bounded Domains

We now turn our attention to the linear theory for the outer equation. We begin with
semigroup theory for the Stokes equations, see [6, Sections 2 and 5] and [10, Chapter
5].

Lemma 2.6 (Stokes in bounded domains) Let p ∈ (1,+∞) and � ⊂ R
3 be a smooth,

bounded domain. Define

D(A) := W 2,p ∩ W 1,p
0 ∩ L p

σ (�) (2.30)

and the Stokes operator

A = P� : D(A) → L p
σ (�) . (2.31)
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Then the Stokes operator A generates an analytic semigroup (et A)t≥0, and we have,
for all p ∈ (1,+∞) and q ∈ [p,+∞], the smoothing estimates

‖et A
P‖L p→Lq + t

1
2 ‖et A

P div ‖L p→Lq � t
3
2 ( 1q − 1

p )
. (2.32)

The function u(x, t) = (et Au0)(x) solves the Stokes equations with no-slip bound-
ary conditions

∂t u − �u + ∇π = 0 , u(·, t) = 0 on ∂� , (2.33)

for any u0 ∈ L p
σ (�). The boundary conditions are built into the domain of the operator,

and et A : L p
σ → D(A) for any t > 0.

To solve the Stokes equations with non-zero divergence, we use the following
lemma due to [4, Theorem 4].

Lemma 2.7 (Stokes with inhomogeneous divergence) Let T > 0 and � ⊂ R
3 be

a smooth, bounded domain. For p ∈ (3,+∞), and r ∈ (1,+∞), consider h ∈
Lr

t L p
x (� × (0, T )) with zero mean:

∫
�

h(x, t) dx = 0 for a.e. t ∈ (0, T ).
Then there exists a unique very weak solution u ∈ Lr

t L p
x (�×(0, T )) to the following

Stokes problem in � × (0, T ):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u − �u + ∇π = 0

div u = h

u|∂�×(0,T ) = 0

u(·, 0) = 0 ;
(2.34)

that is, for all divergence-free w ∈ C1
c ([0, T ); (C2 ∩ C0)(�̄)), we have

∫ T

0

∫
�

u(−∂t − �)w dx dt = 0 (2.35)

and div u = h in the sense of distributions on � × (0, T ). Moreover, u satisfies the
estimate

‖u‖Lr
t L p

x (�×(0,T )) ��,r ,p ‖h‖Lr
t L p

x (�×(0,T )) . (2.36)

Remark 2.8 The initial condition u(·, 0) = 0 is understood “modulo gradients”.
Moreover, it can be proven (cf. [4, Theorem 4, Remark 3]) that A−1

Pu ∈
C([0, T ); L p

σ (�)) and A−1
Pu(·, 0) = 0. Notably, uniqueness holds in the above

class of very weak solutions, which makes the notion a useful generalization.

123



Gluing Non-unique Navier–Stokes Solutions Page 11 of 25 17

2.4 Stokes Equations in the Periodic Domain

On the torus T3 := R
3/(2πZ)3, the Stokes equations can be solved by means of the

heat semigroup, since the Stokes operator A in L p
σ (T3), p ∈ (1,+∞), coincides with

� : W 2,p ∩ L p
σ (T3) → L p

σ (T3) . (2.37)

Hence, the associated Stokes semigroup (et A)t≥0 coincides with the heat semigroup
and enjoys the smoothing estimates

‖et A
P‖L p→Lq + t

1
2 ‖et A

P div ‖L p→Lq � t
3
2 ( 1q − 1

p )
, (2.38)

for all p ∈ (1,+∞) and q ∈ [p,+∞].
The Stokes equations with non-zero divergence,

⎧⎪⎨
⎪⎩

∂t u − �u + ∇π = 0

div u = h

u(·, 0) = 0 ,

(2.39)

admit an explicit solution

u = ∇�−1h , (2.40)

provided h satisfies the compatibility condition
∫
T3 h(x, t) dx = 0 for a.e. t ∈ (0, T ).

The solution is in the very weak sense, that is, div u = h in the sense of distributions,
and, for all w ∈ C1

c ([0, T ); C2(T3)), we have

∫ T

0

∫
T3

u(−∂tw − �w) dx dt = 0 . (2.41)

As in Remark 2.8, the initial condition is only “modulo gradients”.
It is immediate to check that

‖u‖Lr
t L p

x (T3×(0,T )) �p ‖h‖Lr
t L p

x (T3×(0,T )) , (2.42)

for any r ∈ [1,∞] and p ∈ (1,∞).
Moreover, there is uniqueness when u ∈ Lr

t L p
x (T3 × (0, T )). That is, necessarily

u is given by (2.40). Indeed, if div u = 0, then u = Pu, and (2.41) simply asserts that
u solves the heat equation with zero initial condition.

2.5 Weighted Pressure Estimates

To estimate the boundary term π∇η in (1.13), where π is the “inner pressure”, we
require estimates for the singular integral operator (−�)−1 div div in weighted spaces.
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Notably, (−�)−1 div div F = R ⊗ R : F , where F : R3 → R
3×3 is a tensor and

R = (R1, R2, R3) is the vector of Riesz transforms Ri , whose kernels are c3ξi/|ξ |4.
For F ∈ L1(R3) compactly supported in BR with R > 0, we evidently have

|(−�)−1 div div F | � 〈ξ 〉−3‖F‖L1(BR) , |ξ | ≥ 2R . (2.43)

For F ∈ L p
w(R3) with p ∈ (1,+∞) and R ≥ 2, we require the estimate

‖(−�)−1 div div F‖L p(B10R\BR) �p R−3+ 3
p ‖F‖L p

w
. (2.44)

We split F = F1B20R\BR/2 + F(1 − 1B20R\BR/2). Then, in the near field, we have

‖(−�)−1 div div F1B20R\BR/2‖L p(B10R\BR) �p R−4‖F‖L p
w

, (2.45)

whereas, whenever ξ ∈ B10R \ BR , we have the contribution

|(−�)−1 div div F(1 − 1B20R\BR/2)| � (〈·〉−3 ∗ |F |)(ξ) �p 〈ξ 〉−3‖F‖L p
w

,(2.46)

as in Remark 7.2, from the far field. Hence,

‖(−�)−1 div div F(1 − 1B20R\BR/2)‖L p(B10R\BR) �p R−3+ 3
p ‖F‖L p

w
, (2.47)

and the estimate follows by combining (2.45) and (2.47). In practice, this estimate will
sometimes be coupled with the embedding L∞

8 (R3) ⊂ L p
w(R3).

3 The Integral Equations

In what follows � is either a smooth, bounded domain or the periodic box T
3. For

τ̄ ∈ R, t̄ > 0, and α, β > 0, we define the norms

‖�‖Xα
τ̄

:= sup
τ≤τ̄

e−τα‖�(·, τ )‖L∞
w

(3.1)

‖ψ‖
Y β

t̄
:= sup

s∈(0,t̄)
s−β‖ψ‖Lr

t L p
x (�×(0,s)) , (3.2)

where r , p � 1 will be fixed later. The function spaces Xα
τ̄ and Y β

t̄ consist of
C((−∞, τ̄ ]; L∞

w (R3)) and measurable functions, respectively, with finite norm. Let

Zα,β

t̄ := Xα
τ̄ × Y β

t̄ (3.3)

endowed with the norm

‖(�,ψ)‖
Zα,β

t̄
= ‖�‖Xα

τ̄
+ ‖ψ‖

Y β

t̄
. (3.4)
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We drop the dependence on τ̄ from Zα,β

t̄ since we always assume that τ̄ = log t̄ .
We use the decomposition

� = �lin + �per , (3.5)

where

�lin(·, τ ) = U lin(·, τ ) = Re(eλτ ρ) (3.6)

was defined in (2.4).
Our goal is to solve a set of integral equations for �per and ψ :

(�per, ψ) = L[(�per, ψ)] + B[(�per, ψ)] + G (3.7)

where L = (Li , Lo), B = (Bi , Bo), and G = (Gi , Go) will be specified below. The
integral equations will be a reformulation of the inner and outer equations introduced
in Section 1.

We want to show that, for an appropriate choice of the parameters α and β, defined
in (4.3), and r , p � 1, there exists t̄ > 0 such that the integral equations admit a
unique solution (�per, ψ) ∈ Zα,β

t̄ . In what follows, we allow the implied constants to
depend on r , p, and a.

We now determine the above operators, beginning with the inner integral equation.

3.1 Inner Integral Equation

Recall that the inner PDE is

∂τ� − Lss� + � · ∇(�N ) + div(Ñ� ⊗ � + Ñ� ⊗ �)

+ Ū · ∇� + � · ∇Ū + ∇
 = 0 ,
(3.8)

which must be satisfied on the support of N , and which we seek to solve in the whole
space.With the decomposition (3.5), we can derive an equation for�per. The equation
is

∂τ�
per − Lss�

per = P div L[(�per, ψ)] + P div B[(�per, ψ)] + P div G , (3.9)

where L is a linear operator in (�per, ψ) given by

−L[(�per, ψ)] = N�lin ⊗ �per + N�per ⊗ �lin︸ ︷︷ ︸
=:−L1[(�per,ψ)]

+ Ñ�lin ⊗ � + Ñ� ⊗ �lin︸ ︷︷ ︸
=:−L2[(�per,ψ)]

+ Ū ⊗ � + � ⊗ Ū︸ ︷︷ ︸
=:−L3[(�per,ψ)]

.
(3.10)
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The operator B[(�per, ψ)] = B[(�per, ψ), (�per, ψ)] is induced by the bilinear form

− B[(�per
1 , ψ1), (�

per
2 , ψ2)] = N�

per
2 ⊗ �

per
1︸ ︷︷ ︸

=:−B1[�per
1 ,�

per
2 ]

+ Ñ�
per
1 ⊗ �2 + Ñ�2 ⊗ �

per
1︸ ︷︷ ︸

=:−B2[(�per
1 ,ψ1),(�

per
2 ,ψ2)]

.(3.11)

We finally have

− G = N�lin ⊗ �lin . (3.12)

The associated integral operators are

Li [(�per, ψ)] =
∫ τ

−∞
e(τ−s)LssP div L[(�per, ψ)](·, s) ds (3.13)

Bi [(�per, ψ)] =
∫ τ

−∞
e(τ−s)LssP div B[(�per, ψ)](·, s) ds (3.14)

Gi =
∫ τ

−∞
e(τ−s)LssP div G(·, s) ds . (3.15)

3.2 Outer Integral Equation

Let ψdiv[�] be the solution of the Stokes equations with inhomogeneous divergence:
When � is a smooth, bounded domain, we define ψdiv[�] as in Lemma 2.7 with
h = −∇η · φ. In the periodic setting, we set

ψdiv[�] = −∇�−1(∇η · φ) , (3.16)

see the discussion in Section 2.4.
Recall that the outer PDE is posed on � and reads

⎧⎪⎨
⎪⎩

∂tψ − �ψ + div(ψ ⊗ ψ) + (ψ · ∇η)φ + (φ · ∇η)ψ

−φ�η − 2∇φ · ∇η + (φ · ∇η)ηφ + π∇η + ∇q = 0

divψ = −∇η · φ .

(3.17)

It will be convenient to rewrite, for each component φi of the vector field φ,

∇φi · ∇η = div(φi∇η) − φi�η , (3.18)

to keep everything in divergence form:

⎧⎪⎨
⎪⎩

∂tψ − �ψ + div(ψ ⊗ ψ) + (ψ · ∇η)φ + (φ · ∇η)ψ

+φ�η − 2 div(φ ⊗ ∇η) + (φ · ∇η)ηφ + π∇η + ∇q = 0

divψ = −∇η · φ .

(3.19)
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The PDE is supplemented with the boundary condition ψ |∂� = 0. The inner pressure
π , which appears in the boundary term π∇η, is given by its similarity profile


 = (−�)−1 div div(Ū ⊗ �per + �per ⊗ Ū

−L[(�per, ψ)] − B[(�per, ψ)] − G) . (3.20)

Hence, we can rewrite it in physical variables as

π = (−�)−1 div div(ū ⊗ φper + φper ⊗ ū

−�[(�per, ψ)] − b[(�per, ψ)] − g) , (3.21)

where �, b, and g will represent L, B, and G in physical variables as opposed to
similarity variables.

The integral equation for ψ is

ψ = ψdiv[�] −
∫ t

0
e(t−s)A

P[φ�η − 2 div(φ ⊗ ∇η) + (φ · ∇η)ηφ + π∇η](·, s) ds

−
∫ t

0
e(t−s)A

P[div(ψ ⊗ ψ) + (ψ · ∇η)φ + (φ · ∇η)ψ](·, s) ds .

(3.22)

We rewrite it as

ψ = Lo[(�per, ψ)] + Bo[(�per, ψ)] + Go , (3.23)

where Lo acts linearly on (�per, ψ) according to

Lo[(�per, ψ)] = ψdiv[�per] −
∫ t

0
e(t−s)A

P[φper�η − 2 div(φper ⊗ ∇η)](·, s) ds

−
∫ t

0
e(t−s)A

P[(φlin · ∇η)(ηφper + ψ) + ((ηφper + ψ) · ∇η)φlin](·, s) ds

−
∫ t

0
e(t−s)A

P[(−�)−1 div div(ū ⊗ φper + φper ⊗ ū − �[(�per, ψ)])(·, s)∇η] ds .

(3.24)

The operator Bo is induced by the bilinear form

Bo[(�per
1 , ψ1), (�

per
2 , ψ2)] = −

∫ t

0
e(t−s)A

P[ηφ
per
1 (φ

per
2 · ∇η)

+ div(ψ1 ⊗ ψ2)](·, s) ds

−
∫ t

0
e(t−s)A

P[(ψ1 · ∇η)φ
per
2 + (φ

per
1 · ∇η)ψ2](·, s) ds

−
∫ t

0
e(t−s)A

P[(−�)−1 div div(−b[(�per
1 , ψ1), (�

per
2 , ψ2)])(·, s)∇η] ds .

(3.25)
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and finally,

Go = ψdiv[�lin] −
∫ t

0
e(t−s)A

P[φlin�η − 2 div(φlin ⊗ ∇η) + ηφlin(φlin · ∇η)](·, s) ds

−
∫ t

0
e(t−s)A

P[(−�)−1 div div(−g(·, s))∇η] ds .

(3.26)

3.3 Elementary Estimates

We have the following elementary estimate for every ψ ∈ Y β

t̄ . From now on, suppose
that t̄ ≤ 1. Let β ′ ∈ (0, β). Then (extending ψ by zero in time as necessary)

‖t−β ′
ψ‖Lr

t L p
x (�×(0,t̄)) �

⎛
⎝∑

k≤0

2−kβ ′r‖1(2k−1,2k )ψ‖r
Lr

t L p
x (�×(0,t̄))

⎞
⎠

1
r

�

⎛
⎝∑

k≤0

2(β−β ′)kr

⎞
⎠

1
r

‖ψ‖
Y β

t̄

� ‖ψ‖
Y β

t̄
,

(3.27)

where the implied constants depend on β, β ′, r . Hence,

‖eτ(−β ′− 1
2+ 3

2p + 1
r )

� Ñ‖Lr
τ L p

ξ (R3×(−∞,τ̄ )) � ‖ψ‖
Y β

t̄
, (3.28)

where the 1/r arises from the change of measure eτ dτ = dt .
Meanwhile, we have

‖φ(·, t)‖L∞ = t−
1
2 ‖�(·, τ )‖L∞ . (3.29)

Since supp∇η ⊂ { 19 ≤ |x | ≤ 1
7 },

‖φ(·, t)‖L∞(supp∇η) � t
3
2 ‖�(·, τ )‖L∞

w
. (3.30)

4 Outer Estimates

We begin with the outer estimates. Crucially, we will see that the boundary terms from
�lin will limit the decay rate β of ψ .

Except in theψdiv terms which correct the divergence, it will be convenient to work
with pointwise estimates in time and use the observation that, for functions f ,

‖ f ‖Lr (0,t) ≤ t
1
r ‖ f ‖L∞(0,t) . (4.1)
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Let

κ := κ(r) = 1

r
+ 3

2
. (4.2)

This exponent will appear in the decay rates α and β. The 1/r term will be seen to
come from (4.1). We recognize the exponent in (3.30) as κ − 1/r .

We then define

β := κ + a − 1

8
, α := κ + a . (4.3)

Finally, we recall the estimate from Lemma 2.5,

‖�lin(·, τ )‖L∞
w

� eτa , for any τ ∈ R . (4.4)

4.1 Estimate on Go (3.26)

We begin with the divergence term, which will already have the worst contribution.
It is estimated using Lemma 2.7, (2.42) (depending on whether � is a bounded or a
periodic domain), (3.30) and (4.4):

‖ψdiv[�lin]‖Lr
t L p

x (�×(0,t)) � ‖∇η · φlin‖Lr
t L p

x (�×(0,t))

� tκ‖�lin‖L∞
τ L∞

w (R3×(−∞,log t))

� tκ+a .

(4.5)

The remaining non-pressure terms are estimated using either Lemma 2.6 or (2.38):

∥∥∥∥
∫ t

0
e(t−s)A

P[φlin�η − 2 div(φlin ⊗ ∇η) + ηφlin(φlin · ∇η)](·, s) ds

∥∥∥∥
L p(�)

�
∫ t

0
‖[φlin�η](·, s)‖L p(�) + (t − s)−

1
2 ‖φlin ⊗ ∇η(·, s)‖L p(�)

+ ‖φlin(·, s)‖2L∞(supp∇η) ds

�
∫ t

0
sa+κ− 1

r + (t − s)−
1
2 sa+κ− 1

r + s2(a+κ− 1
r ) ds

� ta+κ− 1
r + 1

2 .

(4.6)

To estimate the pressure terms, we observe from (2.44) that

‖(−�)−1 div div(N�lin ⊗ �lin)(·, s)‖L p(supp∇N ) � s2a+ 1
2 (3− 3

p )
. (4.7)

Therefore, after changing variables,
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∥∥∥∥
∫ t

0
e(t−s)A

P[(−�)−1 div div(ηφlin ⊗ φlin)(·, s)∇η] ds

∥∥∥∥
L p(�)

�
∫ t

0
s2a−1+κ− 1

r ds

� t2a+κ− 1
r .

(4.8)

Notice that the −1/r factors in (4.6) and (4.8) will drop after applying (4.1). Com-
bining (4.5) and (4.6), We conclude that for all t ∈ (0, t̄),

‖Go‖Lr
t L p

x (�×(0,t)) � tκ+a . (4.9)

Hence, (4.3) gives

‖Go‖Y β

t̄
� t̄κ+a−β = t̄

1
8 . (4.10)

4.2 Estimate on Lo (3.24)

The terms in the first line of (3.24) are estimated similarly to the Go estimate except
that a is replaced by α and �lin by �per.

We employ either Lemma 2.6 or (2.38) to estimate the remaining non-pressure
terms:

∥∥∥∥
∫ t

0
e(t−s)A

P[(ψ · ∇η)φlin](·, s) ds

∥∥∥∥
L p(�)

�
∫ t

0
‖ψ(·, s)‖L p‖φlin(·, s)‖L∞(supp∇η) ds

� t
3
2+a+1− 1

r +β‖ψ‖
Y β

t̄

� tκ+a+β+1‖ψ‖
Y β

t̄
,

(4.11)

and

∥∥∥∥
∫ t

0
e(t−s)A

P[(φlin · ∇η)(ηφper + ψ) + ((ηφper + ψ) · ∇η)φlin](·, s) ds

∥∥∥∥
L p(�)

�
∫ t

0
‖φlin(·, s)|A‖L∞(�)(‖φper(·, s)‖L p(supp∇η) + ‖ψ(·, s)‖L p(�)) ds

�
∫ t

0
s
3
2+a(s

3
2+α‖�per‖Xα

τ̄
+ ‖ψ(·, s)‖L p(�)) ds

� t3+a+α‖�per‖Xα
τ̄

+ t
3
2+a+β+1− 1

r ‖ψ‖
Y β

t̄
.

(4.12)

For the pressure terms, whenever s ≤ τ̄ , we have

123



Gluing Non-unique Navier–Stokes Solutions Page 19 of 25 17

‖(−�)−1 div div(N�lin ⊗ �per + N�per ⊗ �lin)(·, s)‖L p(supp∇N )

� sa+α+ 1
2 (3− 3

p )‖�per‖Xα
τ̄
,

(4.13)

‖(−�)−1 div div(Ū ⊗ �per + �per ⊗ Ū )(·, s)‖L p(supp∇N )

� sα+ 1
2 (3− 3

p )‖�per‖Xα
τ̄
,

(4.14)

‖(−�)−1 div div(Ū ⊗ �+� ⊗ Ū )(·, s)‖L p(supp∇N )

� s
1
2 (3− 3

p )‖�(·, s)‖L p(supp Ū ) ,
(4.15)

‖(−�)−1 div div(Ñ�lin ⊗ �+Ñ� ⊗ �lin)(·, s)‖L p(supp∇N )

� sa+ 1
2 (3− 3

p )‖Ñ�(·, s)‖L p .
(4.16)

The terms (4.13) and (4.14) lead to an estimate similar to the pressure term in Go but
with powers t̄ a+α+κ and t̄α+κ whenmeasured in Lr

t L p
x (�×(0, t̄)). For the term (4.15),

we have

∥∥∥∥
∫ t

0
e(t−s)A

P[(−�)−1 div div(ū ⊗ ψ + ψ ⊗ ū)(·, s)∇η] ds

∥∥∥∥
L p(�)

�
∫ t

0
s−1+κ− 1

r ‖ψ(·, s)‖L p(�) ds

� tκ− 2
r +β‖ψ‖

Y β

t̄
.

(4.17)

The contribution of the term (4.16) is similar but with exponent ta+κ− 2
r +β .

We conclude that

‖Lo[(�per, ψ)]‖
Y β

t̄
� t̄κ+α−β‖�per‖Xα

τ̄
+ t̄κ− 2

r ‖ψ‖
Y β

t̄
� t̄

1
2 ‖(�per, ψ)‖

Zα,β

t̄
.

(4.18)

4.3 Estimate on Bo (3.25)

By the semigroup estimates in Lemma 2.6 (or (2.38), in the periodic setting), for all
t ∈ (0, t̄), we have

∥∥∥∥
∫ t

0
e(t−s)A

P div[ψ1 ⊗ ψ2](·, s) ds

∥∥∥∥
L p(�)

�
∫ t

0
(t − s)−

1
2− 3

2p ‖ψ1(·, s)‖L p‖ψ2(·, s)‖L p ds

�
(∫ t

0
(t − s)(−

1
2− 3

2p )(2r)′ ds

) 1
(2r)′ ‖ψ1‖Lr

t L p
x (�×(0,t))‖ψ2‖Lr

t L p
x (�×(0,t))

� t2β‖ψ1‖Y β

t̄
‖ψ2‖Y β

t̄
,

(4.19)
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where we choose p, r � 1 such that the first term is time integrable. Moreover,

∣∣∣∣
∫ t

0
e(t−s)A

P[ηφ
per
1 (φ

per
2 · ∇η)(·, s)] ds

∣∣∣∣
L p(�)

�
∫ t

0
‖φper

1 (·, s)‖L p(supp∇η)‖φper
2 (·, s)‖L∞(supp∇η) ds

� t4+2α‖�per
1 ‖Xα

τ̄
‖�per

2 ‖Xα
τ̄
,

(4.20)

and

∥∥∥∥
∫ t

0
e(t−s)A

P[(ψ1 · ∇η)φ
per
2 + (φ

per
1 · ∇η)ψ2](·, s) ds

∥∥∥∥
L p(�)

�
∫ t

0
sκ− 1

r (‖ψ1‖L p ‖�per
2 ‖L∞

w
+ ‖ψ2‖L p ‖�per

1 ‖L∞
w

) ds

�
(∫ t

0
s(κ− 1

r +α)r ′
ds

) 1
r ′

(‖ψ1‖Lr
t L p

x (�×(0,t))‖�
per
2 ‖Xα

τ̄
+ ‖ψ2‖Lr

t L p
x (�×(0,t))‖�

per
1 ‖Xα

τ̄
)

� tκ+α+β(‖ψ1‖Y β

t̄
‖�per

2 ‖Xα
τ̄

+ ‖ψ2‖Y β

t̄
‖�per

1 ‖Xα
τ̄
) .

(4.21)

Finally, the pressure terms are estimated similarly to the Go term and the term (4.16)
except with �per replacing �lin.

Combining (4.19) and (4.21) with (4.1) (also, α ≥ β), we have

‖Bo[(�per
1 , ψ1), (�

per
2 , ψ2)]‖Y β

t̄
� t̄β‖(�per

1 , ψ1)‖Zα,β

t̄
‖(�per

2 , ψ2)‖Zα,β

t̄
. (4.22)

5 Inner Estimates

We now turn to the inner estimates, for which our main tool is Lemma 2.3.

5.1 Estimate on Gi (3.15), (3.12)

For all τ ∈ (−∞, τ̄ ), we have (with δ = a/2, in Lemma 2.3),

‖Gi (·, τ )‖L∞
w

=
∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div G(·, s) ds

∥∥∥∥
L∞

w

�
∫ τ

−∞
e(τ−s)( 3a

2 )(τ − s)−
1
2 e2as ds � e2aτ ,

(5.1)

that is,

‖Gi‖Xα
τ̄

� e(2a−α)τ̄ . (5.2)

Notice that 2a − α = a − κ ≥ 1 provided r � 1 and a ≥ 5.
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5.2 Estimate on Bi (3.14), (3.11)

The estimate for the B1 terms is analogous to the Gi estimate. For all τ ∈ (−∞, τ̄ ),
we have

∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div B1[�per

1 ,�
per
2 ](·, s) ds

∥∥∥∥
L∞

w

� e2ατ‖�per
1 ‖Xα

τ̄
‖�per

2 ‖Xα
τ̄
.(5.3)

For the B2 terms, we apply Lemma 2.3 and (3.28) to get

∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div B2[(�per

1 , ψ1), (�
per
2 , ψ2)](·, s) ds

∥∥∥∥
L∞

w

�δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2− 3

2p ‖�per
1 (·, s)‖L∞

w
‖�2 Ñ (·, s)‖L p ds

�δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2− 3

2p esαe(β ′+ 1
2− 3

2p − 1
r )s

× ‖e(−β ′− 1
2+ 3

2p + 1
r )s

�2 Ñ (·, s)‖L p ds ‖�per
1 ‖Xα

τ̄

(3.28)

�δ,β ′ eτ(α+β ′+ 1
2− 3

2p − 1
r )‖�per

1 ‖Xα
τ̄
‖�2‖Y β

t̄

�δ,β ′ e(α+β)τ‖�per
1 ‖Xα

τ̄
‖�2‖Y β

t̄

(5.4)

where β ′+1/2−3/(2p)−1/r = β and δ = β/2. Combining the above two estimates,
we conclude

‖Bi [(�per
1 , ψ1), (�

per
2 , ψ2)]‖Xα

τ̄
� eβτ̄‖(�per

1 , ψ1)‖Zα,β

t̄
‖(�per

2 , ψ2)‖Zα,β

t̄
. (5.5)

5.3 Estimate on Li (3.13), (3.10)

The estimate for the L1 terms is analogous to the Gi and B1 estimates. For all τ ∈
(0, τ̄ ), we have

∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div L1[(�per, ψ)](·, s) ds

∥∥∥∥
L∞

w

� eτ(a+α)‖�per‖Xα
τ̄
. (5.6)

The estimates for the L2 terms is analogous to the B2 estimate:

∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div L2[(�per, ψ)](·, s) ds

∥∥∥∥
L∞

w

� e(a+β)τ‖�2‖Y β

t̄
. (5.7)
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Finally, we have

∥∥∥∥
∫ τ

−∞
e(τ−s)LssP div L3[(�per, ψ)](·, s) ds

∥∥∥∥
L∞

w

�δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2− 3

2p ‖Ū‖L∞
w

‖�‖L p ds

�δ,β ′ e(β ′+ 1
2− 3

2p − 1
r )τ‖ψ‖

Y β

t̄

�δ,β ′ e(β+ 1
4 )τ‖ψ‖

Y β

t̄
,

(5.8)

where β ′ + 1/4 − 3/(2p) − 1/r = β and δ = (a + β)/2 − a. Combining the above
three estimates and a ≥ 10, we have

‖Li [(�per, ψ)]‖Xα
τ̄

� e(β+ 1
4−α)τ̄‖(�per, ψ)‖

Zα,β

t̄

(4.3)

� e
1
8 τ̄‖(�per, ψ)‖

Zα,β

t̄
. (5.9)

6 Conclusion

We now collect the estimates (4.10), (4.18), (4.22), (5.2), (5.5), (5.9), which yield that

‖L‖
Zα,β

t̄ →Zα,β

t̄
+ ‖B‖

Zα,β

t̄ ×Zα,β

t̄ →Zα,β

t̄
+ ‖G‖

Zα,β

t̄
→ 0 as t̄ → 0+ , (6.1)

with the appropriate choices of α and β in (4.3), p, r � 1, and a ≥ 10. In particular,
there exists t̄ � 1 such that

L + B + G : {‖(�per, ψ)‖
Zα,β

t̄
≤ 1} → {‖(�per, ψ)‖

Zα,β

t̄
≤ 1} (6.2)

is a contraction, cf. [1, Subsection 4.2.2]. Hence, there exists a unique solution
(�per, ψ) to the integral equation (3.7) in the above ball. By the ansatz (1.6) and
decomposition (3.5), the solution (�per, ψ) determines a mild Navier-Stokes solution
u : � × (0, t̄) → R

3 with forcing f and satisfying

u ∈ Lr
t L p

x (� × (ε, t̄)) , (6.3)

for all ε ∈ (0, t̄).
That the solution is indeed mild is a technical point, which we now justify. Initially,

we know that, for all divergence-free w ∈ C1
c ((0, T ); C2 ∩ C0(�)), we have

∫ t̄

0

∫
�

u(−∂tw − �w) dx dt =
∫ t̄

0

∫
�

u ⊗ u : ∇w + f · w dx dt , (6.4)

and u(·, t) ∈ L p
σ (�) for a.e. t ∈ (0, t̄). In particular, u = Pu, and it is weakly

continuous in (0, t̄) due to (6.4). Consider ε ∈ (0, t̄) such that u(·, ε) ∈ L p
σ (�).
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Let v be the mild solution to the Stokes equations on � × (ε, t̄) with initial data
v(·, ε) = u(·, ε) and right-hand side − div u ⊗ u + f . Then u − v is a very weak
solution in the sense of Lemma 2.7 with zero initial data, zero right-hand side, and
zero divergence. By uniqueness, u ≡ v on � × (ε, t̄).

We begin by justifying that u �= ū, which is necessary for non-uniqueness. Recall
that ‖�linN (·, τ )‖L p � eτa and ‖�per(·, τ )‖L∞

w
� eτα for all sufficiently nega-

tive τ . Additionally, due to (3.28), we have that, for all β ′ < β, ‖�(·, τk)‖L p �
eτk (β

′− 1
2+ 3

2p − 1
r ) along a sequence τk → −∞; in particular, the exponent on the right-

hand side can bemade strictly greater than a. Hence, ‖�N (·, τk)+�(·, τk)‖L p � eτka

for large enough k, which justifies the claim.
We now justify that the above solution is a Leray-Hopf solution with right-hand

side. Since Lr
t L p

x (�×(ε, t̄)) is a subcritical spacewhen 2/r+3/p < 1 and f is smooth

away from t = 0, it is classical that u ∈ L∞
t (W 1,q

0 )x (� × (ε, t̄)) for all q ∈ (1,+∞)

(bootstrap using the mild formulation and the linear estimates in Lemma 2.6) and,
moreover, satisfies energy equality on � × (ε, t̄), for all ε ∈ (0, t̄) (see [8, Theorem
1.4.1, p. 272], for example). It remains to show that ‖u(·, tk)‖L2 → 0 as k → +∞
for some sequence of times tk → 0+. We have ‖ū(·, t)‖L2 +‖φη(·, t)‖L2 � t1/4, and
‖ψ(·, tk)‖L2 → 0 follows from (3.27). This completes the proof of Theorem 1.1.
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Appendix

Lemma 7.1 (A convolution inequality) Let d ∈ N, α, β ∈ (d,+∞) and δ ∈ (0, 1].
Then

Id,α,β(δ) :=
∫
Rd

〈x − y〉−α
〈 y

δ

〉−β

dy �d,α,β 〈x〉−min(α,β)δd . (7.1)
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Proof We will suppress dependence on d, α, β when convenient.
For |x | ≤ 1, we have

I �
∫
Rd

〈 y

δ

〉−β

dy � δd , (7.2)

so we restrict our attention to |x | ≥ 1.
In the region R1 := {|y| ≤ |x |/2}, we have |x − y| ≈ |x | and

∫
R1

〈x − y〉−α
〈 y

δ

〉−β

dy � 〈x〉−α

∫
|y|≤|x |/2

〈 y

δ

〉−β

dy � 〈x〉−αδd . (7.3)

In the region R2 := {|x − y| ≤ |x |/2}, we have |y| ≈ |x | and
∫

R2

〈x − y〉−α
〈 y

δ

〉−β

dy �
〈 x

δ

〉−β
∫

|x−y|≤|x |/2
〈x − y〉−α dy � 〈x〉−β δβ , (7.4)

where |x | ≥ 1 and δ ∈ (0, 1] ensure that 〈x/δ〉 ≈ 〈x〉δ.
In the region R3 := R

d \ (R1 ∪ R2), we have |y| ≈ |x − y| and
∫

R3

〈x − y〉−α
〈 y

δ

〉−β

dy �
∫

r≥|x |/2
r−αr−βδβrd−1 dr � 〈x〉−α−β+dδβ , (7.5)

where we again use that |x | ≥ 1 and δ ∈ (0, 1] to make simplifications.
Finally, we sum the above estimates to complete the proof when |x | ≥ 1. ��

Remark 7.2 As a consequence, we have the following variant, which is useful in the
proof of Lemma 2.3. Let ζ, β > d, p ∈ [1,+∞], and p′ be its Hölder conjugate.
Then, for all f ∈ L p

ζ , we have

∫
Rd

| f (x − y)|
〈 y

δ

〉−β ≤ ‖ f ‖L p
ζ

× [Id,ζ p′,β p′(δ)] 1
p′

�d,α,β,p ‖ f ‖L p
ζ
〈x〉−min(ζ,β)δ

d
p′ .

(7.6)

with obvious adjustments when p = +∞.
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