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1 Introduction and result

The soft theorem examines the infrared properties of a scattering amplitude involving a low
(soft) momentum photon or graviton, in addition to other asymptotic particles. It establishes
a relationship between this amplitude and the one without the low momentum photon or
graviton. In a series of papers [2–6], it has been established that tree level soft photon and
soft graviton theorems in four spacetime dimensions (D = 4) are just the manifestation
of gauge invariance and general coordinate invariance at the scattering amplitude level.
Soft factorisation alone does not provide profound insights into the ultraviolet completion
of QED or quantum gravity theory, nor does it impose additional constraints on the
quantum theory beyond what has already been achieved by gauge invariance and general
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coordinate invariance.1 Instead, given an effective field theory (EFT) action with potential
non-minimal interactions permitted by gauge invariance or general coordinate invariance,
one can systematically compute the non-universal soft factors up to a certain order in
the soft momentum expansion [3, 5, 8]. In the past, there were challenges in obtaining
loop corrections to the subleading soft photon and graviton theorems in D = 4 due to
the presence of infrared divergence in traditional scattering amplitudes [9, 10]. However,
this issue has been successfully resolved in [1] by directly working in D = 4 and carefully
analyzing the possible non-analytic structures around ω = 0. In this work, the subleading
soft photon and soft graviton theorems have been derived at the one-loop level, taking
into account both electromagnetic and gravitational interactions. Interestingly, it has been
observed that the subleading soft factors emerge at an order lnω, where ω represents the
energy of the soft photon or graviton. The loop corrected subleading soft factor is dominant
compare the tree level subleading soft factor, which is of order ω0, as the energy approaches
zero (ω → 0). The existence of the lnω soft graviton theorem has been confirmed in [11, 12]
with perfect agreement with the result of [1] in the massless limit.

The soft graviton theorem results offer an intriguing application in deriving low-
frequency gravitational wave forms and gravitational memory for astrophysical scattering
events from their classical limit [13–23]. In a typical classical gravitational scattering
scenario, one provides initial scattering data such as masses, velocities, sizes, intrinsic
angular momenta, and impact parameters of the scattered objects, along with the specified
interaction among them. The goal is to determine the gravitational waveform as an output.
However, the classical limit of the universal soft graviton theorem directly provides the
low-frequency gravitational waveform in terms of both the initial and final scattering data,
regardless of the knowledge of the interaction involved in the scattering process. This
suggests a novel approach for deriving low-frequency and late-time gravitational waveforms
by directly studying classical gravitational scattering processes with both initial and final
scattering data, known as the classical soft graviton theorem. This approach has been
successfully pursued in [15, 16, 21, 23]. The derivation of the classical soft graviton theorem
readily extends to higher orders in the low-frequency expansion of the gravitational waveform,
and numerous higher-order terms have been derived. However, deriving their quantum
counterparts from the analysis of scattering amplitudes proves to be challenging in general,
as discussed in the main body of the paper.

1We would like to emphasize that the Ward identities relating these soft theorems to asymptotic symmetries
also do not provide any additional constraints on the quantum theory of electromagnetism or gravity beyond
what has already been achieved by gauge invariance and general coordinate invariance [7]. Instead, the Ward
identities are simply the manifestation of the equations of motion for low-frequency photons or graviton
fields at the level of scattering amplitudes. Where the soft charge is represented as an integral over the
radiation mode of gauge or graviton fields and the hard charge is an integral over the inverse propagator
operating on the current or stress tensor associated with finite energy scattered particles. The asymptotic
symmetry parameters (large gauge transformation and asymptotic radial modes of bulk diffeomorphism) on
the celestial sphere are just smearing functions that appears in both the integrands of the soft and hard
charge expressions. The conservation of asymptotic charges about spatial infinity manifests as crossing
symmetry relation between the two QED or gravitational S-matrices involving the soft photon/graviton in
the ingoing and outgoing states.
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Consider a gravitational scattering amplitude involving N number of finite energy par-
ticles (hard particles) with momenta, spins and polarizations {pi,Σi, ϵi} for i = 1, 2, · · · , N

(N ≥ 4) and one low-energy (soft) graviton2 with momentum and polarization k, ε, and
denote this scattering amplitude by A(N+1)({ϵi, pi,Σi}, ε, k

)
. We are following the conven-

tion that all the particles are ingoing, so if some of the particles are outgoing then we have
to flip the sign of the four momenta for those particles. We will treat the soft graviton
as outgoing with energy ω, so according to our convention kµ = −ωnµ with nµ being the
null vector whose spatial part denotes the direction of soft graviton emission. Now the soft
expansion of this (N + 1) particle amplitude takes the following form

A(N+1)({ϵi, pi,Σi}, ε, k
)
=

√
8πG

N∑
i=1

ϵi,α

[
(Sgr

tree) α
β + (Sgr

1-loop)
α

β + (Sgr
2-loop)

α
β + · · ·

]
×A(N)β

(i) (pi) , (1.1)

where A(N)β
(i) (pi) represents the i’th particle polarisation (ϵiβ) stripped N -particle amplitude

A(N)({ϵi, pi,Σi}
)
, which is defined by the following relation

A(N)({ϵi, pi,Σi}
)
≡ ϵiβ A(N)β

(i) (pi) . (1.2)

In (1.1), the expression of tree level “soft factor”3 for single soft graviton emission reads [2,
3, 8, 24–33]

(Sgr
tree) α

β = εµνpµ
i pν

i

pi · k
δα

β + εµνpµ
i kρ

pi · k

({
pν

i

∂

∂piρ
− pρ

i

∂

∂piν

}
δα

β +
(
Σρν

i

) α

β

)
+O(ωn, n ≥ 1) . (1.3)

In D = 4 analyzing tree level scattering amplitudes for effective field theory the non-universal
sub-subleading soft graviton factor at order ω has also been derived in [3, 8]. Reference [3]
explicitly evaluated the non-universal contribution to the sub-subleading soft factor in terms
of the non-minimal coupling of two finite energy fields to a soft graviton field through the
Riemann tensor, and the general structure of the three-point 1PI (one-particle irreducible)
vertex involving two hard particles and a soft graviton. By extending the analysis of [3], it
becomes evident that a complete soft factorization is not achievable at order ωn for n ≥ 2
in a generic theory of quantum gravity involving all possible higher derivative corrections
allowed by general covariance. However, a partial soft factorization has been accomplished
by enforcing linearized gauge invariance of the (N + 1)-particle amplitude in [6, 34]. The
generalization of the tree-level soft factor Sgr

tree for multiple soft graviton emissions up to
subleading order can be found in [4, 5, 35–43].

2The graviton is the particle created by operating metric fluctuation field hµν(x) on vacuum, where the
classical metric fluctuation is defined by hµν(x) = 1

2
√

8πG
(gµν(x)− ηµν).

3The actual tree level soft factor should be think of the expression (1.3) with a sum over hard particles
from i = 1, 2, · · · , N . Throughout the whole paper, we follow the same terminology “soft factor” referring to
the soft factor expression without hard particle sum.
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The one-loop contribution to the “soft factor” for single soft graviton emission
in (1.1) reads

(Sgr
1-loop)

α
β = Kreg

phase
εµνpµ

i pν
i

pi · k
δα

β + εµνpµ
i kρ

pi · k

{
pν

i

∂Kreg
gr

∂piρ
− pρ

i

∂Kreg
gr

∂piν

}
δα

β

+ Kreg
phase

εµνpµ
i kρ

pi · k

({
pν

i

∂

∂piρ
− pρ

i

∂

∂piν

}
δα

β +
(
Σρν

i

) α

β

)

+ εµνkρkσ

pi · k

{
pµ

i

∂Kreg
gr

∂piρ
− pρ

i

∂Kreg
gr

∂piµ

}({
pν

i

∂

∂piσ
− pσ

i

∂

∂piν

}
δα

β +
(
Σσν

i

) α

β

)

+ O(ωn, n ≥ 0) + O(ωn lnω, n ≥ 2) , (1.4)

where

Kreg
gr = i

2 (8πG)
N∑

ℓ=1

N∑
j=1
j ̸=ℓ

{
(pℓ.pj)2−

1
2p2ℓp2j

} ∫ Λ

ω

d4ℓ

(2π)4
1

ℓ2−iϵ

1
(pℓ ·ℓ+iϵ) (pj ·ℓ−iϵ)

≃−iG (lnω)
N∑

ℓ=1

N∑
j=1
j ̸=ℓ

{
(pℓ.pj)2− 1

2p2ℓp2j

}
√
(pℓ.pj)2−p2ℓp2j

{
δηℓηj ,1−

i

2π
ln
(

pℓ.pj+
√
(pℓ.pj)2−p2ℓp2j

pℓ.pj−
√
(pℓ.pj)2−p2ℓp2j

)}
,

(1.5)

and

Kreg
phase = i (8πG)

N∑
j=1

(pj .k)2
∫ ω

R−1

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
k.ℓ + iϵ

1
pj .ℓ − iϵ

≃ −2iG (lnω)
[

N∑
j=1

ηj=−1

pj .k − i

2π

N∑
j=1

pj .k ln
(

p2j
(pj .n)2

)]
. (1.6)

In the expressions (1.5) and (1.6), ηj = +1 if j’th particle is ingoing and ηj = −1 if j’th
particle is outgoing. Under the sign ≃ we only keep the logarithmic contributions after
performing the integrations following [1]. The upper limit of the integration Λ in (1.5)
represents the order of the energy of hard particles and the lower limit of the integration
R−1 in (1.6) represents the order of the energy resolution of the detector. The first line
of (1.4) contains the O(lnω) soft factor which has been derived in [1] as an one-loop exact
result, analyzing one-loop gravitational S-matrices in the theory of scalar coupled to gravity.
In [1] a correction to O(lnω) soft graviton factor due to electromagnetic interaction has
also been derived when the scattering particles carry some electric charges as well. In this
article we re-derive the O(lnω) soft factor for single soft graviton emission in a generic
theory of quantum gravity for scattering of particles with arbitrary mass and spin. This
investigation will demonstrate the universal (independent of theory) nature of the O(lnω)
soft factor, while also extending the infrared divergence factorization prescription proposed
in [1] to encompass a broad range of quantum gravity theories. In this paper we also
conjecture the order ω lnω soft factor given in the second and third lines of (1.4) which
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is derivable from the analysis of one-loop scattering amplitude for the scattering generic
spinning particles in a generic theory of quantum gravity extending the analysis of this
article. The classical limit of this O(ω lnω) soft factor has already been derived in [23]
in the name of spin-dependent classical soft graviton theorem which provides evidence on
the correctness of the conjecture.4 Note that the tree level subleading soft theorem result
at order ω0 in (1.3) is not universal as it receives correction at one-loop order, which is
expected to be dependent on the theory as well as the value of detector resolution (IR
regulator) [9, 10].

The two-loop contribution to the “soft factor” for single soft graviton emission
in (1.1) reads

(Sgr
2-loop)

α
β = 1

2
{

Kreg
phase

}2 εµνpµ
i pν

i

pi · k
δα

β + Kreg
phase

εµνpµ
i kρ

pi · k

(
pν

i

∂Kreg
gr

∂piρ
− pρ

i

∂Kreg
gr

∂piν

)
δα

β

+ 1
2

N∑
i=1

εµνkρkσ

pi · k

(
pµ

i

∂Kreg
gr

∂piρ
− pρ

i

∂Kreg
gr

∂piµ

)(
pν

i

∂Kreg
gr

∂piσ
− pσ

i

∂Kreg
gr

∂piν

)
δα

β

+O(ωn(lnω)2, n ≥ 2) + O(ωn lnω, n ≥ 1) +O(ωn, n ≥ 1) . (1.7)

The above result was conjectured in [21] as a two-loop exact result and can be obtained by
analyzing two-loop amplitudes using the same methodology being developed in this paper.
The classical limit of this order, denoted as O

(
ω(lnω)2

)
, was derived under the name of

the sub-subleading classical soft graviton theorem in [21]. This classical derivation offers
substantial evidence supporting the validity of the above two-loop soft factor. Note that the
O(ω lnω) soft factor in the second and third lines of (1.4) at one-loop receives a correction
at two-loop order. This correction is expected to depend on the theory of quantum gravity
and the value of detector resolution (IR regulator), hence non-universal. From the analysis
of the n-loop gravitational S-matrix, it is expected that the new leading non-analytic soft
graviton factor, as the frequency ω approaches zero, behaves like ωn−1(lnω)n relating it
to tree level N -particle amplitude. The general structure of the order ωn−1(lnω)n soft
graviton theorem is provided in [21].

Note that the “tree”, “1-loop”, . . . subscripts in the soft factors in the expression (1.1)
only specifies the first appearance of the soft factors in the perturbative analysis of the (N+1)-
particle amplitudes at that order (tree or n-loop) and it multiplies to the corresponding
tree-level N -particle amplitudes. But they also appears in the analysis of higher loop
amplitudes as well. For example Sgr

tree also appears as a soft factor in the analysis of
(N + 1)-particle n-loop amplitude relating it to the N -particle n-loop amplitude for all
n ≥ 1. Similarly Sgr

1-loop also appears as a soft factor in the analysis of (N + 1)-particle
n-loop amplitude relating it to the N -particle (n − 1)-loop amplitude for all n ≥ 2, and
Sgr

2-loop also appears as a soft factor in the analysis of (N + 1)-particle n-loop amplitude
relating it to the N -particle (n − 2)-loop amplitude for all n ≥ 3. These observations also
apply to the soft photon theorem results provided below.

4For the scattering of non-spinning particles, the G2ω lnω waveform is consistent with the results
from [11, 12, 44], as recently confirmed by Paolo Di Vecchia. When it comes to the scattering of spinning
objects, it should also align with the findings of [45] when one takes soft limit, as will be reported in a
revised version of [46], communicated by Carlo Heissenberg.
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Now let us consider the same setup of scattering but turn off the gravitational interaction
and turn on electromagnetic interaction between charged particles. We consider the finite
energy scattered particles carry some electric charges {ei} and study scattering amplitude
involving one soft photon emission with polarization and momentum (ε, k). So in this case
the soft expansion of (N + 1) particle amplitude takes the following form

A(N+1)({ϵi, pi, ei,Σi}, ε, k
)
=

N∑
i=1

ϵi,α

[
(Sem

tree) α
β + (Sem

1-loop) α
β + (Sem

2-loop) α
β + · · ·

]
×A(N)β

(i) (pi) , (1.8)

where A(N)β
(i) (pi) is defined through the relation (1.2). In (1.8), the expression of tree level

“soft factor” for single soft photon emission reads [5, 8, 24–27, 47–53]

(Sem
tree) α

β = ei
εµpµ

i

pi · k
δα

β + ei
εµkρ

pi · k

({
pµ

i

∂

∂piρ
− pρ

i

∂

∂piµ

}
δα

β +
(
N ρµ

i (−pi)
) α

β

)

+O (ωn, n ≥ 1) , (1.9)

where the generic expression for the non-universal term N ρσ
i (−pi) contributing to the

subleading soft photon theorem has been derived in [5] and its explicit form in provided
in (A.3). N ρµ

i (−pi) depends on the non-minimal coupling of two finite energy fields to a
soft photon field through the field strength, and the general structure of the three-point
1PI vertex involving two hard particles and a soft photon. Extending the analysis of [5] it
can be argued that a complete soft factorization of order ωn for n ≥ 1 is not possible in
a generic theory of QED with all possible non-minimal couplings allowed by U(1) gauge
invariance, though a partial soft factorization is achievable by enforcing gauge invariance of
the (N + 1)-particle amplitude [6, 34]. The generalization of the tree-level soft factor Sem

tree
for multiple soft photon emissions up to subleading order can be found in [5].

The one-loop contribution to the “soft factor” for single soft photon emission in (1.8) reads

(Sem
1-loop) α

β = ei
εµkρ

pi · k

{
pµ

i

∂Kreg
em

∂piρ
− pρ

i

∂Kreg
em

∂piµ

}
δα

β

+O(ωn lnω, n ≥ 1) +O(ωn, n ≥ 0) , (1.10)

where

Kreg
em = i

2

N∑
ℓ=1

N∑
j=1
j ̸=ℓ

eℓej(pℓ ·pj)
∫ Λ

ω

d4ℓ

(2π)4
1

ℓ2−iϵ

1
(pℓ ·ℓ+iϵ) (pj ·ℓ−iϵ)

≃− i

2

N∑
ℓ=1

N∑
j=1
j ̸=ℓ

eℓej

4π
(lnω) pℓ ·pj√

(pℓ.pj)2−p2ℓp2j

{
δηℓηj ,1−

i

2π
ln
(

pℓ.pj+
√
(pℓ.pj)2−p2ℓp2j

pℓ.pj−
√
(pℓ.pj)2−p2ℓp2j

)}
.

(1.11)

The O(lnω) soft factor for single soft photon emission in (1.10) has been derived in [1]
as an one-loop exact result, analyzing one-loop S-matrices in the theory of minimally
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coupled scalar QED. There a correction to O(lnω) soft photon factor due to gravitational
interaction has also been derived. In this article we re-derive the O(lnω) soft factor in a
generic theory of quantum gravity for scattering of particles with arbitrary mass, charge
and spin in presence of non-minimal coupling. This investigation will demonstrate the
universal (independent of theory) nature of the O(lnω) soft factor, while also extending
the infrared divergence factorization prescription proposed in [1, 54] to encompass a broad
range effective field theories for charged objects. The generalization of the one-loop soft
factor Sem

1-loop for multiple soft photon emissions up to subleading order can be found in the
section-(3.5) of [55], and the final result has been provided in (3.58).

The two-loop contribution to the “soft factor” for single soft photon emission in (1.8)
reads

(Sem
2-loop) α

β = ei

2
εµkρ

pi · k

(
pµ

i

∂Kreg
em

∂piρ
− pρ

i

∂Kreg
em

∂piµ

) (
kσ

∂Kreg
em

∂piσ

)
δα

β

+ (lnω)2 ei
(
εµkρ − ερkµ)piµCreg

ρ

(
qi, pi; {ej}, {pj}

)
δα

β

+O(ωn(lnω)2, n ≥ 2) + O(ωn lnω, n ≥ 1) +O(ωn, n ≥ 1) , (1.12)

where

Creg
ρ

(
qi, pi; {ej}, {pj}

)
= −

N∑
j=1
j ̸=i

N∑
ℓ=1
ℓ̸=i

e2i ejeℓ

4 {pi.pjδκ
ρ − pκ

i pjρ}
∂

∂piσ

{
I(pi, pℓ)× pi.pℓ

}∂2I(pi, pj)
∂pσ

i ∂pκ
i

+
N∑

j=1
j ̸=i

N∑
ℓ=1
ℓ̸=j

eie
2
jeℓ

4 {pi.pjδκ
ρ − pκ

i pjρ}
∂

∂pjσ

{
I(pj , pℓ)× pj .pℓ

}∂2I(pi, pj)
∂pσ

i ∂pκ
i

, (1.13)

with

I(pi,pj)=− 1
4π

1√
(pi.pj)2−p2i p2j

δηiηj ,1−
i

2π
ln

pi.pj+
√
(pi.pj)2−p2i p2j

pi.pj−
√
(pi.pj)2−p2i p2j

 . (1.14)

The O
(
ω(lnω)2

)
soft factor for single soft photon emission in (1.12) has been derived

in the section-4 of [21] as a two-loop exact result, analyzing two-loop S-matrices in the
theory of minimally coupled scalar QED. From the analysis of the n-loop QED S-matrix,
it is expected that the new leading non-analytic soft factor for single photon emission, as
the frequency ω approaches zero, behaves like ωn−1(lnω)n and it relates to the tree level
N -particle amplitude. The general structure of the order ωn−1(lnω)n soft photon theorem
is provided in [21].

The rest of the paper is organized as follows: in section-2, we establish our conventions
and describe the general definition of IR-finite scattering amplitudes. We also discuss the
EFT action involving massive spinning particles which transform in a generic reducible
representation of the Lorentz group. In section-3, we review the covariantization prescription
and define one-loop IR-finite QED S-matrices involved in the derivation of the soft photon
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theorem. Starting from the IR-finite S-matrices, we derive the soft photon theorem up
to subleading order. In section-4, after reviewing Sen’s covariantization prescription, we
define the one-loop IR-finite quantum gravity S-matrices that are involved in the derivation
of the soft graviton theorem. Starting from the IR-finite S-matrices, we derive the soft
graviton theorem up to subleading order. At the end of both section-3 and 4, we discuss
the possible generalizations of our derivations to higher orders. In section-5, we provide
some open directions to explore in the future after reviewing what we have been achieved
in this article.

2 Setup and strategy

Index convention: we utilize the first few Latin alphabets a, b, c, d, . . . as Lorentz indices
for the tangent space, ranging from 0 to 3. The Latin alphabets starting from i, j, k, ℓ, . . .

are employed as indices for identifying individual hard particles, ranging from 1 to N. The
first few Greek alphabets α, β, γ, δ, . . . are used as polarization indices for spinning particles
on the tangent space, while the Greek alphabets beginning with λ, µ, ν, ρ, σ, τ, . . . serve as
curved space indices, ranging from 0 to 3. In section-3, where we derive the soft photon
theorem solely under electromagnetic interaction in a flat background, we employ both
a, b, c, d, . . . and λ, µ, ν, ρ, σ, τ, . . . as flat space Lorentz indices.

Metric and unit conventions: in our convention four dimensional Minkowski metric
is ηab = diag(−1,+1,+1,+1). We work in the unit where speed of light c = 1 and Planck
constant ℏ = 1 but keep the gravitational constant G explicit. We define κ ≡

√
8πG.

Setup of scattering event: let us consider a scattering amplitude involving N number
of finite energy massive particles (hard particles) with charges, momenta, spins and polariza-
tions {ei, pi,Σi, ϵi} for i = 1, 2, · · · , N and one low-energy (soft) outgoing photon/graviton
with momenta and polarization k, ε, and denote this scattering amplitude by A(N+1). In
our convention we consider all the particles are incoming, so if some particles are outgoing
we need to flip the sign of four momenta and electric charges for those particles. The
energy of outgoing soft photon/graviton is denoted by ω so that kµ = −ωnµ where nµ

being the null vector whose spatial part denotes the direction of soft photon/graviton
emission. Here we are only interested to evaluate A(N+1) at one-loop order which involves
Feynman diagrams involving one virtual photon/graviton running in the loop. Then we
perform soft expansion (ω ≪ |pi|) of A(N+1) to relate it with the N point amplitude which
carries all the hard particles in the asymptotic state but no soft graviton, denoted by
A(N).5 Note that both the scattering amplitudes A(N) and A(N+1) are distributions in
momenta as A(N) contains momentum conserving delta function δ(4)

(
p1 + p2 + · · ·+ pN

)
and A(N+1) contains momentum conserving delta function δ(4)

(
p1 + p2 + · · · + pN + k

)
.

In four spacetime dimensions (D = 4), both scattering amplitudes exhibit infrared (IR)
divergences. Therefore, our first step is to separate out the IR divergent contributions from
both the scattering amplitudes in an unambiguous manner. Then we can obtain the soft

5Note that the soft limit can also be defined covariantly by demanding
∣∣∣ pi.k

pi.pj

∣∣∣≪ 1 for all i, j = 1, · · · , N .
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factor by examining the ratio of A(N+1) and A(N) after full/partial cancellation of the IR
divergent contributions as we explain in later sections.

Feynman diagram conventions: in all the Feynman diagrams describing scattering
amplitudes, time flows from right to left and the particles involved in the scattering will
always be treated ingoing. Solid lines in any diagrams corresponds to massive spinning
particles and dashed lines represent photons/gravitons. If in a figure multiple Feynman
diagrams appears, the counting of their numbers are always from left to right and from
top to bottom. A Feynman diagram will be called an n-loop diagram only if the diagram
contains n number of loops where at-least one virtual photon/graviton is propagating in
each loop. The loops involving only massive virtual particles will be taken care of inside
the massive EFT 1PI vertices and renormalized propagators of the massive EFT. To
determine the Feynman rules for vertices involving photons/gravitons and hard particles,
we follow the covariantization technique developed in the photon/graviton background in
the references [2–5].

Handling IR divergences in the derivation of soft theorem: the traditional S-
matrix in quantum electrodynamics and quantum gravity, in four spacetime dimensions,
exhibits IR-divergence. This is due to the long-range nature of the interactions involved.
Previous attempts to construct IR-finite S-matrices, beginning with the Kulish-Faddeev
construction [56], demonstrated explicit cancellation of IR divergences. However, a system-
atic method for extracting the unambiguous IR finite part remained absent, until Grammer
and Yennie provided one in [54]. A generalization of Grammer-Yennie prescription for
perturbative QCD and quantum gravity can be found in [57] and [1] respectively.

In the derivation of soft photon theorem, Grammer-Yennie prescription helps to factor
out IR divergences from both the amplitudes A(N+1) and A(N) in the following way

A(N) = exp{Kem} A(N)
IR-finite , A(N+1) = exp{Kem} A(N+1)

IR-finite . (2.1)

Above the exponential factor containing Kem takes care of the full IR divergent contribution
and the IR divergent contributions are exactly same for both the amplitudes. An explicit
expression of Kem is provided in (3.28). Basically Grammer-Yennie prescription provides a
systematic procedure to compute IR-finite parts perturbatively for both the amplitudes.
When the soft factor Sem is a multiplicative function instead of differential operator, we get

A(N+1) = Sem A(N) =⇒ A(N+1)
IR-finite = Sem A(N)

IR-finite . (2.2)

Hence to derive the O(lnω) and O
(
ω(lnω)2

)
soft factors in (1.10) and (1.12) we can directly

start from one and two-loop contributions of IR finite amplitude A(N+1)
IR-finite and perform

soft expansion.6

In the derivation of soft graviton theorem, A(N+1) contains some extra divergent
factors relative to A(N) due to Feynman diagrams involving three graviton self-interaction

6In [58] a similar analysis was conducted to deduce Weinberg’s soft photon and graviton theorems from
all loop order amplitudes. In this context, exp{Kem} is referred to as the soft S-matrix generated from a
product of electromagnetic/gravitational Wilson line operators, while A(N)

IR-finite is designated as the hard
S-matrix.
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vertices. An optimistic dream of the factorization IR divergence using the Grammer-Yennie
decomposition proposed in [1] would be (see also [9, 10, 59] for dimensional regularization)

A(N) = exp{Kgr} A(N)
IR-finite , A(N+1) = exp{Kgr + Kphase} A(N+1)

IR-finite , (2.3)

where the IR-divergent expressions of Kgr and Kphase are given in (4.28) and (4.29). The
result mentioned above has only been verified rigorously up to one-loop order. Verifying
it for all loop orders is a computationally challenging task that remains open for future
investigation. Now when the soft factor Sgr is a multiplicative function instead of differential
operator, we get

A(N+1) = Sgr A(N) =⇒ A(N+1)
IR-finite = exp{−Kphase} Sgr A(N)

IR-finite . (2.4)

Hence to derive an unambiguous soft factor by analyzing A(N+1)
IR-finite, we need to regulate the

IR divergence of Kphase using a cut off given by the detector resolution. This procedure can
be followed to derive O(lnω) and O

(
ω(lnω)2

)
soft factors in (1.4) and (1.7) respectively

by analyzing one and two loop IR finite amplitudes. But if we want to derive the O(ω lnω)
soft factor in the second and third lines of (1.4) we need to deal with the following
additional subtleties:

1. Since the order ω lnω soft factor in (1.4) is a differential operator we can not really
commute the soft factor and infrared divergent exponential to get the second equation
of (2.4). Hence to derive the O(ω lnω) soft factor we have to start with the full
divergent scattering amplitude A(N+1) instead of its IR finite part and at the end of
the analysis we may be able to cancel the common IR divergent factor appears in
both amplitudes in the soft theorem relation.

2. Note that the momentum conserving delta function associated with A(N+1) is

δ(4)
(

N∑
i=1

pi + k

)
. On the other hand the momentum conserving delta function as-

sociated with A(N) is δ(4)
(

N∑
i=1

pi

)
. Now Taylor series expansion of the first delta

function around small ω produces a correction of order ω. This correction, when
multiplied with the O(lnω) soft factor, yields an additional factor of order ω lnω at
one-loop order. Therefore, this additional contribution needs to be accounted for, if it
contributes something non-vanishing at this order.

In light of these additional intricacies, we have decided to postpone the derivation of the
order ω lnω soft graviton factor in (1.4) for future study and focus on deriving the order
lnω soft graviton theorem here.

EFT involving massive particles with arbitrary spin: we begin with an effective
field theory (EFT) that describes the dynamics of massive spinning particles. The one-
particle irreducible (1PI) effective action for this EFT is obtained by integrating out all
massive loops. The tree level amplitudes computed using this massive EFT action contain
information about all the loop orders in the original un-integrated massive quantum field
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theory (QFT). However, if the un-integrated QFT includes massless fields, our initial
approach using the 1PI effective action becomes invalid. Nevertheless, our prescription for
covariantization and computation of loop amplitudes, as described below, remains valid. In
such cases, the 1PI effective action should be regarded as the tree level action for the EFT.
Let Φα(x) denotes the set of all massive fields in real representation, present in the 1PI
effective action7 which transforms in a reducible representation of Lorentz group SO(1, 3)
in the following way,

SO(1, 3) : xa → x′a = Λa
b xb = (δa

b + λa
b)xb +O(λ2)

Φα(x) → Φ′
α(x) =

[
exp

{
− i

2λabΣab
}] β

α
Φβ(Λ−1x) , (2.5)

where λab = −λba is the infinitesimal Lorentz transformation parameter and Σab is the spin
angular momentum generator of SO(1, 3) transformation in the real reducible representation.
The subscript index α is used as a combined notation for denoting different fields in the
theory as well as the spin/polarization indices of each of the fields. Under global U(1)EM

the field Φ(x) transforms in the following way,

U(1)EM : Φα(x) → Φ′
α(x) =

[
exp

{
iQθ

}] β

α
Φβ(x) , (2.6)

where θ is the parameter of global U(1)EM transformation and Q is the generator of global
U(1)EM transformation in the real representation of Φ(x). Usually we associate U(1)EM

global charge to complex fields but since we want to covariantize the theory simultaneously
in the background of gravity and gauge theory together following [5], working in terms
of real field components is convenient. For example instead of a complex scalar field we
work with two real scalar fields considering them in a two component vector which rotates
under SO(2) and Q is the generator of SO(2) transformation. In the set of fields denoted
by Φα(x), there may be some elementary fields in the irreducible representation of Lorentz
group which does not transform under global U(1)EM , for those fields the elements of the
charge matrix Q will be zero.

Let us start with the general form of the quadratic part of the massive particle 1PI
effective action8

S(2) = 1
2

∫
d4q1
(2π)4

d4q2
(2π)4 (2π)4δ(4)(q1 + q2) Φα(q1)Kαβ(q2)Φβ(q2)

= 1
2

∫
d4q1
(2π)4

d4q2
(2π)4 (2π)4δ(4)(q1 + q2) ΦT (q1)K(q2)Φ(q2) , (2.7)

7In Φα(x) we also can include massless finite energy particles e.g. hard photon or graviton, in that case
our 1PI effective action should be thought of as tree level action.

8If the original theory contains some massless fields, then this action should be thought of as quadratic
part of the tree level gauge fixed action. Because in presence of massless fields, the 1PI effective action of
the theory may be non-local and the kinetic operator K(q) may not be polynomially expandable around
qµ = 0, which is the key assumption for the validity of the covariantization prescription discussed below.
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where K(q) is the renormalized momentum space kinetic operator which satisfy the follow-
ing condition:

Kαβ(q) = ± Kβα(−q) ,

K(q) = ±
[
K(−q)

]T
. (2.8)

In the second lines of (2.7) and (2.8) we introduced the index free notation, which we follow
through out the article. In the r.h.s. of the above equation, + sign is for bosonic field
and − sign is for fermionic field. For simplicity we work with the + sign considering Φ(x)
being Grassmannian even, but the final result of soft theorem computation will be same
for both bosonic and fermionic fields. The Feynman propagator for the i-th particle with
renormalized mass mi from (2.7) becomes

∆i
αβ(q) = i

[
K−1

i (q)
]
αβ

≡ (q2 + m2
i − iϵ)−1 Ξiαβ(q) , (2.9)

where Ki(q) is the kinetic term for the set of fields representing the i-th particle after proper
diagonalization of the quadratic part of the action S(2). The above equation also defines
Ξi(q) as the residue of the pole of the propagator for i-th particle. The relation between
Ki and Ξi and their momentum derivatives satisfy the following relations in the index free
notation, which will be useful for later computation [2]

Ki(q)Ξi(q)= i(q2+m2
i −iϵ) , (2.10)

∂Ki(q)
∂qa

Ξi(q)=−Ki(q)
∂Ξi(q)

∂qa
+2iqa , (2.11)

∂2Ki(q)
∂qa∂qb

Ξi(q)=−∂Ki(q)
∂qa

∂Ξi(q)
∂qb

− ∂Ki(q)
∂qb

∂Ξi(q)
∂qa

−Ki(q)
∂2Ξi(q)
∂qa∂qb

+2iηab , (2.12)

Ξi(q)Ki(q)= i(q2+m2
i −iϵ) , (2.13)

∂Ξi(q)
∂qa

Ki(q)=−Ξi(q)
∂Ki(q)

∂qa
+2iqa , (2.14)

∂2Ξi(q)
∂qa∂qb

Ki(q)=−∂Ξi(q)
∂qa

∂Ki(q)
∂qb

− ∂Ξi(q)
∂qb

∂Ki(q)
∂qa

−Ξi(q)
∂2Ki(q)
∂qa∂qb

+2iηab . (2.15)

The Lorentz covariance of Ki and Ξi implies the following two relations(
Σab

i

)TKi(q) = −Ki(q)Σab
i + qa ∂Ki(q)

∂qb
− qb ∂Ki(q)

∂qa
, (2.16)

Σab
i Ξi(q) = −Ξi(q)

(
Σab

i )T − qa ∂Ξi(q)
∂qb

+ qb ∂Ξi(q)
∂qa

, (2.17)

where Σi is the spin angular momentum generator for i-th component field inside Φ(x).
Taking derivatives with respect to momenta the above expressions become(

Σab
i

)T ∂Ki(q)
∂qc

= −∂Ki(q)
∂qc

Σab
i + qa ∂2Ki(q)

∂qb∂qc
− qb ∂2Ki(q)

∂qa∂qc
+ ηac ∂Ki(q)

∂qb
− ηbc ∂Ki(q)

∂qa
,

Σab
i

∂Ξi(q)
∂qc

= −∂Ξi(q)
∂qc

(
Σab

i )T − qa ∂2Ξi(q)
∂qb∂qc

+ qb ∂2Ξi(q)
∂qa∂qc

− ηac ∂Ξi(q)
∂qb

+ ηbc ∂Ξi(q)
∂qa

.

(2.18)
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Invariance of (2.7) under global U(1)EM transformation implies

Qγ
αKγβ +KαγQγ

β = 0 ⇒ QTK +KQ = 0 . (2.19)

This also imposes constraint on the numerator of the propagator which reads

QΞ + ΞQT = 0 . (2.20)

The above two equations are also valid for component fields in real representation. We can
take momentum derivatives on the above two relations to find useful expressions. When the
i-th spinning particle is on-shell with momentum qi and polarization tensor ϵi(qi) it satisfies

Kαβ
i (qi)ϵiβ(qi) = 0 ⇒ Ki(qi)ϵi(qi) = 0 and ϵT

i (qi)KT
i (qi) = 0 . (2.21)

3 Soft photon theorem at one-loop

In this section we derive subleading soft photon theorem analyzing one-loop amplitudes for
a quantum mechanical scattering process involving N number of massive charged particles
with arbitrary spin. In [1], the order lnω soft factor has been derived analyzing one-loop
amplitude in a theory of minimally coupled scalar-QED in presence of scalar contact
interaction and the soft photon factor is determined in terms of the charges and asymptotic
momenta of scattered particles, and the direction cosine of soft photon emission. Here in
this section we show that even for arbitrary spinning particle scattering in a generic theory
of QED with non-minimal interaction, the order lnω soft factor derived in [1] is universal
(theory independent). This section should be thought of as a warm up of the next section
where we are going to derive one-loop soft graviton theorem for spinning particle scattering
in a generic theory of quantum gravity.

3.1 Covariantization and Feynman rules

In [5], the quadratic action S(2) in (2.7) has been covariantized simultaneously in photon
and graviton background to determine 1PI vertices involving two hard spinning particles
and one or two photons/gravitons up to subleading order in the expansion of the momenta of
photons/gravitons. Without going into too much details, here we summarise the outcomes
of the covariantization prescription in photon background and write down the Feynman
rules for vertices involving one and two photons. We derive the vertices for off-shell photon
with Feynman gauge fixing term, such that the Feynman propagator for virtual photon reads

∆F
µν(ℓ) =

−i

ℓ2 − iϵ
ηµν . (3.1)

In position space the kinetic operator in (2.7) contains derivatives over the field Φβ(x),
which have to replace by covariant derivatives under covariantization in presence of photon
field Aµ(x). For example in the case of one and two derivatives the covariantization rule in
position space becomes

∂µΦβ → DµΦβ = (∂µδγ
β − iQβ

γAµ)Φγ , (3.2)

∂µ∂νΦβ → D(µDν)Φβ =
[
∂(µδγ

β − iQβ
γA(µ

][
∂ν)δ

δ
γ − iQγ

δAν)
]
Φδ

= ∂µ∂νΦβ − iQβ
γ(Aµ∂ν + Aν∂µ)Φγ

− i

2Qβ
γ(∂µAν + ∂νAµ)Φγ − AµAνQβ

γ Qγ
δΦδ . (3.3)
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Above we use the following symmetrization convention E(µFν) = 1
2
(
EµFν + EνFµ

)
for two

vectors E and F . For determining minimal interaction vertices Γ(3) involving two massive
spinning particles and one photon up to one derivative on photon field, and Γ(4) involving
two massive spinning particles and two photons with no derivative on any of the photon
fields, the information of covariantization for single and two derivatives as done above
would be enough. In momentum space these covariantization rules generate the following
minimally interacting actions starting from (2.7):

S(3) = 1
2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ

(2π)4 (2π)4δ(4)(q1 + q2 + ℓ)Φα(q1)
[
− Aµ(ℓ)∂Kαγ(q2)

∂qµ
2

Qγ
β

− 1
4
(
ℓµAν(ℓ) + ℓνAµ(ℓ)

)∂2Kαγ(q2)
∂qµ

2 ∂qν
2

Qγ
β + O(ℓ2)

]
Φβ(q2) , (3.4)

and

S(4) = 1
2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ1
(2π)4

d4ℓ2
(2π)4 (2π)4δ(4)(q1 + q2 + ℓ1 + ℓ2)

Φα(q1)
[1
2Aµ(ℓ1)Aν(ℓ2)

∂2Kαδ(q2)
∂qµ

2 ∂qν
2

Qδ
γQγ

β + O(ℓ1, ℓ2)
]
Φβ(q2) . (3.5)

Above Aµ(ℓ) is the Fourier transform of gauge field defined through the following relation:
Aµ(x) ≡

∫ d4ℓ
(2π)4 eiℓ·xAµ(ℓ). At the order of one derivative on the gauge field, we can

have non-minimal coupling of photon with matter fields interacting via field strength. In
momentum space, the general form of non-minimal interaction takes the following form

S̄(3) = 1
2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ

(2π)4 (2π)4δ(4)(q1 + q2 + ℓ)

Φα(q1)
[
Fµν(ℓ) Bαβ,µν(q2) +O(ℓ2)

]
Φβ(q2) , (3.6)

where
Fµν(ℓ) = i

[
ℓµAν(ℓ)− ℓνAµ(ℓ)

]
, (3.7)

and B(q2) satisfies the following relations

Qγ
αBγβ,µν(q2) + Bαγ,µν(q2)Qγ

β = 0 ⇒ QTBµν(q2) + Bµν(q2)Q = 0 , (3.8)
Bαβ,µν(q2) = −Bαβ,νµ(q2) ⇒ Bµν(q2) = −Bνµ(q2) , (3.9)

Bαβ,µν(q2) = ± Bβα,µν(−q1 − ℓ) ⇒ Bµν(q2) = ±
(
Bµν(−q1 − ℓ)

)T
. (3.10)

In the last equation above + sign is for Grassmannian even field and − sign is for Grass-
mannian odd field. Again during the derivation we consider Φ field components being
Grassmannian even, but the final result will be valid for both Grassmannian even and odd
fields. We introduced index free notations for all the equations above.

Starting from (3.4) and (3.6), the interaction vertex describing two ingoing spinning
particles with momenta q and −(q + ℓ), polarization index α and β, and one ingoing photon
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with momentum ℓ becomes

Γ(3)αβ
µ

(
q,−q − ℓ, ℓ

)
= i

2

[
∂Kαγ(−q − ℓ)

∂qµ
Qγ

β − 1
2ℓν ∂2Kαγ(−q − ℓ)

∂qµ∂qν
Qγ

β − 2iℓνBαβ,
µν(−q − ℓ)

− ∂Kβγ(q)
∂qµ

Qγ
α − 1

2ℓν ∂2Kβγ(q)
∂qµ∂qν

Qγ
α − 2iℓνBβα,

µν(q) +O(ℓ2)
]

. (3.11)

Expanding in small ℓ limit and using (2.8), (2.19), (3.10) the above vertex reduce to the
following polarization index suppressed form

Γ(3)
µ

(
q,−q−ℓ,ℓ

)
= i

[
∂K(−q)

∂qµ
Q+1

2ℓν ∂2K(−q)
∂qµ∂qν

Q−2iℓνBµν(−q) + O(ℓ2)
]
. (3.12)

Similarly starting from (3.5) the polarization index suppressed four point interaction vertex
involving two incoming spinning particles with momenta q and −(q + ℓ1 + ℓ2) and two
incoming photons with momenta ℓ1 and ℓ2 becomes

Γ(4)
µν

(
q,−q − ℓ1 − ℓ2, ℓ1, ℓ2

)
= i

∂2K(−q)
∂qµ∂qν

QQ+ O(ℓ1, ℓ2) . (3.13)

We denote the scattering amplitude describing N -number of spinning hard particle scattering
in massive EFT by Γ(N), which can be expressed as a polarization tensor contracted form
in the following way

Γ(N) =
{ N∏

i=1
ϵαi(pi)

}
Γ(N)α1α2···αN

= ϵαi(pi)ϵαj (pj) Γ
(N)αiαj

(ij) (pi, pj)

= ϵαi(pi)Γ(N)αi

(i) (pi) , (3.14)

where

Γ(N)αiαj

(ij) (pi, pj) ≡
{ N∏

k=1
k ̸=i,j

ϵαk
(pk)

}
Γ(N)α1α2···αN , (3.15)

Γ(N)αi

(i) (pi) ≡
{ N∏

j=1
j ̸=i

ϵαj (pj)
}
Γ(N)α1α2···αN . (3.16)

Above ϵαi(pi) denotes the polarization tensor for i-th spinning particle with momentum
pi. Here we also should remember that Γ(N) is a distribution as it contains a momentum
conserving delta function δ(4)

(
p1 + p2 + · · ·+ pN

)
. We denote a part of amputated Green’s

function involving N number of spinning hard particles and one photon with momentum ℓ

by Γ̃(N+1)
µ (ℓ), which describes sum of the contributions of the Feynman diagrams where

– 15 –



J
H
E
P
1
1
(
2
0
2
3
)
2
3
3

the photon is not connected to any external leg. Since Γ̃(N+1)
µ (ℓ) does not contain any loop

involving massless particles, we can write down the following relation between Γ̃(N+1)
µ (ℓ)

and Γ(N) using the same covariantization prescription described above

Γ̃(N+1)α1···αN
µ (ℓ) = −

N∑
i=1

Qβi

αi
∂

∂pµ
i

Γ(N)α1···αi−1βiαi+1···αN + O(ℓ) . (3.17)

In the above expression Γ(N) contains momentum conserving delta function δ(4)
(
p1+p2+· · ·+

pN

)
and Γ̃(N+1) contains momentum conserving delta function δ(4)

(
p1 + p2 + · · ·+ pN + ℓ

)
.

3.2 Grammer-Yennie decomposition and IR-finite amplitudes

In this section we discuss the Grammer-Yennie decomposition introduces in [1, 54] and
show how it helps to factorize the IR-divergent exponential from the IR-finite part of the
amplitudes as proposed in (2.1). In Feynman gauge we decompose the photon propagator
with momentum ℓ flowing from the leg i to the leg j for i ̸= j

∆µν
F (ℓ) = −i

ηµν

ℓ2 − iϵ
= − i

ℓ2 − iϵ

{
Kµν

(ij) + Gµν
(ij)

}
, (3.18)

where

Kµν
(ij) = ℓµℓν (2pi − ℓ) · (2pj + ℓ)

(2pi · ℓ − ℓ2 + iϵ)(2pj · ℓ + ℓ2 − iϵ) , Gµν
(ij) = ηµν − Kµν

(ij) . (3.19)

Note that pi and pj refer to the external momenta flowing into the legs i and j, and not
necessarily the momenta of the lines to which the photon propagator attaches (which may
have additional contribution from external soft photon momentum or internal virtual photon
momentum). For i = j we do not carry out any decomposition i.e. for the virtual photon
involved in the self energy loop we do not carry out the KG-decomposition of (3.18). Also
if one or both ends of the virtual photon propagator are attached to any internal massive
particle propagator carrying sum of two or more external massive particle’s momenta, or
vertices of the massive EFT involving more than two massive particles in a loop diagram,
then we do not need to perform KG-decomposition as those loop diagrams are IR-finite.
In (3.18) the propagator part containing K(ij) will be denoted by K-photon propagator and
the propagator part containing G(ij) will be denoted by G-photon propagator throughout
this section.

Ward identities involving K-photon: since K-photon propagator is proportional to
ℓµℓν i.e. pure gauge, we can study the Ward identity for an off-shell un-amputated three
particle Green’s function with one leg being the K-photon as drawn in figure 1. The l.h.s.
of figure 1 after contracting with ℓµ representing K-photon can be expressed as

1
q2i + m2

i − iϵ
Ξi(−qi) ℓµΓ(3)

µ (qi,−qi − ℓ, ℓ) Ξi(−qi − ℓ) 1
(qi + ℓ)2 + m2

i − iϵ

= i
1

q2i + m2
i − iϵ

1
(qi + ℓ)2 + m2

i − iϵ

[
− i(2qi.ℓ + ℓ2)Ξi(−qi)QT

i

+ Ξi(−qi)Ki(−qi)
{

ℓµ ∂Ξi(−qi)
∂qµ

i

+ 1
2ℓµℓν ∂2Ξi(−qi)

∂qµ
i ∂qν

i

+ O(ℓ3)
}
QT

i

]
. (3.20)
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Figure 1. This figure is a Feynman diagrammatic representation of the expression in (3.22). Solid
lines represent the massive spinning particles, dashed lines represent the ingoing virtual photon with
momentum ℓ and the arrow in the photon line represents that it is a K-photon (pure gauge part
contracted). The solid blobs in the r.h.s. represent a new kind of vertices and the Feynman rules for
those vertices are just Qi and QT

i as written next to the vertices.

To write down the Feynman rule in the first line above for the diagram in figure 1, we follow
the convention that our time arrow runs from right to left. We shall follow the same time
arrow convention for all the Feynman diagrams in this article. To evaluate the first line,
with the expression in (3.12) we use the properties (2.11), (2.12), (2.19) and (2.20). Now
replacing (2qi.ℓ + ℓ2) = {(qi + ℓ)2 + m2

i } − {q2i + m2
i } within the square bracket above and

using the property (2.13), the r.h.s. of the above expression translates to

Ξi(−qi)QT
i

q2i + m2
i − iϵ

− Ξi(−qi)QT
i

(qi + ℓ)2 + m2
i − iϵ

− 1
(qi + ℓ)2 + m2

i − iϵ

{
ℓµ ∂Ξi(−qi)

∂qµ
i

+ 1
2ℓµℓν ∂2Ξi(−qi)

∂qµ
i ∂qν

i

+ O(ℓ3)
}
QT

i . (3.21)

If we un-do the small ℓ expansion in the second line of the above expression9 and use the
relation (2.20) the Ward identity turns out to be the following expression which has been
diagrammatically represented in figure 1.

1
q2i + m2

i − iϵ
Ξi(−qi) ℓµΓ(3)

µ (qi,−qi − ℓ, ℓ) Ξi(−qi − ℓ) 1
(qi + ℓ)2 + m2

i − iϵ

= Qi
Ξi(−qi − ℓ)

(qi + ℓ)2 + m2
i − iϵ

+ Ξi(−qi)
q2i + m2

i − iϵ
QT

i . (3.22)

Important to note that the solid blob vertices in figure 1 carry only the information of
charge of the particle with which the K-photon is interacting. The Feynman rules for the
blob vertices are independent of the momenta or any other information of the theory.

We also need to study the consequence of Ward identity due to insertion of a K-photon
in presence of an external off-shell photon with momentum k and Lorentz index ν. The
set of Feynman diagrams describing the four point un-amputated Green’s function with
one photon and one K-photon has been drawn in the first line of figure 2. Using the Ward
identity described in figure 1 for first and third diagrams in the first line of figure 2, we

9Instead of (3.12), if we use the unexpanded expression (3.11) for Γ(3) vertex, we do not need to un-do
the small ℓ expansion to derive the result below. Actually the relation in (3.22) is an exact relation valid up
to all order in ℓ expansion with any arbitrary non-minimal coupling contributing to Γ(3), as it is a direct
consequence of the Ward Identity.
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Figure 2. Diagrams in the first line represents the contribution to the four point un-amputated
Green’s function with one photon and one K-photon. By using the Ward identity in figure 1 we get
the diagrams in second and third lines.

find the diagrams drawn after the equality in figure 2. Now if we can show that the sum of
the contribution of the three diagrams in the last line of figure 2 vanishes, then the Ward
identity of figure 1 is also valid in presence of an external photon line. The three diagrams
in the last line of figure 2 has been drawn again in figure 3 and the contribution becomes

1
q2i + m2

i − iϵ
Ξi(−qi)

[
QT

i Γ(3)
ν (qi + ℓ,−qi − ℓ − k, k) + ℓµ Γ(4)

µν (qi,−qi − ℓ − k, ℓ, k)

+ Γ(3)
ν (qi,−qi − k, k) Qi

]
Ξi(−qi − ℓ − k) 1

(qi + ℓ + k)2 + m2
i − iϵ

. (3.23)

Substituting the expressions for the vertices from (3.12) and (3.13), the expression
inside the square bracket of (3.23) turns out to be

iQT
i

[
∂Ki(−qi − ℓ)

∂qν
i

Qi +
1
2kµ ∂2Ki(−qi − ℓ)

∂qµ
i ∂qν

i

Qi − 2ikµBi
νµ(−qi − ℓ)

]

+ iℓµ ∂2Ki(−qi)
∂qµ

i ∂qν
i

QiQi

+ i

[
∂Ki(−qi)

∂qν
i

Qi +
1
2kµ ∂2Ki(−qi)

∂qµ
i ∂qν

i

Qi − 2ikµBi
νµ(−qi)

]
Qi . (3.24)

By Taylor expanding the first line above for small ℓ and only keeping terms up to linear
order in ℓ or k, we can use the identities in (2.19) and (3.8) to show that the sum of the
contribution in the three lines above vanishes up to linear order in ℓ or k. This proves
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Figure 3. Identity involving last three Feynman diagrams in figure 2 whose mathematical expression
has been written in (3.23).

Figure 4. Generalization of the identity in figure 3 in presence of n-number of photons.

the diagrammatic identity in figure 3. By utilizing the expressions of vertices from (3.12)
and (3.13), which are given up to linear and zeroth order in ℓ or k respectively, it may
initially appear that the validity of the result in figure 3 is limited to linear order in ℓ

or k. However, it is important to note that the results depicted in figure 3 and figure 1
hold true for all orders in the expansion of small ℓ and k. These results play a crucial
role in establishing the gauge invariance of any amplitude involving external photons in
quantum electrodynamics, as they are connected to the Ward-Takahashi identity of QED.
For further details on the spinor-QED case, please look at [54] and section-(7.4) of [60].
For an un-amputated Green’s function with two massive spinning particles and arbitrary
number of external photon legs, one insertion of K-photon in all possible way finally reduces
to sum over sets of diagrams where the K-photon is connected in the end of the spinning
particle legs with solid blob vertices as discussed above. This strong statement can be
proved using the identity in figure 1 and the generalized identity in figure 4. The identity in
figure 4 is a straight forward generalization of the example discussed in figure 3, which has
been tested with the covariantized vertices up to linear order in photon momenta expansion
for Γ(n) and Γ(n+1) vertices with n = 3.

IR-finite amplitudes: as we defined earlier, A(N) represents the all loop scattering
amplitude with N number of external massive spinning particles, and A(N+1) represents
the all loop scattering amplitude with N number of external massive spinning particles and
one external photon. If the massive spinning particles carry definite charges {ei} then the
following identity holds

Qαi
βi ϵiβi

(pi) = ei ϵiαi(pi) ⇒ Qϵi(pi) = eiϵi(pi) , ϵT
i (pi)QT = eiϵ

T
i (pi) . (3.25)
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The K-photon insertion Ward identities of figure 1 and figure 4 imply the exponentiation of
the one-loop K-photon contribution Kem in (2.1), as proven in [54]. However, the proof
of this exponentiation in [54] is valid only when the tree-level amplitude of the massive
EFT

(
Γ(N)

)
is independent of the momenta of scattering particles i.e. it is described

by a momenta-independent contact interaction between N number of massive fields, as
considered in [1]. The validity of the exponentiation of Kem in a generic theory of QED,
incorporating all possible interactions without considering to any kind of approximation
(like assuming that virtual photon momenta are significantly smaller than external massive
particle momenta), is too good to be true.10 But in the limit of small virtual photon
momenta the IR divergent piece of Kem exponentiate, which is known as the leading Eikonal
exponentiation.

The final outcome of the Grammer-Yennie decomposition of virtual photon propagator
in (3.18) is

A(N) ≡ exp{Kem} A(N)
IR-finite , (3.26)

A(N+1) ≡ exp{Kem} A(N+1)
IR-finite , (3.27)

where

Kem = i

2

N∑
i=1

N∑
j=1
j ̸=i

eiej

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

(2pi − ℓ) · (2pj + ℓ)
(2pi · ℓ − ℓ2 + iϵ)(2pj · ℓ + ℓ2 − iϵ) . (3.28)

In equations (3.26) and (3.27), A(N)
IR-finite and A(N+1)

IR-finite represent the infrared finite compo-
nents of the N -particle and N -particle-1-photon amplitudes, respectively. These components
are obtained by removing the exponentiated IR-divergent parts from the original divergent
amplitudes defined through the relations (3.26) and (3.27). Both A(N)

IR-finite and A(N+1)
IR-finite

comprise contributions from the corresponding tree-level amplitudes and loop amplitudes
up to all orders in perturbation theory. However, there is a condition: if both ends of a
virtual photon propagator are connected to external massive spinning particle lines (which
may already contain additional real or virtual photon lines), then this photon propagator
should be replaced by a G-photon propagator when we evaluate them for the IR-finite parts.
Additionally the same set of diagrams need to be evaluated with K-photon propagator as
well and then have to subtract by a factor of Kem times the IR finite amplitude at one less
loop level. In our convention the tree level amplitudes are given by

A(N)
IR-finite,0 = Γ(N) , A(N+1)

IR-finite,0 = Γ(N+1) , (3.29)

where in the subscript ‘0’ corresponds to 0-loop i.e. tree level. At one-loop order, A(N)
IR-finite

and A(N+1)
IR-finite are given by:

A(N)
IR-finite,1 ≡

[
A(N)

G,1 +A(N)
K−finite,1 +A(N)

self,1 +A(N)
non-div,1

]
, (3.30)

A(N+1)
IR-finite,1 ≡

[
A(N+1)

G,1 +A(N+1)
K−finite,1 +A(N+1)

self,1 +A(N+1)
non-div,1

]
, (3.31)

where in the subscript ‘1’ corresponds to 1-loop. Above
10We are thankful to P.V. Athira for extensive discussion on this topic.
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Figure 5. Diagram contributes to A(N)
G,1 , where the virtual photon propagator is the G-photon

propagator connected between two external hard particle lines. The diagram also contributes to
A(N)

K−finite,1 when evaluated with K-photon propagator and subtracted KemΓ(N) from it’s contribution.

1. A(N)
G,1 corresponds to the diagram in figure 5 which we need to evaluate with G-

photon propagator.

2. A(N)
K−finite,1 corresponds to the contribution from the diagram in figure 5, evaluated

with K-photon propagator and then subtracted the contribution of Kem × Γ(N) at
the integrand level.

3. A(N)
self,1 represents the set of Feynman diagrams in figure 6 evaluated with full pho-

ton propagator.

4. A(N)
non-div,1 represents the set of diagrams in figure 7, evaluated with full

photon propagator.

5. A(N+1)
G,1 corresponds to the set of diagrams in figure 8 when we evaluate them with

G-photon propagator.

6. A(N+1)
K−finite,1 corresponds to the contribution from the diagrams in figure 8, evaluated

with K-photon propagator and then subtracted the contribution Kem × Γ(N+1) at the
integrand level.

7. A(N+1)
self,1 represents the set of Feynman diagrams in figure 9, evaluated with full

photon propagator.

8. A(N+1)
non-div,1 represents the set of diagrams in figure 11, evaluated with full

photon propagator.

3.3 Derivation of soft photon theorem

The goal here will be to derive the order ω−1 and lnω soft factors from the ratio of A(N+1)
IR-finite

and A(N)
IR-finite when the external photon energy is small i.e. ω ≪ |pµ

i |.
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3.3.1 IR-finite one loop N-particle amplitude

First we want to analyze all the Feynman diagrams contributing to (3.30) and show that
the result is IR-divergence free. We also provide an explicit integral expression of IR-finite
1-loop amplitude for A(N)

IR-finite,1. Using the Feynman rules derived in subsection-3.1, the
diagram in figure 5 with G-photon propagator contributes to the following

A(N)
G,1 =

N∑
i,j=1
i>j

∫
d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
ϵT
i (−pi)Γ(3)

µ (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]

Gµν
(ij)(ℓ)

×
[
ϵT
j (−pj)Γ(3)

ν (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi − ℓ, pj + ℓ)

=
N∑

i,j=1
i>j

8eiejϵT
i ϵT

j

∫
d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

×
{[

pµ
i ℓνN j

µν(−pj) − pµ
j ℓνN i

µν(−pi)
]
Γ(N)
(ij) (pi, pj) +O(ℓℓ)

}
, (3.32)

where to get the last two lines we have used the identity in (A.9) for both i-th and j-th
particles and Taylor expanded the numerator in the limit |ℓµ| ≪ |pµ

i |, |p
µ
j |. The expression

for N i(−pi) is given in (A.3). On the other hand the contribution of A(N)
K−finite,1 from the

diagram in figure 5 becomes

A(N)
K−finite,1 =

N∑
i,j=1
i>j

∫
d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
ϵT
i (−pi)Γ(3)

µ (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]

Kµν
(ij)(ℓ)

×
[
ϵT
j (−pj)Γ(3)

ν (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi − ℓ, pj + ℓ)

− Kem × Γ(N) . (3.33)

Now evaluating this expression using the identity in (A.9) and Taylor expanding Γ(N)
(ij) (pi −

ℓ, pj + ℓ) in the limit |ℓµ| ≪ |pµ
i |, |p

µ
j | we get

A(N)
K−finite,1 = i

N∑
i,j=1
i>j

eiej ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

(2pi − ℓ) · (2pj + ℓ)
(2pi · ℓ − ℓ2 + iϵ)(2pj · ℓ + ℓ2 − iϵ)

×
[
− ℓρ ∂

∂pρ
i

Γ(N)
(ij) (pi, pj) + ℓρ ∂

∂pρ
j

Γ(N)
(ij) (pi, pj) +O(ℓℓ)

]
. (3.34)

Diagrams in figure 6 renormalizes the massive spinning particle propagators in presence
of electromagnetic interaction, and all the loops are IR-finite. Say the three diagrams in
figure 6 contributes to

ϵT
i F1

Ξi(−pi)
p2i + m2

i

Γ(N)
(i) (pi) , ϵT

i F2
Ξi(−pi)
p2i + m2

i

Γ(N)
(i) (pi) , ϵT

i C
Ξi(−pi)
p2i + m2

i

Γ(N)
(i) (pi) (3.35)
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Figure 6. Diagram contributes to A(N)
self,1, where the virtual photon propagator is the full pho-

ton propagator. In the last diagram the cross corresponds to counter term, which cancels the
UV divergences.

Figure 7. Diagram contributes to A(N)
non-div,1, where the virtual photon propagator is the full photon

propagator whose one or both end connected to Γ(N). In the last diagram the cross corresponds to
counter term, which cancels the UV divergences.

respectively. Where F1, F2, C are unknown constant matrices, which are related using
on-shell renormalization condition

C = −F1 − F2 . (3.36)

Hence the on-shell renormalization condition implies

A(N)
self,1 = 0 . (3.37)

In figure 7 we draw the sets of diagrams where one or both ends of the photon loop are
attached to some internal massive virtual line or massive EFT vertex inside Γ(N). These
diagrams are also IR-finite. For example the first diagram in figure 7 with full photon
propagator becomes∫

d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ
ηµν

× ϵT
i (−pi)

[
Γ(3)

µ (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)Γ̃(N+1)
(i)ν (pi − ℓ; ℓ)

]
. (3.38)

Now using the identity in (A.9) for i-th particle and the Feynman rule of (3.17) it is evident
that in the limit when the loop momentum ℓµ → 0 the integration behaves as

∫ d4ℓ
|ℓ|3 , hence

is IR-finite. This is the reason we call the set of diagrams in figure 7 as A(N)
non-div,1 as those

are IR-divergence free. We do not need to evaluate the contribution A(N)
non-div,1 explicitly for

deriving soft photon theorem. Now summing over the contributions of (3.32), (3.34), (3.37)
and A(N)

non-div,1, we get

A(N)
IR-finite,1 =

N∑
i,j=1
i>j

8eiejϵT
i ϵT

j

∫
d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

×
{[

pµ
i ℓνN j

µν(−pj) − pµ
j ℓνN i

µν(−pi)
]
Γ(N)
(ij) (pi, pj) +O(ℓℓ)

}
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Figure 8. Set of 1-loop diagrams contributing to A(N+1)
G,1 , where the virtual photon propagator is the

G-photon propagator connected between two external particle lines. Here we omitted the diagrams
involving counter terms to remove UV divergences. We need to sum over all possible external
legs while evaluating the contributions from these diagrams. When we evaluate these diagrams
with K-photon propagator and subtracted KemΓ(N+1) from it’s contribution, it also contributes to
A(N+1)

K−finite,1.

+ i
N∑

i,j=1
i>j

eiej ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

(2pi − ℓ) · (2pj + ℓ)
(2pi · ℓ − ℓ2 + iϵ)(2pj · ℓ + ℓ2 − iϵ)

×
[
− ℓρ ∂

∂pρ
i

Γ(N)
(ij) (pi, pj) + ℓρ ∂

∂pρ
j

Γ(N)
(ij) (pi, pj) +O(ℓℓ)

]
+A(N)

non-div,1 . (3.39)

From the above expression, it is clear that the loop integrals become infrared finite in the limit
as ℓ approaches zero. Therefore, the Grammer-Yennie prescription offers a clear definition
of an IR-finite S-matrix. An explicit expression of IR-finite S-matrix at one-loop order is
provided in the above expression in a general theory of quantum electrodynamics (QED).

3.3.2 IR-finite one loop (N + 1)-particle amplitude in the soft limit

Here we analyze all the Feynman diagrams contributing to (3.31) in the soft limit i.e. ω → 0.
Let us start analyzing the first diagram in figure 8 with G-photon propagator, which has
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the following expression after using Feynman rules

AI ≡
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
−i

ℓ2−iϵ

1
(pi+k)2+m2

i −iϵ

1
(pi+k−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
ϵT
i (−pi)ερ(k)Γ(3)

ρ (pi,−pi−k,k)Ξi(−pi−k)Γ(3)
µ (pi+k,−pi−k+ℓ,−ℓ)Ξi(−pi−k+ℓ)

]
× Gµν

(ij)(ℓ)
[
ϵT
j (−pj)Γ(3)

ν (pj ,−pj−ℓ,ℓ)Ξj(−pj−ℓ)
]
Γ(N)
(ij) (pi+k−ℓ,pj+ℓ) . (3.40)

Substituting the results from (A.4) and (A.9) in the above expression and after some
manipulation we get

AI =
N∑

i=1

N∑
j=1
j ̸=i

e2
i ejϵT

i ϵT
j

1
(pi+k)2+m2

i −iϵ

∫
d4ℓ

(2π)4
−i

ℓ2−iϵ

1
(pi+k−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
8ε.pipj .k+16ε.pip

ρ
i ℓσN j

ρσ(−pj)−16ε.pip
ρ
j ℓσN i

ρσ(−pi)+8pi.pj(ερkσ−εσkρ)N i
ρσ(−pi)

+4ipi.kερpσ
j

∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

− 4pi.pj

2pi.ℓ−ℓ2+iϵ

{
4ε.piℓ.k+4pi.ℓ(ερkσ−εσkρ)N i

ρσ(−pi)

+2ipi.kερℓσ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

}
+O(ℓℓ,kℓ,kk)

]{
Γ(N)

(ij)(pi,pj)+O(ℓ,k)
}

. (3.41)

Inside the square bracket of the numerator in the above expression, we only keep the
terms up to linear order in ℓ or k, as our vertices are derived only up to that order. Note
that the above expression is IR-finite in the limit ℓµ → 0 and in the region of integration
|ℓµ| ≪ ω ≪ |pµ

i |, |p
µ
j | it contributes at order O(ω0). Now to extract lnω contribution we

approximate the integrand in the integration range ω ≪ |ℓµ| ≪ |pµ
i |, |p

µ
j |, by doing so we

can approximate
1

(pi + k − ℓ)2 + m2
i − iϵ

≃ 1
(pi − ℓ)2 + m2

i − iϵ

[
1 + pi.k

pi.ℓ + iϵ

]
. (3.42)

With this approximation the order ω−1 and lnω contribution turns out to be,

AI =
N∑

i=1

N∑
j=1
j ̸=i

ei
ε.pi

pi.k
8eiejϵT

i ϵT
j

∫
reg

d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
pρ

i ℓσN j
ρσ(−pj)− pρ

j ℓσN i
ρσ(−pi)

]
Γ(N)
(ij) (pi, pj)

+ i
N∑

i=1

N∑
j=1
j ̸=i

e2i ej
1

pi.k
ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
pj .ℓ − iϵ

[
ε.pipj .k + pi.k

pi.ℓ + iϵ

{
2ε.pip

ρ
i ℓσN j

ρσ(−pj)− 2ε.pip
ρ
j ℓσN i

ρσ(−pi)
}

+ i

2pi.kερpσ
j

∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

− pi.pj

pi.ℓ + iϵ

{
ε.piℓ.k

+ i

2pi.kερℓσ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

} ]
Γ(N)
(ij) (pi, pj) + O(ω0). (3.43)
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Above the subscript “reg” in the loop integral corresponds to the restricted loop-momentum
range ω ≪ |ℓµ| ≪ |pµ

i |, |p
µ
j |.

Using Feynman rules the second diagram in figure 8 with G-photon propagator becomes

AII ≡
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
−i

ℓ2 − iϵ

1
(pi + k − ℓ)2 + m2

i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
ϵT
i (−pi)ερ(k)Γ(4)

ρµ (pi,−pi − k + ℓ, k,−ℓ)Ξi(−pi − k + ℓ)
]

Gµν
(ij)(ℓ)

×
[
ϵT
j (−pj)Γ(3)

ν (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi + k − ℓ, pj + ℓ). (3.44)

After substituting the results from (A.6) and (A.9) and keeping terms which can contribute
up to order lnω in the integration range reg ≡ (ω ≪ |ℓµ| ≪ |pµ

i |, |p
µ
j |) we get,

AII = −i
N∑

i=1

N∑
j=1
j ̸=i

e2i ej ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
pj .ℓ − iϵ

[
ε.pj +

i

2ερpσ
j

{∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

+ ∂Ki(−pi)
∂pσ

i

∂Ξi(−pi)
∂pρ

i

}
− pi.pj

pi.ℓ + iϵ(
ε.ℓ + i

2ερℓσ
{∂Ki(−pi)

∂pρ
i

∂Ξi(−pi)
∂pσ

i

+ ∂Ki(−pi)
∂pσ

i

∂Ξi(−pi)
∂pρ

i

})]
Γ(N)
(ij) (pi, pj)

+O(ω0) . (3.45)

Using Feynman rules the third diagram in figure 8 with G-photon propagator becomes

AIII ≡
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
−i

ℓ2−iϵ

1
(pi−ℓ)2+m2

i −iϵ

1
(pi+k−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
ϵT
i (−pi)ερ(k)Γ(3)

µ (pi,−pi+ℓ,−ℓ)Ξi(−pi+ℓ)Γ(3)
ρ (pi−ℓ,−pi−k+ℓ,k)Ξi(−pi−k+ℓ)

]
× Gµν

(ij)(ℓ)
[
ϵT
j (−pj)Γ(3)

ν (pj ,−pj−ℓ,ℓ)Ξj(−pj−ℓ)
]
Γ(N)
(ij) (pi+k−ℓ,pj+ℓ) . (3.46)

After substituting the results from (A.7) and (A.9) and keeping terms which can contribute
up to order lnω in the integration range ω ≪ |ℓµ| ≪ |pµ

i |, |p
µ
j | we get,

AIII = −i
N∑

i=1

N∑
j=1
j ̸=i

e2i ej ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
(pi.ℓ + iϵ)2

1
pj .ℓ − iϵ

[
2ε.pip

ρ
i ℓσN j

ρσ(−pj)− 2ε.pip
ρ
j ℓσN i

ρσ(−pi)−
i

2pi.ℓp
ρ
j εσ ∂Ki(−pi)

∂pρ
i

∂Ξi(−pi)
∂pσ

i

+ i

2pi.pjℓρεσ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

]
Γ(N)
(ij) (pi, pj) + O(ω0) . (3.47)
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Figure 9. Set of 1-loop diagrams contributing to A(N+1)
self,1 , where the virtual photon propagator is

the full photon propagator connecting two different points on the same massive spinning particle
leg. The cross appears in some diagrams above corresponds to counter term, which cancels the UV
divergences in the renormalization prescription.

The fourth diagram in figure 8 with G-graviton contributes at order ω−1 but won’t contribute
at order lnω. The order ω−1 contribution turns out to be,

AIV =
N∑

k=1
ek

ε.pk

pk.k

N∑
i=1
i ̸=k

N∑
j=1
j ̸=k
j>i

8eiejϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
−i

ℓ2−iϵ

1
(pi−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
pρ

i ℓσN j
ρσ(−pj)−pρ

j ℓσN i
ρσ(−pi)

]
Γ(N)
(ij) (pi,pj) + O(ω0) . (3.48)

The fifth diagram in figure 8 start contributing from order ω0 in the soft expansion when
we evaluate it with G-photon propagator i.e. AV = 0 + O(ω0). Here we are not writing
down the non-vanishing contribution of AV at order ω0 explicitly, as it is not essential for
deriving the order ω−1 and lnω soft factors. Now summing over the external particle legs,
total contribution of A(N+1)

G,1 at orders ω−1 and lnω turns out to be

A(N+1)
G,1

= AI+AII+AIII+AIV +AV
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=
N∑

k=1
ek

ε.pk

pk.k

N∑
i=1

N∑
j=1
j>i

8eiejϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
−i

ℓ2−iϵ

1
(pi−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
pρ

i ℓσN j
ρσ(−pj)−pρ

j ℓσN i
ρσ(−pi)

]
Γ(N)
(ij) (pi,pj)

+i
N∑

i=1

N∑
j=1
j ̸=i

e2i ej ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2−iϵ

1
pi.ℓ+iϵ

1
pj .ℓ−iϵ

×
[

ε.pi

pi.k
pj .k− ε.pi

pi.k
pi.pj

ℓ.k

pi.ℓ+iϵ
−ε.pj+ε.ℓ

pi.pj

pi.ℓ+iϵ

]
Γ(N)
(ij) (pi,pj) +O(ω0) . (3.49)

Interestingly in the above expression all the theory dependent pieces involving Ki ,Ξi ,Bi at
order lnω cancels out at the integrand level, when we some over the contributions (3.43),
(3.45), (3.47). This confirms the fact that the subleading soft photon theorem at order lnω

is universal. The above result can also be rewritten in the following compact form

A(N+1)
G,1 =

N∑
k=1

ek
ε.pk

pk.k
A(N)

G,1

+
N∑

i=1
ei

εµkν

pi · k

{(
pµ

i

∂

∂piν
− pν

i

∂

∂piµ

)
Kreg

em

}
Γ(N) +O(ω0) , (3.50)

where the expression of A(N)
G,1 is given in (3.32), and Kreg

em is the approximated form of the
integral Kem in (3.28) in the integration range ω ≪ |ℓµ| ≪ |pµ

i |, |p
µ
j |. The integration has

been explicitly evaluated in [1] and the result reads

Kreg
em ≡ i

2

N∑
ℓ=1

N∑
j=1
j ̸=ℓ

eℓej

∫
reg

d4ℓ

(2π)4
1

ℓ2−iϵ

(pℓ ·pj)
(pℓ ·ℓ+iϵ) (pj ·ℓ−iϵ)

≃− i

2

N∑
ℓ=1

N∑
j=1
j ̸=ℓ

eℓej

4π
(lnω) pℓ ·pj√

(pℓ.pj)2−p2ℓp2j

{
δηℓηj ,1−

i

2π
ln
(

pℓ.pj+
√
(pℓ.pj)2−p2ℓp2j

pℓ.pj−
√
(pℓ.pj)2−p2ℓp2j

)}
.

(3.51)

Above ηj = +1 if j-th particle is ingoing and ηj = −1 if j-th particle is outgoing and under
≃ sign we only have written the order lnω contribution while evaluating the integral.

To evaluate the contribution of A(N+1)
K−finite,1, first we compute the diagrams in figure 8

with the virtual photon propagator replaced by the K-photon propagator. Afterward, we
subtract the contribution of KemΓ(N+1) from this computed result. The final contribution
of A(N+1)

K−finite,1 within the regulated range of integration ω ≪ |ℓµ| ≪ |pµ
i |, |p

µ
j | becomes

A(N+1)
K−finite,1 =

N∑
k=1

ek
ε.pk

pk.k
A(N)

K−finite,1 +O(ω0) , (3.52)

where the expression of A(N)
K−finite,1 is given in (3.34). Note that the above result contributes

at order ω−1 and does not contribute to order lnω soft theorem.
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Figure 10. The first diagram above corresponds to the sum over the contributions of the first four
diagrams in figure 9 when we replace the photon polarization εµ by kµ. The second diagram above
corresponds to the sum over the contributions of the fifth and sixth diagrams in figure 9 when we
replace the photon polarization εµ by kµ.

The self-energy kind of diagrams contributing to A(N+1)
self,1 in figure 9 are not necessary

to compute explicitly as these diagrams sum up to zero using on-shell renormalization
condition (3.36) as we are going to discuss below. The contribution from the sum of
the first four diagrams in figure 9 can be described by the following general structure
ϵT
i ε.pif1(pi.k)Γ(N)

(i) (pi + k). Similarly the contribution from the sum of fifth and sixth
diagrams in figure 9 can be described by the following structure ϵT

i ε.pif2(pi.k)Γ(N)
(i) (pi + k).

Where f1(pi.k) and f2(pi.k) are two unknown functions with specific polarization/spin
indices, which we determine below by replacing εµ → kµ and using Ward identity. Using
the diagrammatic identities of figure 1 and figure 3, the first four diagrams in figure 9
after replacing εµ → kµ reduces to the first diagram in figure 10. Similarly using the
diagrammatic identities of figure 1 and figure 4, the sum of fifth and sixth diagrams in
figure 9 after replacing εµ → kµ reduces to the second diagram in figure 10. Now using the
constant matrices F1, F2 introduced in (3.35) for the diagrams in figure 6 and comparing
the general structure above we get

f1(pi.k)=− 1
2(pi.k)2

F1QiΞi(−pi−k) , f1(pi.k)=− 1
2(pi.k)2

F2QiΞi(−pi−k) .

(3.53)
Now we substituting the above result in the general structures for the sum of diagrams
mentioned above. Finally summing over the contributions of the first seven diagrams in
figure 9 we get

ϵT
i

ε.pi

2(pi.k)2
[
− F1Qi − F2Qi +QT

i C
]
Ξi(−pi − k)Γ(N)

(i) (pi + k) . (3.54)

Note that F1, F2 satisfy the same property under the operation of charge matrix Q as Ξi

satisfies in (2.20). Hence using this relation the terms inside the square bracket in the above
expression reduces to QT

i (F1 + F2 + C) which vanishes using the on-shell renormalization
condition (3.36). Note that in the above expression we neglected the possible order ω0

contribution in the soft expansion of counter term diagram. Using the same on-shell
renormalization condition the sum of the rest of the diagrams in figure 9 also vanishes up
to possible order ω0 contribution. Hence in the soft limit, the sum over all the Feynman
diagrams in figure 9 contribute as

A(N+1)
self,1 = 0 +O(ω0) . (3.55)
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Figure 11. Set of 1-loop diagrams contributing to A(N+1)
non-div,1 consists of diagrams where the virtual

photon propagator is the full photon propagator, with at least one leg connected to an internal
massive particle propagator or massive EFT vertices. Diagrams involving counter terms to remove
UV divergences have been omitted.

The diagrams in figure 11 contributing to A(N+1)
non-div,1 are IR-divergence free, as in ℓµ → 0

limit and finite kµ the third, sixth and seventh diagrams behaves like
∫ d4ℓ

|ℓ|3 , and first, second,
fourth and fifth diagrams behaves like

∫ d4ℓ
|ℓ|2 . On the other hand the sum of first, fourth

and sixth diagrams in figure 11 contribute to leading soft factor at order ω−1. Now in the
integration region ω ≪ |ℓµ| ≪ |pµ

i |, individually the first and third diagrams in figure 11
behave like

∫
reg

d4ℓ
ℓ2−iϵ

1
(pi.ℓ+iϵ)2 after the expansion of the propagators, hence those have the

possibility of contributing at order lnω. But when we sum over the contributions of the
first, second and third diagrams, the order lnω contributing coefficient of

∫
reg

d4ℓ
ℓ2−iϵ

1
(pi.ℓ+iϵ)2

cancels each other, and left out part starts contributing from order ω0. Hence leaving first,
fourth and sixth diagrams, all the other diagrams start contributing at order ω0 in the soft
expansion. After summing over all the contributions, we get

A(N+1)
non-div,1 =

N∑
i=1

ei
ε.pi

pi.k
A(N)

non-div,1 +O(ω0) . (3.56)

Soft photon theorem result at one-loop: summing over the contributions of (3.50),
(3.52), (3.55), (3.56) in the soft limit, we get the following soft theorem expression

A(N+1)
IR-finite,1 =

[
A(N+1)

G,1 +A(N+1)
K−finite,1 +A(N+1)

self,1 +A(N+1)
non-div,1

]
ω→0=

N∑
i=1

ei
ε.pi

pi.k
A(N)

IR-finite,1

+
N∑

i=1
ei

εµkν

pi · k

{(
pµ

i

∂

∂piν
− pν

i

∂

∂piµ

)
Kreg

em

}
A(N)

IR-finite,0 +O(ω0) . (3.57)

This result agrees with the loop corrected subleading soft photon theorem, originally derived
in [1] for minimally coupled scalar QED. The derivation of this result further confirms the
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universality of the lnω soft factor in scattering events involving particles with arbitrary spins
in a generic theory of quantum electrodynamics, which allows for arbitrary non-minimal
couplings. Moreover, the obtained result also verifies the well-known fact that Weinberg’s
leading soft photon theorem remains unaltered by loop corrections. Therefore, even from
the analysis presented above, we observe that Weinberg’s soft theorem still holds, relating
two one-loop IR-finite amplitudes.

3.4 Discussion on generalization

In order to obtain the order ω lnω soft factor from the aforementioned one-loop amplitude,
we require the vertices: Γ(3) as given in equation (3.12) up to order O(ℓ2), Γ(4) as given in
equation (3.13) up to order O(ℓ1, ℓ2), and Γ̃(N+1) up to order O(ℓ). However, when dealing
with non-minimal couplings as expressed in equation (3.6), it is currently unknown how
to derive Γ̃(N+1) in terms of Γ(N) at order O(ℓ). Additionally, at order O(ℓ2), new sets of
non-minimal couplings will contribute to Γ(3). Due to these reasons, we are unable to derive
the order ω lnω soft photon theorem in this article, and it is not clear whether such a soft
factorization at order ω lnω is possible or not.

In the theory of scalar-QED minimally coupled to gravity the order lnω correction
to (3.57) due to gravitational interaction has also been derived in [1] by analyzing one-loop
amplitudes. In the theory of scalar-QED soft photon theorem at order ω(lnω)2 has also
been derived in [21] analyzing two-loop amplitudes and the soft factor is provided in (1.12).
Multiple soft photon theorem up to subleading order in soft expansion has also been derived
in section-(3.5) of [55], by analyzing one-loop amplitudes and the result reads:

A(N+M)
IR-finite,1

ω→0=
M∏

ℓ=1

{
N∑

i=1
ei

εℓ · pi

pi · kℓ

}
A(N)

IR-finite,1

+
M∑

ℓ=1

[
M∏

m=1
m ̸=ℓ

{
N∑

j=1
ej

εm · pj

pj · km

}]
N∑

i=1
ei

εℓµkℓν

pi · kℓ

{(
pµ

i

∂

∂piν
− pν

i

∂

∂piµ

)
Kreg

em

}
A(N)

IR-finite,0

+O
(
ω−M+1) . (3.58)

Above A(N+M)
IR-finite,1 represents the IR-finite part of 1-loop scattering amplitude involving

N -number of hard particles and M -number of soft photons with polarizations and momenta
{εℓ, kℓ = −ωnℓ} for ℓ = 1, · · · , M as external states.

4 Soft graviton theorem at one-loop

In this section we derive subleading soft graviton theorem analyzing one-loop amplitudes
for a quantum mechanical scattering process involving N number of massive particles with
arbitrary spin and one graviton, extending the analysis of [1] for a generic theory of quantum
gravity. This derivation will establish the universal (theory independent) nature of lnω soft
graviton factor.
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4.1 Sen’s covariantization prescription and Feynman rules

The covariantization of the quadratic part of the massive EFT action (2.7) in the soft
gravitational background has been carried out in [2–4]. This development has been utilized
to derive vertices involving two massive spinning particles and one or two on-shell soft
gravitons. However, when performing loop computations, we require the same vertices
involving off-shell gravitons. Due to the off-shell nature of the gravitons, it is not possible to
independently impose the traceless and transverse conditions on the gravitational fluctuation
consistently with diffeomorphism. To address this issue, we make slight modifications to
the covariantization prescription proposed in [2–4], as described below. In this work, we use
a different parametrization of gravitational fluctuation, which is closely related to the one
presented in [61]. This alternative parametrization allows us to derive the vertices within
the covariantization prescription while ensuring compatibility with the de Donder gauge
choice. Let us define the deviation of background metric from flat Minkowski metric as

hµν(x) ≡ 1
2κ

(
gµν(x)− ηµν

)
, (4.1)

where κ =
√
8πG with G being the four dimensional Newton’s constant. In de Donder

gauge ∂µhµν = 1
2∂νhρ

ρ the graviton propagator becomes

∆µν,ρσ
F (ℓ) = −i

ℓ2 − iϵ

1
2
(
ηµρηνσ + ηµσηνρ − ηµνηρσ) , (4.2)

where (µν) and (ρσ) are Lorentz indices of the two ends of the graviton propagator. The
polarization tensor for on-shell graviton with momentum k will be denoted by εµν(k) which
satisfies the traceless and transverse conditions

ηµνεµν(k) = 0 , kµεµν(k) = 0 . (4.3)

With the definition of gravitational fluctuation (4.1), we express the following quantities as
a power series expansion of κ:√

−det g = 1 + κh + κ2

2 (h2 − 2hµνhµν) +
κ3

6 (h3 + 8hµρhρνhν
µ − 6hhµνhµν) +O(κ4) ,

gµν = ηµν − 2κhµν + 4κ2hµρh ν
ρ − 8κ3hµτ hτρhρν +O(κ4) ,

e a
µ = δa

µ + κh a
µ − κ2

2 h a
ρ h ρ

µ + κ3

2 h a
ρ h ρ

ν h ν
µ +O(κ4) ,

E µ
a = δµ

a − κh µ
a + 3

2κ2h ρ
a h µ

ρ − 5
2κ3h ρ

a hρνhνµ +O(κ4) ,

Γλ
µν = κ(ηλσ − 2κhλσ + 4κ2hλρh σ

ρ )
(
∂µhνσ + ∂νhσµ − ∂σhµν

)
+O(κ4) ,

ωab
µ ≡ ηbc e a

ν DµE ν
c = ηbc e a

ν ∂µE ν
c + ηbc e a

ν Γν
µρE ρ

c

= κ(∂bh a
µ − ∂ah b

µ ) + κ2
(1
2hbν∂µh a

ν − 1
2haν∂µh b

ν + hbν∂ahµν − haν∂bhµν

+ haν∂νh b
µ − hbν∂νh a

µ

)
+O(κ3) ,

Rµνρσ = κ(∂ρ∂νhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂σ∂νhµρ) +O(κ2) . (4.4)
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In the r.h.s. of all the above expressions both curved space indices (µ, ν, ρ, σ, . . .) and tangent
space indices (a, b, c, . . .) are raised or lowered by using the Minkowski metric η. The trace
of the metric fluctuation is defined as h ≡ hµνηµν . Additionally, the symbols e a

µ represent
the vierbein, E µ

a represents the inverse vierbein, ωab
µ represents the spin-connection, Γλ

µν

represents the Christoffel connection, and Rµνρσ represents the Riemann tensor.

Covariantization: in the covariantization prescription, we derive the action that describes
the interaction between two spinning particles and one graviton up to second derivative
order on gravitational fluctuations. Additionally, we obtain the interaction between two
spinning particles and two gravitons up to first derivative order on gravitational fluctuations
in the derivative expansion. At the second derivative order, the interacting action of two
spinning particles and one graviton also includes a generic non-minimal coupling through the
curvature tensor, which is inherently general coordinate invariant. Under covariantization
prescription tangent space derivatives on Φβ should be replaced by covariant derivative in
the curved space after multiplication of inverse vierbeins in the following way

∂a1∂a2 · · · ∂anΦβ → E µ1
a1 E µ2

a2 · · ·E µn
an

D(µ1Dµ2 · · ·Dµn)Φβ , (4.5)

where the expression of one, two and three covariant derivatives on Φβ are given by

DµΦβ = ∂µΦβ +
[1
2ωab

µ (Σab) γ
β Φγ

]
, (4.6)

D(µDν)Φβ = ∂µ∂νΦβ + 1
2
(
ωab

µ (Σab) γ
β ∂νΦγ + ωab

ν (Σab) γ
β ∂µΦγ

)
+
[1
2∂(µωab

ν)(Σab) γ
β Φγ

]
+ 1

4ωab
(µωcd

ν)(Σab) γ
β (Σcd) δ

γ Φδ −
[
Γρ

µν∂ρΦβ

]
− 1

2Γ
ρ
µνωab

ρ (Σab) γ
β Φγ , (4.7)

DµDνDρΦβ = ∂µ∂ν∂ρΦβ + 1
2∂µωab

ν (Σab) γ
β DρΦγ + 1

2ωab
ν (Σab) γ

β ∂µDρΦγ

−
[
∂µΓσ

νρ∂σΦβ

]
− 1

2∂µΓσ
νρ ωab

σ (Σab) γ
β Φγ − Γσ

νρ∂µDσΦβ

+ 1
2ωab

µ (Σab) γ
β DνDρΦγ − Γσ

µνDσDρΦβ − Γσ
µρDνDσΦβ . (4.8)

The last equation above needs to symmetrize in µ, ν, ρ indices before substituting in (4.5).
In the above expressions the terms within square brackets are new at each derivative
order in the covariantization prescription, which are important in deriving the interaction
between two spinning particles and one graviton up to two derivative order on gravitational
fluctuation, and the interaction between two spinning particles and two gravitons up to
one derivative order on gravitational fluctuation. To the derivative order we are interested
to find the interacting parts of the action we do not need to know the new terms coming
from covariantization of more than three derivatives on Φ. Also while covariantizing the
action (2.7), we need to include

√
−det g as a covariant measure of volume.

The Fourier transform of gravitational fluctuation hµν(x) will be denoted by hµν(ℓ)
and the relation between them is given by

hµν(x) ≡
∫

d4ℓ

(2π)4 eiℓ.x hµν(ℓ) . (4.9)
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Interaction part of the action: under the above prescribed covariantization procedure
the interactive part of the action describing interaction between two massive spinning
particles and one graviton up to quadratic order in graviton momentum becomes

S(3)= κ

2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ

(2π)4 (2π)4δ(4)(q1+q2+ℓ)Φα(q1)
[
h(ℓ)Kαβ(q2)−hµ

a(ℓ)q2µ
∂Kαβ(q2)

∂q2a

+1
2
{
ℓbha

µ(ℓ)−ℓahb
µ(ℓ)

}∂Kαγ(q2)
∂q2µ

(Σab) β
γ +1

4ℓµ
{
ℓbha

ν(ℓ)−ℓahb
ν(ℓ)

} ∂2Kαγ(q2)
∂q2µ∂q2ν

(Σab) β
γ

− 1
2
{
ℓµhρ

ν(ℓ)+ℓνhρ
µ(ℓ)−ℓρhµν(ℓ)

}
q2ρ

∂2Kαβ(q2)
∂q2µ∂q2ν

− 1
6ℓµ

{
ℓνhσ

ρ (ℓ)+ℓρhσ
ν (ℓ)−ℓσhνρ(ℓ)

}
q2σ

∂3Kαβ(q2)
∂q2µ∂q2ν∂q2ρ

+O(ℓ3)
]
Φβ(q2) . (4.10)

By covariantization procedure we only get the interacting action representing minimal
coupling of graviton with matter field. On top of it at the quadratic order in graviton
momentum we also need to add generic non-minimal interaction term which describes the
interaction between two spinning particles and one graviton through lineariszed Riemann
tensor. A generic form of the action describing such kind of non-minimal interaction is
given by

S
(3) = 1

2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ

(2π)4 (2π)4δ(4)(q1 + q2 + ℓ)

Φα(q1)
[
Rµνρσ(ℓ) Gαβ,µνρσ(q2) +O(ℓ3)

]
Φβ(q2) , (4.11)

where Rµνρσ(ℓ) is the Fourier transform of the linearized Riemann tensor in (4.4) which
reads

Rµνρσ(ℓ) = −κ(ℓρℓνhµσ + ℓµℓσhνρ − ℓµℓρhνσ − ℓσℓνhµρ) . (4.12)

In the non-minimal action (4.11), G satisfies the following property

Gαβ,µνρσ(q2) = ± Gβα,µνρσ(−q1 − ℓ) . (4.13)

In the above equation + sign is for Grassmannian even field and − sign is for Grassmannian
odd field. Again during the derivation we consider Φ field components being Grassmannian
even, but the final result will be valid for both Grassmannian even and odd fields.

Following the covariantization procedure, the part of the action describing interaction
between two massive spinning particles and two gravitons up to linear order in graviton
momenta becomes

S(4)= κ2

2

∫
d4q1
(2π)4

d4q2
(2π)4

d4ℓ1
(2π)4

d4ℓ2
(2π)4 (2π)4δ(4)(q1+q2+ℓ1+ℓ2)

Φα(q1)
[
1
2
{
h(ℓ1)h(ℓ2)−2hµν(ℓ1)hµν(ℓ2)

}
Kαβ(q2)+h(ℓ1)

(
−hµ

a(ℓ2)q2µ
∂Kαβ(q2)

∂q2a

+1
2
{
ℓb
2h

a
µ(ℓ2)−ℓa

2hb
µ(ℓ2)

}∂Kαγ(q2)
∂q2µ

(Σab) β
γ − 1

2
{
ℓ2µhρ

ν(ℓ2)+ℓ2νhρ
µ(ℓ2)−ℓρ

2hµν(ℓ2)
}
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×q2ρ
∂2Kαβ(q2)
∂q2µ∂q2ν

)
+3
2hρ

a(ℓ1)hµ
ρ(ℓ2)q2µ

∂Kαβ(q2)
∂q2a

+1
2hµ

a(ℓ1)hν
b (ℓ2)q2µq2ν

∂2Kαβ(q2)
∂q2a∂q2b

− 1
2hµ

c (ℓ1)
{
ℓb
2h

a
µ(ℓ2)−ℓa

2hb
µ(ℓ2)

}∂Kαγ(q2)
∂q2c

(Σab) β
γ − 1

4hµ
c (ℓ1)q2µ

{
ℓb
2h

a
ν(ℓ2)−ℓa

2hb
ν(ℓ2)

}
× ∂2Kαγ(q2)

∂q2c∂q2ν
(Σab) β

γ +1
2hµ

a(ℓ1)
{
ℓ2µhρ

ν(ℓ2)+ℓ2νhρ
µ(ℓ2)−ℓρ

2hµν(ℓ2)
}
q2ρ

∂2Kαβ(q2)
∂q2a∂q2ν

+1
6hµ

a(ℓ1)q2µ
{
ℓ2νhρ

σ(ℓ2)+ℓ2σhρ
ν(ℓ2)−ℓρ

2hνσ(ℓ2)
}
q2ρ

∂3Kαβ(q2)
∂q2a∂q2ν∂q2σ

+1
2
{1
2hbσ(ℓ1)ℓ2µha

σ(ℓ2)−
1
2haσ(ℓ1)ℓ2µhb

σ(ℓ2)+hbσ(ℓ1)ℓa
2hµσ(ℓ2)−haσ(ℓ1)ℓb

2hµσ(ℓ2)

+haσ(ℓ1)ℓ2σhb
µ(ℓ2)−hbσ(ℓ1)ℓ2σha

µ(ℓ2)
}∂Kαγ(q2)

∂q2µ
(Σab) β

γ +hρσ(ℓ1)
{
ℓ2µhνσ(ℓ2)

+ℓ2νhµσ(ℓ2)−ℓ2σhµν(ℓ2)
}
q2ρ

∂2Kαβ(q2)
∂q2µ∂q2ν

+O(ℓ21, ℓ1ℓ2, ℓ22)
]
Φβ(q2) . (4.14)

We also need to provide a purely gravitational effective action, constructed out off
curvature tensors in derivative expansion. This action describes the self-interaction of
the graviton field and provide dynamics to graviton. For the analysis we are conducting
here, it suffices to consider the leading term of the EFT action, which corresponds to the
Einstein-Hilbert action and is expressed as follows:

SEFT = 1
2κ2

∫
d4x

√
−det(gµν)

(
R +O(R2)

)
. (4.15)

Feynman rules for the vertices: starting from the interacting parts of the action
given in (4.10) and (4.11), Feynman rule for the vertex describing interaction between two
spinning particles with momenta q and −(q + ℓ), and one graviton with Lorentz indices µν

and momentum ℓ turns out to be

Γ(3)
µν (q,−q − ℓ, ℓ)

= iκ

[
ηµνK(−q) + 1

2ηµνℓρ ∂K(−q)
∂qρ

+ 1
4ηµνℓρℓσ ∂2K(−q)

∂qρ∂qσ
− q(µ

∂K(−q)
∂qν) − 1

2ℓ(µ
∂K(−q)

∂qν)

− 1
2q(µℓρ ∂2K(−q)

∂qν)∂qρ
− 1

4q(µℓρℓσ ∂3K(−q)
∂qν)∂qρ∂qσ

− 1
2ℓ(µℓρ ∂2K(−q)

∂qν)∂qρ
− 1

2ℓb ∂K(−q)
∂q(µ

Σν)b

+ 1
2ℓb ΣT

(νb

∂K(−q)
∂qµ) − 1

4ℓbℓρ ∂2K(−q)
∂q(µ∂qρ

Σν)b +
1
4ℓbℓρΣT

(νb

∂2K(−q)
∂qµ)∂qρ

+ 1
4

{
ℓµℓρ ∂2K(−q)

∂qρ∂qν
+ ℓνℓρ ∂2K(−q)

∂qρ∂qµ
− ℓ2

∂2K(−q)
∂qµ∂qν

}

+ 1
12ℓσ

{
qµℓρ ∂3K(−q)

∂qρ∂qν∂qσ
+ qνℓρ ∂3K(−q)

∂qρ∂qµ∂qσ
− q.ℓ

∂3K(−q)
∂qµ∂qν∂qσ

}

− ℓρℓσ
{
G(µρσν)(−q) + Gσ(νµ)ρ(−q)− G(µρν)σ(−q)− Gσ(νρµ)(−q)

}
+O(ℓ3)

]
, (4.16)
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where we suppressed the massive particle spin/polarization indices. The above expression
is symmetrized under µ ↔ ν exchange and in our convention momenta of the particles
are always flowing towards the interaction vertex i.e. ingoing. Analogously starting from
the interacting part of the action given in (4.14), Feynman rule for the vertex describing
interaction between two spinning particles with momenta q and −(q + ℓ1 + ℓ2), and two
gravitons with Lorentz indices (µν), (ρσ) and momenta ℓ1, ℓ2 respectively, turns out to be

Γ(4)
µν,ρσ(q,−q−ℓ1−ℓ2, ℓ1, ℓ2)

= iκ2
[
(ηµνηρσ−2ηµρηνσ)

{
K(−q)+ 1

2(ℓ1+ℓ2)κ ∂K(−q)
∂qκ

}
−ηµν

{
qρ

∂K(−q)
∂qσ

+1
2(ℓ1+ℓ2)ρ

∂K(−q)
∂qσ

+1
2qρ(ℓ1+ℓ2)κ ∂2K(−q)

∂qσ∂qκ
+1
2ℓb

2
∂K(−q)

∂qρ
Σσb−

1
2ℓb

2ΣT
σb

∂K(−q)
∂qρ

}

−ηρσ

{
qµ

∂K(−q)
∂qν

+1
2(ℓ1+ℓ2)µ

∂K(−q)
∂qν

+1
2qµ(ℓ1+ℓ2)κ ∂2K(−q)

∂qν∂qκ
+1
2ℓb

1
∂K(−q)

∂qµ
Σνb

− 1
2ℓb

1ΣT
νb

∂K(−q)
∂qµ

}
+3
2ηµρ

{
qσ

∂K(−q)
∂qν

+1
2(ℓ1+ℓ2)σ

∂K(−q)
∂qν

+1
2qσ(ℓ1+ℓ2)κ ∂2K(−q)

∂qκ∂qν

+qν
∂K(−q)

∂qσ
+1
2(ℓ1+ℓ2)ν

∂K(−q)
∂qσ

+1
2qν(ℓ1+ℓ2)κ ∂2K(−q)

∂qκ∂qσ

}
+qµqρ

∂2K(−q)
∂qν∂qσ

+1
2
{

qµ(ℓ1+ℓ2)ρ+qρ(ℓ1+ℓ2)µ

}∂2K(−q)
∂qν∂qσ

+1
2qµqρ(ℓ1+ℓ2)κ ∂3K(−q)

∂qν∂qσ∂qκ

+1
2ηµρ

{
ℓb
2
∂K(−q)

∂qν
Σσb−ℓb

2ΣT
σb

∂K(−q)
∂qν

+ℓb
1
∂K(−q)

∂qσ
Σνb−ℓb

1ΣT
νb

∂K(−q)
∂qσ

}

+1
4qµℓb

2

{
∂2K(−q)
∂qν∂qρ

Σσb−ΣT
σb

∂2K(−q)
∂qν∂qρ

}
+1
4qρℓb

1

{
∂2K(−q)
∂qσ∂qµ

Σνb−ΣT
νb

∂2K(−q)
∂qσ∂qµ

}

− 1
4ηνσ(ℓ2−ℓ1)κ

{
∂K(−q)

∂qκ
Σρµ−ΣT

ρµ

∂K(−q)
∂qκ

}
− 1
2ηνσℓa

2

{
∂K(−q)

∂qρ
Σaµ−ΣT

aµ

∂K(−q)
∂qρ

}

− 1
2ηνσℓa

1

{
∂K(−q)

∂qµ
Σaρ−ΣT

aρ

∂K(−q)
∂qµ

}
− 1
2ℓ2ν

{
∂K(−q)

∂qσ
Σµρ−ΣT

µρ

∂K(−q)
∂qσ

}

− 1
2ℓ1σ

{
∂K(−q)

∂qν
Σρµ−ΣT

ρµ

∂K(−q)
∂qν

}
+O(ℓ21, ℓ1ℓ2, ℓ22)

]
, (4.17)

where we suppressed the massive particle spin/polarization indices. We could have sym-
metrize the above expression under µ ↔ ν and ρ ↔ σ exchanges. However, it is unnecessary
because any contraction involved with this vertex in the computation of loop diagrams will
already exhibit symmetry under these exchanges.

Now we want to evaluate the amputated Green’s function involving N number of
massive spinning particles and one graviton with momentum ℓ and Lorentz indices µν,
where the graviton is not connected to any external particle leg. Using covariantization
prescription it has been evaluated in appendix-B, where additional complication has been
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taken care off due to the presence of different momentum conserving delta functions between
Γ̃(N+1) and Γ(N). The final result reads from (B.11) turns out to be

Γ̃(N+1)α1···αN
µν (ℓ) = κ

N∑
i=1

[
− δαi

βi
pi(µ

∂

∂p
ν)
i

+ (Σi(νb) αi
βi

ℓb ∂

∂p
µ)
i

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ ℓρpiν
∂2

∂pρ
i ∂pµ

i

− pi.ℓ
∂2

∂pµ
i ∂pν

i

}]
Γ(N)α1···αi−1βiαi+1···αN +O(ℓ2).

(4.18)

The three graviton vertex follows from (4.15) with the ingoing graviton momenta k,
ℓ and −(ℓ + k), and the Lorentz indices carried by them (µν), (ρσ) and (τκ) respectively
takes the following form:

V (3)
µν,ρσ,τκ(k, ℓ,−ℓ − k)

= i κ
[
− (k.ℓ + ℓ2 + k2) (ηµνηρτ ησκ + ηρσηµτ ηνκ + ητκηµρηνσ)

+ 4
(
k.ℓ + ℓ2 + k2)ηρνηστ ηκµ + 1

2
(
k.ℓ + ℓ2 + k2)ηµνηρσητκ

− 2
(
kτ ℓκηµρηνσ − ℓµ(k + ℓ)νηρτ ησκ − (k + ℓ)ρkσηµτ ηνκ

)
− 2

(
(kµℓτ + ℓµℓτ − kτ ℓµ)ηνρησκ + (2ℓµkρ + ℓµℓρ + kµkρ)ητνηκσ

+ (kρkτ + ℓρkτ − ℓτ kρ)ηµσηνκ
)]

+O(k4, k3ℓ, k2ℓ2, kℓ3, ℓ4) . (4.19)

4.2 KG-decomposition and IR-finite amplitudes

In Grammer-Yennie prescription we decompose the internal graviton propagator (4.2) with
momentum ℓ flowing from massive spinning particle i to j( ̸= i) in the following way [1] (see
also [62])

∆µν,ρσ
F (ℓ) = −i

ℓ2 − iϵ

1
2
[
Kµν,ρσ

(ij) (ℓ, pi, pj) + Gµν,ρσ
(ij) (ℓ, pi, pj)

]
, (4.20)

where

Kµν,ρσ
(ij) (ℓ, pi, pj) = C(ℓ, pi, pj)

[
(pi − ℓ)µℓν + (pi − ℓ)νℓµ] [(pj + ℓ)ρℓσ + (pj + ℓ)σℓρ],

Gµν,ρσ
(ij) (ℓ, pi, pj) =

(
ηµρηνσ + ηµσηνρ − ηµνηρσ)− Kµν,ρσ

(ij) (ℓ, pi, pj) , (4.21)

with

C(ℓ, pi, pj) = (−1)
{pi.(pi − ℓ)− iϵ} {pj .(pj + ℓ)− iϵ}{ ℓ.(ℓ − 2pi)− iϵ} {ℓ.(ℓ + 2pj)− iϵ}

×
[
2(pi.pj)2 − p2i p2j − ℓ2(pi.pj) + 2(pi.pj)(pi.ℓ)− 2(pi.pj)(pj .ℓ)

]
. (4.22)

Note that pi and pj above refer to the external momenta flowing into the legs i and j,
and not necessarily the momenta of the lines to which the graviton propagator attaches
(which may have additional contribution from external soft graviton momentum or internal
virtual graviton momentum). For virtual gravitons whose one or both ends are attached
to a 3-graviton vertex instead of a massive particle, or to some internal massive particle
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Figure 12. This figure is a Feynman diagrammatic representation of the expression in (4.25). Solid
lines represent the massive spinning particles, dashed lines represent the ingoing virtual graviton
with momentum ℓ and the arrow in the graviton line represents that it is a K-graviton proportional
to ζµℓν + ζνℓµ. The solid blobs in the r.h.s. represent a new kind of vertices and the Feynman rules
for the left blob vertex is −κ{2ζ.(q+ ℓ)+ ζνℓbΣνb} and for the right blob vertex is κ{2ζ.q− ζνℓbΣT

νb}.

line or vertex inside Γ̃(N+1), we do not carry out any Grammer-Yennie decomposition as
those won’t contribute to IR divergences. In (4.20) the propagator part containing K(ij)
will be denoted by K-graviton propagator and the propagator part containing G(ij) will be
denoted by G-graviton propagator throughout this section.

Ward identities involving K-graviton: from the definition of K-graviton propagator
in (4.21), it is clear that K-graviton is proportional to a pure gauge of structure ζµℓν + ζνℓµ,
with ζ = pi − ℓ when it flows from i-th leg. Let us study the Ward identity for an off-
shell un-amputated three particle Green’s function involving two massive fields and one
K-graviton. It is diagrammatically represented in figure 12.

The l.h.s. of the figure 12 takes the following form:
1

q2+m2−iϵ

1
(q+ℓ)2+m2−iϵ

(ζµℓν+ζνℓµ)
[
Ξ(−q)Γ(3)

µν (q,−q−ℓ,ℓ)Ξ(−q−ℓ)
]
. (4.23)

To compute the above expression we used the result of (C.4) and then simplified using the
identities in (2.10), (2.17) and derivatives of (2.17). After all the simplification we get

iκ

(q + ℓ)2 + m2 − iϵ

{
2iζ.ℓΞ(−q) + 2iζ.qℓρ ∂Ξ(−q)

∂qρ
+ iζ.ℓℓρℓσ ∂2Ξ(−q)

∂qρ∂qσ
+ 2iζ.ℓℓρ ∂Ξ(−q)

∂qρ

+ i

2ℓbℓρζνℓµΣνb
∂2Ξ(−q)
∂qµ∂qρ

+ i

3ζ.qℓρℓσℓν ∂3Ξ(−q)
∂qν∂qρ∂qσ

+ 2iζ.qΞ(−q) + iζνℓbΣνbΞ(−q)

+ iζνℓµℓbΣνb
∂Ξ(−q)

∂qµ
+ iζ.qℓµℓb ∂2Ξ(−q)

∂qµ∂qb
+O(ℓ4)

}

+ iκ

q2 + m2 − iϵ

{
− 2iζ.qΞ(−q) + iζνℓbΞ(−q)ΣT

νb

}
. (4.24)

Now undoing the ℓ expansion for Ξ(−q − ℓ) the above expression can be re-written as

1
q2 + m2 − iϵ

1
(q + ℓ)2 + m2 − iϵ

(ζµℓν + ζνℓµ)
[
Ξ(−q)Γ(3)

µν (q,−q − ℓ, ℓ)Ξ(−q − ℓ)
]

= κ
{
− 2ζ.(q + ℓ)− ζνℓbΣνb

} Ξ(−q − ℓ)
(q + ℓ)2 + m2 − iϵ

+ Ξ(−q)
q2 + m2 − iϵ

κ
{
2ζ.q − ζνℓbΣT

νb

}
.

(4.25)

The above identity is diagrammatically represented in figure 12. It is worth noting that the
blob vertices in this representation depend on the momenta of the massive particle and the
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attached K-graviton, as well as on the spin angular momenta of the massive particle, as
indicated in figure 12.

In comparison to the QED Ward identity in (3.22), the momenta dependence of the
blob vertices weakens the power of KG-decomposition. For instance, if we wish to study
the Ward identity for the four-point un-amputated Green’s function associated with two
massive particles, one graviton, and one K-graviton, analogous to figure 2, it will result in
new Feynman rules for the right blob vertex drawn in the second diagram after the equality
of figure 2. Specifically, the right blob vertex Feynman rule reads κ{2ζ.(q + k)− ζνℓbΣT

νb},
which contains an additional term 2κζ · k relative to the three-point un-amputated Green’s
function right blob Feynman rule κ{2ζ.q − ζνℓbΣT

νb} in figure 12. In turn this implies that
A(N+1) contains an extra exponentiation term compared to the IR-exponentiation factor
of A(N). However this extra contribution arising from the momenta dependent right blob
vertex rule contributes to IR-finite part in the loop integral, allowing us to follow the same
strategy used in deriving the soft photon theorem. In [1], it is also observed that the right-
hand side of figure 3 in presence of one external graviton, due to one K-graviton insertion,
does not vanish, but instead leaves out some finite residual contribution. Fortunately, this
residual terms also contributes to the IR-finite part in the loop integral when we evaluate
A(N+1), which we can systematically account for it as well. However, as mentioned in
section-2, we still need to regulate some additional IR divergence in A(N+1) that arises from
the Feynman diagram involving three graviton interaction vertices of which one graviton
being the external graviton at the one-loop level.

IR-finite amplitudes: the IR-finite amplitudes associated with the scattering of N

number of spinning massive particles, and associated with N number of spinning massive
particles plus one outgoing graviton are defined by

A(N) ≡ exp{Kgr} A(N)
IR-finite , (4.26)

A(N+1) reg
≡ exp{Kgr} A(N+1)

IR-finite , (4.27)

where

Kgr = −iκ2
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ.(ℓ − 2pi)− iϵ

1
ℓ.(ℓ + 2pj)− iϵ

×
[
2(pi.pj)2 − p2i p2j − ℓ2(pi.pj) + 2(pi.pj)(pi.ℓ)− 2(pi.pj)(pj .ℓ)

]
(4.28)

is the Eikonal IR-divergent exponentiated factor. In equations (4.26) and (4.27), A(N)
IR-finite

and A(N+1)
IR-finite represent the infrared finite components of the N -particle and N -particle-

1-graviton amplitudes, respectively.11 These components are obtained by removing the
11To determine A(N+1)

IR-finite, we need to use an explicit IR cut-off for the diagrams involving graviton self
interaction vertices. The “reg” over the ≡ sign in (4.27) corresponds to this particular IR regularization
scheme. Effectively this IR-regularization scheme removes a factor of exp{Kphase} from A(N+1) with an
explicit expression for Kphase being

Kphase = iκ2
N∑

j=1

(pj .k)2
∫ R−1

0

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
k.ℓ + iϵ

1
pj .ℓ − iϵ

. (4.29)
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exponentiated IR-divergent parts from the original divergent amplitudes defined through
the relations (4.26) and (4.27). Both A(N)

IR-finite and A(N+1)
IR-finite comprise contributions from

the corresponding tree-level amplitudes and loop amplitudes up to all orders in perturbation
theory. However, there is a condition: if both ends of a virtual graviton propagator are
attached to different external massive spinning particle lines (which may already contain
additional real or virtual graviton lines), then this graviton propagator should be replaced
by a G-graviton propagator when we evaluate them for the IR-finite parts. Additionally
the same set of diagrams need to be evaluated with K-graviton propagator as well and
then have to subtract by a factor of Kgr times the IR finite amplitude at one less loop
level. On top of it to evaluate the full IR-finite part of A(N+1), we need to IR regulate
diagrams containing at least one graviton self interacting vertex involving the external
graviton. Rigorous definitions of one-loop IR-finite amplitudes are provided below.

Now analogous to (3.29), (3.30) and (3.31), here we also split the IR-finite parts of the
tree and one-loop amplitudes in the following way

A(N)
IR-finite,0 ≡ Γ(N) , (4.30)

A(N+1)
IR-finite,0 ≡ Γ(N+1) , (4.31)

A(N)
IR-finite,1 ≡

[
A(N)

G,1 +A(N)
K−finite,1 +A(N)

self,1 +A(N)
non-div,1

]
, (4.32)

A(N+1)
IR-finite,1 ≡

[
A(N+1)

G,1 +A(N+1)
K−finite,1 +A(N+1)

3-graviton-reg,1 +A(N+1)
self,1 +A(N+1)

non-div,1

]
. (4.33)

Above different components of the IR-finite one-loop amplitudes are defined as

1. A(N)
G,1 corresponds to the diagram in figure 5 with the dashed line being a G-graviton

propagator.

2. A(N)
K−finite,1 corresponds to the contribution from the diagram in figure 5, evaluated

with K-graviton propagator representing the dashed line there and then subtracted
the contribution Kgr × Γ(N) from it at the integrand level.

3. A(N)
self,1 represents the set of Feynman diagrams in figure 6 evaluated with full graviton

propagator representing the dashed lines.

4. A(N)
non-div,1 represents the set of diagrams in figure 7, evaluated with full graviton

propagator representing the dashed lines.

5. A(N+1)
G,1 corresponds to the set of diagrams in figure 8 where we need to evaluate

the diagrams with G-graviton propagator representing the dashed virtual lines. The
dashed external lines represent the on-shell graviton with momentum k.

6. A(N+1)
K−finite,1 corresponds to the contribution from the diagrams in figure 8, evaluated

with K-graviton propagator representing the dashed line and then subtracted the
contribution Kgr × Γ(N+1) at the integrand level. The dashed external lines represent
the on-shell graviton with momentum k.

7. A(N+1)
3-graviton-reg,1 represents the sum of the contributions of Feynman diagrams in fig-

ure 13, when we evaluate them using full graviton propagator and regulate the IR
divergence considering detector resolution as the explicit IR cut-off.
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8. A(N+1)
self,1 represents the set of Feynman diagrams in figure 14, evaluated with full

graviton propagator representing the dashed lines. The dashed external lines represent
the on-shell graviton with momentum k.

9. A(N+1)
non-div,1 represents the set of diagrams in figure 11, evaluated with full graviton

propagator representing the dashed lines. The dashed external lines represent the
on-shell graviton with momentum k.

4.3 Derivation of soft graviton theorem

The goal here will be to derive the order ω−1 and lnω soft factors from the ratio of A(N+1)
IR-finite

and A(N)
IR-finite when the external graviton energy is small i.e. ω ≪ |pµ

i |.

4.3.1 IR-finite one-loop N-particle amplitude

Let us evaluate the sum of contributions from figure 5 with insertion of G-graviton propagator
and the finite part with the insertion of K-graviton propagator together. We can do this by
examining the diagram in figure 5, where the dashed line represents a full graviton propagator.
Then we need to subtract Kgr × Γ(N) from the evaluated result. The mathematical
expression reads

A(N)
G,1 +A(N)

K−finite,1 =
N∑

i,j=1
i>j

∫
d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

×
[
ϵT
i (−pi)Γ(3)

µν (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]
∆µν,ρσ

F (ℓ)[
ϵT
j (−pj)Γ(3)

ρσ (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi − ℓ, pj + ℓ)

− Kgr × Γ(N) . (4.34)

We evaluate the above expression by using the identity derived in (C.4). The result in small
ℓ expansion in the integrand turns out to be

A(N)
G,1 +A(N)

K−finite,1

= −iκ2
N∑

i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ · (ℓ − 2pi)− iϵ

1
ℓ · (ℓ + 2pj)− iϵ

[
{2(pi.pj)2 − p2i p2j}

(
−ℓρ ∂

∂pρ
i

Γ(N)
(ij) (pi, pj) + ℓρ ∂

∂pρ
j

Γ(N)
(ij) (pi, pj)

)

+
{
2(pi.pj)

(
pρ

jΣ
T
iρσℓσ − pρ

i Σ
T
jρσℓσ

)
+ p2i pρ

jΣ
T
jρσℓσ − p2jpρ

i Σ
T
iρσℓσ

}
Γ(N)
(ij) (pi, pj)

+O(ℓℓ)
]

(4.35)

Note that in the limit ℓµ → 0 the integrand of the above expression behaves like
∫ d4ℓ

|ℓ|3 at
leading order, hence the contribution is IR-finite as promised.

Diagrams in figure 6 renormalizes the massive spinning particle propagators in presence
of gravitational interaction, when the dashed lines represent graviton propagators. The
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contribution from the loop diagrams there are IR-finite. Hence following the analogous
wave function renormalization condition (3.36), the sum of the contribution vanishes i.e.

A(N)
self,1 = 0 . (4.36)

Now let us analyze the diagrams in figure 7 with dashed lines being full graviton propagators
are connected to some internal massive virtual lines or massive EFT vertices inside Γ(N). In
the limit ℓµ → 0 the integrand of the first diagram behaves like

∫ d4ℓ
|ℓ|3 at leading order, and

the second diagram behaves like
∫ d4ℓ

|ℓ|2 at leading order, hence IR-finite. We do not need to
evaluate them explicitly. Let the total contribution after removing the UV divergences by
adding counter term diagrams reads

A(N)
non-div,1 . (4.37)

Hence the total IR-finite contribution to N -particle amplitude follows from the defini-
tion (4.32) becomes

A(N)
IR-finite,1 = −iκ2

N∑
i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ · (ℓ − 2pi)− iϵ

1
ℓ · (ℓ + 2pj)− iϵ

[
{2(pi.pj)2 − p2i p2j}

(
−ℓρ ∂

∂pρ
i

Γ(N)
(ij) (pi, pj) + ℓρ ∂

∂pρ
j

Γ(N)
(ij) (pi, pj)

)

+
{
2(pi.pj)

(
pρ

jΣ
T
iρσℓσ − pρ

i Σ
T
jρσℓσ

)
+ p2i pρ

jΣ
T
jρσℓσ − p2jpρ

i Σ
T
iρσℓσ

}
Γ(N)
(ij) (pi, pj)

+O(ℓℓ)
]

+ A(N)
non-div,1. (4.38)

4.3.2 IR-finite one-loop (N + 1)-particle amplitude in the soft limit

Here we analyze all the Feynman diagrams contributing to (3.31) in the soft limit i.e.
ω → 0. We start by analyzing the diagrams in figure 8 with the dashed lines being full
graviton propagators, which evaluates the contribution of A(N+1)

G,1 +A(N+1)
K−finite,1+KgrΓ(N+1).

By evaluating this sum with full graviton propagator, we avoid all the computational
complicacies in the KG-decomposition in presence of external graviton as pointed out in the
paragraph below (4.25). Then finally we subtract the contribution of KgrΓ(N+1) from the
sum to extract the ω−1 and lnω soft factors from A(N+1)

G,1 +A(N+1)
K−finite,1 in the limit ω ≪ |pµ

i |.
The first diagram in figure 8 with full graviton propagator representing the internal

dashed line takes the following form

BI ≡
N∑

i=1

N∑
j=1
j ̸=i

ελτ (k)
2pi.k

∫
d4ℓ

(2π)4
1

(pi + k − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
ϵT
i (−pi)Γ(3)

λτ (pi,−pi − k, k)Ξi(−pi − k)Γ(3)
ρσ (pi + k,−pi − k + ℓ,−ℓ)Ξi(−pi − k + ℓ)

]
×∆ρσ,µν

F (ℓ)
[
ϵT
j (−pj)Γ(3)

µν (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi + k − ℓ, pj + ℓ) . (4.39)
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After using the identities in (C.4) and (C.6) and simplifying the above expression reduces to

BI = iκ3
N∑

i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

1
pi.k

∫
d4ℓ

(2π)4
1

ℓ2−iϵ

1
ℓ.(ℓ−2pi−2k)+2pi.k−iϵ

1
ℓ.(ℓ+2pj)−iϵ

[(
−2(pi.ε.pi)

{
2(pi.pj)2−p2

i p2
j+4pi.pjpj .k−2pi.pjpj .ℓ+2pi.pjpi.ℓ

}
+4(pi.ε.pi)pi.pjpµ

i ΣT
jµνℓν−2(pi.ε.pi)p2

i pµ
j ΣT

jµνℓν+2{2(pi.pj)2−p2
i p2

j}piµεµρΣT
iρνkν

−4(pi.ε.pi)pi.pjpµ
j ΣT

iµνℓν+2(pi.ε.pi)p2
jpµ

i ΣT
jµνℓν−2ipi.kpi.pjpiµεµν ∂Ki(−pi)

∂pν
i

∂Ξi(−pi)
∂pσ

i

pσ
j

+ipi.kp2
jpiµεµν ∂Ki(−pi)

∂pν
i

∂Ξi(−pi)
∂pσ

i

pσ
i

)
Γ(N)

(ij)(pi,pj) −2(pi.ε.pi)
{
2(pi.pj)2−p2

i p2
j

}
×
(
(k−ℓ)µ ∂

∂pµ
i

Γ(N)
(ij)(pi,pj)+ℓµ ∂

∂pµ
j

Γ(N)
(ij)(pi,pj)

)
+ O(ℓℓ,ℓk,kk)

]
. (4.40)

The second diagram in figure 8 with full graviton propagator representing the dashed
internal line takes the following form

BII ≡
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
1

(pi + k − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ
∆ρσ,λτ

F (ℓ)

×
[
ϵT
i (−pi)εµν(k)Γ(4)

µν,ρσ(pi,−pi − k + ℓ, k,−ℓ)Ξi(−pi − k + ℓ)
]

×
[
ϵT
j (−pj)Γ(3)

λτ (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ij) (pi + k − ℓ, pj + ℓ) . (4.41)

After using the identities in (C.4) and (C.8) and simplifying the above expression reduces to

BII = iκ3
N∑

i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ.(ℓ − 2pi − 2k) + 2pi.k − iϵ

1
ℓ.(ℓ + 2pj)− iϵ

[{
− 4(pi.ε.pi)p2j + 16(pi.ε.pj)(pi.pj) + 2ipi.pjpiµεµν ∂Ki(−pi)

∂pν
i

pσ
j

∂Ξi(−pi)
∂pσ

i

+ 2ipi.pjpσ
j

∂Ki(−pi)
∂pσ

i

piµεµν ∂Ξi(−pi)
∂pν

i

− ip2jpiµεµν ∂Ki(−pi)
∂pν

i

pσ
i

∂Ξi(−pi)
∂pσ

i

− ip2jpσ
i

∂Ki(−pi)
∂pσ

i

piµεµν ∂Ξi(−pi)
∂pν

i

}
Γ(N)
(ij) (pi, pj) +O(ℓ, k)

]
. (4.42)

The third diagram in figure 8 with full graviton propagator representing the dashed internal
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line takes the following form

BIII ≡
N∑

i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
1

(pi−ℓ)2+m2
i −iϵ

1
(pi+k−ℓ)2+m2

i −iϵ

1
(pj+ℓ)2+m2

j−iϵ

[
ϵT
i (−pi)Γ(3)

µν (pi,−pi+ℓ,−ℓ)Ξi(−pi+ℓ)ερσ(k)Γ(3)
ρσ (pi−ℓ,−pi−k+ℓ,k)Ξi(−pi−k+ℓ)

]
×∆µν,λτ

F (ℓ)
[
ϵT
j (−pj)Γ(3)

λτ (pj ,−pj−ℓ,ℓ)Ξj(−pj−ℓ)
]
Γ(N)
(ij) (pi+k−ℓ,pj+ℓ) .

(4.43)

After using the identities in (C.4) and (C.6) and simplifying the above expression reduces to

BIII = iκ3
N∑

i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2−iϵ

1
ℓ.(ℓ−2pi)−iϵ

1
ℓ.(ℓ−2pi−2k)+2pi.k−iϵ

× 1
ℓ.(ℓ+2pj)−iϵ

[(
−4(pi.ε.pi){2(pi.pj)2−p2i p2j}−8(pi.ε.pi)pi.pjpi.ℓ

+8(pi.ε.ℓ){2(pi.pj)2−p2i p2j}+8(pi.ε.pi)pi.pjpj .ℓ+4{2(pi.pj)2−p2i p2j}piρερσΣT
iσµkµ

−8pi.pj(pi.ε.pi)pµ
j Σ

T
iµνℓν+4p2j (pi.ε.pi)pµ

i Σ
T
iµνℓν+8(pi.ε.pi)pi.pjpµ

i Σ
T
jµνℓν

−4p2i (pi.ε.pi)pµ
j Σ

T
jµνℓν+4ipi.ℓpi.pjpµ

j

∂Ki(−pi)
∂pµ

i

piρερσ ∂Ξi(−pi)
∂pσ

i

−2ipi.ℓp
2
jpµ

i

∂Ki(−pi)
∂pµ

i

piρερσ ∂Ξi(−pi)
∂pσ

i

)
Γ(N)
(ij) (pi,pj) −4(pi.ε.pi)

{
2(pi.pj)2−p2i p2j

}

×
(
(k−ℓ)µ ∂

∂pµ
i

Γ(N)
(ij) (pi,pj)+ℓµ ∂

∂pµ
j

Γ(N)
(ij) (pi,pj)

)
+ O(ℓℓ,ℓk,kk)

]
. (4.44)

The fourth diagram in figure 8 with full graviton propagator representing the dashed internal
line takes the following form

BIV ≡
N∑

k=1

1
2pk · k

ϵT
k (−pk)ελτ (k)Γ(3)

λτ (pk,−pk − k, k)Ξk(−pk − k)

× 1
2

N∑
i=1
i ̸=k

N∑
j=1

j ̸=i,k

∫
d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

×
[
ϵT
i (−pi)Γ(3)

µν (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]
∆µν,ρσ

F (ℓ)

×
[
ϵT
j (−pj)Γ(3)

ρσ (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ(N)
(ijk)(pi − ℓ, pj + ℓ, pk + k) . (4.45)

The fifth diagram in figure 8 with full graviton propagator representing the dashed internal
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line takes the following form

BV ≡ 1
2

N∑
i=1

N∑
j=1
j ̸=i

∫
d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

×
[
ϵT
i (−pi)Γ(3)

µν (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]
∆µν,ρσ

F (ℓ) ελτ (k)

×
[
ϵT
j (−pj)Γ(3)

ρσ (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]
Γ̃(N+1)
(ij),λτ (pi − ℓ, pj + ℓ, k) . (4.46)

In both the expressions of BIV and BV the integrands can be simplified using (C.4) and
the result of the following common loop integral reads∫

d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

1
(pj + ℓ)2 + m2

j − iϵ

[
ϵT
i (−pi)Γ(3)

µν (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)
]

×∆µν,ρσ
F (ℓ) ×

[
ϵT
j (−pj)Γ(3)

ρσ (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)
]

= −2iκ2ϵT
i ϵT

j

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ · (ℓ − 2pi)− iϵ

1
ℓ · (ℓ + 2pj)− iϵ

[
2(pi.pj)2 − p2i p2j

+ 2(pi.pj)(pi.ℓ)− 2(pi.pj)(pj .ℓ) + 2(pi.pj)
(
pρ

jΣ
T
iρσℓσ − pρ

i Σ
T
jρσℓσ

)
+ p2i pρ

jΣ
T
jρσℓσ

− p2jpρ
i Σ

T
iρσℓσ +O(ℓℓ)

]
. (4.47)

Hence the total IR-finite contribution from the sets of diagrams in figure 8 reads

A(N+1)
G,1 +A(N+1)

K−finite,1

= BI + BII + BIII + BIV + BV − Kgr × Γ(N+1) , (4.48)

where the (N + 1) particle tree level amplitude is given by

Γ(N+1) =
N∑

k=1

1
2pk · k

ϵT
k (−pk)ελτ (k)Γ(3)

λτ (pk,−pk − k, k)Ξk(−pk − k)Γ(N)
(k) (pk + k)

+ ελτ (k) Γ̃(N+1)
λτ (k) . (4.49)

In the soft limit the above tree level (N + 1) particle amplitude provides the tree level soft
graviton theorem with soft factor given in (1.3).

Substituting the results of (4.40), (4.42), (4.44), (4.45), (4.46) and (4.28) in (4.48), it is
easy to see that the final expression is IR-finite in the limit ℓµ → 0. In explicit computation,
the IR divergent contribution in the sum of (BI + BIII) + BIV + BV cancels with the IR
divergent contribution of Kgr × Γ(N+1), and BII is IR finite at finite value of k.

Now let us analyze the expression (4.48) in the soft limit i.e. ω ≪ |pµ
i |. In this limit

a part of the final expression (4.48) contributes to ω−1 for the full integration range of
virtual graviton momenta, which reproduce the Weinberg’s soft graviton factor relating two
IR-finite one-loop amplitudes. For evaluating the rest of the IR-finite part of (4.48) we
divide the virtual momenta integration range into three regions: |ℓµ| ∈ [0, ω], [ω, |pµ

i |] and
[|pµ

i |,∞). It turns out that the integrand starts contributing at order ω0 in the region of
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integration |ℓµ| ∈ [0, ω] and [|pµ
i |,∞),12 in the soft limit. Finally in the region of integration

|ℓµ| ∈ [ω, |pµ
i |] the integrand contributes at order lnω which is dominant compare to order

ω0 in the soft expansion. Hence the order ω−1 and lnω contribution from (4.48) turns out
to be

A(N+1)
G,1 +A(N+1)

K−finite,1

= κ
N∑

k=1

pk.ε.pk

pk.k
×
(
A(N)

G,1 +A(N)
K−finite,1

)

− iκ3

4

N∑
i=1

N∑
j=1
j ̸=i

ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
ℓ.pi + iϵ

1
ℓ.pj − iϵ

×
[
− 8(pi.ε.pi)pi.pj

pj .k

pi.k
+ 2ℓ.k

pi.k

1
ℓ.pi + iϵ

(pi.ε.pi)
{
2(pi.pj)2 − p2i p2j

}

− 4(pi.ε.ℓ)
ℓ.pi + iϵ

{2(pi.pj)2 − p2i p2j} − 4(pi.ε.pi)p2j + 16(pi.ε.pj)(pi.pj)
]
Γ(N)
(ij) (pi, pj)

+O(ω0) . (4.50)

Above the expression of A(N)
G,1 +A(N)

K−finite,1 is given in (4.35). The “reg” in the subscript
of loop momentum integration above refers to the integration range |ℓµ| ∈ [ω, |pµ

i |], |p
µ
j |].

It is intriguing to observe that the components reliant on theory, such as Ki, Ξi, and
∂Γ(N)

∂pi
, along with the dependence on spin angular momenta of the massive particles,

vanish when the individual diagram contributions are summed in the lnω order soft factor
contributing integrand. This theory and spin independence feature is not true for the order
ω0 contribution from (4.48), which we ignored here.

Let us proceed to calculate the contribution of A(N+1)
3-graviton-reg,1. This term represents

the sum of contributions from the Feynman diagrams shown in figure 13. We evaluate them
using full graviton propagator and regulate the IR divergence of the virtual loop momentum
integration by introducing an explicit IR cut-off R−1, which serves as the resolution of the
detector. The expression of the first diagram in figure 13 reads

CI ≡
N∑

i,j=1
i>j

∫ ∞

R−1

d4ℓ

(2π)4
1

(pi−ℓ)2+m2
i −iϵ

1
(pj+ℓ+k)2+m2

j−iϵ

×
[
ϵT
i (−pi)Γ(3)

ab (pi,−pi+ℓ,−ℓ)Ξi(−pi+ℓ)
]

×∆ab,ρσ
F (ℓ)εµν(k)V (3)

µν,ρσ,τκ(k,ℓ,−ℓ−k)∆τκ,cd
F (ℓ)[

ϵT
j (−pj)Γ(3)

cd (pj ,−pj−ℓ−k,ℓ+k)Ξj(−pj−ℓ−k)
]
Γ(N)
(ij) (pi−ℓ,pj+ℓ+k) (4.51)

Now using the identity in (C.4) and substituting the 3-graviton vertex from (4.19) with
on-shell and transverse-traceless condition for the external graviton the above expression

12In the integration region |ℓµ| ∈ [|pµ
i |,∞) the integrand is UV divergent, so needs to use UV regulator

and add appropriate counter terms to extract finite result.
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Figure 13. Diagrams containing 3-graviton vertex contributing to A(N+1)
3-graviton-reg,1 after regulating

the IR-divergence considering detector resolution as the explicit IR cut-off. The solid lines represent
massive spinning particles and the dashed lines represent gravitons.

simplifies to

CI = − iκ3

8

N∑
i,j=1
i ̸=j

ϵT
i ϵT

j

∫ ∞

R−1

d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

1
(pj + ℓ + k)2 + m2

j − iϵ

1
ℓ2 − iϵ

× 1
(ℓ + k)2 − iϵ

[
4pρ

i pσ
i − 2p2i ηρσ − 2pρ

i ℓσ − 2pσ
i ℓρ + 2pρ

i Σ
T σa
i ℓa + 2pσ

i Σ
T ρa
i ℓa

− 2ηρσpa
i ΣT

iacℓ
c +O(ℓℓ)

]
× εµν(k)

[
− (k.ℓ + ℓ2) (ηρσηµτ ηνκ + ητκηµρηνσ)

+ 4
(
k.ℓ + ℓ2

)
ηρνηστ ηκµ − 2

(
kτ ℓκηµρηνσ − ℓµℓνηρτ ησκ − (k + ℓ)ρkσηµτ ηνκ

)
− 2

{
(ℓµℓτ − kτ ℓµ)ηνρησκ + (2ℓµkρ + ℓµℓρ)ητνηκσ + (kρkτ + ℓρkτ − ℓτ kρ)ηµσηνκ

}
+O(k4, k3ℓ, k2ℓ2, kℓ3, ℓ4)

]
×
[
4pτ

j pκ
i − 2p2jητκ + 2pτ

j (ℓ + k)κ + 2pκ
j (ℓ + k)τ

− 2pτ
jΣT κb

j (ℓ + k)b − 2pκ
j ΣT τb

j (ℓ + k)b + 2ητκpb
jΣT

jbd(ℓ + k)d +O(ℓℓ, ℓk, kk)
]

× Γ(N)
(ij) (pi − ℓ, pj + ℓ + k) . (4.52)

The above expression contributes at order lnω in three regions of integration |ℓµ| ∈ [R−1, ω],
|(ℓ + k)µ| ∈ [R−1, ω], and “reg”≡ |ℓµ| ∈ [ω, |pµ

i |] in the soft limit. The contribution from
the regions |ℓµ| ∈ [R−1, ω] and |(ℓ + k)µ| ∈ [R−1, ω] turn out to be same as CI is symmetric
under the simultaneous exchange of ℓ ↔ (ℓ + k) and i ↔ j. Hence we only evaluate the
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contribution in region |ℓµ| ∈ [R−1, ω] and multiply by a factor of 2 to incorporate the
contribution of other region.

In the region |ℓµ| ∈ [R−1, ω] we approximate the propagator denominators at leading
order as

1
(pi − ℓ)2 + m2

i − iϵ
≃ − 1

2pi.ℓ + iϵ
,

1
(pj + ℓ + k)2 + m2

j − iϵ
≃ 1

2pj .k − iϵ
,

1
(ℓ + k)2 − iϵ

≃ 1
2ℓ.k − iϵ

. (4.53)

Then only when we choose the order O(kk) terms from the V (3) vertex, after the loop
momentum integration we can have O(lnω) contribution. On the other hand in the region
“reg”≡ |ℓµ| ∈ [ω, |pµ

i |] we approximate the propagator denominators at leading order as
1

(pi − ℓ)2 + m2
i − iϵ

≃ − 1
2pi.ℓ + iϵ

,
1

(pj + ℓ + k)2 + m2
j − iϵ

≃ 1
2pj .ℓ − iϵ

,

1
(ℓ + k)2 − iϵ

≃ 1
ℓ2 − iϵ

. (4.54)

Then only when we choose the order O(ℓℓ) terms from the V (3) vertex, after the loop
momentum integration we can have O(lnω) contribution.

Hence the full contribution at order lnω from all the three regions of integration becomes

CI = iκ3

4

N∑
i,j=1
i ̸=j

ϵT
i ϵT

j

1
pj .k

∫ ω

R−1

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
ℓ.k − iϵ

[
4(pi.k)2(pj .ε.pj)

− 4(pi.k)(pj .k)(pi.ε.pj)
]
Γ(N)
(ij) (pi, pj)

+ iκ3

2

N∑
i,j=1
i ̸=j

ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

{ℓ2 − iϵ}2
1

pi.ℓ + iϵ

1
pj .ℓ − iϵ

[
− ℓ2(pi.ε.pi)p2j

− ℓ2(pj .ε.pj)p2i + 4ℓ2(pi.pj)(pi.ε.pj) + 2(pi.pj)2(ℓ.ε.ℓ)− 2(pi.ε.ℓ)(pi.pj)(pj .ℓ)

+ 2p2j (pi.ε.ℓ)(pi.ℓ)− p2i p2j (ℓ.ε.ℓ)− 2(pj .ε.ℓ)(pi.pj)(pi.ℓ) + 2p2i (pj .ε.ℓ)(pj .ℓ)
]

× Γ(N)
(ij) (pi, pj) + O(ω0) . (4.55)

Note that the integrands above are independent of the spin angular momenta of external
massive particles as well as do not depend on the theory dependent terms such as Ki,Ξi or
non-minimal couplings. The first integrand above can be evaluated using the result of the
integral (derived in [1])∫ ω

R−1

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
ℓ.k − iϵ

= − 1
4π

1
pi.k

ln(ωR)
[
δηi,−1 − i

2π
ln
(

p2i
(pi.n)2

)]
+O(ω−1) , (4.56)

and momentum conservation relation
N∑

j=1
j ̸=i

pµ
j = −pµ

i . (4.57)
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Above ηi convention is the same as described below (1.6). We won’t evaluate the second
integrand in (4.55) explicitly at this moment, but will simplify some of the terms which
contains (pi.ℓ) or (pj .ℓ) in the numerator using the momentum conservation relation in (4.57).
Also the term containing (ℓ.ε.ℓ) can be simplified by the following using integration by
parts relation∫

d4ℓ

(2π)4
ℓµℓν

(ℓ2 − iϵ)2
1

pi.ℓ + iϵ

1
pj .ℓ − iϵ

= 1
2

∫
d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
pj .ℓ − iϵ

(
ηµν − pµ

i ℓν

pi.ℓ + iϵ
−

pµ
j ℓν

pj .ℓ − iϵ

)
. (4.58)

Following all the steps outlined above and using exchange symmetry (pi, ℓ) ↔ (pj ,−ℓ) in
the second integrand of (4.55), the simplified expression of CI becomes

CI =− iκ3

4π
lnω

N∑
j=1

ϵT
j

pj .ε.pj

pj .k
×

N∑
i=1

ϵT
i (pi.k)

[
δηi,−1 − i

2π
ln
(

p2i
(pi.n)2

)]
Γ(N)
(ij) (pi,pj)

+ iκ3

2

N∑
i,j=1
i ̸=j

ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2−iϵ

1
pi.ℓ+iϵ

1
pj .ℓ−iϵ

[
−(pi.ε.pi)p2j−(pj .ε.pj)p2i

+4(pi.pj)(pi.ε.pj)−
1

pi.ℓ+iϵ

{
2(pi.pj)2−p2i p2j

}
(pi.ε.ℓ)

]
Γ(N)
(ij) (pi,pj)+O(ω0). (4.59)

Note that in the first line above j = i sum is included while it was not present in the expres-
sion (4.55). The inclusion of this term originates from the second term in the numerator of
the first integral in (4.55) after using the momentum conservation relation (4.57).

For completeness here we also briefly analyze the second diagram in figure 13 which reads

CII ≡
N∑

i=1

1
2pi.k

ϵT
i

∫ ∞

R−1

d4ℓ

(2π)4
1

(pi − ℓ)2 + m2
i − iϵ

Γ(3)
ab (pi,−pi + ℓ,−ℓ)Ξi(−pi + ℓ)

× Γ(3)
cd (pi − ℓ,−pi − k, ℓ + k)Ξi(−pi − k)∆ab,ρσ

F (ℓ)εµνV (3)
µν,ρσ,τκ(k, ℓ,−k − ℓ)

×∆τκ,cd
F (ℓ + k)Γ(N)

(i) (pi + k) . (4.60)

In the integration region |ℓµ| ∈ [R−1, ω] or |(ℓ + k)µ| ∈ [R−1, ω] the numerator of the
potentially contributing lnω terms vanishes in the integrand. On the other hand, in the
integration region “reg” using a set of integration by parts to cancel (pi.k)−1 factor, the
terms potentially contributing at order lnω becomes

CII = − iκ3

2

N∑
i=1

ϵT
i

∫
reg

d4ℓ

(2π)4
1

(pi.ℓ + iϵ)2
1

ℓ2 − iϵ

[
− 2p2i (pi.ε.pi) +

(p2i )2

pi.ℓ + iϵ
(pi.ε.ℓ)

]
× Γ(N)

(i) (pi) + O(ω0) . (4.61)

The above expression of CII can be simplified using the following identity∫
reg

d4ℓ

(2π)4
ℓµ

(pi.ℓ + iϵ)3
1

ℓ2 − iϵ
= 1

p2i

∫
reg

d4ℓ

(2π)4
1

(pi.ℓ + iϵ)2
1

ℓ2 − iϵ
, (4.62)

and the simplified expression reads

CII = iκ3

2

N∑
i=1

ϵT
i

∫
reg

d4ℓ

(2π)4
1

(pi.ℓ + iϵ)2
1

ℓ2 − iϵ
p2i (pi.ε.pi)× Γ(N)

(i) (pi) +O(ω0) . (4.63)
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Figure 14. Set of 1-loop diagrams contributing to A(N+1)
self,1 , where the virtual dashed lines represent

the full graviton propagator connecting two different points on the same massive spinning particle
leg. The cross appears in some diagrams above corresponds to counter term, which cancels the UV
divergences in the renormalization prescription.

The third, fourth and fifth diagrams in figure 13 do not contribute to order lnω from
any integration region. Hence the total order lnω contribution to A(N+1)

3-graviton-reg,1 after
summing over (4.59) and (4.63) turns out to be

A(N+1)
3-graviton-reg,1

= − iκ3

4π
lnω

N∑
j=1

ϵT
j

pj .ε.pj

pj .k
×

N∑
i=1

ϵT
i (pi.k)

[
δηi,−1 − i

2π
ln
(

p2i
(pi.n)2

)]
Γ(N)
(ij) (pi, pj)

+ iκ3

2

N∑
i,j=1
i ̸=j

ϵT
i ϵT

j

∫
reg

d4ℓ

(2π)4
1

ℓ2 − iϵ

1
pi.ℓ + iϵ

1
pj .ℓ − iϵ

[
− (pi.ε.pi)p2j − (pj .ε.pj)p2i

+ 4(pi.pj)(pi.ε.pj)−
1

pi.ℓ + iϵ

{
2(pi.pj)2 − p2i p2j

}
(pi.ε.ℓ)

]
Γ(N)
(ij) (pi, pj)

+ iκ3

2

N∑
i=1

ϵT
i

∫
reg

d4ℓ

(2π)4
1

(pi.ℓ + iϵ)2
1

ℓ2 − iϵ
p2i (pi.ε.pi)× Γ(N)

(i) (pi) +O(ω0) . (4.64)

Let us now analyze the set of Feynman diagrams in figure 14 which contributes to
A(N+1)

self,1 . All the diagrams are IR-finite for finite k and the UV divergences in the sum
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of contributions cancel by using on-shell renormalization condition with proper choice of
counter terms. After renormalization a finite contribution remains, and it contributes at
order lnω in the region “reg”. In specific, the sum of the diagrams in Set 1, Set 2, Set 4
and Set 5 individually vanishes using the gravitational analogue of the wave functional
renormalization condition (3.36). On the other hand the counter term choice of the last
diagram in Set 3 cancels the sum of UV divergences appearing in the first four diagrams in
Set 3 and the second and third diagrams of figure 13. After the cancellation of these UV
divergences, only in the integration region “reg” we get the following expression, which can
potentially contribute at order lnω in the soft limit

A(N+1)
self,1 = − iκ3

2

N∑
i=1

ϵT
i

∫
reg

d4ℓ

(2π)4
1

(pi.ℓ + iϵ)2
1

ℓ2 − iϵ
p2i (pi.ε.pi)× Γ(N)

(i) (pi)

+O(ω0) . (4.65)

Before even evaluating A(N+1)
non-div,1 from the set of diagrams in figure 11, it becomes

evident that these diagrams are IR-finite for finite k when ℓµ → 0. The sum of first, fourth
and sixth diagrams in figure 11 contribute to leading soft graviton factor at order ω−1

multiplying A(N)
non-div,1. On the other hand in the integration region ω ≪ |ℓµ| ≪ |pµ

i |, though
individually the first and third diagrams in figure 11 have the potential to contribute at
order lnω as those behave like

∫
ω

d4ℓ
|ℓ|4 , when we sum them up, in the numerator we get an

extra factors of ℓ and/or k. Hence they can only contribute from order ω0 or ω lnω. Hence,
summing over all the contribution we get

A(N+1)
non-div,1 = κ

N∑
i=1

pi.ε.pi

pi.k
A(N)

non-div,1 +O(ω0) . (4.66)

Summing over the contribution of (4.50), (4.64), (4.65) and (4.66) we get

A(N+1)
IR-finite,1 =κ

N∑
i=1

pi.ε.pi

pi.k
×A(N)

IR-finite,1

− iκ3

4π
lnω

N∑
j=1

pj .ε.pj

pj .k
×

N∑
i=1

(pi.k)
[
δηi,−1 − i

2π
ln
(

p2i
(pi.n)2

)]
×Γ(N)

− iκ3

2

N∑
i=1

N∑
j=1
j ̸=i

∫
reg

d4ℓ

(2π)4
1

ℓ2−iϵ

1
ℓ.pi+iϵ

1
ℓ.pj−iϵ

×
[
−4(pi.ε.pi)pi.pj

pj .k

pi.k
+ ℓ.k

pi.k

1
ℓ.pi+iϵ

(pi.ε.pi)
{
2(pi.pj)2−p2i p2j

}

− (pi.ε.ℓ)
ℓ.pi+iϵ

{2(pi.pj)2−p2i p2j}+4(pi.ε.pj)(pi.pj)
]
×Γ(N)+O(ω0) , (4.67)

where the expression of A(N)
IR-finite,1 is given in (4.38).
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Soft graviton theorem result at one-loop: the expression for one-loop amplitude in
the soft expansion derived in (4.67) can be re-written in the following compact way

A(N+1)
IR-finite,1 = κ

N∑
i=1

pi.ε.pi

pi.k
×A(N)

IR-finite,1

+ Kreg
phase × κ

N∑
i=1

pi.ε.pi

pi.k
×A(N)

IR-finite,0

+ κ
N∑

i=1

εµνpµ
i kρ

pi · k

{
pν

i

∂Kreg
gr

∂piρ
− pρ

i

∂Kreg
gr

∂piν

}
×A(N)

IR-finite,0 +O(ω0) , (4.68)

where the expressions of Kreg
phase and Kreg

gr are given in (1.6) and (1.5) respectively. This result
agrees with the loop corrected subleading soft graviton theorem, originally derived in [1] for
minimally coupled scalar-gravity with scalar contact interaction. Here the re-derivation of
this result from a scattering amplitude involving particles with arbitrary spins in a generic
theory of quantum gravity confirms the universality of the lnω soft factor. The universal
properties of tree-level soft graviton theorems in spacetime dimensions D ≥ 5 have also
been established from the soft expansion of string theory amplitudes in [2, 63–77]. It would
be interesting to explore whether the lnω soft factor can also be derived from one-loop
amplitudes in string theory compactified into four spacetime dimensions.

The soft theorem result (4.68) also verifies the well-known fact that Weinberg’s leading
soft graviton theorem remains unaltered by loop corrections. Therefore, even from the
analysis presented above, we observe that Weinberg’s soft theorem still holds, relating two
one-loop IR-finite amplitudes.

4.4 Discussion on generalization

When some of the massive spinning particles carry electric charge, the order lnω soft graviton
factor in (4.68) undergoes correction due to electromagnetic interactions. The correction
term has been derived in [1] in a minimally coupled charged scalar theory. A straightforward
generalization of our derivation, combined with the covariantization prescription outlined
in [5], will be useful for establishing the universal nature of this correction. At one-loop order,
it is also possible to derive the spin-dependent order ω lnω soft graviton factor as provided
in (1.4), once we understand how to account for the additional subtleties highlighted in the
discussion below (2.4). Furthermore, through an analysis of two-loop amplitudes in the soft
limit, it is possible to derive the order ω(lnω)2 soft graviton theorem as conjectured in (1.7),
which is also expected to be universal. We intend to pursue these analyses in the future.

Using the Feynman rules derived in subsection-4.1, in combination with the identities
in appendix-C, it is possible to derive the tree-level simultaneous and consecutive double
soft-graviton theorems up to sub-subleading orders in a generic theory of quantum gravity.
This result does not exist in literature and will be interesting to explore in future.

5 Summary and outlook

In this article, we have proved that the order lnω soft photon and graviton theorems are
universal (theory independent) by working within a generic setup of arbitrary spinning
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particle scattering. Along the way, we have also provided the definitions of IR-finite ampli-
tudes in the generic theory of QED and quantum gravity for scattering involving spinning
particles. We used the Ward Identities along with the Grammer-Yennie decomposition
to perform Eikonal exponentialization and extract the IR-finite amplitudes. At one-loop
order, we provide integral expressions for the IR-finite amplitudes, which have been used to
derive soft factors. While it would have been desirable to explicitly evaluate these one-loop
IR-finite amplitudes and explore their crossing and unitarity properties in a specific theory,
this remains an avenue for future investigation.13 We have also discussed that while the
KG-decomposition is powerful for extracting IR-finite amplitudes in a generic theory of
QED, it loses efficacy in the generic theory of quantum gravity. Furthermore, we have
provided a set of soft photon and graviton theorems up to two-loop orders in section-1,
with some of these theorems conjectured based on classical analysis. These set of new
soft theorems can be derived by extending our analysis to higher loops as discussed in
subsection-3.4 and 4.4.

In [13, 14], a relation between low-frequency electromagnetic/gravitational waveforms
and the classical limit of soft photon/graviton factors has been derived. In frequency space,
the low-frequency gravitational waveform in D = 4 is given by14

εµν(k)ẽµν(ω, Rn̂) = −i
2G

R
exp

iω

R + 2G lnR
N∑

j=1
ηj=−1

pj · n


× Sgr

classical , (5.1)

where Sgr
classical represents the classical limit of quantum soft factor for single soft graviton

emission with momentum kµ = −ωnµ. In the above expression ẽµν is defined by

ẽµν(ω, x⃗) ≡
∫ ∞

−∞
dt eiωt

(
hµν(t, x⃗)− 1

2ηµνhρ
ρ(t, x⃗)

)
. (5.2)

Note that to derive the classical limit of the quantum “soft factor” from (1.1), first we
need to incorporate the sum over particles indexed by i. Subsequently, in their respective
expressions, when the orbital momentum operator operates on A(N), it must be substituted
with the classical orbital momenta of the scattered objects. Furthermore, based on explicit
classical computations of gravitational waveforms presented in [16, 21, 23], it has been
conjectured that the validity of the relation (5.1) holds true solely when, in the classical
limit, the soft graviton factor is calculated using the retarded propagator for the graviton
field instead of Feynman propagator. In practice this prescription suggests that in the
integral representations of (1.5) and (1.6), the term (ℓ2 − iϵ)−1 should be substituted with
−
(
(ℓ0 + iϵ)2 − ℓ⃗2

)−1
in order to extract Sgr

classical. With this substitution, Sgr
classical only

receives contributions from the part of the loop integrals in which the virtual hard particle
13BS acknowledges Waël Aoun for pursuing his master thesis project on this topic using the IR-finite

S-matrix formalism proposed in [78] and making substantial progress.
14The explicit expression is given in equation (2.5) of [23], where we have adopted the convention that the

energy of the outgoing particle is positive, which is contrary to the convention used in this paper. After
Fourier transformation in frequency variable, it provides gravitational memory along with multiple tail
contributions at late and early time for generic gravitational scattering event.
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propagator goes on-shell (referred to as the potential region) and the graviton propagator
with principal value. However, it does not receive contributions from the part of the
loop integrals in which the virtual graviton goes on-shell (known as the radiation-reaction
region). Unfortunately, we lack a fundamental understanding of why the classical limit of
the quantum soft factor does not include contributions from radiation reactions.

For a 2 → 2 scattering process with a large impact parameter or low momentum
transfer, the contribution of radiation reaction to the quantum soft factor turns out to be
suppressed compared to the contribution from the potential region (classical), as discussed
in [1]. This has also been established in [79] using the KMOC formalism [80, 81] after
substituting the final momenta of the scattered particles in terms of initial momenta and
the perturbatively computed momentum impulse in terms of initial scattering data and
specified interaction. However, for hard scattering (small impact parameter scattering), the
reason why the radiation reaction contribution to the quantum soft factor does not affect
the classical waveform in the classical limit has not yet been resolved. We believe that a
generalization of recent investigations into deriving classical gravitational waveforms from
Eikonal exponentiation in [44, 82–86] could potentially resolve this puzzle even for hard
scattering. It would be interesting to explore whether there are any observable consequences
resulting from the contribution of radiation reaction in the quantum soft factor.

There have been many applications of soft theorems both in the context of scattering
amplitudes and in relation to gravitational memory. For instance, the universal characteristic
of Weinberg’s soft theorem imposes an infinite hierarchy of constraints on the linear
momentum impulse within the KMOC formalism, as derived in [87]. It is also anticipated
that the universality of the lnω soft theorem should impose an infinite hierarchy of constraints
on the angular momentum impulse within the KMOC formalism.15 As discussed in section-1,
while the soft theorems alone cannot impose non-trivial constraints on the quantum theory in
the UV, combining the results of the soft theorems with certain physical assumptions about
scattering amplitudes, such as analyticity, unitarity and crossing grants them the ability
to constrain the UV quantum theory. As an illustration of this concept, the article [88]
derived non-perturbative bounds on the a-anomaly coefficient of the UV conformal field
theory (CFT), the deformation of which leads to a massive QFT along the renormalization
group (RG) flow. These bounds were established by incorporating the constraints from the
double soft dilaton theorem within the framework of non-perturbative S-matrix bootstrap.
For numerous astrophysical scattering events, the order of magnitude of gravitational tail
memory follows from the lnω soft theorem has been estimated in [16, 20]. In certain classical
scattering scenarios, the gravitational waveform resulting from the lnω soft theorem has also
been derived in [89–91], carrying observable consequences in the present era of gravitational
wave physics.
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A Intermediate steps in deriving soft photon theorem

Let us evaluate the following expression appears in (3.40) after substituting the vertex (3.12)
and using the identities (2.19), (2.20) and (3.25),

ζ1µ ≡ ϵT
i (−pi)ερ(k)Γ(3)

ρ (pi,−pi−k,k)Ξi(−pi−k)Γ(3)
µ (pi+k,−pi−k+ℓ,−ℓ)Ξi(−pi−k+ℓ)

= e2
i ϵT

i

[
ερ ∂Ki(−pi)

∂pρ
i

Ξi(−pi)+ερkσ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

+1
2ερkσ ∂2Ki(−pi)

∂pρ
i ∂pσ

i

Ξi(−pi)

+ 2i

ei
ερkσBi

ρσ(−pi)Ξi(−pi)+O(kk)
]
×
[
− ∂Ki(−pi)

∂pµ
i

Ξi(−pi)−(k−ℓ)κ ∂Ki(−pi)
∂pµ

i

∂Ξi(−pi)
∂pκ

i

− 1
2(2k−ℓ)κ ∂2Ki(−pi)

∂pµ
i ∂pκ

i

Ξi(−pi)+
2i

ei
ℓκBi

µκ(−pi)Ξi(−pi)+O(kk,kℓ,ℓℓ)
]

. (A.1)

Now using the identities (2.11), (2.12) and (2.21) we simplify the above expression and get

ζ1µ = e2
i ϵT

i

[
2iε·pi+

1
2(ε

ρkσ−εσkρ)∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pσ

i

+ i

ei
(ερkσ−εσkρ)Bi

ρσ(−pi)Ξi(−pi)

+O(kk)
]
×
[
−i(2pi+2k−ℓ)µ+Ki(−pi)

∂Ξi(−pi)
∂pµ

i

+1
2(2k−ℓ)κKi(−pi)

∂2Ξi(−pi)
∂pµ

i ∂pκ
i

+1
2ℓκ ∂Ki(−pi)

∂pµ
i

∂Ξi(−pi)
∂pκ

i

+1
2(2k−ℓ)κ ∂Ki(−pi)

∂pκ
i

∂Ξi(−pi)
∂pµ

i

+2i

ei
ℓκBi

µκ(−pi)Ξi(−pi)

+O(kk,kℓ,ℓℓ)
]

= e2
i ϵT

i

[
2ε·pi(2pi+2k−ℓ)µ+iε·piℓ

ρ
{∂Ki(−pi)

∂pµ
i

∂Ξi(−pi)
∂pρ

i

− ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pµ

i

+4i

ei
Bi

µρ(−pi)Ξi(−pi)
}
− i

2piµ(ερkσ−εσkρ)
{∂Ki(−pi)

∂pρ
i

∂Ξi(−pi)
∂pσ

i

− ∂Ki(−pi)
∂pσ

i

∂Ξi(−pi)
∂pρ

i

+4i

ei
Bi

ρσ(−pi)Ξi(−pi)
}
+2ipi.kερ ∂Ki(−pi)

∂pρ
i

∂Ξi(−pi)
∂pµ

i

+O(kk,kℓ,ℓℓ)
]

. (A.2)

Let us define a specific tensor structure which will appear together in all the computations
in section-3.3, which is also the non-universal contribution to the tree-level subleading soft
photon theorem as derived in [5]

N i
ρσ(−pi)≡− i

8

[
∂Ki(−pi)

∂pρ
i

∂Ξi(−pi)
∂pσ

i

− ∂Ki(−pi)
∂pσ

i

∂Ξi(−pi)
∂pρ

i

+4i

ei
Bi

ρσ(−pi)Ξi(−pi)
]
.

(A.3)
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With the above definition, the expression of ζ1µ can be written in the following compact form

ζ1µ = e2i ϵT
i

[
2ε · pi(2pi + 2k − ℓ)µ − 8ε · piℓ

ρN i
µρ(−pi) + 4 piµ(ερkσ − εσkρ)N i

ρσ(−pi)

+ 2i pi.k ερ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pµ

i

+O(kk, kℓ, ℓℓ)
]

. (A.4)

Let us evaluate the following expression appears in (3.44) after substituting the vertex (3.13)
and using the identities (2.19), (2.20) and (3.25),

ζ2µ ≡ ϵT
i (−pi)ερ(k)Γ(4)

ρµ (pi,−pi − k + ℓ, k,−ℓ)Ξi(−pi − k + ℓ)

= ie2i ϵT
i ερ ∂2Ki(−pi)

∂pµ
i ∂pρ

i

Ξi(−pi) +O(ℓ, k) . (A.5)

Using the identity in (2.12) and on-shell condition (2.21) the above expression reduces to

ζ2µ =−e2i ϵT
i

[
2εµ+iερ

{∂Ki(−pi)
∂pµ

i

∂Ξi(−pi)
∂pρ

i

+ ∂Ki(−pi)
∂pρ

i

∂Ξi(−pi)
∂pµ

i

}
+O(ℓ,k)

]
. (A.6)

The expression below appears in (3.46) and can be evaluated analogous to the evaluation
of ζ1µ. The final result reads

ζ3µ ≡ ϵT
i (−pi)ερ(k)Γ(3)

µ (pi,−pi+ℓ,−ℓ)Ξi(−pi+ℓ)Γ(3)
ρ (pi−ℓ,−pi−k+ℓ,k)Ξi(−pi−k+ℓ)

= e2i ϵT
i

[
2ε·pi(2pi−ℓ)µ−4ε.ℓpiµ−8ε·piℓ

ρN i
µρ(−pi)+4 piµ(ερkσ−εσkρ)N i

ρσ(−pi)

−2i pi.ℓ ερ ∂Ki(−pi)
∂pµ

i

∂Ξi(−pi)
∂pρ

i

+O(kk,kℓ,ℓℓ)
]

. (A.7)

Let us evaluate the following expression appears in (3.32), (3.40), (3.44) and (3.46). After
substituting the vertex from (3.12) and using the identities (2.19), (2.20) and (3.25) we get

ζ4ν ≡ ϵT
j (−pj)Γ(3)

ν (pj ,−pj − ℓ, ℓ)Ξj(−pj − ℓ)

= −iej ϵT
j

[
∂Kj(−pj)

∂pν
j

Ξj(−pj) + ℓσ ∂Kj(−pj)
∂pν

j

∂Ξj(−pj)
∂pσ

j

+ 1
2ℓσ ∂2Kj(−pj)

∂pν
j ∂pσ

j

Ξj(−pj)

+ 2i

ej
ℓσBj

νσ(−pj)Ξj(−pj) +O(ℓℓ)
]

. (A.8)

Using the identities (2.11), (2.12) and the on-shell condition (2.21), the above expression
reduces to

ζ4ν = ejϵT
j

[
(2pj + ℓ)ν + 4ℓσN j

νσ(−pj) +O(ℓℓ)
]

. (A.9)
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B Amputated Green’s function involving single graviton

Following the covariantization prescription described in section-4.1, we compute the ampu-
tated Green’s function involving N number of massive spinning particles and one off-shell
graviton, where the graviton is not attached to any external spinning particle leg. The
resulting expression is given by

hµν(ℓ)Γ̃(N+1)α1···αN
µν (ℓ)=κ (2π)4δ(4)(p1+· · ·+pN +ℓ)

N∑
i=1

[
δαi

βi
h(ℓ)−δαi

βi
hµν(ℓ)piµ

∂

∂pν
i

+hµν(ℓ)(Σiνb) αi

βi
ℓb ∂

∂pµ
i

− 1
2δαi

βi
hµν(ℓ)

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ℓρpiν
∂2

∂pρ
i ∂pµ

i

−pi.ℓ
∂2

∂pµ
i ∂pν

i

}
+O(ℓ2)

]
Γ̂(N)α1···αi−1βiαi+1···αN . (B.1)

Above Γ̂(N) is defined after stripping out the momentum conserving delta function
(2π)4δ(4)(p1+ · · ·+pN ) from the expression of Γ(N), i.e. Γ(N) ≡ (2π)4δ(4)(p1+ · · ·+pN )Γ̂(N).
Now starting from the above covariantized expression, the goal is to express Γ̃(N+1)

µν (ℓ) in
terms of some operator operating on Γ(N) up to linear order in ℓ. To do that we mostly
follow the analysis of [3] with the only difference being hµν(ℓ) is an off-shell graviton so
we can not impose traceless or transverse condition. Instead in de Donder gauge, we use
ℓµhµν(ℓ) = 1

2ℓνh(ℓ) in the intermediate stages of calculation.
Let us first analyze the first two terms within the square bracket in (B.1) which is

defined as

J1 ≡ κ (2π)4δ(4)(p1 + · · ·+ pN + ℓ)
[
h(ℓ)− hµν(ℓ)

N∑
i=1

piµ
∂

∂pν
i

]
Γ̂(N)α1···αN

= κ (2π)4δ(4)(p1 + · · ·+ pN )
[
h(ℓ)− hµν(ℓ)

N∑
i=1

piµ
∂

∂pν
i

]
Γ̂(N)α1···αN

+ κ (2π)4 ℓρ
{ ∂

∂ℓρ
δ(4)(p1 + · · ·+ pN + ℓ)

}
ℓ=0

[
h(ℓ)− hµν(ℓ)

N∑
i=1

piµ
∂

∂pν
i

]
Γ̂(N)α1···αN

+O(ℓ2) . (B.2)

Above we have just Taylor expanded the delta function and kept terms up to linear order
in ℓ. Now to evaluate the second line above we use the property involving momentum
conserving delta function

N∑
i=1

piµ
∂

∂pν
i

δ(4)(p1 + · · ·+ pN ) =
N∑

i=1
piµ

∂

∂pν
1

δ(4)(p1 + · · ·+ pN )

= ∂

∂pν
1

N∑
i=1

piµδ(4)(p1 + · · ·+ pN )− ηµν δ(4)(p1 + · · ·+ pN )

= −ηµν δ(4)(p1 + · · ·+ pN ) . (B.3)
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So using the above property and commuting the delta function through the momentum
derivative the expression of J1 becomes,

J1 = −κ (2π)4 hµν(ℓ)
N∑

i=1
piµ

∂

∂pν
i

{
δ(4)(p1 + · · ·+ pN )Γ̂(N)α1···αN

}

+ κ (2π)4 ℓρ
{ ∂

∂ℓρ
δ(4)(p1 + · · ·+ pN + ℓ)

}
ℓ=0

[
h(ℓ)− hµν(ℓ)

N∑
i=1

piµ
∂

∂pν
i

]
Γ̂(N)α1···αN

+O(ℓ2) . (B.4)

Last two terms within the square bracket in (B.1) can be evaluated in the following way

J2 ≡κ (2π)4δ(4)(p1+· · ·+pN +ℓ)hµν(ℓ)
N∑

i=1

[
(Σiνb) αi

βi
ℓb ∂

∂pµ
i

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ℓρpiν
∂2

∂pρ
i ∂pµ

i

−pi.ℓ
∂2

∂pµ
i ∂pν

i

}]
Γ̂(N)α1···αi−1βiαi+1···αN

=κ (2π)4hµν(ℓ)
N∑

i=1

[
(Σiνb) αi

βi
ℓb ∂

∂pµ
i

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ℓρpiν
∂2

∂pρ
i ∂pµ

i

−pi.ℓ
∂2

∂pµ
i ∂pν

i

}]
{

δ(4)(p1+· · ·+pN +ℓ)Γ̂(N)α1···αi−1βiαi+1···αN

}
+ L , (B.5)

where

L = −κ (2π)4 Γ̂(N)α1···αi−1βiαi+1···αN hµν(ℓ)
N∑

i=1

[
(Σiνb) αi

βi
ℓb ∂

∂pµ
i

δ(4)(p1 + · · ·+ pN + ℓ)

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ ℓρpiν
∂2

∂pρ
i ∂pµ

i

− pi.ℓ
∂2

∂pµ
i ∂pν

i

}
δ(4)(p1 + · · ·+ pN + ℓ)

]

+ κ

2 (2π)4hµν(ℓ)
N∑

i=1

{ ∂

∂pρ
i

δ(4)(p1 + · · ·+ pN + ℓ)
}∂Γ̂α1···αN

∂pσ
i

{
ℓρpiµδσ

ν + ℓσpiµδρ
ν

+ ℓρpiνδσ
µ + ℓσpiνδρ

µ − pi.ℓδ
ρ
µδσ

ν − pi.ℓδ
σ
µδρ

ν

}
. (B.6)

To evaluate L we use the same trick as described earlier i.e. derivative w.r.t. pi on the delta
function is same as derivative w.r.t. ℓ and then use the momentum conservation relation
enforced by the delta function. After all these steps we get

L = −κ (2π)4 Γ̂(N)α1···αi−1βiαi+1···αN hµν(ℓ)
[

N∑
i=1

(Σiνb) αi
βi

ℓb ∂

∂ℓµ
δ(4)(p1 + · · ·+ pN + ℓ)

+ 1
2δαi

βi

{(
ℓρ ∂2

∂ℓρ∂ℓν
ℓµ + ℓρ ∂2

∂ℓρ∂ℓµ
ℓν − ℓρ ∂2

∂ℓµ∂ℓν
ℓρ

)
δ(4)(p1 + · · ·+ pN + ℓ)

}]

+ κ(2π)4
N∑

i=1

{ ∂

∂ℓρ
δ(4)(p1 + · · ·+ pN + ℓ)

}∂Γ̂α1···αN

∂pσ
i

{
piµℓρhµσ(ℓ) + piµℓσhµρ(ℓ)

− pi.ℓh
ρσ(ℓ)

}
. (B.7)
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To evaluate the first term within the square bracket above we use the conservation of total
angular momenta follows from the Lorentz covariance of Γ̂

N∑
i=1

[
(Σiνb) αi

βi
Γ̂(N)α1···αi−1βiαi+1···αN −

{
piν

∂

∂pb
i

− pib
∂

∂pν
i

}
Γ̂(N)α1···αN

]
= 0 . (B.8)

Using the above relation in the first line of the expression of L in (B.7), operating the
derivatives w.r.t. ℓ in the second term within the square bracket in (B.7) and using de
Donder gauge condition, we find

L=−κ

2 (2π)4Γ̂α1···αN

{
h(ℓ)ℓνℓρ ∂2

∂ℓρ∂ℓν
−ℓ2hµν(ℓ) ∂2

∂ℓµ∂ℓν
+2h(ℓ)ℓρ ∂

∂ℓρ

}
δ(4)(p1+· · ·+pN +ℓ)

+κ(2π)4
N∑

i=1

{ ∂

∂ℓρ
δ(4)(p1+· · ·+pN +ℓ)

}∂Γ̂α1···αN

∂pσ
i

piµℓρhµσ(ℓ) . (B.9)

Now after substituting the expression of L from (B.9) in (B.5), then Taylor expanding the
delta function and keeping terms up to linear in ℓ we get

J2 =κ (2π)4hµν(ℓ)
N∑

i=1

[
(Σiνb) αi

βi
ℓb ∂

∂pµ
i

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ℓρpiν
∂2

∂pρ
i ∂pµ

i

−pi.ℓ
∂2

∂pµ
i ∂pν

i

}]
{

δ(4)(p1+· · ·+pN )Γ̂(N)α1···αi−1βiαi+1···αN

}
−κ (2π)4Γ̂α1···αN h(ℓ)ℓρ

{ ∂

∂ℓρ
δ(4)(p1+· · ·+pN +ℓ)

}
ℓ=0

+κ(2π)4
N∑

i=1

{ ∂

∂ℓρ
δ(4)(p1+· · ·+pN +ℓ)

}
ℓ=0

∂Γ̂α1···αN

∂pσ
i

piµℓρhµσ(ℓ) +O(ℓ2) . (B.10)

Finally after adding the expressions in (B.4) and (B.10) we get

hµν(ℓ)Γ̃(N+1)α1···αN
µν (ℓ)

=−κ (2π)4 hµν(ℓ)
N∑

i=1
piµ

∂

∂pν
i

{
δ(4)(p1+· · ·+pN )Γ̂(N)α1···αN

}

+κ (2π)4hµν(ℓ)
N∑

i=1

[
(Σiνb) αi

βi
ℓb ∂

∂pµ
i

− 1
2δαi

βi

{
ℓρpiµ

∂2

∂pρ
i ∂pν

i

+ℓρpiν
∂2

∂pρ
i ∂pµ

i

−pi.ℓ
∂2

∂pµ
i ∂pν

i

}]
{

δ(4)(p1+· · ·+pN )Γ̂(N)α1···αi−1βiαi+1···αN

}
+O(ℓ2) . (B.11)

C Intermediate steps in deriving soft graviton theorem

We want to compute the following expression involving the vertex in (4.16) which takes the
following form once we expanded in power of small ℓ and keep terms up to quadratic order

Γ(3)
µν (q,−q − ℓ, ℓ)Ξ(−q − ℓ)

= iκ

[
ηµνK(−q)Ξ(−q) + ηµνK(−q)ℓρ ∂Ξ(−q)

∂qρ
+ 1

2ηµνK(−q)ℓρℓσ ∂2Ξ(−q)
∂qρ∂qσ
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+ 1
2ηµνℓρ ∂K(−q)

∂qρ
Ξ(−q) + 1

2ηµνℓρℓσ ∂K(−q)
∂qρ

∂Ξ(−q)
∂qσ

+ 1
4ηµνℓρℓσ ∂2K(−q)

∂qρ∂qσ
Ξ(−q)

− q(µ
∂K(−q)

∂qν) Ξ(−q)− q(µℓρ ∂K(−q)
∂qν)

∂Ξ(−q)
∂qρ

− 1
2q(µℓρℓσ ∂K(−q)

∂qν)
∂2Ξ(−q)
∂qρ∂qσ

− 1
2ℓ(µ

∂K(−q)
∂qν) Ξ(−q)− 1

2ℓ(µℓρ ∂K(−q)
∂qν)

∂Ξ(−q)
∂qρ

− 1
2q(µℓρ ∂2K(−q)

∂qν)∂qρ
Ξ(−q)

− 1
2q(µℓρℓσ ∂2K(−q)

∂qν)∂qρ

∂Ξ(−q)
∂qσ

− 1
4q(µℓρℓσ ∂3K(−q)

∂qν)∂qρ∂qσ
Ξ(−q)

− 1
2ℓ(µℓρ ∂2K(−q)

∂qν)∂qρ
Ξ(−q)− 1

2ℓb ∂K(−q)
∂q(µ

Σν)bΞ(−q)− 1
2ℓbℓρ ∂K(−q)

∂q(µ
Σν)b

∂Ξ(−q)
∂qρ

+ 1
2ℓb ΣT

(νb

∂K(−q)
∂qµ) Ξ(−q) + 1

2ℓbℓρ ΣT
(νb

∂K(−q)
∂qµ)

∂Ξ(−q)
∂qρ

− 1
4ℓbℓρ ∂2K(−q)

∂q(µ∂qρ
Σν)bΞ(−q)

+ 1
4ℓbℓρΣT

(νb

∂2K(−q)
∂qµ)∂qρ

Ξ(−q) + 1
4

{
ℓµℓρ ∂2K(−q)

∂qρ∂qν
+ ℓνℓρ ∂2K(−q)

∂qρ∂qµ
− ℓ2

∂2K(−q)
∂qµ∂qν

}
Ξ(−q)

+ 1
12ℓσ

{
qµℓρ ∂3K(−q)

∂qρ∂qν∂qσ
+ qνℓρ ∂3K(−q)

∂qρ∂qµ∂qσ
− q.ℓ

∂3K(−q)
∂qµ∂qν∂qσ

}
Ξ(−q)

− ℓρℓσ
{
G(µρσν)(−q) + Gσ(νµ)ρ(−q)− G(µρν)σ(−q)− Gσ(νρµ)(−q)

}
Ξ(−q) +O(ℓ3)

]
.

(C.1)

Now to simplify the above expression we need to move the momenta derivatives from K
to Ξ as much possible and also move the spin operator to the extreme right using the
identities (2.10)–(2.17). Following these steps the result up to order O(ℓ2) reads

Γ(3)
µν (q,−q − ℓ, ℓ)Ξ(−q − ℓ)

= iκ

[
iηµν(q2 + m2 + q.ℓ)− 2iqµqν − 2iq(µℓν) + 2iℓbq(µΣT

ν)b + iℓbℓ(µΣT
ν)b

+ q(µK(−q)∂Ξ(−q)
∂qν) + 1

4ηµνK(−q)ℓρℓσ ∂2Ξ(−q)
∂qρ∂qσ

+ 1
2q.ℓK(−q)∂2Ξ(−q)

∂qµ∂qν

+ ℓ(µK(−q)∂Ξ(−q)
∂qν) − 1

2ℓbK(−q)∂Ξ(−q)
∂q(µ

ΣT
ν)b −

1
4ℓρℓbK(−q)∂2Ξ(−q)

∂q(µ∂qρ
ΣT

ν)b

− 1
2ℓb K(−q)∂Ξ(−q)

∂q(µ
ΣT

ν)b +
1
4ℓbℓρK(−q)Σ(νb

∂2Ξ(−q)
∂qµ)∂qρ

+ 1
4ℓ2K(−q)∂2Ξ(−q)

∂qµ∂qν

+ 1
12ℓσ

{
q(µℓρK(−q) ∂3Ξ(−q)

∂qρ∂qν)∂qσ
+ q.ℓK(−q) ∂3Ξ(−q)

∂qµ∂qν∂qσ

}

+ 1
3q.ℓℓρ ∂K(−q)

∂qρ

∂2Ξ(−q)
∂qµ∂qν

+ 1
3ℓbℓρq(µ

∂K(−q)
∂qν)

∂2Ξ(−q)
∂qρ∂qb

− 1
3q.ℓℓρ ∂K(−q)

∂q(µ
∂2Ξ(−q)
∂qν)∂qρ

− 1
3ℓbℓρq(µ

∂K(−q)
∂qρ

∂2Ξ(−q)
∂qν)∂qb

+ 1
6q.ℓℓρ ∂2K(−q)

∂q(µ∂qρ

∂Ξ(−q)
∂qν) − 1

6ℓbℓρq(µ
∂2K(−q)
∂qρ∂qb

∂Ξ(−q)
∂qν)

+ 1
6q(µℓρℓσ ∂2K(−q)

∂qρ∂qν)
∂Ξ(−q)

∂qσ
− 1

6q.ℓℓρ ∂2K(−q)
∂qµ∂qν

∂Ξ(−q)
∂qρ
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− 1
2ℓbℓρ ∂K(−q)

∂qρ

∂Ξ(−q)
∂q(µ

ΣT
ν)b +

1
2ℓbℓρ ∂K(−q)

∂q(µ
∂Ξ(−q)

∂qρ
ΣT

ν)b

− ℓρℓσ
{
G(µρσν)(−q) + Gσ(νµ)ρ(−q)− G(µρν)σ(−q)− Gσ(νρµ)(−q)

}
Ξ(−q) +O(ℓ3)

]
.

(C.2)

The symmetrization in the exchange between µ and ν can be omitted since any contraction
involving the above expression in any Feynman diagram calculation will always exhibit
symmetry under the exchange of µ and ν. Also the above expression can be written in a
compact way by introducing the following tensor structure

∆µρνσ(−q) ≡ 1
3qµ

∂K(−q)
∂qν

∂2Ξ(−q)
∂qρ∂qσ

− 1
6qρ

∂2K(−q)
∂qµ∂qν

∂Ξ(−q)
∂qσ

+ 1
4

∂K(−q)
∂qµ

∂Ξ(−q)
∂qρ

ΣT
νσ

+ Gµρνσ(−q)Ξ(−q) . (C.3)

Hence removing the µ ↔ ν symmetrization, the expression in (C.2) can be compactly
written as

Γ(3)
µν (q,−q − ℓ, ℓ)Ξ(−q − ℓ)

= iκ

[
iηµν(q2 + m2 + q.ℓ)− 2iqµqν − 2iqµℓν + 2iℓbqµΣT

νb + iℓbℓµΣT
νb

+ qµK(−q)∂Ξ(−q)
∂qν

+ 1
4ηµνK(−q)ℓρℓσ ∂2Ξ(−q)

∂qρ∂qσ
+ 1

2q.ℓK(−q)∂2Ξ(−q)
∂qµ∂qν

+ ℓµK(−q)∂Ξ(−q)
∂qν

− ℓbK(−q)∂Ξ(−q)
∂qµ

ΣT
νb −

1
4ℓρℓbK(−q)∂2Ξ(−q)

∂qµ∂qρ
ΣT

νb

+ 1
4ℓbℓρK(−q)Σνb

∂2Ξ(−q)
∂qµ∂qρ

+ 1
4ℓ2K(−q)∂2Ξ(−q)

∂qµ∂qν

+ 1
12ℓσ

{
qµℓρK(−q) ∂3Ξ(−q)

∂qρ∂qν∂qσ
+ q.ℓK(−q) ∂3Ξ(−q)

∂qµ∂qν∂qσ

}

+ ℓρℓσ
{
∆µρνσ(−q) + ∆ρµσν(−q)−∆ρµνσ(−q)−∆µρσν(−q)

}
+O(ℓ3)

]
. (C.4)

Now we want to compute the following expression involving two vertices of kind (4.16)
which takes the following form once we expanded in power of small ℓ1, ℓ2 and keep terms
up to quadratic order

Γ(3)
µν (q,−q − ℓ1, ℓ1)Ξ(−q − ℓ1)Γ(3)

ρσ (q + ℓ1,−q − ℓ1 − ℓ2, ℓ2)Ξ(−q − ℓ1 − ℓ2)

= −κ2
[
iηµν(q2 + m2 + q.ℓ1)− 2iqµqν − 2iqµℓ1ν + 2iℓb

1qµΣT
νb + iℓb

1ℓ1µΣT
νb

+ qµK(−q)∂Ξ(−q)
∂qν

+ 1
4ηµνK(−q)ℓλ

1ℓb
1
∂2Ξ(−q)
∂qλ∂qb

+ 1
2q.ℓ1K(−q)∂2Ξ(−q)

∂qµ∂qν

+ ℓ1µK(−q)∂Ξ(−q)
∂qν

− ℓb
1K(−q)∂Ξ(−q)

∂qµ
ΣT

νb −
1
4ℓλ

1ℓb
1K(−q)∂2Ξ(−q)

∂qµ∂qλ
ΣT

νb

+ 1
4ℓb

1ℓ
λ
1K(−q)Σνb

∂2Ξ(−q)
∂qµ∂qλ

+ 1
4ℓ21K(−q)∂2Ξ(−q)

∂qµ∂qν
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+ 1
12ℓb

1

{
qµℓλ

1K(−q) ∂3Ξ(−q)
∂qλ∂qν∂qb

+ q.ℓ1K(−q) ∂3Ξ(−q)
∂qµ∂qν∂qb

}

+ ℓλ
1ℓb

1

{
∆µλνb(−q) + ∆λµbν(−q)−∆λµνb(−q)−∆µλbν(−q)

}]

×
[
iηρσ(q2 + m2 + 2q.ℓ1 + q.ℓ2 + ℓ21 + ℓ1.ℓ2)− 2i(q + ℓ1)ρ(q + ℓ1)σ − 2i(q + ℓ1)ρℓ2σ

+ 2iℓa
2(q + ℓ1)ρΣT

σa + iℓa
2ℓ2ρΣT

σa

+ (q + ℓ1)ρK(−q)∂Ξ(−q)
∂qσ

+ (q + ℓ1)ρℓτ
1

∂K(−q)
∂qτ

∂Ξ(−q)
∂qσ

+ (q + ℓ1)ρℓτ
1K(−q)∂2Ξ(−q)

∂qσ∂qτ

+ 1
2qρℓτ

1ℓκ
1

{
∂2K(−q)
∂qτ ∂qκ

∂Ξ(−q)
∂qσ

+ 2∂K(−q)
∂qτ

∂2Ξ(−q)
∂qσ∂qκ

+K(−q) ∂3Ξ(−q)
∂qσ∂qκ∂qτ

}

+ 1
4ηρσK(−q)ℓκ

2ℓτ
2

∂2Ξ(−q)
∂qκ∂qτ

+ 1
2(q + ℓ1).ℓ2K(−q)∂2Ξ(−q)

∂qρ∂qσ

+ 1
2q.ℓ2ℓ

τ
1

∂K(−q)
∂qτ

∂2Ξ(−q)
∂qρ∂qσ

+ 1
2q.ℓ2ℓ

τ
1K(−q) ∂3Ξ(−q)

∂qρ∂qσ∂qτ

+ ℓ2ρK(−q)∂Ξ(−q)
∂qσ

+ ℓ2ρℓτ
1

∂K(−q)
∂qτ

∂Ξ(−q)
∂qσ

+ ℓ2ρℓτ
1K(−q)∂2Ξ(−q)

∂qσ∂qτ

− ℓa
2K(−q)∂Ξ(−q)

∂qρ
ΣT

σa − ℓa
2ℓτ

1
∂K(−q)

∂qτ

∂Ξ(−q)
∂qρ

ΣT
σa − ℓa

2ℓτ
1K(−q)∂2Ξ(−q)

∂qρ∂qτ
ΣT

σa

− 1
4ℓτ

2ℓa
2K(−q)∂2Ξ(−q)

∂qρ∂qτ
ΣT

σa + 1
4ℓa

2ℓτ
2K(−q)Σσa

∂2Ξ(−q)
∂qρ∂qτ

+ 1
4ℓ22K(−q)∂2Ξ(−q)

∂qρ∂qσ

+ 1
12ℓτ

2

{
qρℓκ

2K(−q) ∂3Ξ(−q)
∂qκ∂qσ∂qτ

+ q.ℓ2K(−q) ∂3Ξ(−q)
∂qρ∂qσ∂qτ

}

+ ℓκ
2ℓτ

2

{
∆ρκστ (−q) + ∆κρτσ(−q)−∆κρστ (−q)−∆ρκτσ(−q)

}]
. (C.5)

In principle the above expression can be evaluated using the identities (2.10)–(2.17), but
it is tedious and we don’t need the full contribution. Instead we only evaluate the above
expression by contracting ϵ(−q)T from the left considering the particle with momentum q

being on-shell i.e. q2 + m2 = 0 and ϵ(−q)TK(−q) = 0. Implementing these conditions and
using the identities (2.10)–(2.17), the above expression simplifies to

Z1,µνρσ

≡ ϵ(−q)TΓ(3)
µν (q,−q−ℓ1, ℓ1)Ξ(−q−ℓ1)Γ(3)

ρσ (q+ℓ1,−q−ℓ1−ℓ2, ℓ2)Ξ(−q−ℓ1−ℓ2)

=−κ2ϵT

[
−ηµνηρσq.ℓ1(2q.ℓ1+q.ℓ2)+2qµqνηρσ(2q.ℓ1+q.ℓ2+ℓ21+ℓ1.ℓ2)

+2qµℓ1νηρσ(2q.ℓ1+q.ℓ2)−2ηρσqµℓb
1ΣT

νb(2q.ℓ1+q.ℓ2)+2ηµνq.ℓ1(qρqσ+qρℓ1σ+qσℓ1ρ)

−4qµqν(q+ℓ1)ρ(q+ℓ1)σ−4qµℓ1ν(qρqσ+qρℓ1σ+qσℓ1ρ)+4qµℓb
1ΣT

νb(qρqσ+qρℓ1σ+qσℓ1ρ)

+2ℓb
1ℓ1µΣT

νbqρqσ+2ηµνq.ℓ1qρℓ2σ−4qµqν(q+ℓ1)ρℓ2σ−4qµℓ1νqρℓ2σ+4qµℓb
1ΣT

νbqρℓ2σ

−2ηµνq.ℓ1ℓ
a
2qρΣT

σa+4qµqνℓa
2(q+ℓ1)ρΣT

σa+4qµℓ1νℓa
2qρΣT

σa−4qµℓb
1ΣT

νbℓ
a
2qρΣT

σa
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+2qµqνℓa
2ℓ2ρΣT

σa−2iq.ℓ1qµqρ
∂K(−q)

∂qν

∂Ξ(−q)
∂qσ

−2iqρqσℓλ
1ℓb

1

{
∆µλνb(−q)+∆λµbν(−q)−∆λµνb(−q)−∆µλbν(−q)

}
−2iqµqνℓκ

2ℓτ
2

{
∆ρκστ (−q)+∆κρτσ(−q)−∆κρστ (−q)−∆ρκτσ(−q)

}
+ℓλ

1ℓb
1

{
− 1

6qµqρ
∂K(−q)

∂qν

∂Ξ(−q)
∂qλ

∂K(−q)
∂qb

∂Ξ(−q)
∂qσ − 1

6qµqρ
∂K(−q)

∂qλ

∂Ξ(−q)
∂qν

∂K(−q)
∂qb

∂Ξ(−q)
∂qσ

− 1
6qλqρ

∂K(−q)
∂qµ

∂Ξ(−q)
∂qb

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ − 1

6qλqρ
∂K(−q)

∂qb

∂Ξ(−q)
∂qµ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

+ 1
3qµqρ

∂K(−q)
∂qb

∂Ξ(−q)
∂qλ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ + 1

3qλqρ
∂K(−q)

∂qµ

∂Ξ(−q)
∂qb

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

}

−iℓ1νℓb
1qµqρ

∂K(−q)
∂qb

∂Ξ(−q)
∂qσ +2iηνσqρq.ℓ1ℓ

b
1

∂K(−q)
∂qµ

∂Ξ(−q)
∂qb −2iℓ1σqρq.ℓ1

∂K(−q)
∂qµ

∂Ξ(−q)
∂qν

−i(q.ℓ1)2qρ
∂2K(−q)
∂qµ∂qν

∂Ξ(−q)
∂qσ +iq.ℓ1ℓ

b
1qνqρ

∂2K(−q)
∂qµ∂qb

∂Ξ(−q)
∂qσ +2iqρq.ℓ1ℓ

b
1

∂K(−q)
∂qµ

∂Ξ(−q)
∂qσ ΣT

νb

+2iqρq.ℓ1ℓ
b
1qν

∂K(−q)
∂qµ

∂2Ξ(−q)
∂qb∂qσ −2iqρ(q.ℓ1)2

∂K(−q)
∂qµ

∂2Ξ(−q)
∂qν∂qσ

−2iq.ℓ1qµℓ1ρ
∂K(−q)

∂qν

∂Ξ(−q)
∂qσ +iℓb

1ℓ1µqρqν
∂K(−q)

∂qb

∂Ξ(−q)
∂qσ −2iq.ℓ1ℓ1µqρ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

+2iηµνq.ℓ1qρℓτ
1

∂K(−q)
∂qτ

∂Ξ(−q)
∂qσ −iq.ℓ1qµqρℓτ

1
∂2K(−q)
∂qν∂qτ

∂Ξ(−q)
∂qσ −iℓ21qµqρ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

−2iq.ℓ1qµqρℓτ
1

∂K(−q)
∂qν

∂2Ξ(−q)
∂qσ∂qτ +iℓb

1qµq.ℓ2qν
∂K(−q)

∂qb

∂2Ξ(−q)
∂qρ∂qσ −iq.ℓ1qµq.ℓ2

∂K(−q)
∂qν

∂2Ξ(−q)
∂qρ∂qσ

−iqµqνq.ℓ2ℓ
τ
1

∂K(−q)
∂qτ

∂2Ξ(−q)
∂qρ∂qσ +2iℓb

1qµℓ2ρqν
∂K(−q)

∂qb

∂Ξ(−q)
∂qσ −2iq.ℓ1qµℓ2ρ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

−2iqµqνℓ2ρℓτ
1

∂K(−q)
∂qτ

∂Ξ(−q)
∂qσ −2iℓb

1qµℓa
2qν

∂K(−q)
∂qb

∂Ξ(−q)
∂qρ ΣT

σa+2iq.ℓ1qµℓa
2

∂K(−q)
∂qν

∂Ξ(−q)
∂qρ ΣT

σa

+2iqµqνℓa
2ℓτ

1
∂K(−q)

∂qτ

∂Ξ(−q)
∂qρ ΣT

σa+O(ℓ31,2)
]

. (C.6)

To write the above expression in a compact form we used our compact structure ∆ defined
in (C.3).

We also need to compute the following expression involving the vertex in (4.17) which
takes the following form once we expanded in power of small ℓ1, ℓ2 and keep terms up to
linear order

Γ(4)
µν,ρσ(q,−q−ℓ1−ℓ2, ℓ1, ℓ2)Ξ(−q−ℓ1−ℓ2)

= iκ2
[
(ηµνηρσ−2ηµρηνσ)

{
K(−q)Ξ(−q)+(ℓ1+ℓ2)κK(−q)∂Ξ(−q)

∂qκ + 1
2(ℓ1+ℓ2)κ ∂K(−q)

∂qκ Ξ(−q)
}

−ηµν

{
qρ

∂K(−q)
∂qσ Ξ(−q)+qρ(ℓ1+ℓ2)κ ∂K(−q)

∂qσ

∂Ξ(−q)
∂qκ + 1

2(ℓ1+ℓ2)ρ
∂K(−q)

∂qσ Ξ(−q)

+ 1
2qρ(ℓ1+ℓ2)κ ∂2K(−q)

∂qσ∂qκ Ξ(−q)+ 1
2ℓb

2
∂K(−q)

∂qρ ΣσbΞ(−q)− 1
2ℓb

2ΣT
σb

∂K(−q)
∂qρ Ξ(−q)

}
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−ηρσ

{
qµ

∂K(−q)
∂qν Ξ(−q)+qµ(ℓ1+ℓ2)κ ∂K(−q)

∂qν

∂Ξ(−q)
∂qκ + 1

2(ℓ1+ℓ2)µ
∂K(−q)

∂qν Ξ(−q)

+ 1
2qµ(ℓ1+ℓ2)κ ∂2K(−q)

∂qν∂qκ Ξ(−q)+ 1
2ℓb

1
∂K(−q)

∂qµ ΣνbΞ(−q)− 1
2ℓb

1ΣT
νb

∂K(−q)
∂qµ Ξ(−q)

}

+ 3
2ηµρ

{
qσ

∂K(−q)
∂qν Ξ(−q)+qσ(ℓ1+ℓ2)κ ∂K(−q)

∂qν

∂Ξ(−q)
∂qκ + 1

2(ℓ1+ℓ2)σ
∂K(−q)

∂qν Ξ(−q)

+ 1
2qσ(ℓ1+ℓ2)κ ∂2K(−q)

∂qκ∂qν Ξ(−q)+qν
∂K(−q)

∂qσ Ξ(−q)+qν(ℓ1+ℓ2)κ ∂K(−q)
∂qσ

∂Ξ(−q)
∂qκ

+ 1
2(ℓ1+ℓ2)ν

∂K(−q)
∂qσ Ξ(−q)+ 1

2qν(ℓ1+ℓ2)κ ∂2K(−q)
∂qκ∂qσ Ξ(−q)

}
+qµqρ

∂2K(−q)
∂qν∂qσ Ξ(−q)

+qµqρ(ℓ1+ℓ2)κ ∂2K(−q)
∂qν∂qσ

∂Ξ(−q)
∂qκ + 1

2

{
qµ(ℓ1+ℓ2)ρ+qρ(ℓ1+ℓ2)µ

}
∂2K(−q)
∂qν∂qσ Ξ(−q)

+ 1
2qµqρ(ℓ1+ℓ2)κ ∂3K(−q)

∂qν∂qσ∂qκΞ(−q)− 1
4ηνσ(ℓ2−ℓ1)κ

{
∂K(−q)

∂qκ Σρµ−ΣT
ρµ

∂K(−q)
∂qκ

}
Ξ(−q)

+ 1
2ηµρ

{
ℓb
2

∂K(−q)
∂qν Σσb−ℓb

2ΣT
σb

∂K(−q)
∂qν +ℓb

1
∂K(−q)

∂qσ Σνb−ℓb
1ΣT

νb
∂K(−q)

∂qσ

}
Ξ(−q)

+ 1
4qµℓb

2

{
∂2K(−q)
∂qν∂qρ Σσb−ΣT

σb
∂2K(−q)
∂qν∂qρ

}
Ξ(−q)+ 1

4qρℓb
1

{
∂2K(−q)
∂qσ∂qµ Σνb−ΣT

νb
∂2K(−q)
∂qσ∂qµ

}
Ξ(−q)

− 1
2ηνσℓa

2

{
∂K(−q)

∂qρ Σaµ−ΣT
aµ

∂K(−q)
∂qρ

}
Ξ(−q)− 1

2ηνσℓa
1

{
∂K(−q)

∂qµ Σaρ−ΣT
aρ

∂K(−q)
∂qµ

}
Ξ(−q)

− 1
2ℓ2ν

{
∂K(−q)

∂qσ Σµρ−ΣT
µρ

∂K(−q)
∂qσ

}
Ξ(−q)− 1

2ℓ1σ

{
∂K(−q)

∂qν Σρµ−ΣT
ρµ

∂K(−q)
∂qν

}
Ξ(−q)

+O(ℓ21, ℓ1ℓ2, ℓ22)
]

. (C.7)

Now we contract the above expression with ϵ(−q)T from the left considering the particle
with momentum q being on-shell i.e. q2 + m2 = 0 and ϵ(−q)TK(−q) = 0. Then using the
identities (2.10)–(2.17), the above expression up to order O(ℓ1, ℓ2) simplifies to

Z2,µνρσ

≡ ϵ(−q)T Γ(4)
µν,ρσ(q,−q−ℓ1−ℓ2, ℓ1, ℓ2)Ξ(−q−ℓ1−ℓ2)

= iκ2ϵT

[
(ηµνηρσ−2ηµρηνσ)

{
i(q2+m2)+iq.(ℓ1+ℓ2)

}
−ηµν

{
2iqρqσ+i(ℓ1+ℓ2)ρqσ

+iqρ(ℓ1+ℓ2)σ

}
−ηρσ

{
2iqµqν+i(ℓ1+ℓ2)µqν+iqµ(ℓ1+ℓ2)ν

}
+3ηµρ

{
2iqνqσ

+iqν(ℓ1+ℓ2)σ+iqσ(ℓ1+ℓ2)ν

}
+ηνσ

{
2iqµqν+iqµ(ℓ1+ℓ2)ρ+iqρ(ℓ1+ℓ2)µ

}
−iηνρqµℓb

2ΣT
σb−iησµqρℓb

1ΣT
νb+2iηµνℓb

2qρΣT
σb+2iηρσℓb

1qµΣT
νb

+2iηνσqρℓa
2ΣT

aµ+2iηνσqµℓa
1ΣT

aρ+2iℓ2νqσΣT
µρ+2iℓ1σqνΣT

ρµ
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−2iηµρqνℓb
2ΣT

σb−2iηµρqσℓb
1ΣT

νb+iηνσq.(ℓ2−ℓ1)ΣT
ρµ

−ηµν

{
1
2qρℓκ

1
∂K(−q)

∂qσ

∂Ξ(−q)
∂qκ − 1

2qρℓκ
1

∂K(−q)
∂qκ

∂Ξ(−q)
∂qσ

}

−ηρσ

{
1
2qµℓκ

2
∂K(−q)

∂qν

∂Ξ(−q)
∂qκ − 1

2qµℓκ
2

∂K(−q)
∂qκ

∂Ξ(−q)
∂qν

}

+ 3
2ηµρ

{
− 1

2qσ(ℓ1+ℓ2)κ ∂K(−q)
∂qκ

∂Ξ(−q)
∂qν + 1

2qσ(ℓ1+ℓ2)κ ∂K(−q)
∂qν

∂Ξ(−q)
∂qκ

− 1
2qν(ℓ1+ℓ2)κ ∂K(−q)

∂qκ

∂Ξ(−q)
∂qσ + 1

2qν(ℓ1+ℓ2)κ ∂K(−q)
∂qσ

∂Ξ(−q)
∂qκ

}

−qµqρ
∂K(−q)

∂qν

∂Ξ(−q)
∂qσ −qµqρ

∂K(−q)
∂qσ

∂Ξ(−q)
∂qν +qµqρ(ℓ1+ℓ2)κ ∂2K(−q)

∂qν∂qσ

∂Ξ(−q)
∂qκ

− 1
2

{
qµ(ℓ1+ℓ2)ρ+qρ(ℓ1+ℓ2)µ

}{
∂K(−q)

∂qν

∂Ξ(−q)
∂qσ + ∂K(−q)

∂qσ

∂Ξ(−q)
∂qν

}

− 1
2qµqρ(ℓ1+ℓ2)κ

{
∂2K(−q)
∂qν∂qσ

∂Ξ(−q)
∂qκ + ∂2K(−q)

∂qν∂qκ

∂Ξ(−q)
∂qσ + ∂2K(−q)

∂qκ∂qσ

∂Ξ(−q)
∂qν

+ ∂K(−q)
∂qν

∂2Ξ(−q)
∂qκ∂qσ + ∂K(−q)

∂qκ

∂2Ξ(−q)
∂qσ∂qν + ∂K(−q)

∂qσ

∂2Ξ(−q)
∂qν∂qκ

}

+ 1
2ηµρℓb

2

{
−qσ

∂K(−q)
∂qν

∂Ξ(−q)
∂qb +qσ

∂K(−q)
∂qb

∂Ξ(−q)
∂qν +qb

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ −qb

∂K(−q)
∂qσ

∂Ξ(−q)
∂qν

}

+ 1
2ηµρℓb

1

{
−qν

∂K(−q)
∂qσ

∂Ξ(−q)
∂qb +qν

∂K(−q)
∂qb

∂Ξ(−q)
∂qσ +qb

∂K(−q)
∂qσ

∂Ξ(−q)
∂qν −qb

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ

}

+ 1
4qµℓb

2

{
2∂K(−q)

∂qν

∂Ξ(−q)
∂qρ ΣT

σb+2∂K(−q)
∂qρ

∂Ξ(−q)
∂qν ΣT

σb−qσ
∂2K(−q)
∂qν∂qρ

∂Ξ(−q)
∂qb

+qσ
∂2K(−q)
∂qν∂qb

∂Ξ(−q)
∂qρ +qσ

∂2K(−q)
∂qb∂qρ

∂Ξ(−q)
∂qν −qb

∂2K(−q)
∂qσ∂qρ

∂Ξ(−q)
∂qν +ησν

∂K(−q)
∂qb

∂Ξ(−q)
∂qρ

−ηbν
∂K(−q)

∂qσ

∂Ξ(−q)
∂qρ +ησρ

∂K(−q)
∂qb

∂Ξ(−q)
∂qν −ηbρ

∂K(−q)
∂qσ

∂Ξ(−q)
∂qν +ησρ

∂K(−q)
∂qν

∂Ξ(−q)
∂qb

−ηbρ
∂K(−q)

∂qν

∂Ξ(−q)
∂qσ +ησν

∂K(−q)
∂qρ

∂Ξ(−q)
∂qb −ηbν

∂K(−q)
∂qρ

∂Ξ(−q)
∂qσ +qσ

∂K(−q)
∂qb

∂2Ξ(−q)
∂qν∂qρ

−qb
∂K(−q)

∂qσ

∂2Ξ(−q)
∂qν∂qρ +qσ

∂K(−q)
∂qν

∂2Ξ(−q)
∂qb∂qρ −qb

∂K(−q)
∂qν

∂2Ξ(−q)
∂qσ∂qρ +qσ

∂K(−q)
∂qρ

∂2Ξ(−q)
∂qν∂qb

−qb
∂K(−q)

∂qρ

∂2Ξ(−q)
∂qν∂qσ

}

+ 1
4qρℓb

1

{
2∂K(−q)

∂qσ

∂Ξ(−q)
∂qµ ΣT

νb+2∂K(−q)
∂qµ

∂Ξ(−q)
∂qσ ΣT

νb−qν
∂2K(−q)
∂qσ∂qµ

∂Ξ(−q)
∂qb

+qν
∂2K(−q)
∂qσ∂qb

∂Ξ(−q)
∂qµ +qν

∂2K(−q)
∂qb∂qµ

∂Ξ(−q)
∂qσ −qb

∂2K(−q)
∂qν∂qµ

∂Ξ(−q)
∂qσ +ησν

∂K(−q)
∂qb

∂Ξ(−q)
∂qµ

−ηbσ
∂K(−q)

∂qν

∂Ξ(−q)
∂qµ +ηνµ

∂K(−q)
∂qb

∂Ξ(−q)
∂qσ −ηbµ

∂K(−q)
∂qν

∂Ξ(−q)
∂qσ +ηνµ

∂K(−q)
∂qσ

∂Ξ(−q)
∂qb
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−ηbµ
∂K(−q)

∂qσ

∂Ξ(−q)
∂qν +ησν

∂K(−q)
∂qµ

∂Ξ(−q)
∂qb −ηbσ

∂K(−q)
∂qµ

∂Ξ(−q)
∂qν +qν

∂K(−q)
∂qb

∂2Ξ(−q)
∂qσ∂qµ

−qb
∂K(−q)

∂qν

∂2Ξ(−q)
∂qσ∂qµ +qν

∂K(−q)
∂qσ

∂2Ξ(−q)
∂qb∂qµ −qb

∂K(−q)
∂qσ

∂2Ξ(−q)
∂qν∂qµ +qν

∂K(−q)
∂qµ

∂2Ξ(−q)
∂qσ∂qb

−qb
∂K(−q)

∂qµ

∂2Ξ(−q)
∂qσ∂qν

}

− 1
4ηνσ(ℓ2+ℓ1)κ

{
−qρ

∂K(−q)
∂qκ

∂Ξ(−q)
∂qµ +qρ

∂K(−q)
∂qµ

∂Ξ(−q)
∂qκ −qµ

∂K(−q)
∂qκ

∂Ξ(−q)
∂qρ

+qµ
∂K(−q)

∂qρ

∂Ξ(−q)
∂qκ

}
− 1

2ηνσq.(ℓ1−ℓ2)
{
− ∂K(−q)

∂qµ

∂Ξ(−q)
∂qρ + ∂K(−q)

∂qρ

∂Ξ(−q)
∂qµ

}

− 1
2ℓ2ν

{
qρ

∂K(−q)
∂qσ

∂Ξ(−q)
∂qµ −qρ

∂K(−q)
∂qµ

∂Ξ(−q)
∂qσ

}
− 1

2ℓ1σ

{
qµ

∂K(−q)
∂qν

∂Ξ(−q)
∂qρ

−qµ
∂K(−q)

∂qρ

∂Ξ(−q)
∂qν

}
+O(ℓ21, ℓ1ℓ2, ℓ22)

]
. (C.8)

Above we removed the terms which are anti-symmetric under µ ↔ ν and/or
ρ ↔ σ exchanges.
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