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Abstract
Understanding visual complexity of urban environments may improve urban design strategies and limit visual pollution due
to advertising, road signage, telecommunication systems and machinery. This paper aims at quantifying visual complexity
specifically in urban streetscapes, by submitting a collection of geo-referenced photographs to a group of more than 450
internet users. The average complexity ranking issued from this surveywas comparedwith a set of computer vision predictions,
attempting to find the optimal match. Overall, a computer vision indicator matching comprehensively the survey outcome
did not clearly emerge from the analysis, but a set of perceptual hypotheses demonstrated that some categories of stimuli are
more relevant. The results show how images with contrasting colour regions and sharp edges are more prone to drive the
feeling of high complexity.

Keywords Visual complexity · Streetscapes · Computer vision · Perception

1 Introduction

1.1 Context

Vision in urban environments is certainly a complex task,
given the diversity of visual stimuli offered by cities. The
dynamicity of urban scenes, in which observers are eco-
logically immersed [1, 2], solicits their visual system in a
sequence of revelations and serial images [3], ultimately
forming “the image of the city” [4].

In the context of urban areas and streetscapes, visual com-
plexity may be intended as the visual richness or diversity of
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the built environment. A diversity of factors concurs in deter-
mining the complexity of an urban view, based on visual
perception [5]. Some aspects are linked with the difficulty
of processing the sensory information in relation with the
physiological limits of vision, like the angular size of target
objects and the luminance contrast between target objects
and their background: we call these bottom-up (or low level)
processing aspects [6]. Some other factors refer to seman-
tic structures built by cognition and experience, namely the
meaning a target object represents in its context: these are
top-down (or high level) aspects, as opposed to the previ-
ous ones [7]. Too many equally meaningful target objects in
a scene confuse human senses and the attention is diverted
to more prominent stimuli, based on saliency, dynamics and
motion of target objects: this exercise of selective attention
[8], given also the activity and behaviour of the observer,
constitutes another layer of complexity.

Specifically in urban environments, the height and size
of buildings, as well as the variety of textures and patterns
are likely bottom-up aspects. The presence of landmarks, the
density and arrangement of built volumes are linked with
top-down processing. Perception is constrained to a max-
imum rate of usable information [9]; reported complexity
depends on expectations, anticipations of open and closed
spaces, linked with the human prospect of refuge [10] or
with the quest for variety [11]. Complexity is identified as
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one of the fifty urban design qualities related to walkability
[12].

Atmospheric variables also influence the perception of
the outdoor urban space, modifying the view depth and the
lighting conditions of the scene [13]: from more diffuse with
cloudy weather to harsher in contrast under direct sun [14].
These aspects, like the seasonal-dependent presence of veg-
etation [15, 16], have psychological effects on the observer
too [17, 18].

Everyday experiences of the mentioned perceptual pro-
cesses can be the detection of solar modules, or similar
camouflaged visual pollution, in urban landscapes (bottom-
up) [19], the visual search for road indications and signs
(top-down) [20], the attention captured by advertisement
(selective attention) [21].

In the scientific literature, a multitude of metrics for the
quantification of visual complexity in urban contexts extends
from city planning, fractal geometry and information the-
ory [22] to optical and lighting physics, through neurology,
psychology and physiology. Recently, visual perception tri-
als with human participants often accompany algorithms of
computer vision [23], which mimic some perceptual pro-
cesses. The complexity ranking of image samples made by
panels of participants is typically matched with computa-
tional metrics based on image contrast [24], edge detection,
entropy and imageCompression [25]. In some cases, the frac-
tal dimension is specifically investigated [26]. Some studies
employ artificial neural networks to train andpredict the com-
plexity of generic images as perceived by humans [25, 27], or
adopt neuron activations in hidden layers of image segmen-
tation algorithms as proxy for image complexity [28]. Other
studies try to implement attention mechanisms in computer
vision, imitating the high-level extraction of key information
[29, 30].

Within research focusing on streetscapes, worth to note
are techniques estimating visual complexity based on tax-
onomic labelling of visible features in images [31], or on
the “noise” introduced by specific features like signage [32],
that increase the feeling of complexity [33]. Highly dense
and cluttered urban environments can lead to cognitive load,
stress, fatigue, inducing reduced visual clarity, decreased leg-
ibility and impaired wayfinding.

The semantic labelling of streetscapes associated with
machine learning showed also a promising potential [34].
Interestingly, there is neurological evidence of perceived
complexity in streetscapes [35], leaving a trace in the
electroencephalogram. In some cases, visual complexity
enhances the experiential quality of the built environment
by providing visual interest, stimulation and diversity.

Table 1 Experimental sample size of participants for the cited studies
and relevance of the investigated image collection to the urban environ-
ment

Research Number of
participants
involved

Images collection
in urban
environment

Cavalcante et al. [24] 40 Yes

Machado et al. [25] 240 No

Gunawardena et al. [31] 20 Yes

Kacha et al. [35] 6 Yes

Gunawardena et al. [33] 50 Yes

Nagle and Lavie [27] 53 No

Saraee et al. [28] 1687 No

Ma et al. [26] 0 Partially (gardens
only)

Guan et al. [34] 68 Yes

Kawshalya et al. [36] 78 Yes

2 Research objective

Visual complexity is amultifaceted concept that has both pos-
itive and negative effects on human perception and behaviour
in urban areas. Its definition and measurement can vary. In
this study, the objective is to derive an empirical definition
of visual complexity from a web survey, by submitting a set
of images to the public.

Overall, the existing literature lacks studies corroborated
by a large sample of participants (e.g., more than 200
subjects). From Table 1, it also emerges that visual com-
plexity has been seldom investigated thoroughly in urban
environments. In contrast, the present study leverages on
crowd-sourced visual complexity ranking of images portray-
ing exclusively urban streetscapes; the outcome is compared
with variousmetrics issued fromcomputer vision algorithms.
Due to the pursued research objective, the concept of com-
plexity is not explicitly defined beforehand, but rather evoked
through a series of abstract artworks, shown to the visitors
of the survey website (Fig. S. 1). By working on a sample
of more than 450 internet users, this study aims at bring-
ing statistical significance to the match between human and
computer-based visual complexity ranking, from a collection
of 25 urban streetscape images gathered in different parts of
the world. The outcome is expected to facilitate the com-
plexity modelling in urban areas, by providing contextual
information to the addition of new objects to the scene, in
simulations for visual pollution generated for instance by
solar modules, antennas, advertisement signs or any other
nuisance.
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To test the generalisability of the approach, the selected
images include heterogeneous and diverse streetscapes from
disparate locations worldwide, with a prevalence in Europe.
However, the approach can be replicated to any set of geo-
referenced images, including those available in street view
repositories, to obtain complexity maps as produced in other
studies [36].

3 Overview

This research focuses on the visual aspects of complexity
perceived in urban streetscapes. Human and computer vision
were specifically compared with a perceptual approach.

The overall workflow relies on (i) the selection of a set of
38 images of streetscapes distributed around the globe. (ii)
Streetscapes were manually tagged to identify several signif-
icant features and classify the images semantically. (iii) The
set of streetscapes was ranked by more than 450 participants
via an online interactive form created ad-hoc: despite sev-
eral limitations and drawbacks discussed in the forthcoming
sections, this turned out to be the most viable solution. After
extracting an average ranking from the human-based clas-
sification, (iv) a series of hypotheses leveraging on certain
perceptual aspects that may impact on the quantification of
complexity is laid down (Table 2).

These hypotheses led to a series of computer vision algo-
rithms (last column of Table 2), used to rank the images in
the collection. This set of computer vision-based indicators
was selected after a thorough literature review, but it may
not be fully exhaustive yet: however new algorithms can be
easily added to the collection. Finally, (v) the fitting of com-
plexity ranking based on computer vision was assessed using
human ranking as ground truth in a fivefold cross-validation.
This fitting allowed estimating the best correlations, and thus
the most relevant hypotheses among those tested. The pro-
cess included comparing bottom-up (H1 toH6) and top-down
(H7) components in the human appreciation of streetscapes
complexity. Results are explained and discussed in the fol-
lowing sections.

4 Methodology

4.1 Image database

First, a set of 38 images portraying as many streetscapes
distributed in different parts of the world was constituted
by consulting free online photo repositories, which include
geographic positioning. Several criteria were adopted for the
selection of the images: (i) the Creative Commons license
was imperative for processing and reusing the image, (ii)
each photograph had to be taken from the medial axis of the

street, pointing along its direction, at pedestrian level. The
scene should portray an urban streetscape,without prominent
objects in the foreground; (iii) the target scene was illumi-
nated by clear or partly cloudy sky, bringing both direct and
diffuse daylight.

A manual image tagging operation was performed by the
authors, which led to a first complexity ranking and helped
to preserve a meaningful variety while reducing the dataset.
Before assessing their visual complexity, the images were
reduced to a set of 25 elements, to avoid making the online
ranking survey too demanding for respondents (Fig. 1).
Repetitive images were filtered out when containing com-
mon elements that constituted redundant scenes and were
kept, ensuring a significant diversity in materials, objects,
scenes and shading.

4.2 Online survey

The refined image set containing 25 elements was published
online to collect a crowd-sourced ranking of their visual com-
plexity. To confirm or reject any correspondence between
human and computer-based complexity ranking, the statis-
tical ground truth had to be as representative as possible of
the average human response. Instead of an expensive field
survey, an online form based on photographs could reduce
spatial constraints and open to a more diversified public. To
ensure the necessary quality of respondents’ submissions,
a set of convenient practices aimed at: limiting the survey
time to 10 min to avoid distractions; securing the website to
minimize the risk of remote attack or corruption; designing
a self-explanatory, attractive and ergonomic interface, with
easy interaction (drag and drop) and navigation (back and
review buttons).

The survey was presented to the user in five steps. First,
a static web page introduced the survey in a few words and
hosted two optional links: to a 3′30 presentation video and to
a photo gallery containing the 25 images of the survey. In the
second step, a web page asked the user to group each of the
25 images by three categories of complexity (low, medium
or high), leveraging on JavaScript drag and drop functionali-
ties. The third step requested sorting the images by increasing
complexity within the three different categories, each cate-
gory being presented in a dedicated table. The fourth step
profiled the respondent in an anonymous form, by retrieving
the name of the base city, the gender, the age and the field
of expertise (five choices were proposed). The fifth and last
step was a message to summarize the information collected
anonymously and thank the respondent.

The survey has been based on a 3-tier architecture, collect-
ing responses directly on the user’s device through a cookie
and feeding a database, at the end of each survey session, by
means of a Google-app for the data access layer. The survey
data was arranged in a simple spreadsheet with 12 columns:
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Table 2 Hypotheses considered
for assessing streetscapes
complexity through computer
vision

Hypothesis To estimate complexity: Associated indicators

H0 All components of the image are
considered as a whole

Descriptive statistics on the image (or its
tiles) after different colour space
conversion

H1 The colour component may be neglected Descriptive statistics on the image (or its
tiles) after greyscale conversion

H2 The luminance component may be
neglected

Descriptive statistics of the image (or its
tiles) after conversion into the Lab
colour space and setting the luminance
component to zero

H3 Low frequencies are the most important
factor

Descriptive statistics on the image (or its
tiles) after various blurring or various
alterations by wavelet or Fourier
transforms

H4 Objects edges are the most important
factor

Descriptive statistics on the image (or its
tiles) after edge detection via the Scharr
or Sobel filters

H5 The capture of visual’s attention is the
most important factor

Descriptive statistics on saliency maps
(spectral or fine-grained), maps from
interest point detection (via ORB or
SIFT) or UAE maps

H6 Fractal dimension is the most important
factor

Analysis of the fractal dimension of the
B&W image

H7 The classes identified in a panoptic
segmentation are the most important
factor

Indicator derived from the panoptic
segmentation of the image

three of them represent the different complexity categories
and feature a list of image labels sorted by increasing com-
plexity.

In summary, the output of the online survey gathered the
complexity category attributed to eachphotographby theuser
as a first step, then the complexity ranking of the photographs
from the least to the most complex. Overall results from the
whole set of respondents were aggregated by averaging the
position in the complexity ranking.

4.3 Computer visionmethods (computational
indexes)

To test hypotheses H0-H7, it was necessary to compute, from
each image, indicators that may correlate with the level of
complexity. This set of indicators–a kind of complexity pre-
dictor–was compared with the ranking obtained from the
online survey subsequently. To automate the assessment of
complexity, various options, inspired by the state of the art,
have been explored. The process was globally achieved in
four steps: a first one (i) was dedicated to the conversion of
the image into several colour spaces available in the OpenCV
library [37]. A second step (ii) determined the actual trans-
formation of the image (low-pass filtering, edge detection,
high-pass filtering, etc.), and in a third step (iii), the image
was subdivided into smaller tiles. The last step (iv) consisted

in an extraction of descriptive statistics from the transformed
image and its tiled subdivisions. The computation followed
the sequence of operations summarised in Fig. 2 and illus-
trated with more detail in Fig. S. 3.

4.3.1 First image transformation

Colour space (hypothesis 0, 1, 2 and baseline for fur-
ther hypotheses) A first iteration of the computer vision
algorithms was calculated on standard images, cropped and
resized all to the resolution of 400 × 600 pixels (2/3 pro-
portion), encoded in different colour spaces: this phase was
planned to find the colour space that best explains the com-
plexity ranking from the online survey. Then, the scope
encompassed the importance of the colour vs. the lumi-
nous intensity of each pixel. To achieve this de-coupling,
the CIELAB colour space was exploited, also referred to as
L*a*b*.

To test hypothesis 1, images were altered into grey lev-
els without the colour component, using the L* channel
alone (an alternative would have been to study the “In-
tensity” component of the HSI colour space). Conversely,
hypothesis 2was tested by setting to zero the luminance com-
ponent L*, to return “a*b*” images. From the initial set of
25 colour images, several distinct groups of 25 images were
derived using the colour conversion codes provided by the
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Fig. 1 Map and gallery view of
the 25 selected photographs used
in the online ranking survey. The
average complexity ranking
position issued from survey
respondents in ascending order is
indicated in the round marker at
the bottom-right corner of each
photo, and encoded on a colour
scale
(blue–yellow–green–purple). All
selected photographs are licensed
Creative Commons: geographic
locations, authors and links to the
photographs are included in the
data annex

OpenCV library [37]. The following colour spaces were con-
sidered: HLS, HSV, L*a*b*, L*u*v*, XYZ, YCC and YUV,
in addition to the original RGB and to the above-mentioned
luminance-only (L*) and colour-only (a*b*).

The image processing algorithms described below were
applied to the resulting images, taking inspiration by
Machado et al. [25], to study the relevance of each hypothe-
sis (H0-H7) and explain the perceived complexity. Following
Gunawardena [31], black and white images derived from
binarised luminance maps allowed for estimating their frac-
tal dimension under hypothesis 6. Once these groups were
constituted, the different treatments described below were

carried out, to study the influence of each major image fea-
ture on the average perceived complexity.

Spatial frequency (hypothesis 3) This step aimed at test-
ing hypothesis 3, through the degradation of each image, by
removing the details and keeping only the low-frequency fea-
tures, also called trends. The underlying assumption states
that a high density of trends is characteristic of a high
complexity of the image. To extract these trends, three
approaches have been tested. First, the reduction of the
image noise through a Gaussian blur, mimicking the phys-
ical filter of the image per means of a translucent screen.
This low pass smoothing or blurring filter could be applied
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Fig. 2 This workflow synthesizes
the computer vision processing
of the images. A colour image
given as input (centre) was first
converted into an appropriate
colorimetric space before
undergoing a first transformation
(blurring, edge detection, etc.).
The various indicators were
computed from this transformed
image, using appropriate
descriptive statistics

iteratively to gradually increase the blurring effect. In prac-
tice, five different fuzzy levels were produced (i.e., after
5, 10, 15, 20 and 25 iterations of a kernel of size 9 ×
9 and standard deviation equal to 20 in both directions).
An alternative, second approach, consisted in a wavelet-
based compression. This involved using a 2D multi-level
decomposition-reconstruction technique which removed, in
an incremental way (and up to eight iterations), the items cor-
responding to the “detail coefficients”. With this technique,
different discrete built-in wavelets could be tested. These
two low-pass filtering strategies (Gaussian blur and wavelet-
based compression) have been applied to all the colour space
images.

The third approach employed Fourier transform to rep-
resent a signal—in this case an image—in the frequency
domain bymeans of a development on a base of exponentials.
Characterizing an image by its frequency spectrum allows
highlighting the importance of the fundamental harmonic, as
well as the more or less rapid decrease in the amplitude of

the harmonics of higher ranks. By removing the high spatial
frequencies from the image in the Fourier domain, it was pos-
sible to build a low frequency image, based on the power of
the signal, as the modulus of the Fourier transform (neglect-
ing the phase).

Edge detection (hypothesis 4) The Sobel and Scharr deriva-
tives operators allowed testing hypothesis 4, by highlighting
the edges of the images, namely the regions where the
brightness of the pixels changes abruptly. These brightness
gradientsmay characterize the boundaries of an object or part
of an object, like the boundaries of shading or illumination
areas, textures, etc. As edges represent discontinuity in the
image, they participate in its structuring and thus contribute
to its perceived complexity. Compared to the lossy compres-
sion techniques mentioned previously, edge detection relies
on high frequency information.
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As before, these two edge detection strategies (Sobel and
Scharr filters) have been applied to all the colour space
images.

Visual attention (hypothesis 5) The purpose of saliency
maps is to highlight regions of an image that are impor-
tant to human vision, as they capture visual attention. A
classical image processing algorithm [20] allows for testing
hypothesis 5: each pixel of the image is rated according to its
“meaningfulness” (in a sort of biomimetic-based interpreta-
tion). This work is based on two saliency algorithms derived
from Itti’s seminal paper: the Fine-Grained Saliency assesses
centre-surround differences [38], while the Spectral Residual
approach analyses the log spectrum of the image [39]. These
methods have been applied to all the colour space images.

Feature detection algorithms can be equally relevant to
test hypothesis 5. They help to derive the prominent visual
content from the local analysis of an image, as independently
as possible from scale, framing, viewing angle and exposure.
The detection of points of interest with multiple invariances
facilitates image stitching and therefore content-based image
retrieval. This technique was used here, under the assump-
tion that the distribution of such points can inform on the
dispersion or clustering of the complexity. Two key points
detection methods have been considered: the Scale Invari-
ant Fourier Transform (SIFT) [40], and the Oriented FAST
and Rotated BRIEF (ORB) algorithm [40, 41]. These two
algorithms have been applied to all the colour space images.

The recent spread of deep learning algorithms may also
help testing hypothesis 5. Saraee et al. exploit information
about the complexity of images, carried by the intermediate
convolutional layers of deep neural networks [28]. In prac-
tice, the algorithm accounts for the energy map correspond-
ing to the fourth max-pooling layer of image prediction, by
theVGG-16 architecture, trained for a scene recognition task.
Descriptive statistics of this energy map have been computed
as in the other computational approaches described above.

Fractal dimension (hypothesis 6) A figure is said to be
fractal when it has a similar structure at all scales. The frac-
tal dimension of an object is computed by measuring the
fragmentation of its contours, which characterizes a form of
entanglement. To test hypothesis 6, we followed Gunawar-
dena et al. (Gunawardena et al., 2015), and assumed that
the fractal dimension of black and white luminance images
was an indicator of its perceived complexity. In practice,
the implementation of this metric is made available by the
software ImageJ [42], the binarization of the image being
previously implemented by an Otsu’s threshold method.

Semantic segmentation (hypothesis 7) A deep learn-
ing method called panoptic segmentation was used to test
hypothesis 7. This adaptation of the “Masked-attentionMask

Transformer” [43] can identify, in each image, various types
of instances such as cars, bicycles, people, streets, portions
of sky, pavement and buildings. An indicator for a top-down
model to explain complexity, in accordance with the rank-
ing from the online survey, relied on the classes resulting
from the panoptic segmentation. This indicator constituted
a predictor of complexity, constructed as follows. For each
image, classes were selected where the surface ratio r j of
pixels Pj in the class j was greater than or equal to 2% (of
the total number of pixels in the image S), as per Eq. 1. This
process was intended to remove irrelevant objects from the
complexity computation. Then, the algorithm calculated the
complexity ratio c, as the number of classes x (discarding
those below the r j ≤ 2% threshold), divided by the median
of the surface ratios r j for such selected classes (above the
r j > 2% threshold). For example, if a photograph was seg-
mented into 4 classes, of which only 3 cover an area that
exceeds 2% of the total photograph area, the ratio c would
be equal to 3 divided by the median of the 3 surface ratios
r j , namely the surface ratio r j which is not the maximal nor
the minimal. This complexity ratio c was the one used to
rank the photographs in the framework of semantic segmen-
tation. Various threshold values were tested (1%, 2%, 3%,
etc.), along with various ratios (as well as standard devia-
tions, percentiles, maximum values, etc.), before proposing
the one presented in Eq. 2 (2%), which led to the best corre-
lation in the Pearson sense, relatively to hypothesis 7 (ρ =
0.74). The outcome of the ranking operated in this step can
be consulted in Table S. 1.

r j = Pj

S
and S =

x∑

j=1

Pj (1)

J = {
j ∈ [1, x]; r j ≥ 2%

}
c = card(J )

Median
({
r j ; j ∈ J

})

(2)

4.3.2 Spatial distribution analysis using image tiling

The tiling of an image is a way to study the complexity
through spatial decomposition. This set of localised anal-
yses makes it possible to study the overall variability of a
given indicator, throughout the global image, as well as its
distribution in individual tiles. The scope here was to deter-
mine the spatial distribution of complexity over the image,
i.e., if some regions of the image were, or not, more com-
plex than others, and in what proportion. This recursive tiling
technique was applied iteratively to produce many small tiles
(we stopped this recursive tiling at the 6th iteration with 64
× 64 thumbnails of 9 × 12 pixels size). Tiling was applied
to all the colour space images and algorithms.
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Fig. 3 (Left) Average position from all respondents’ ranking; (right) breakdown of complexity categorization by share of respondents

4.3.3 Descriptive statistics on images

Descriptive statistics have been computed from various
images (either the original, testing hypothesis 0, or those
resulting from the transformations presented above). For the
greyscale images, statistics included themean,median, range
of values, standard deviation, skewness, Kurtosis, entropy
and signal-to-noise ratio of the pixel values. Each of these
eight parameters was considered as a candidate predictor of
the perceived complexity from the survey, and tested for
correlation. For colour images (CIELAB or RGB colour
spaces in particular), a variability indicator around the aver-
age colour was also computed, as a possible index of the
image complexity. This variability (denoted v) consisted in
the mean Euclidean distance from the colour coordinates of
each pixel to the average colour coordinates of the image.
In addition, after each tiling, the entropy and standard devia-
tion (resp. variability indicator around the average colour) for
the greyscale images (resp. colour space images) was carried
out. In the case of key point detection (ORB and SIFT algo-
rithms), instead of using these descriptive statistics which
do not apply to binary images, two alternative indexes were
employed. The first one equals the number of key points, the
second one is the surface coverage ratio of the associated
disks of a given radius, relatively to the image size, after a
spatial union operation. Similarly, descriptive statistics were
not relevant to the fractal algorithm and to the UAE algo-
rithm, as they directly return quantitative values as proxy of
the image complexity.

5 Results

5.1 Average complexity ranking by human
respondent

The crowd-sourced survey and the results are available
online. Out of the 458 submitted responses, 4 were filtered

out as the respondent filled the survey in less than 5 min, thus
leaving a total of 454 accurate submissions. Figure 3 shows
that there is consistency between the average position from
all respondents’ ranking (left) and the breakdown of com-
plexity categorization by share of respondents (right). The
variability around the average ranking is shown in Fig. S.
2. On the right, it seems photographs are clustered in cou-
ples or tripletswith a rather homogeneous categorization. For
the subsequent analyses, the average complexity ranking is
assumed as the ground-truth to which computational indexes
are compared against.

5.2 Statistical match between human
and computer-based complexity ranking

The complexity rankings issued from the computer vision
indicators mentioned in Sect. 3.3 have been tested for cor-
relation with the average complexity ranking from human
respondents (Fig. 4). A linear regression model was set-up to
this purpose (simple linear regression after a systematic cen-
tring and scaling), using each indicator as an independent
variable, respectively, and the average complexity ranking
from human respondents as the predicted (dependent) vari-
able. To evaluate the performance of each of the 7932 linear
regressions, the corresponding coefficients of determination
(R2) and Pearson’s correlations have been calculated. This
correlation in absolute value is greater than or equal to 0.63
for 461 indices (nearly 6%), which is not surprizing as the
presented approach was testing a large number of candidate
indexes and statistics: the maximum of 0.79 is reached for
an H0 indicator (derived from a 16 × 16 tiling of an HLS
image). Indexes that do not reach the 0.63 threshold in abso-
lute value on correlation have been discarded from further
analysis.

Given the high number of selected indicators (461) com-
pared to the low number of photographs (25), the risk of
overfittingwas limited by sub-setting the dataset into a test set
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Fig. 4 Procedure to select the computer vision indicators for cross-validation, indicating the best candidates

of 7 photographs, shuffled and extracted pseudo-randomly 5
times for cross-validation.

With the “shuffle split” cross-validation technique, the
performance of the indicator (the mean R2 score) decreases
in comparison with its overall correlation with the whole
dataset, as it is tested acrossmultiple (namely 5) subdivisions
of the dataset. As an example, the cross-validated mean R2

score of a simple regression model based on the UAE indica-
tor is 0.488 (with a standard deviation of 0.142), compared to
an overall R2 score of 0.578 calculated on the whole dataset
(without cross-validation). Figure 5 illustrates the most well-
performing (top) indicators, based on their mean Pearson’s
correlations and coefficients of determination (R2 scores).
From the 461 indices, only 384 were retained, with an aver-
ageR2 greater than 0.2 after cross-validation. From these 384
indexes, 19 involve L*a*b* images, 3 involve grey images,
7 involve colour (a*b*) images, 88 involve blurring, 353
involve tiling, 120 involve saliency maps, etc. The best per-
formance after cross-validation is R2 = 0.620 (SD = 0.197)
for an indicator that measures the skewness of the variability
of colour values around their mean in each HLS component
of images split into 16 × 16 thumbnails, which corresponds
to hypothesis H0. The top R2 scores and their standard devia-
tion across test sets are detailed in Table S. 2 (Supplementary
materials).

6 Discussion

This massive computational exploration of a large set of
indicators from computer vision did not allow identifying
with certainty a precise indicator of complexity. However,
it allowed observing that some hypotheses (H2, H6 and H7)
present very low scores,while others are clearlymore conclu-
sive (H0,H4,H5,H3 and evenH1).HypothesisH0 correlated
best when associated to the variability of the pixel colours.
This may be an unexpected result as the associated index

does not use any sophisticated algorithm that extract fea-
tures (low spatial frequencies, edges, key points, number of
object classes, etc.) to represent the complexity. This aspect
led to the conclusion that the tested pre-processing altering
the image to better underline one of its specificities, subtracts
at least one component from this complexity and confirms,
in practice, the rather plural character of the latter.

Only a few indicators showed significant correlation with
the survey (Fig. 5): in particular, thirty-four indices exceeded
the cross-validated R2 score of 0.5, meaning moderate corre-
lation: the associated hypotheses captured some significant
aspects of the subjectively perceived complexity–if not all.
Still, none of the tested indicators correlated perfectly with
the ranking issued from the average responses of the online
survey.

Some interesting results emerged from the analysis of
the indicators above a cross-validated R2 score of 0.5: as
explained above, and surprisingly, the family of indicators
that correlated best with the survey is a simple variability
around the average colour of the image, after tiling, derived
from hypothesis H0. The edge detection, under hypothesis
H4, follows closely. Subsequently, low frequency features
are of particular significance (hypothesis H3), as well as
visual attention-grabbing features (hypothesis H5). When
separating the colour components (a, b) from the lumi-
nance component (L) in CIELAB images, the luminance
component alone explains the results of the survey with
higher correlations (hypothesis H1), through the given set
of computer vision indicators, compared with colour alone
(hypothesis H2). The fractal dimension (hypothesis H6) has
no correlation at all with the reported complexity. Overall,
the presence of many separated image regions, with clear
boundaries, independently from their semantics, seems to be
linked with the complexity ranking issued from the online
survey. In such case, it is difficult for the observer to form a
synthetic impression of the image as a whole.

The H7 hypothesis was not much supported by the results,
suggesting that an effective mix of bottom-up and top-down
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Fig. 5 Stability of cross-validated
correlation scores between
computer vision indicators and
human-based ranking from the
online survey. The coefficient of
determination R2 is shown on the
horizontal axis against its
standard deviation across test
sets on the vertical axis. Top
mean (cross-validated) scores for
R2 and their relative standard
deviation under each hypothesis
are shown in the table, along with
their Pearson’s correlation with
the average survey ranking

indicators that correlate soundly with human appreciation of
complexity is yet to be found. This may be due to the small
number of items in the image collection (25). Enriching the
image databasewould probablymake the resultsmore robust,
but it would require a different and more effective design
of the crowd-sourced survey, to ensure respondents are not
bored by manually ranking too many scenes.

The limitations of working with a limited set of images
is due to the design of the experiment, which involves a
people-based ranking as definition of complexity. The list
of computer vision algorithms may also be non-exhaustive,
especially on top-down indicators, even if many combina-
tions covering most perceptual aspects were tested here.
Adding more indicators to the list, together with more
assessed images, would make the results more robust and
enable an extensive automation of the process, relying for
instance on street view services with large geographic cov-
erage.

7 Conclusion

This paper presents the comparison between crowd-sourced
and computer vision-based complexity ranking of urban
streetscapes. The average complexity ranking issued by

human respondents did not match perfectly with the one
derived from computer vision indicators in the wide range
selected here. However, correlations show that fragmented
colour regions enclosed by sharp edges are evaluated more
complex, on average. Among low-level, or bottom-up fea-
tures, contrasts seem to have a relatively higher importance
compared to colours. These results may inform on the per-
ception of urban environments by pedestrians and citizens,
driving design strategies to make streetscapes more appre-
ciated. The analysis could potentially be extended to street
view services with large geographic coverage.
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tary material available at https://doi.org/10.1007/s00138-023-01484-1.
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