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Operandoanalysis of a solid oxide fuel cell by
environmental transmission electron
microscopy

Q. Jeangros 1,2 , M. Bugnet 3, T. Epicier3,4, C. Frantz 5, S. Diethelm5,
D. Montinaro6, E. Tyukalova7, Y. Pivak8, J. Van herle5, A. Hessler-Wyser1 &
M. Duchamp 7,9

Correlating the microstructure of an energy conversion device to its perfor-
mance is often a complex exercise, notably in solid oxide fuel cell research.
Solid oxide fuel cells combine multiple materials and interfaces that evolve in
time due to high operating temperatures and reactive atmospheres. We
demonstrate here that operando environmental transmission electron micro-
scopy can identify structure-property links in such devices. By contacting a
cathode-electrolyte-anode cell to a heating and biasing microelec-
tromechanical system in a single-chamber configuration, a direct correlation is
found between the environmental conditions (oxygen and hydrogen partial
pressures, temperature), the cell open circuit voltage, and themicrostructural
evolution of the fuel cell, down to the atomic scale. The results shed important
insights into the impact of the anode oxidation state and its morphology on
the cell electrical properties.

Improving the performance of energy conversion technologies often
requires inputs provided by characterisation techniques that can bring
detailed insights concerning the crystallography, chemistry, and
microstructure of materials. However, these microstructural analyses
are usually performed ex situ, i.e., in conditions that differ from the
ones experienced by the materials in a functioning device, where the
latter is exposed to a gas atmosphere, elevated temperature, electrical
bias, etc. These conditions often lead to microstructural alterations
that are missed when characterising the sample ex situ, hence com-
plicating the understanding of structure-property links. The analysis of
the microstructure of materials during device operation is particularly
challenging for solid oxide fuel cells (SOFCs) and their solid oxide
electrolysis cells (SOECs) counterparts. Their harsh operating

conditions combining high temperatures (600–1000 °C to ensure
sufficient ionic conductivity of the electrolyte)1, reducing andoxidising
gases (typically H2 and O2 or air), and electrical bias are difficult to
recreate within characterisation setups.

Overall, SOFCs convert the chemical energy of a fuel directly into
electricity through an electrochemical process or, vice versa, elec-
tricity into usable and storable fuels via SOECs2,3 with a high perfor-
mance and with negligible emissions of NOx or SOx. Standard SOFC/
SOEC designs include an yttria-stabilised zirconia (YSZ) electrolyte
sandwiched between a thick nickel (Ni)/YSZ anode support and a
cathode based on strontium-doped lanthanum manganite (LSM) or
lanthanum strontium cobalt ferrite (LSCF), the latter requiring the use
of a ceria diffusion barrier2,4. For the anode, NiO is typically co-sintered
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with YSZ and then reduced to itsmetallicNi active state during the first
operation of the cell. The volume loss associated with this reduction
reaction leaves pores in the anode, ensuring apermeationof the fuel to
the electrochemically active sites, the triple-phase boundaries (TPBs,
Ni-YSZ-porosity in the anode)5. The high operating temperatures may
then trigger various degradation mechanisms, which will eventually
lower the operational performance of the system6. Indeed, TPBs in
both anode and cathode (LSM-YSZ-porosity)may become deactivated
as a result of various mechanisms, e.g., due to poisoning by chromium
or sulfur7–11, or due to a reorganisation of the Ni catalyst through
coarsening or reduction-oxidation (redox) cycling5,12–14.

The understanding of these degradation mechanisms has bene-
fited from microstructural insights retrieved in situ or even operando,
i.e., by raising the sample temperature in a relevant gas atmosphere
directly in the characterisation apparatus, and, for operando studies, in
conjunctionwith electricallymonitoring the sample. More specifically,
X-ray photoelectron spectroscopy has been used to monitor surface
chemistries and surface potentials of SOFCs, also under electrical
polarisation15–17. The anode crystallographic properties18,19 and internal
stress20,21 have been characterised using X-ray diffraction during
reduction-oxidation cycles. X-ray absorption near edge structure stu-
dies have focused on the identification of oxidation states22,23, while
X-ray tomography has enabled a three-dimensional assessment of
microstructural changes depending on environmental conditions24,25.
Optical techniques such as Raman spectroscopy have also been used,
either in situ or operando, to investigate the composition, micro-
structure, surface temperature, or presence of adsorbed sur-
face species in various temperature and gas conditions26–31. Thermal
imaging has been combined with electrical measurements to study
sulphur contamination32. In another example, themobility ofNi onYSZ
has been monitored operando using confocal laser scanning
microscopy33.

While providing valuable insights, the methods listed above are
limited to a spatial resolution typically in the tens of nanometre range
at best, meaning that structural details occurring at finer length scales
remain elusive. Electron microscopy is one of the few techniques with
the ability to retrieve microstructural, chemical and crystallographic
properties down to the (sub-)nanometre, also in situ by raising the
sample temperature in a gas atmosphere directly inside the
microscope34–41. Indeed, a spatial resolution below 0.1 nm has been
reached with modern aberration-corrected environmental transmis-
sion electronmicroscopy, which has enabled the direct observation of
metal sintering42, metal nanoparticles-support interactions43, surface
reconstructions44, atomic-scale dynamics45,46, or phase
transformations47. Regarding SOFC/SOEC research, environmental
transmission electron microscopy coupled to various spectroscopies
has enabled detailed investigations of the reduction and reoxidation
pathways of the Ni catalyst39–41,48–50. However, one limitation of such
environmental transmission electron microscopy experiments is that
the electrical properties of the SOFC/SOEC sample are not recorded
due to the complexity of electrically contacting the thin “electron-
transparent” sample. This in turn complicates the understanding of
structure-property links.

Capitalizing on recent advances in focused ion beam (FIB) sample
preparation protocols51–54, inmicroelectromechanical systems (MEMS)
for combined heating and biasing studies inside microscopes55,56, and
in environmental transmission electron microscopy techniques57, we
demonstrate here that SOFCs/SOECs can be analysed operando by
environmental transmission electron microscopy by recording simul-
taneously electrical and microstructural properties in (adapted)
operational conditions. A single-chamber configuration, i.e., where the
entire SOFC sample and both the fuel and the oxidant gas are present
in the same chamber, is selected to avoid the need to constrain the
oxidant gas to the cathode and the fuel to the anode38,58. The func-
tioningmechanism of single-chamber SOFCs remains similar to that of

conventional dual chamber systems, with the exception that the anode
and cathode need to exhibit selectivity towards either the fuel oxida-
tion or the oxidant gas reduction reactions, respectively. Here, the
open circuit voltage building up across thin lamellae composed of the
anode, electrolyte and cathode is measured as a function of the O2-to-
H2 ratio at elevated temperature, while monitoring microstructural
properties down to the atomic scale. These experiments open new
perspectives for the analysis of the links between performance and
microstructure of SOFCs/SOECs and in energy materials in general.

Results and discussion
Single-chamber experimental setup and SOFC anode activation
The cell architecture investigated here consists of an LSM/YSZ cath-
ode, a YSZ electrolyte and a NiO/YSZ anode, as shown in Fig. 1. To
ensure industrial relevance, the SOFC investigated here was produced
by SolydEra S.p.A. using tape-casting. The electrolyte was made thin-
ner (2 µm) than usual to enable the fabrication by FIB of a TEM lamella
containing all the relevant interfaces of the cathode-electrolyte-anode
cell. The lamella was contacted to a MEMS chip from DENSsolutions
with simultaneous heating and biasing capabilities (Fig. 1a, see Mate-
rials and Methods for details). The TEM lamella was mounted onto a
prototypeDENSsolutionsMEMSholder and inserted in the columnof a
FEI Titan G2 environmental transmission electronmicroscope (ETEM).
A scanningTEM (STEM) annular dark-field image (ADF) imageof the as-
prepared SOFC is shown in Fig. 1b. Corresponding elemental maps
obtained by STEM energy dispersive X-ray spectroscopy (EDX) are
displayed in Fig. 1c, highlighting how the different phases are dis-
tributed in the initial sample. The YSZ electrolyte is dense with grains
of about 1–2 µm, while the LSM/YSZ cathode is porous to ensure
oxygen access to the TPBs (LSM-YSZ-porosity on the cathode side). On
the other hand, the NiO/YSZ anode precursor is dense in its as-
sintered state.

Prior to operation, the as-sintered NiO phase needs to be reduced
to Ni, its active state. The porosity that will result from the process will
also enable to formTPBs on the anode side5. To activate the Ni catalyst
of the cermet, 10 to 15 mbar of forming gas (5 v/v% of H2 in N2) was
introduced in the ETEM, a pressure approaching themaximal pressure
allowed in the environmental chamber. The temperature was
increased up to 750 °C to trigger the reduction of NiO toNi. STEMADF
micrographs acquired at various temperatures and pressures are given
in Fig. S1, highlighting how the microstructural changes occur in the
anode during the activation of the Ni. The reduction reaction becomes
visible through the creation of pores within the NiO grains, with pores
forming preferentially at the interfaces with YSZ due to a quick coar-
sening of the Ni phase at these temperatures. As highlighted in prior
studies39, 40,48,50, the NiO reduction kinetics is slow inside the ETEM in
these flow and pressure conditions. The reaction rate is initially con-
trolled by the nucleation of the first Ni seeds. The presence around the
reaction sites of H2O released by the reduction then likely slows down
the reaction rate at high conversion fractions. On the other hand, the
cathode remains unchanged in forming gas up to this temperature of
750 °C and within this time scale of 210minutes (Fig. S2).

H2-to-O2 gas ratio, SOFC voltage and microstructure
To trigger the operation of the SOFC lamella in a single-chamber
configuration, the temperature was lowered to 600 °C. In addition to
limiting thermal stress, this temperature was selected in this single-
chamber configuration to limit the activity of the LSMcathode towards
the fuel oxidation reaction59, while still ensuring the activity of the Ni/
YSZ anode towards this reaction (>550 °C)60. The forming gas H2/N2

flowwas set to 3ml/min before introducing an additional flowof O2 of
~0.1ml/min, leading to an increasing O2-to-H2 ratio in the ETEM. Note
that the O2 flow was set to the minimum value allowed by the Brooks
mass flow controller ahead of the ETEM. In these conditions, the total
pressure in the ETEM chamber reached 15.8 mbar.
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We investigated the impact of a varying O2-to-H2 ratio and mon-
itored the cell open circuit voltage (OCV) in relation to themorphology
of the Ni catalyst (Fig. 2). Note that several reduction-oxidation cycles
took place between Figs. S1 and 2. Figure 2a plots i) the evolution with
time of the average TEM image intensity of the two Ni grains shown in
Fig. 2b–g (i.e., intensity of the image averaged over the area of the two
grains), ii) the ratio between the O2 and H2 signals obtained from the
residual gas analyser (RGA) appended to the exit of the ETEMchamber,
and iii) theOCVbetween the twoMEMSbiasing electrodes (see Fig. 1a).
The as-measured RGA O2-to-H2 ratio data (full line) was advanced by
180 seconds to correct for the time needed by the gas to travel from
the reaction chamber to the RGA (dashed line, see Materials and
Methods section for details). Figure 2b–g shows a selection of TEM
images detailing the evolution of the two Ni grains, the intensities of
which are plotted in Fig. 2a. The full sequenceof TEM images of Fig. 2 is
available online (https://doi.org/10.5281/zenodo.8414459). From
Fig. 2a, a direct correlation between Ni grain average intensity, pre-
sence ofO2, andOCVbetween the anode and cathode is noticed.When
introducing O2 in the ETEM chamber, the image intensity remains
constant for about 500 s, which coincides with a small increase in OCV
between the MEMS electrodes. As the O2-to-H2 ratio increases further
(from 600 s to 1500 s), the OCV drops rapidly back to a value close to
its initial baseline, while the Ni grains become darker. This lowering of
the TEM image intensity is indicative of an oxidation of the Ni grains to
NiO: oxygen is incorporated in the Ni grains, leading to a thickening of
the grains and to the filling of voids (see arrowheads in Fig. 2b–d),
which in turn decreases the number of electrons collected by the TEM
camera due to additional scattering to high angles. This oxidation of
the Ni catalyst in the TEM images is confirmed by tracking the evolu-
tion of electron energy-loss spectra (EELS) of theNi-L2,3 edges (Fig. S3).
The increasing intensity of the Ni-L3 edge (~855 eV) with respect to the
L2 edge (~872 eV) indicates an oxidation of Ni during the first part of
the experiment61. As discussed elsewhere39,49,62, this volume expansion
of Ni upon oxidation is larger than that predicted by the Pilling-
Bedworth ratio due to unbalancedmass transport mechanisms. In this

temperature range <1000 °C, Ni2+ ions diffuse outwards through the
NiO scale grain boundaries faster thanO2- ions diffuse inwards, leading
to the injection of vacancies at the Ni/NiO interface and eventually to
the formation of internal voids within the growing NiO scale. When
stopping the O2 flow at ~1500 s, a delay of several minutes (until
~2300 s) is observed before the image intensity starts to increase again
as theNiOgrains reduce back toNi (Fig. 2f). TheNi grains shrink during
the reduction reaction andporosity re-appearswithin these grains (see
arrowheads in Fig. 2e–g). Inparallel, theOCVstarts to increasewhenO2

is removed after ~1500 s, beforedecreasing from ~2500 s onwards. The
OCV increases and decreases at a slower rate compared to the first
peak (when O2 was introduced in the chamber).

Correlation between Ni oxidation state and SOFC voltage
From Fig. 2c and the EELS data of Fig. S3, it appears that the first
increase in OCV is correlated with the presence of Ni in its metallic
state (smaller volume, compact morphology with some open porosity
as shown by the arrowhead, lower Ni L3/L2 EELS ratio). To rationalise
theOCVvariations observed in Fig. 2 andexplain the secondOCVpeak,
similar sequences capturing the oxidation and reduction of the Ni
catalyst were performed at higher spatial resolution. Figure 3 details
the morphological changes occurring at the surface of one Ni grain
during an oxidation and then a reduction. Figure 3a shows the evolu-
tion in time of an intensity profile taken across a Ni/void interface,
which is shown in the form of a contour plot (taken from the region
marked by an arrow in Fig. 3b). The RGA andOCV data are also plotted
in Fig. 3a. A first increase in OCV is observed after ~380 s, which coin-
cides with the presence of both O2 and H2 in the ETEM chamber and
with Ni in its metallic state (as in Fig. 2). Indeed, the intensity profile
taken at the surface of one Ni grain does not change during these early
stages, despite the (low) O2 partial pressure now being present in the
chamber (Fig. 3a). The dense Ni grain morphology remains identical
between Fig. 3b, c. As the O2-to-H2 ratio increases after 400 s of
experiment, a NiO scale starts to formon themetallic Ni grain (Fig. 3d).
The surface of the Ni grain retracts towards the centre of the Ni grain
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Fig. 1 | TEM lamella of a SOFCmounted on a MEMS with heating and electrical
biasing/monitoring capabilities. a Scanning electron microscopy (SEM) image of
a MEMS chip for operando transmission electron microscopy (TEM). The anode
and cathode of the SOFC lamella are electrically connected to the biasing

electrodes of the MEMS. b STEM ADF micrograph of the electrically connected
SOFC sample, and c corresponding STEM EDX maps of the K edges of the main
elements present in the initial SOFC device acquired from the dashed area shown
in b.
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(see dashed line marking the Ni/NiO interface in Fig. 3a, d, e). The Ni
grain is now covered by a NiO scale that expands outwards. The TEM
image intensity within the region that was previously a void now
decreases as NiO is now forming there (arrowhead in Fig. 3a, d). Once
the O2 flow is stopped and the O2-to-H2 ratio starts to decrease after
1500 s, the position of the Ni/NiO interface stops retracting and
remains immobile along the y axis of the line profile. In parallel, the
intensity at the location of the NiO scale starts to decrease further (see
black arrow in Fig. 3a, e). As itwill be confirmedbelow in Fig. 4, this loss
in intensity results from the growth of new Ni domains directly on the
NiO scale as theO2-to-H2 ratio decreases. TheOCV increaseswhenNi is
present on the outer surface of theNiO scale. Furthermore, Ni L3,2 EELS
data shown in Fig. S3 is consistent with such amixedNiO/Ni system: an
intermediate L3/L2 ratio is measured in these conditions. After 2200 s,
the Ni/NiO interface is observed to move downwards as the NiO scale
disappears and the Ni islands present on the scale surface merge with
the centre of the Ni grainwhich did not fully reduce (see half black half
white arrows in Fig. 3a, f). In Fig. 3g, the NiO scale has completely
disappeared. The second voltage increase from ~1500 s to ~2300 s is
broader than the first one. The full dataset used to make Fig. 3 is
available online (https://doi.org/10.5281/zenodo.8414459).

To verify that the second OCV increase coincides with the
nucleation of Ni islands on the NiO scale, higher magnification images
of the interface analysed in Fig. 3a are reported in Fig. 4. Lattice fringes
can be periodically resolved, enabling an indexation of the different
phases depending on the environmental conditions. At low O2-to-H2

ratios, fast Fourier transforms (FFT) reveal that the presence of Ni (111)
reflections coincides with the first OCV increase observed after ~400 s

(Fig. 4a), in agreement with previous interpretations. When reaching
higher O2 partial pressures, new crystalline domains form on the sur-
face of the Ni grains 550 s after the start of the experiment. Lattice
fringes with the same lattice spacing (~4.7 nm−1) but with a different
orientation than the parent Ni grain can be resolved: these are attrib-
uted to NiO (200) planes (Fig. 4c, g). In addition, faint reflections that
correspond to NiO (111) planes can also be detected (4.1 nm−1). At this
point, the OCV starts to drop, which is consistent with an oxidation of
Ni. TheO2flowwas then stoppedbefore reaching a full oxidationof the
Ni grains. After an incubation time (from 1500 s to 2150 s), Ni (200)
reflections (5.3 nm−1) start to appear on the NiO scale (Fig. 4d, h). This
observation confirms the presence of Ni islands on the NiO scale in
these intermediate O2-to-H2 ratio conditions, which coincide with an
increase in OCV. The NiO scale then becomes fully reduced after
2600 s as the O2-to-H2 ratio decreases: the Ni islands present on the
surface eventually merge with the parent Ni grain and the OCV drops
back to its baseline value (Fig. 4e, i). As it was not fully oxidised, the Ni
grain keeps its initial orientation after one partial oxidation and
reduction cycle. All the images of the experiment linked to Fig. 4 canbe
found online (https://doi.org/10.5281/zenodo.8414459).

From Figs. 2–4, the increase in OCV of the single-chamber SOFC
coincides with the presence of bothmetallic Ni on the outer surface of
the anode and a small partial pressure of O2 in the chamber. When one
of these two criteria is not fulfilled the OCV measured across the cell
drops back to its baseline value. It should be noted that the minimum
flow allowed by the mass flow controllers coupled with the maximum
pressure achievable in the ETEM chamber limited us to transient
experiments: a constant O2-to-H2 ratio maintaining the Ni reduced in
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cesses. Arrowheads highlight morphological changes occurring during the oxida-
tion and then reduction of Ni, see text for details.
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the anode side and sufficient O2 to have a constant OCV could not be
reached in the ETEM. In other words, the thin lamella oxidised quickly
upon O2 exposure. These oscillations triggered by the oxidation of the
Ni anode have also been reported in literature when studying bulk
systems58. Another observation is that the baseline voltage value of
about 0.55mV measured here does not depend on the gas atmo-
sphere: it is similar in H2/N2 and in O2-rich atmospheres.

Single-chamber operation of standard SOFCs
The samecathode-electrolyte-anode cell was studied ex situ in a single-
chamber configuration at 600 °C. The difference is that these ex-situ
measurements performed in an oven involved atmospheric pressures
and 14-mm diameter button cells instead of pressures of a few mbar
and µm3 lamellae as in the ETEM. The results shown in Fig. S4a reveal
trends that are qualitatively similar to those observed in situ in the
ETEM. Starting from a Ni/YSZ anode in a H2 atmosphere, a first peak in
OCV occurs at intermediate O2-to-H2 ratios (0.5) shortly after adding
O2 in the chamber. The OCV then decreases at higher O2 partial pres-
sures, likely as a result of the oxidation of the Ni catalyst. After
decreasing the O2 flow midway through the experiment, another OCV
peak appears when back to intermediate O2-to-H2 ratios. Finally, the
OCV decreases sharply as O2 is fully removed from the chamber. One

key difference with environmental transmission electron microscopy
experiments is that theOCVmeasured ex situ reaches 0.8 V, a standard
value for (single-chamber) SOFCs58. Furthermore, from the ex-situ
tests shown in Fig. S4 and as-expected, the OCV is maximum around
the stoichiometric O2-to-H2 ratio of 0.5.

The OCV forming between the cathode and anode of a SOFC
depends on the difference between the oxygen partial pressures at the
cathode and anode, PO2,cathode

and PO2,anode
, respectively. The OCV is

defined by the Nernst equation OCV = RT
nF lnð

PO2,cathode
PO2,anode

Þ, where R is the

ideal gas constant, T the temperature, n the number of electrons
involved in the reaction, and F the Faraday constant58. In a single-
chamber SOFC, this difference in PO2

results from the difference in

selectivity between the electrodes: the anode needs to favour the

partial oxidation of the fuel (H2 +O
ð2�Þ $ H2O+2e�, reversible reac-

tion at OCV), while the cathode should promote the electrochemical
reduction of the oxygen (12O2 + 2e

� $ O2� at OCV). Based on the
Nernst equation, the small OCV gains over the baseline measured in
the ETEMof 0.1mVcorrespond to a difference inPO2

between cathode

and anode of 0.5%. While this value is orders of magnitude below the
OCV measured ex situ (0.8 V), only few TPBs are present in the thin
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surface of the Ni grain, as discussed in the text.
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TEM lamella to create this difference in PO2 :
Furthermore, pressure

conditions differ by several orders of magnitude when comparing
experiments performed in the ETEM to the ones at atmospheric
pressure in the oven.

To evaluate whether this difference in PO2
between anode and

cathode could also result from the full oxidation of the fuel directly in
the anode (H2 +

1
2O2 $ H2O) with the cathode remaining inactive, we

measured in an oven the OCV of an electrolyte-anode half-cell con-
tacted using a Au mesh as a function of the O2-to-H2 ratio (Fig. S4b).
The half-cell system exhibits a different behaviour than the full cell: a
single increase inOCV is observed initially at increasingO2-to-H2 ratios,
followedby a slowOCVdecay as theO2-to-H2 ratio is kept constant and
then decreased back to 0. When ramping up the O2 flow to reach the
stoichiometric O2-to-H2 ratio of 0.5, it appears that the first peak in
OCV occurs irrespective of the presence of the cathode. On the other
hand, the second increase in cell OCV previously observed with full
cells is not measured with the half-cell system. The cell OCV becomes
negative towards the end of the experiment, indicating that the anode
eventually starts to act as a cathodewith respect to the Au electrode in
these conditions63. Such negative voltages are typically observedwhen

NiO reduces to Ni (Fig. S5). As Au is inert towards the fuel64, the
absence of such negative OCV values in experiments performed with
full cells indicate that the cathode is active and contributes to the
overall electrochemical reaction, at least for the second OCV peak. It
should be noted that the constrictivity and tortuosity of the different
components of the full cells or half button cells affect the OCV trends
measured ex situ (see Fig. S6 for cross-section SEM imageof thebutton
cell). Indeed, the oxidation state of the Ni phase will evolve in time
throughout the anode as a function of the gas atmosphere, which will
affect the permeation of the different gases within the anode (as the Ni
is oxidising/reducing) and in turn the OCV (see Fig. S7 and associated
explanation). The effect is absent in environmental transmission
electron microscopy experiments due to the difference in the geo-
metry of the samples under test (thin lamellae with large free surfaces
versus bulk samples).

Single-chamber SOFC operation in the ETEM
Finally, to evaluate further the activity of the cathode directly in the
ETEM, the current-voltage characteristics of a full cathode-electrolyte-
anode cell were measured as function of the gas atmosphere compo-
sition (Fig. S8). For these experiments, a thin TEM lamella featuring the
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full cathode-electrolyte-anode cell was connected to a sourcemeter
instead of a voltmeter. The results should be analysed with care as
currents in the pA range are measured. The electron beam was hence
blanked during these experiments to avoid impacting the J-V data.
Variations in O2-to-H2 ratio are found to affect the overall current-
voltage trends. Starting with Ni in its metallic state in a reducing
atmosphere as in Figs. 2–4, the introduction of a small flowof O2 in the
ETEM chamber leads current-voltage characteristics qualitatively
similar to those measured with bulk SOFCs, with the thin lamella
delivering what appears to be a small power in these conditions. At
longer O2 exposures, Ni fully oxidises to NiO and the system becomes
highly resistive and hence unable to “generate” any power. Combined
with the ex-situ analyses detailed above comparing full and half cells,
these current-voltage measurements obtained here in the ETEM indi-
cate that the thin lamella seems to be functioning inside the micro-
scope, meaning that both the cathode and anode are active.

Figure 5 rationalises the operando observations obtained inside
the ETEM. Starting with the Ni catalyst in its metallic electrochemically
active state, the OCV remains low at small O2-to-H2 ratios as the O2

electrochemical reduction reaction at the cathode side is inhibited due
to the absence of O2 (Fig. 5a). At increasing O2-to-H2 ratios, a small yet
measurable OCV gain is measured (Fig. 5b). While the full oxidation of
the fuel directly on the anodemay contribute to this firstOCV gain, the
difference in selectivity between the anode and cathode also ensures
that someof theO2 reduces at the cathode and someof theH2 oxidises
partially at the anode. As the O2-to-H2 ratio continues to increase, the

Ni catalyst starts to oxidiseon its surface, which inhibits the adsorption
and dissociation of H2, and hence stops the electrochemical reaction
(Fig. 5c).When theO2-to-H2 ratio decreases, Ni islands start to nucleate
on the NiO scale, leading to the formation of electrochemically active
sites in the anode and to a second OCV gain (Fig. 5d). The NiO scale
then completely reduces to metallic Ni as the O2-to-H2 ratio decreases
further. Belowa certainO2-to-H2 ratio threshold, thepartial pressureof
O2 is insufficient to sustain the oxygen reduction reaction in the
cathode and the H2O formation reaction stops (Fig. 5e).

Overall, we demonstrated here that a SOFC can be analysed
operando in a single-chamber configuration by environmental trans-
mission electron microscopy. Both H2 and O2 were introduced in the
microscope chamber, whilst keeping the cell at high operating tem-
perature (600 °C) and observing its microstructure down to the
atomic scale. By varying theO2-to-H2 ratio, direct correlations between
cell OCV, gas atmosphere and microstructure of the Ni catalyst were
established. At intermediate O2-to-H2 ratios and when the Ni catalyst is
maintained in its metallic state, a small yet distinct gain in OCV
between the two electrodes of the thin FIB-prepared lamella is mea-
sured. Based on the comparison with ex-situ experiments and current-
voltage measurements obtained in situ in the microscope, the OCV
that builds up in these conditions appears to result at least partially
from the difference in selectivity between the anode and cathode for
the partial fuel oxidation and oxidant gas reduction reactions,
respectively. Depending on O2-to-H2 ratio, the surface oxidation of Ni
stops the fuel oxidation reaction, while the growth of Ni islands on the
NiO scale restarts it. Looking ahead, such operando experiments in the
ETEM should enable to investigate a wide range of degradation path-
ways affecting SOFCs/SOECs, notably the poisoning of electro-
chemically active TPBs of both cathode and anode, or the impact of a
coarsening of the Ni catalyst.

Methods
FIB samples for operando characterizationwerepreparedusing aZEISS
Crossbeam 540 and contacted to a double-tilt 6 contacts DENSsolu-
tions TEM holder and eventually to a voltmeter. The FIB-prepared
samples were thinned once on the MEMS chip using a final voltage of
5 kV to reduce Ga+-induced damage and possible Ga+-rich surface
short-circuits, which are particularly detrimental to biasing experi-
ments. The thickness of the TEM lamella was ~200nm. TEM experi-
ments were performed in an image-Cs-corrected environmental FEI
Titan microscope operated at 300 kV equipped with a CMOS camera
(Gatan Oneview), a solid state EDX detector (Oxford 80), and an
electron energy-loss spectrometer (Gatan Tridiem 965 ER). Analysis
involved STEM imaging using an ADF detector, high-resolution TEM
imaging, EDX and EELS. TEM movies were recorded using a home-
madeGatan DigitalMicrograph script, which blanks the electron beam
between image acquisitions to avoid any contribution of secondary
electrons to the measured voltage and beam-induced artefacts. TEM
micrographs were acquired here every 20 seconds. A mass spectro-
meter (Pfeiffer Vacuum Model PrismaPlus™ QMG 220) located at the
exit of the ETEM chamber was used to quantify the O2-to-H2 gas ratio
by following the mass-to-charge ratios of 32 and 2 for O2 and H2,
respectively. The time taken by the gas to reach the RGAwas estimated
by monitoring the delay between the introduction of the gas and its
detection by the RGA. Data from the voltmeter was filtered: outliers
induced by the periodic presence of the electron beam (every
20 seconds) were removed using a homemade Mathematica script,
before filtering the resulting data using a gaussian filter spanning
across 4 data points. EELS acquisitions were carried out in STEMmode
using the spectrum imaging approach implemented in Gatan Digital
Micrograph. The spectra were background-subtracted using a power
law function, aligned with respect to the Ni-L3 energy at ~855 eV, and
spectrawere normalised on theNi-L2 edge to highlight the evolution of
the L3/L2 intensity ratio. The TEM lamellae were relatively thick
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(thickness/electron mean free path ≥ 1) to maintain the structural
integrity of the SOFC, however preventing a precise quantification of
theNi oxidation state. Current-voltagemeasurementswere performed
in the environmental FEI Titan TEM by contacting the MEMS chip to a
sourcemeter. The voltage was swept from −0.04V to +0.04 V to avoid
passing a high current density through the thin lamella. Scanning
electron microscopy images were acquired with a Zeiss Gemini 2 with
an acceleration voltage of 3 kV and a beam current of 300 pA.

Ex-situ tests were performed using a 14-mm diameter button cell
featuring the same materials from the same batch as those tested by
operando environmental transmission electron microscopy or
electrolyte-anodehalf cellsmadeof similarNi/YSZmaterials but froma
different batch. The button cells were pressed between two gold
meshes and placed inside a vertical furnace (Rohde, TE 10 Q SEV). The
gas composition was adjusted by mixing individual gases. Each flow
was accurately controlled by calibrated primary digital Mass Flow
Controllers (MFCs, Bronkhorst, F-201CV, ΔΦ = 0.005Φ +0.001 max
scale). Equal gas flows were sent to the anode and cathode, from the
centre of the cell and spreading outwards. The cell was heated up to
600 °C at a rate of 25 °C/h under ambient atmosphere then purged
with pure nitrogen. The reduction of the nickel anode was performed
with 5 v/v% of H2 in N2 for 22 h, before ramping up and down the O2

content of the gas.More specifically, both the anode and cathodewere
constantly fed with a primary mixture of 10.5 sccm of H2 and
198.5 sccm of N2. Oxygen was progressively added to this primary
mixture until the ratio O2-to-H2 reached the value of 2, always keeping
the exact same conditions on both sides of the SOFC. The partial
pressures in the ex-situ configuration were several orders of magni-
tude higher than the ones achievable in the ETEM. The cell voltage was
measured between the two gold meshes and the temperature was
measured with a K-type thermocouple placed as close as possible to
the cell (about 1mm). Both signals were recorded online with a data
logger (Fluke, Hydra).

Data availability
ETEM data used to make Figs. 2–4 are available at https://doi.org/10.
5281/zenodo.8414459. Source data are provided with this paper.
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