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1 Introduction

In [1] we constructed a class of phenomenologically viable theories based on the Einstein-
Cartan (EC) gravity [2–8] which enjoy exact but spontaneously broken scale invariance.
These theories, in addition to the Standard Model (SM) and graviton fields, contain just
one additional particle — a massless dilaton, being the Nambu-Goldstone (NG) boson of
this symmetry. The classical action of these theories is selected with the use of systematic
requirements that aim at capturing the minimal ambiguity inevitably contained in General
Relativity (GR) [9]. This is achieved by demanding equivalence to the metric formulation of
GR in the absence of matter while at the same time avoiding assumptions as far as possible
(see [1, 9–11] for detailed discussions). The criteria of [9] can be expressed as follows [11]:1

i) The action is polynomial with respect to all matter fields and curvature invariants.
1The requirements of [9] were refined in [11] but both sets of conditions are equivalent for the theories

considered in the present paper.
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ii) The action must not contain operators with more than two derivatives (where torsion
counts as one derivative).

iii) The theory should be scale-invariant and thus only contain dimensionless parameters.

In the algebraic flat spacetime limit defined as eA
µ = δA

µ , ωAB
µ = 0, conditions i)–iii) imply

that the theory enjoys not only scale-invariance but a wider symmetry — invariance under
the 15-parameter full conformal group.2

The physical low-energy limit (we stress that this is not the same as the algebraic
flat spacetime limit defined above) of these theories is derived by integrating out the
non-dynamical torsion and going to the Einstein frame, such that the (canonical) graviton
is disentangled from the scalar degrees of freedom. The resulting physical particle physics
action is found by dropping the Einstein-Hilbert term and making the metric flat; in general,
it is a non-polynomial function of the scalar fields. This action captures the dynamics of a
scale invariant theory, where this symmetry is broken spontaneously (realized nonlinearly).
For different aspects of this construction, such as quantum corrections, its cosmology and
phenomenology, see e.g. [1, 12–59] for a far-from-complete list of relevant works.

The fact that the resulting particle physics theory for arbitrary choice of different
non-minimal couplings to gravity is only scale, but not conformally invariant means that
the interaction of the scalar degree of freedom hidden in the metric (or in the vierbein and
connection if we talk about EC gravity) breaks explicitly the conformal invariance.

The aim of the present work is to single out the subclass of the theories defined by i)–iii)
by adding an extra requirement: the resulting physical theory for energies up to the Planck
scale should approximately be conformally invariant rather than only being scale invariant.
We note here that it does not make much sense to require the existence of exact conformal
symmetry for all energies, since irrespectively of nonminimal coupling(s), the mere existence
of gravitational interactions is in conflict [60, 61] with having this symmetry in the physical
low-energy limit due to the Weyl anomaly (for a review see [62]). With the use of the
language of effective field theories, the physical action of the theory constructed along the
lines above is required to read as

Seff = Sconf +
∞∑

n=2

1
Λn

conf
S

(n)
scale . (1.1)

The first term Sconf is essentially a non-polynomial conformally invariant action with the
symmetry nonlinearly realized, while the breaking pieces S

(n)
scale are suppressed by powers of

the scale Λconf . For reasons that will become clear shortly, we shall take Λconf = MP (it is
assumed that the dimensionless coefficients appearing in S

(n)
scale are of the order of one).

Our interest in this class of theories stems from various field-theoretical as well as
phenomenological considerations, on which we elaborate now.

First, theories with exact conformal invariance (CFT’s) exhibit ultraviolet (UV) fixed
points in the renormalization group running and are UV complete (for a review see [63]). As

2Here eA
µ is the tetrad/vierbein and ωAB

µ is the (spin) connection. As usual, Greek letters are employed
for spacetime indices, while capital Latin letters for Lorentz indices.
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Figure 1. The phase portrait of the theory.

already mentioned, the action Sconf , to be constructed in what follows, is non-polynomial
and thus non-renormalizable. As such, it has an intrinsic dimensionful parameter Λcutoff
(related to the dilaton vev) which can in principle be much smaller than the Planck scale. If
there were no “hidden” conformal symmetry, one would expect that the theory defined by
Sconf requires some sort of UV completion around the vicinity of Λcutoff with new degrees of
freedom showing up at these energies. It is plausible that the conformal symmetry improves
the situation, i.e., the theory may “self-complete” in the energy interval Λcutoff < E ≲ Λconf ,
entering a strongly-coupled conformal regime described by an unbroken CFT.

Second, there are arguments that the requirement of unitarity applied to quantum
field theory in flat spacetime excludes theories with scale but no conformal invariance [64].
Taken at face value, this would mean that if the energy scale Λconf around which conformal
symmetry is explicitly broken down to scale symmetry is much smaller than MP , Λconf ≪
MP , then the physical action (1.1) as well as the initial action defined by the requirements i)–
iii) would not make sense for energies exceeding Λconf . Even the part of the theory without
gravity should be modified in the energy interval Λconf < E < MP , probably by integrating-
in new physics. If on the contrary Λconf ≃ MP , then the theory merges (in some way) with
gravity respecting only the scale-symmetry. The region of validity of (1.1) extends all the
way to the Planck scale, and thus no new degrees of freedom are required until such energies.
Arguably, this is a rather non-trivial expectation. It remains to be seen if it is true.

For clarity let us recapitulate how we envisage the behavior of the theories under
consideration from a bottom-up perspective; see also figure 1 for a graphical account. At
energies below the dilaton expectation value, i.e. for E ≲ Λcutoff , the theory is in its weekly-
coupled regime, with conformal symmetry spontaneously broken and the accompanying
massless dilaton present. For higher energies, Λcutoff < E ≲ Λconf ∼ MP , the theory is in a
strongly-coupled regime with restored conformal symmetry and thus becomes a full-blown
CFT. Finally, gravity kicks in at E ∼ MP , explicitly violating conformality but preserving
scale-invariance.

In addition to the field-theoretical arguments presented so far, the third and final
motivation for investigating aspects of such theories comes from cosmological phenomenology.
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Without the requirement of approximate conformal invariance up to the Planck scale,
theories constructed according to the criteria i) to iii) (or even without the requirement of
scale-invariance) contain numerous a priori unknown coupling constants and generically it
becomes impossible to derive unique observable predictions [1, 9, 65–67]. We find indications
that approximate conformal symmetry improves the situation considerably: in the context
of inflationary model building, we therefore conjecture that primordial observables become
nearly universal and close to the ones of single-field Higgs inflation in the metric formulation
of General Relativity [68].3 As an additional bonus, this leads to excellent agreement with
observations [81, 82]. As a proof of concept we provide a concrete example and we leave a
detailed investigation for future work.

This article is organized as follows. In section 2, we review briefly well-known facts
associated with the constraints conformal symmetry imposes on the action of a real scalar
field. In section 3, we generalize these findings to the case of N real scalar fields. The fact
that conformal symmetry is more restrictive than scale symmetry becomes apparent already
at the level of two derivatives: the kinetic sector is fixed in a rather nontrivial manner —
this is to be contrasted with the single field case, where to see such differences one needs to
go to the fourth order in the derivatives of the field. We also show that nonlinearly realized
conformal symmetry, that is when scales are generated, also constrains the N -field action
nontrivially. In section 4, we discuss how the explicit breaking of conformal symmetry
that goes hand-in-hand with the inclusion of (dynamical) gravity manifests itself at the
level of the action. In section 5, we conjecture that flat-space conformality (together with
requiring agreement with observations) is powerful enough to make the various Higgs-
dilaton models almost indistinguishable from single-field metric Higgs inflation scenario
as far as inflationary predictions are concerned. In section 6, we summarize our findings
and conclude. Appendix A discusses how the inflationary dynamics are altered once the
selection criteria i)–iii) are relaxed.

2 An invitation: a single real scalar field

In this section, we shall discuss well-known facts (see e.g. [83, 84]) about how linearly
realized invariance under the full conformal group completely fixes the action of a real
scalar field. We do that in two different approaches: algebraic and geometric. In the

3The issue of cutoff is one of the most important — and still partly unanswered — questions in the
study of Higgs inflation. In the single-field case, it is known that the metric formulation of GR leads to a
comparatively low cutoff, Λcutoff = MP /ξ, where ξ parametrizes the strength of the non-minimal coupling
between the Higgs field and Ricci scalar [69, 70]. The value of Λcutoff depends on the background value of
the Higgs field and increases during inflation, which ensures the robustness of inflationary predictions [71].
Nevertheless, it is impossible to unambiguously compute reheating and hence an uncertainty in observables
arises [72] (see also [73, 74]). In contrast, no such problems exist in Palatini Higgs inflation [75], where
the cutoff is parametrically higher, Λcutoff = MP /

√
ξ [76], and largely independent of the background field

value [77]. In particular, reheating can be computed uniquely [78] (see also [79, 80]). The same situation
persists in the scale-invariant two-field setting: metric GR leads to the comparatively low Λcutoff = MP /ξ,
whereas Palatini gravity yields the more favorable Λcutoff = MP /

√
ξ [1, 18, 22, 56, 59]. In the present

paper, we will bring the study of the cutoff to theories that are not only scale- but also approximately
conformally invariant.
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former, one writes down the most general action involving a scalar and then investigates
how it is constrained by requiring that it be invariant under the conformal variation of the
field. In the latter, one “dresses” the Minkowski metric with a scalar field and then takes
the action to be a derivative expansion of diffeomorphism-invariant objects constructed
out of this conformally flat metric with arbitrary coefficients. The following discussion is
straightforward and contains nothing new, but we include it for the sake of making the
article as self-contained as possible.

2.1 Algebraic approach

Consider a real scalar field φ with scaling dimension ∆φ ̸= 0 in a D > 2 dimensional4

Minkowski spacetime with metric ηµν = diag(−1, 1, . . . , 1). We take the action to contain
terms that are at most quadratic in the derivatives of the field,

S = −
∫
dDx

[1
2G(φ)(∂µφ)2 + V (φ)

]
, (2.1)

with G(φ) and V (φ) arbitrary functions. Note that noncanonical kinetic terms appear
naturally whenever gravity enters the picture, being the aftermath of nonminimal coupling(s).

Since φ is the only dimensionful quantity (apart from ∂µ), it follows from requiring
invariance under dilatations only — equivalently by performing dimensional analysis — that

V (φ) = c̃φ
D

∆φ , c̃ = constant , (2.2)

as well as
G(φ) = cφα , c = constant , (2.3)

where
α = − 2

∆φ

(
∆φ − D

2 + 1
)

. (2.4)

Plugging these results into S, we end up with

S = −
∫
dDx

[1
2cφα(∂µφ)2 + c̃φ

D
∆φ

]
. (2.5)

Next, we study the constraints imposed upon the action (2.1) by requiring that it be
conformally invariant, i.e. for S to have a vanishing conformal variation

δcS =
∫
dDx

δS

δφ
δcφ = 0 , (2.6)

with
δcφ = −

(
ϵµ∂µφ + ∆φ

D
φ∂µϵµ

)
. (2.7)

Here ϵµ is the conformal Killing vector (more details may for instance be found in [63, 85])

ϵµ = aµ + ωµ
νxν + cxµ + 2(b · x)xµ − x2bµ , (2.8)

4It is well known that conformal symmetry for D = 2 has a number of peculiarities which make it a
separate topic of investigations.
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where aµ, ωµν = −ωνµ, c and bµ are constant parameters associated with translations,
Lorentz transformations, dilatations and special conformal transformations, respectively;
eq. (2.8) is the solution to the flat spacetime conformal Killing equation

∂µϵν + ∂νϵµ = 2
D

ηµν∂λϵλ . (2.9)

A straightforward computation shows that

δcS = −
∫
dDx

[
1
2G′(φ)δcφ(∂µφ)2 + G(φ)∂µφ∂µδcφ + V ′(φ)δcφ

]

=
∫
dDx

{
∂νϵν

D

[((
∆φ − D

2 + 1
)

G(φ) + ∆φ

2 φG′(φ)
)

∂µφ∂µφ

+ DV (φ)−∆φφV ′(φ)
]
− ∆φ

2D
∂µ∂νϵνφ2G′(φ)∂µφ

}
, (2.10)

where we arranged the terms with increasing powers of derivatives acting on the conformal
Killing vector ϵµ. For the potential, we notice that it is fixed to be a homogeneous function
of the field

V (φ) = ∆φ

D
φV ′(φ) , (2.11)

which is automatically fulfilled due to dimensional analysis, as follows from eq. (2.2). We
make an analogous observation with regard to the non-canonical coefficient of the kinetic
term. Because of eq. (2.3), the last term in (2.10) becomes a total derivative, which can
be immediately verified by using the fact that ϵ is at most quadratic in x. Then it follows
from eq. (2.4) that the remaining contributions involving G(φ) vanish in eq. (2.10). This
shows that in the case of a single field, conformal invariance follows automatically from
scale invariance.

Finally, one may make the kinetic term of the field in the action (2.5) canonical by
introducing

φ̄ = 2
√

c∆φ

D − 2 φ
D−2
2∆φ , (2.12)

such that
S̄ = −

∫
dDx

[1
2(∂µφ̄)2 + D − 2

2D
λφ̄

2D
D−2

]
, (2.13)

with

λ = 2D

D − 2 c̃

(
D − 2
2
√

c∆φ

) 2D
D−2

. (2.14)

We remark that a canonical kinetic term immediately translates into φ̄ having canonical
scaling dimension too, i.e.

∆φ̄ = D

2 − 1 , (2.15)

as it may be verified from its definition eq. (2.12).

– 6 –
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2.2 Geometric approach

We can equivalently obtain the same action by utilizing the standard trick of first identifying
the field with the scalar mode of a conformally flat metric and then writing down the
invariants at each order in derivatives with arbitrary coefficients, see for instance [84, 86–88].

Since our purpose here is to only get terms at most quadratic in derivatives of the field,
our action comprises two terms and reads

S = −
∫
dDx

√
H

(
c∆2

φ

2(D − 1)(D − 2)MD−2R[H] + c̃MD

)
, (2.16)

where as before c̃, c are (dimensionless) constants, M is a mass parameter, while H =
(−1)D+1det(Hµν) and R[H] are the Ricci scalar of the dressed metric

Hµν = ω2ηµν , ω = M−1φ
1

∆φ . (2.17)

Note that since R[H] is the kinetic term of the conformal mode of the metric in
disguise, its sign has to be chosen opposite of what it would be had gravity been dynamical.
Indeed, using the standard expressions (see for example ref. [89])

H = ω2D , R[H] = −(D − 1)
(
2ω−3∂2ω + (D − 4)ω−4(∂µω)2

)
, (2.18)

we find after a straightforward computation that the action boils down to

S = −
∫
dDx

(1
2cφα(∂µφ)2 + c̃φ

D
∆φ

)
, (2.19)

which is of course identical to what we got with the algebraic method, see (2.5). Had the
sign of the scalar curvature been “plus,” the kinetic term for the dilaton would correspond
to a ghost.

3 Multifield generalization

We now turn to the multifield generalization of the findings in the previous section. We
start from a linear realization of conformal symmetry and construct the most general
conformally invariant action comprising N real scalar fields in a D > 2 flat spacetime,
giving up condition i) formulated in the Introduction. To the best of our knowledge, such
Lagrangians, i.e. with more than one scalar field, have not been presented/constructed
before, at least not in their full generality. Our strategy is to write down the most general
action that is at most quadratic in the derivatives of the various fields and then require
that this be invariant under dilatations as well as special conformal transformations. As
far as terms not involving derivatives are concerned, dilatations are enough to completely
fix the potential to be a homogeneous function of the fields. For the kinetic sector of the
theory, we find that conformal invariance puts more severe restrictions than scale invariance;
this is in contradistinction with what happens with a single field, where at the level of two
derivatives requiring invariance under special conformal transformations does not bring
any new information. More specifically, we observe that certain coefficient functions are

– 7 –
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not independent but are interrelated to each other, the aftermath of imposing invariance
under special conformal transformations. For the most minimal situation in which the
number of fields is N = 2, a conformally invariant kinetic sector is in a one-to-one with a
vanishing curvature for the manifold spanned by the derivatives of the fields, i.e. a flat target
manifold. One may easily convince oneself that this is not the case for theories invariant
under dilatations only. Therefore, a useful criterion to distinguish between these different
situations is to compute the curvature of the two-dimensional kinetic sector. Then we
repeat this program for a nonlinearly realized conformal symmetry, to prepare the ground
for the inclusion of gravity.

3.1 Linear realization

Let us consider N real scalar fields θ1, . . . , θN . To simplify the following computations, we
employ w.l.o.g. an “angular parametrization” by singling out one of the fields, say θ1 = φ,
in that its scaling dimension will be ∆φ ̸= 0, while the rest N − 1 fields θi, i = 2, . . . , N

have ∆i = 0. Then the most general action that includes terms with at most two derivatives
of the fields reads

S = −
∫
dDx

(
K + V

)
, (3.1)

where V = V (ϕI) stands for the potential, while

K = 1
2GIJ∂µϕI∂µϕI , (3.2)

is the kinetic sector of the theory; to keep the expression compact we introduced ϕI =
(φ, θ2, . . . , θN ) and GIJ = GIJ (ϕK) is a real, symmetric, non-singular N × N matrix — the
metric of the target manifold; explicitly,

GIJ =
(

Gφφ Gφi

Gφi Gij

)
. (3.3)

As usual, summation over all repeated indexes is tacitly assumed.

3.1.1 Algebraic approach

As before, we will at first only require invariance under dilatations. Since φ is the only field
with non-vanishing mass dimension, it follows that

V (φ; θj) = φ
D

∆φ v(θj) , (3.4)

as well as

Gφφ = φαFφφ(θi) , Gφi = φα+1Fφi(θj) , Gij = φα+2Fij(θk) , (3.5)

with α defined previously, cf. (2.4), while v and F ’s are arbitrary functions of θ.
Next, to understand whether conformal symmetry imposes extra constraints we proceed

with the full variation of the action by utilizing

δcφ = −
(

ϵµ∂µφ + ∆φ

D
φ∂µϵµ

)
, δcθi = −ϵµ∂µθi . (3.6)

– 8 –
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Let us concentrate on the non-derivative terms comprising the potential of the theory.
Under (3.6), we observe that

δc

∫
dDx V (φ; θj) =

∫
dDx ∂µϵµ

(
V (φ; θj)−

∆φ

D
φ

∂V (φ; θj)
∂φ

)
, (3.7)

after integrating by parts and dropping a total derivative. Since ∂µϵµ ̸= 0 as follows
from (2.8), for the conformal variation of the potential to vanish we have to require that

V (φ; θj) =
∆φ

D
φ

∂V (φ; θj)
∂φ

, (3.8)

with v(θj) an arbitrary function of the argument. Evidently, this condition is fulfilled
by eq. (3.4).

We turn to the kinetic sector of the multifield theory,∫
dDx K = 1

2

∫
dDx GIJ∂µϕI∂µϕI , (3.9)

which upon using (3.3), can be expanded as∫
dDx K = 1

2

∫
dDx [Gφφ∂µφ∂µφ + 2Gφi∂µφ∂µθi + Gij∂µθi∂

µθj ] . (3.10)

Then,

δc

∫
dDx K = −

∫
dDx

{
∂νϵν

D

[((
∆φ − D

2 + 1
)

Gφφ + ∆φ

2 φ
∂Gφφ

∂φ

)
∂µφ∂µφ

+
(
(∆φ − D + 2)Gφi +∆φφ

∂Gφi

∂φ

)
∂µφ∂µθi

+
((

−D

2 + 1
)

Gij +
∆φ

2 φ
∂Gij

∂φ

)
∂µθi∂

µθj

]

− ∆φ

2D
∂µ∂νϵν

(
φ2 ∂Gφφ

∂φ
∂µφ + φ

(
φ

∂Gφφ

∂θi
− 2Gφi

)
∂µθi

)}
. (3.11)

As before, we have arranged the various terms in increasing derivatives of ∂µϵµ. We observe
that the first three lines vanish for the GIJ ’s defined as in eq. (3.5). Plugging this into the
last line of the conformal variation of K (3.11) and setting it to zero, we get

Fφi =
1

α + 2
∂Fφφ

∂θi
, (3.12)

that is, the mixing function is not independent, but rather related nontrivially to the
gradient of Fφφ.

We conclude that in the case of multiple fields, conformal invariance leads
to additional non-trivial constraints in addition to the ones that follow from
dilatations only.

– 9 –
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Plugging what we found in the starting point, see eq. (3.1), we end up with∫
dDx K = 1

2

∫
dDx

[
φαFφφ∂µφ∂µφ + 2

α + 2φα+1 ∂Fφφ

∂θi
∂µφ∂µθi + φα+2Fij∂µθi∂

µθj

]
.

(3.13)
Exactly like we did in the single field case, we can redefine the φ field such that its scaling
dimension becomes the canonical one — this is achieved in terms of φ̄ defined in (2.12)
with c = 1. We find∫

dDx K = 1
2

∫
dDx

[
Fφφ(∂µφ̄)2 + φ̄

∂Fφφ

∂θi
∂µφ̄∂µθi +

(
α + 2
2

)2
φ̄2Fij∂µθi∂

µθj

]
. (3.14)

We now go a step further by untangling the kinetic terms of φ̄ and θi’s and actually
canonicalizing the former all in a single shot. To this end, it suffices to simply introduce

χ =
√

Fφφφ̄ , (3.15)

in terms of which we immediately find∫
dDx K = 1

2

∫
dDx

[
∂µχ∂µχ + χ2fij∂µθi∂

µθj

]
, (3.16)

with

fij = 1
4Fφφ

(
(α + 2)2Fij −

1
Fφφ

∂Fφφ

∂θi

∂Fφφ

∂θj

)
. (3.17)

This corresponds to the block-diagonal field-space metric5

G
(χ)
IJ =

(
1 0
0 χ2fij

)
. (3.18)

At the same time, changing variables from φ̄ to χ results into the potential being nontrivially
modified as

V = χ
2D

D−2 ṽ(θi) , (3.19)

with

ṽ(θi) =
(

D − 2
2
√

c∆φ

) 2D
D−2

F
− D

D−2
φφ (θi)v(θi) . (3.20)

Before moving on, let us discuss what would change had we confined ourselves to
invariance under dilatations only. The coefficient functions would then be given by (3.5),
but the mixing functions would not be related to the gradients of Fφφ. Nevertheless, it
is still possible to single out one of the fields by block-diagonalizing the kinetic sector in
terms of

χ̃ = φ̄

Φ(θi)
, (3.21)

5Interestingly, this exact kinetic structure appeared recently in [90], in an attempt to rectify the (non-)
improvement of the Nambu-Goldstone modes associated with the breaking of internal symmetries. In that
specific context, our θi fields of vanishing scaling dimension correspond to pions πa and fij → δab.
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where
∂Φ(θi)

∂θj
= −α + 2

2 Φ(θi)
Fφj

Fφφ
, (3.22)

and φ̄ is given in (2.12) with c = 1. It is a straightforward task (see e.g. [23, 36]) to show
that in this case the “scale-invariant” metric becomes

G
(χ̃)
IJ =

(
F̃φφ 0
0 χ̃2f̃ij

)
, (3.23)

with

F̃φφ = FφφΦ2 , f̃ij =
(

α + 2
2

)2
Φ2
(

Fij −
1

Fφφ
FφiFφj

)
. (3.24)

Although the metric can certainly be cast into a block-diagonal form, the dilaton’s χ̃ kinetic
term is not and cannot in general be made canonical, unless of course F̃φφ = 1 — if this
is the case, the theory is actually conformal. To put it differently, a quick prescription to
understand whether a given scale-invariant multifield theory is also conformally invariant is
first to block-diagonalize the kinetic sector and then inspect if the dilaton has a canonical
kinetic term.

3.1.2 Geometric approach

Much like in the single field considerations, the situation simplifies considerably by employing
the dressing trick. Now, however, since we have more fields in the theory, we need to be a bit
careful if we wish to recover the action we found before. One should allow for the θi fields to
couple to the Ricci scalar and thus interact with the “geometry” in a nonminimal manner.

In other words, the starting point should read

S =−
∫

dDx
√

H

[
∆2

φ

2(D−1)(D−2)MD−2FφφR[H]+ 1
2HµνMD−2Fij∂µθi∂νθj+MDv(θi)

]
,

(3.25)
where for obvious reasons we have denoted the nonminimal coupling function with Fϕϕ.
Using expressions (2.18), after some trivial algebra we end up with

S = −
∫
dDx

(
K + V

)
, (3.26)

where the kinetic part of the action K is given in (3.13) and the potential V in (3.4).

3.1.3 Biscalar theory

We shall briefly discuss the case of two scalar fields, N = 2. Then the field-space metric (3.18)
is flat since it is nothing more than the metric of a two-dimensional Euclidean space expressed
in polar coordinates. It can be brought to the conventional form in terms of ϕ1, ϕ2:

χ =
√

ϕ2
1 + ϕ2

2 , θ = arctan
(

ϕ2
ϕ1

)
. (3.27)
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Therefore, conformality implies that the field-space curvature κ vanishes. Conversely, a
non-zero κ implies that the field-space metric cannot be brought to the form (3.18) and the
absence of conformal symmetry. We conclude that

δcS = 0 ⇔ κ = 0 . (3.28)

The field-space curvature that results from a generic biscalar scale-invariant theory (3.10)
reads

κ =

(
F ′

φφ − (2 + α)Fφθ

)
Γ′ + 2Γ

(
(2 + α)F ′

φθ − F ′′
φφ

)
2φα+2Γ2 , (3.29)

where we used eq. (3.5). Moreover, we defined Γ = FφφFθθ − F 2
φθ and prime denotes

differentiation with respect to θ. We see explicitly that κ vanishes when condition (3.12)
is fulfilled. For the scale- but not conformally- symmetric biscalar theory, the field-space
metric (3.23) makes evident that curvature κ is generically non-vanishing.

3.2 Nonlinear realization

Let us write down the most general N -field action that we shall require to be invariant under
nonlinearly realized conformal symmetry. Even when mass scales have been generated, the
resulting theory retains memory of its conformally-invariant parent — this we explicitly
demonstrate now. The reason why one may be interested in that is because such situations
naturally arise when gravity enters the picture and one works in the so-called Einstein
frame, see the next section for a detailed discussion.

Without loss of generality, take the action to comprise N − 1 inert fields θi, and one6

Nambu-Goldstone (NG) field ρ that transforms as

δsρ = ∂µϵµ , (3.30)

with ϵµ the conformal Killing vector (2.8). Therefore, our starting point reads

S = −M2
∫
dDx

[
γρρ

2 (∂µρ)2 + γρi∂µρ∂µθi +
γij

2 ∂µθi∂
µθj + M2U

]
, (3.31)

with the γ-coefficient functions and the potential U depending on θi only. The response of
the action to the transformation (3.30) is straightforward to compute and reads

δsS = −M2
∫
dDx ∂µ∂νεν

(
ρ

∂γρρ

∂θi
− γρi

)
∂µθi . (3.32)

6When spacetime symmetries are spontaneously broken the number of NG bosons is not necessarily equal
to the number of the broken generators. The textbook example of this is actually the conformal group.
Although D + 1 generator are broken — one associated with dilatations and D with special conformal
transformations — only one NG mode is present in the spectrum of the effective theory in the broken phase.
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Since γρρ, γρi are functions of θi only, it can be readily verified that (up to a total derivative)
the variation of the action vanishes provided that7

γρρ = const. , γρi =
∂f

∂θi
, with f = f(θi) . (3.33)

Consequently,

S = −M2
∫
dDx

[
γρρ

2 (∂µρ)2 + ∂f

∂θi
∂µρ∂µθi +

γij

2 ∂µθi∂
µθj + M2U

]
, (3.34)

and a simple change of the field variable ρ

ρ 7→ 1
√

γρρ

(
ρ − 1

√
γρρ

f

)
, (3.35)

canonicalizes its kinetic term so that the action becomes

S = −M2
∫
dDx

[1
2(∂µρ)2 + γ̃ij

2 ∂µθi∂
µθj + M2U

]
, (3.36)

with γ̃ij given by

γ̃ij = γij −
1

γρρ

∂f

∂θi

∂f

∂θj
. (3.37)

As expected, the above is very similar to what we found in the case of the linearly realized
conformal symmetry — indeed, we could start from (3.16) and (3.19), and expanding the
dilaton on top of a nonvanishing expectation value (provided of course that the potential
supports such a flat direction)

χ ≃ M(1 + ρ) , (3.38)

we end up with (3.36) after appropriate identifications between the various functions
appearing in the θ-sector. Especially in the presence of gravity, this has to be done with
some care, since in general both the kinetic and potential terms are nontrivially modified
from contributions of gravitational origin. Equivalently, we can also think in terms of the
field-space geometry: much like in the previous considerations, the resulting metric is block
diagonal and the NG’s kinetic term canonical.

We conclude by pointing out that, as expected from the results (3.21)–(3.24), for the
case of nonlinearly realized dilatations, we would end up with a non-canonical kinetic term
for ρ, i.e.

Sdilatations ⊃ −M2
∫
dDx

[
F (θi)
2 (∂µρ)2 + . . .

]
, (3.39)

7Equivalently, one may work at the level of the equations of motion for the fields

γρρ∂2ρ + ∂γρρ

∂θi
∂µρ∂µθi + ∂γρi

∂θj
∂µθi∂

µθj = 0 ,

γik∂2θi +
(

∂γik

∂θj
− 1

2
∂γij

∂θk

)
∂µθi∂

µθj +
(

∂γρk

∂θi
− ∂γρi

∂θk

)
∂µρ∂µθi −

1
2

∂γρρ

∂θk
∂2ρ − M2

2
∂U

∂θk
= 0 .

Invariance of the above under the shift (3.30) of ρ translates into

∂γρρ

∂θi
= 0 ,

∂γρk

∂θi
− ∂γρi

∂θk
= 0 ,

which yield (3.33).
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with F (θi) a function of θi. A non-canonical dilaton is a pronounced feature of scale but
not conformally invariant theories.

4 EC scale-invariant gravity

For concreteness, we will be working in the context of the EC gravity, but our results
and logic are generalizable in a straightforward manner to other formulations of gravity

— what differs is the exact form of the final coefficient functions, see eqs. (4.11)–(4.13)
and (4.18)–(4.19) later. An easy computation reveals that when the metric and scalar fields
are rescaled as

gµν → q−2gµν , ϕi(x) → q∆iϕi(x) , (4.1)

where q = constant, the relevant for our discussion geometrical objects behave as

R̊ → q2R̊ , vµ → vµ , aµ → aµ , τµνρ → q−2τµνρ , (4.2)

with R̊ the (torsion-free) Ricci scalar constructed out of derivatives of the metric tensor
gµν , while vµ, aµ, τµνρ are the three irreducible components of torsion, i.e. the vector,
pseudovector and reduced tensor, respectively. For a concise overview of the EC gravity
basics, the interested reader is referred to [9] and references therein.

We will require that the purely gravitational sector of the theory is indistinguishable
from the metrical GR in the absence of matter. In order to achieve this for EC gravity, it
suffices to require that the admissible gravitational invariants comprise terms which are
linear in curvature and at most quadratic in torsion; see discussion in [9]. Moreover, we
will confine ourselves to four spacetime dimensions, since for D ̸= 4 extra care is needed
especially when decomposing torsion into its irreducible pieces by employing the totally
antisymmetric symbol.

The most general Jordan-frame action whose scalar sector comprises (3.16) and (3.19),
while its scale-invariant gravitational dynamics satisfy the aforementioned selection criteria
reads as

S =
∫
d4x

√
g

[
σ2GR

2 R̊ − 1
2∂µσ∂µσ − σ2

2 fij∂µθi∂
µθj − V + Jv

µvµ + Ja
µaµ

+ σ2

2
(
Gvvvµvµ + 2Gvavµaµ + Gaaaµaµ + Gττ τµνρτµνρ + G̃ττ ϵµνρστλµντλ

ρσ

) ]
,

(4.3)

where g = − det(gµν). As usual, the contraction of spacetime indices is done with gµν .
The various coefficient functions that couple torsion and curvature to the scalar fields are
functions of the θ’s

GR = GR(θi) , Gij = Gij(θk) , (4.4)

while for dimensional reasons, the “generalized currents” J
v/a
µ are

Jv/a
µ = ζv/a

σ (θi)∂µσ2 + σ2ζ
v/a
i (θj)∂µθi , (4.5)
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with ζ’s depending on θi as explicitly shown above. We remark that we have already
considered a scale-invariant coupling of two scalar fields to gravity in [1], i.e., the theory (4.3)
represents the generalization to multiple fields.

Although rather tangential to the scope of the present paper, let us also note that we
have not touched upon the cosmological constant issue in this class of theories. In scale-
invariant setups, the cosmological constant Λ is related to the dilaton quartic self-coupling;
this becomes apparent after transitioning to the Einstein frame. This term, that depends
on ratios of the fields, is manifestly conformally invariant and thus cannot be excluded on
symmetry grounds. Therefore, to reproduce the observed value of Λ, one needs to finetune
this parameter.8 Alternatively, as was done for example in [18, 22], one may opt for working
in the context of Unimodular gravity or more generally theories enjoying invariance under
restricted coordinate transformations. Unimodular embeddings of Einstein-Cartan gravity
are discussed e.g. in [91, 92]. Being an interesting topic of investigations by its own, we
leave this question for future work.

For the subsequent analysis, we shall eliminate the nondynamical torsion from the
theory; this is achieved by obtaining the equations of motion for the three torsions (v, a, τ ),
solving them in terms of the other fields—σ and θi in the case at hand — and plugging the
result back in the action (4.3). We find (see also [1, 9])

S =
∫
d4x

√
g

[
σ2GR

2 R̊ − 1
2∂µσ∂µσ − σ2

2 fij∂µθi∂
µθj − V

−
Gaa(Jv

µ)2 + Gvv(Ja
µ)2 − 2GvaJv

µJaµ

2σ2(GvvGaa − G2
va)

]
.

(4.6)

Expanding the above expression we obtain

S =
∫
d4x

√
g

[
σ2GR

2 R̊− 1
2

(
1+4Gaa(ζv

σ)2+Gvv(ζa
σ)2−2Gvaζv

σζa
σ

GvvGaa−G2
va

)
∂µσ∂µσ

−2Gaaζv
σζv

i +Gvvζa
σζa

i −Gva(ζv
σζa

i +ζa
σζv

i )
GvvGaa−G2

va

σ∂µσ∂µθi

−σ2

2

(
fij+

Gaaζv
i ζv

j +Gvvζa
i ζa

j −Gva(ζv
i ζa

j +ζa
i ζv

j )
GvvGaa−G2

va

)
∂µθi∂

µθj−V

]
.

(4.7)
We immediately notice the nontrivial torsional contributions to the kinetic terms of the fields.

It is convenient to bring the theory in a form in which gravity is minimally coupled
before we continue our analysis of scale — and conformal symmetry. To this end, we now
perform the usual Weyl rescaling of the metric tensor

gµν 7→ M2
P

σ2GR
gµν , (4.8)

8Although in the absence of gravity the dilaton quartic self-coupling must be set to zero in order for the
theory to possess a symmetry-breaking ground state, this is not so in the presence of gravity.
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to end up with an action possessing a canonical gravitational sector

S =
∫
d4x

√
g

[
M2

P

2 R̊ − 1
2 γ̃IJgµν∂µφI∂νφJ − M4

P V

σ4G2
R

]
. (4.9)

We denoted with γ̃IJ the metric of the N -dimensional manifold spanned by φI = (ρ, θi),
where we defined ρ = log(σ/MP ). Its explicit form is

γ̃IJ = M2
P γIJ , γIJ =

(
γρρ γρi

γρi γij

)
, (4.10)

with

γρρ =6+ 1
GR

(
1+4Gaa(ζv

σ)2+Gvv(ζa
σ)2−2Gvaζv

σζa
σ

GvvGaa−G2
va

)
, (4.11)

γρi =
2

GR

(
Gaaζv

σζv
i +Gvvζa

σζa
i −Gva(ζv

σζa
i +ζa

σζv
i )

GvvGaa−G2
va

+3
2

∂GR

∂θi

)
, (4.12)

γij =
1

GR

(
fij+

Gaaζv
i ζv

j +Gvvζa
i ζa

j −Gva(ζv
i ζa

j +ζa
i ζv

j )
GvvGaa−G2

va

+ 3
2GR

∂GR

∂θi

∂GR

∂θj

)
. (4.13)

Since gravity is minimally coupled in eq. (4.9), we can now return to analysing conformality.
Namely, one could require that this symmetry is exclusively broken by the dynamical
graviton, i.e., that the action exhibits exact non-linearly realised conformal invariance in
the limit R̊ → 0. As derived in eq. (3.33), this amount to demanding9

∂

∂θi

(
1

GR

(
1 + 4Gaa(ζv

σ)2 + Gvv(ζa
σ)2 − 2Gvaζv

σζa
σ

GvvGaa − G2
va

))
= 0 , (4.15)

2
GR

(
Gaaζv

σζv
i + Gvvζa

σζa
i − Gva(ζv

σζa
i + ζa

σζv
i )

GvvGaa − G2
va

+ 3
2

∂GR

∂θi

)
= ∂

∂θi

f , with f = f(θi) .

(4.16)

However, we shall not impose conditions (4.15) and (4.16) in the following. Since gravity
breaks conformality in any case, imposing exact conformality is too strong a requirement.

Before we further discuss this point, we will turn to the phenomenologically interesting
situation comprising N = 2 scalar fields. In this case, we get a two-dimensional target
manifold with metric

γIJ =
(

γρρ γρθ

γρθ γθθ

)
, (4.17)

9In general, there is no relationship — not even an approximate one — between the requirements (4.15)
and (4.16) derived in the Einstein frame and the conditions

Gaaζv
σζv

i + Gvvζa
σζa

i − Gva(ζv
σζa

i + ζa
σζv

i )
GvvGaa − G2

va
= ∂

∂θi

(
Gaa(ζv

σ)2 + Gvv(ζa
σ)2 − 2Gvaζv

σζa
σ

GvvGaa − G2
va

)
, (4.14)

corresponding to Jordan frame conformality, as follow from (3.12). For example, one can specialize to the
case of two fields and consider GR = 1. In this case, the only non-trivial condition that follows from imposing
exact conformal invariance in the Einstein frame consists in eq. (4.15). From the Jordan frame perspective,
this implies that the r.h.s. of eq. (4.14) vanishes. However, the l.h.s. (in particular the couplings ζv

θ and ζa
θ )

remains completely unconstrained. Therefore, such a theory does not fulfil — even approximately — the
Jordan frame condition (4.14) (see also eq. (3.29)).

– 16 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
1

where γσσ is given by (4.11), while (prime stands for differentiation w.r.t. θ)

γρθ = 2
GR

(
Gaaζv

σζv
θ + Gvvζa

σζa
θ − Gva(ζv

σζa
θ + ζa

σζv
θ )

GvvGaa − G2
va

+ 3
2G′

R

)
, (4.18)

γθθ = 1
GR

(
fθθ +

Gaa(ζv
θ )2 + Gvv(ζa

θ )2 − 2Gvaζv
θ ζa

θ

GvvGaa − G2
va

+ 3
2GR

G′2
R

)
, (4.19)

and the various coefficient functions now only depend on θ. It is clear that there is too
much arbitrariness in the functions, translating into the theory (in the absence of gravity,
i.e. for R̊ → 0) not exhibiting spontaneously broken conformal symmetry.

As a consistency check, we can momentarily restrict ourselves to the scale-invariant
Higgs-dilaton theory considered in [1]:

S =
∫
d4x

√
g

[
1
2
(
ξ1ϕ2

1 + ξ2ϕ2
2

)
R̊ − (∂µϕ1)2

2 − (∂µϕ2)2

2 − λ

4ϕ4
1

+
(
ζv

1 ∂µϕ2
1 + ζv

2 ∂µϕ2
2

)
vµ +

(
ζa

1 ∂µϕ2
1 + ζa

2 ∂µϕ2
2

)
aµ (4.20)

+ cvv

2
(
ξvvϕ2

1 + ξ2ϕ2
2

)
vµvµ + cva

(
ξvaϕ2

1 + ξ2ϕ2
2

)
vµaµ + caa

2
(
ξaaϕ2

1 + ξ2ϕ2
2

)
aµaµ

]
.

Here ϕ1 and ϕ2 correspond to the Higgs field in unitary gauge and dilaton, respectively.
Moreover, ξ1, ξ2, ξij , cij , ζ

v/a
1 , ζ

v/a
2 , λ are real constants (with i, j = a, v) and we can recover

the polar variables σ, θ (see eq. (3.27)) with the field redefinition

ϕ1 = σ cos θ , ϕ2 = σ sin θ . (4.21)

In eq. (4.3), the parametrization of eq. (4.20) corresponds to setting

GR = ξ1 cos2 θ + ξ2 sin2 θ , fθθ = 1 , Gij = cij

(
ξij cos2 θ + ξ2 sin2 θ

)
,

ζv/a
σ = ζ

v/a
1 cos2 θ + ζ

v/a
2 sin2 θ , ζ

v/a
θ =

(
ζ

v/a
2 − ζ

v/a
1

)
sin 2θ , V = λ

4σ4 cos4 θ ,

(4.22)
where no summation over the repeated Latin indices is assumed in (4.22). Plugging the
transformation (4.21) in the action (4.9) leads to

S =
∫
d4x

√
g

[
M2

P

2 R̊ − 1
2σ2GR

γϕ1,ϕ2
IJ gµν∂µϕI∂νϕJ − M4

P V

σ4G2
R

]
, (4.23)

where

γϕ1,ϕ2
11 = GRM2

P

σ2

(
ϕ2

1γρρ − 2ϕ1ϕ2γρθ + ϕ2
2γθθ

)
, (4.24)

γϕ1,ϕ2
12 = GRM2

P

σ2

(
ϕ1ϕ2γρρ +

(
ϕ2

1 − ϕ2
2

)
γρθ − ϕ1ϕ2γθθ

)
, (4.25)

γϕ1,ϕ2
22 = GRM2

P

σ2

(
ϕ2

2γρρ + 2ϕ1ϕ2γρθ + ϕ2
1γθθ

)
. (4.26)

Inserting eqs. (4.11), (4.18) and (4.19) into the above, we obtain eq. (26) of [1].10

10In order to reproduce the notation of [1], one has to replace σ2GR → Ω2 and Gij → Gijξ2ϕ2
2/σ2.

– 17 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
1

4.1 Conformal symmetry up to the Planck scale

So far, we have derived a general class of scale-invariant theories described by eqs. (4.11),
(4.12) and (4.13). In the case of two scalar fields, the latter two equations are replaced by
eqs. (4.18) and (4.19). Now we turn to conformal symmetry. As discussed before, it cannot
be preserved in the presence of gravity. As long as coupling to gravity is minimal, however,
conformal invariance is only broken at the Planck scale MP . At lower energies, effects of
dynamical gravity are suppressed and one can achieve approximate conformality in analogy
to the state of affairs in flat spacetime.

As shown above, this situation changes once scalar matter couples to gravity non-
minimally. Then effects violating conformal invariance can appear far below MP . Our
goal is to keep the violation of conformality “minimal,” even if non-minimal couplings
are included. This amounts to imposing that the scalar sector of the theory exhibits
approximate conformal invariance up to the Planck scale MP . In other words, effects that
break conformal symmetry should be suppressed by the Planck scale. We can express this
criterion in terms of field-space curvature κ. Since κ = 0 corresponds to exact conformal
invariance (see eq. (3.28)), we now require11

|κ| =
∣∣∣∣∣γ′

ρρΓ′ − 2Γγ′′
ρρ

2M2
PΓ2

∣∣∣∣∣ ≲ 1
M2

P

, (4.27)

with Γ = γρργθθ − γ2
ρθ. Demanding that this condition holds for all values of the scalar

fields significantly constrains the parameters of the theory and in this way substantially
reduces the ambiguity that results from the different formulations of GR.

In eqs. (4.15) and (4.16), we had already discussed a requirement of exact conformal
invariance in the limit R̊ → 0 of non-dynamical gravity. Imposing this is stronger than
the bound (4.27) on field space curvature: when eqs. (4.15) is fulfilled, then field-space
curvature vanishes identically, κ = 0.

5 “Higgs-type inflation”? A conjecture

As discussed in [65, 67], numerous a priori unknown coupling constants exist in EC gravity
and other formulations of GR (see e.g., [10, 93, 94] for an overview). This leads to a built-in
ambiguity when it comes to inflating with the Higgs field, since the observable predictions
are not unique but depend on the gravitational incarnation. The reason why this is so can
be understood by noting that choosing to work in the context of a particular formulation

11To make this point clear, consider the following toy model of two real scalar fields ϕ1 and ϕ2 with
canonical mass dimension and action

S =
∫

d4x
√

g

[
− 1

2∂µϕ1∂µϕ1 − 1
2

(
1 + κ̃ϕ2

1
2M2

P

)
∂µϕ2∂µϕ2

]
.

The higher-dimensional operator suppressed by the scale MP /
√

κ̃ explicitly breaks conformal invariance —
in its absence the above simply comprises two free canonical scalar fields. The field-space curvature in the
limit ϕ1 → 0 is |κ| = κ̃/M2

P ; demanding |κ| ≲ 1/M2
P indeed implies κ̃ ≲ 1, i.e., that the scale of conformality

breaking is in the vicinity of MP .
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of gravity translates into choosing a specific set of higher-dimensional operators when the
theory is written in its equivalent purely metrical form. In turn, these operators feed into
the kinetic term for the field shaping its behaviour in specific manners.

Clearly, imposing conformal symmetry up to the Planck scale improves this situation
since this requirement constrains the a priori unknown coupling constants and reduces the
arbitrariness that exists in EC gravity. We conjecture that the situation may be even better,
at least for the biscalar theories, and that a much stronger statement could hold:

Conjecture: in the Einstein-Cartan formulation of General Relativity, we consider the
Higgs-dilaton model (4.20), which is constructed according to the criteria of [9] so that the
coefficient functions comprise operators polynomial in the two fields and of mass dimension
at most four. If the high-energy value of the Higgs self-coupling fulfills λ ≳ 10−12 and

1. conformality is preserved up to the Planck scale, i.e., κ ≲ 1/M2
P for all field values,

2. slow-roll inflation is possible,

3. the observed amplitude of CMB perturbations is reproduced,

then the inflationary predictions fulfill (to leading order in 1/N)

ns = 1− 2
N

, r ≳
12
N2 , (5.1)

where ns is the spectral index, r the tensor-to-scalar ratio and N corresponds to the number
of e-foldings between the generation of CMB and the end of inflation.12

If we had an equality in the second equation of our conjecture (5.1), i.e., r = 12/N2,
then this would coincide with the predictions of single-field Higgs inflation in the metric
formulation of GR [68]. Thus, our conjecture implies that the requirement of conformality
brings the generic Higgs-dilaton model (4.20) with its numerous unknown parameters close
to the scenario of metric Higgs inflation, in which only one coupling constant is added to
the ones already present in the Standard Model:13 the spectral indices are identical and
the tensor-to-scalar ratio is bounded from below by the value derived from metric Higgs
inflation. Finally, we remark that the condition on λ is very mild since typical values are
around λ ∼ 10−3 (see [96]).14

We have three motivations for our conjecture. The first one comes from the Higgs-dilaton
model in the metric formulation of GR [22]. In this case, certain parts of the parameter
space lead to a field-space curvature that approaches Planckian values, κ ≲ 1/M2

P , in the
limit of a large Higgs field. For such choices of coupling constants, the predictions coincide

12The known Higgs-dilaton models make evident that the converse of our conjecture is not true, i.e., one
can have relatively large r ≳ 12

N2 in models that do not exhibit approximate conformality [18, 22, 56, 59].
13In a different setting, a connection of conformal invariance and predictions of single-field metric Higgs

inflation was also pointed out in [95].
14If the high-energy value of the self-coupling were as small as λ ∼ 10−13, then it would become possible

to implement Higgs inflation without any non-minimal coupling. However, the predictions derived from an
Einstein-frame potential λh4 do not match CMB obervations [81, 82].
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with the ones of single-field metric Higgs inflation.15 Our second inspiration originates from
the observation that in a certain subclass of said biscalar theories, inflationary observables
are directly related to geometry. For intervals of approximately constant κ, the spectral
index assumes the universal value 1− 2/N and the tensor-to-scalar ratio can be computed
as follows [36]

r = 4
M2

P |κ|N2 . (5.2)

Therefore, the small |κ| of our conjecture leads to an upper bound on r as in eq. (5.1).
Finally, our third motivation is purely empirical. Attempting to construct models that obey
the requirements of the conjecture, the only examples we found fulfilled eq. (5.1).

5.1 Reminder of single-field metric Higgs inflation

For comparison, we shall briefly review metric Higgs inflation in the absence of a dilaton [68].
The Jordan frame action is given by

S =
∫
d4x

√
g

[
M2

P

2

(
1 + ξ1h2

M2
P

)
R̊ − 1

2(∂µh)2 − λ

4h4
]

, (5.3)

where h is the Higgs field in unitary gauge. For ξ1 ≫ 1 and h2 ≫ M2
P /ξ1, the theory in the

Einstein frame reads

S ≈
∫
d4x

√
g

M2
P

2 R̊ − 3M2
P

h2 (∂µh)2 − λM4
P

4ξ2
1

(
1− M2

P

ξ1h2

)2
 . (5.4)

A standard analysis of inflationary dynamics shows that to leading order in 1/N the
inflationary indices are [68] (cf. eq. (5.1))

ns = 1− 2
N

, r = 12
N2 . (5.5)

5.2 Metric Higgs-dilaton

We shall come back to the case of two fields. The Higgs-dilaton model in the metric
formulation [18, 22] is obtained as a special case when torsion vanishes, i.e.,

cij = ζ
v/a
1 = ζ

v/a
2 = 0 . (5.6)

Then the action (4.20) becomes

S =
∫
d4x

√
g

[
1
2
(
ξ1ϕ2

1 + ξ2ϕ2
2

)
R̊ − (∂µϕ1)2

2 − (∂µϕ2)2

2 − λ

4ϕ4
1

]
, (5.7)

15Even though the field-space curvature of the metrical Higgs-dilaton model, which is defined in eq. (5.7)
below, is roughly equal to the Planck area during inflation, at low energies conformality is violated well below
MP , thus this specific example fails to comply with the first requirement of our conjecture. Nevertheless, its
observables saturate (5.1), as long as the dilaton nonminimal coupling satisfies ξ2 < 4 × 10−3.
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and equivalently eq. (4.3) yields

S =
∫
d4x

√
g

[
σ2

2
(
ξ1 cos2 θ+ξ2 sin2 θ

)
R̊− (∂µσ)2

2 −σ2

2 (∂µθ)2−λ

4σ4 cos4 θ

]
. (5.8)

Then the Einstein-frame action is given by eq. (4.9), after defining ρ = log(σ/MP ) as before.
As is evident from eqs. (4.11) to (4.13), the components of the field-space metric read

γρρ = 1
ξ1 cos2 θ + ξ2 sin2 θ

+ 6 , (5.9)

γρθ = −3(ξ1 − ξ2)
sin 2θ

ξ1 cos2 θ + ξ2 sin2 θ
, (5.10)

γθθ = 1
ξ1 cos2 θ + ξ2 sin2 θ

(
1 + 3

2(ξ1 − ξ2)2 sin2 2θ

ξ1 cos2 θ + ξ2 sin2 θ

)
, (5.11)

where we used eq. (4.22).
For the subsequent analysis, it is useful to eliminate the kinetic mixing between the

fields. This can be achieved by shifting ρ as [1, 23, 36]

ρ → ρ̃ = ρ +
∫
dθ

γρθ

γρρ
, (5.12)

which in turn translates into the action becoming

S =
∫
d4x

√
g

[
M2

P

2 R̊−M2
P

2
(
γρρ(∂µρ̃)2+K(∂µθ)2

)
−λM4

P

4ξ2
1

(
ξ1

ξ1+ξ2 tan2 θ

)2]
, (5.13)

where

K =
γθθγρρ − γ2

ρθ

γρρ
. (5.14)

In order to get a grasp on the field-space geometry, it is convenient to perform another
change of variables. Introducing

Z = ξ2 tan2 θ

ξ1 + ξ2 tan2 θ
, (5.15)

we get

S =
∫
d4x

√
g

[
M2

P

2 R̊ − M2
P

2
(
γρρ(∂µρ̃)2 +KZ(∂µZ)2

)
− λM4

P

4ξ2
1

(1− Z)2
]

, (5.16)

where in terms of Z

γρρ =
1
ξ1

+6+
(

ξ1−ξ2
ξ1ξ2

)
Z , KZ = 1+6ξ1−6(ξ1−ξ2)Z

4Z(ξ2+6ξ1ξ2+(ξ1−ξ2)Z)(1−Z) . (5.17)

A straightforward computation reveals that the associated Einstein-frame field-space curva-
ture κ is given by

M2
P κ = −1

3

(
1− (1 + 6ξ1)(1 + 6ξ2)

(1 + 6ξ1 − 6(ξ1 − ξ2)Z)2

)
. (5.18)
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Inflation takes place for Z ≪ 1, meaning that

M2
P κinfl ≃ −1

3 , (5.19)

while around the electroweak vacuum Z ≃ 1 and

M2
P κEW ≃ 2ξ1

(1 + 6ξ2)
, (5.20)

where in deriving the asymptotic values we assumed ξ1 ≫ 1 and ξ1 ≫ ξ2. We observe that
during inflation the curvature is of the order of the Planck area, however, at low energies
it becomes significantly larger — this in turn translates into Λconf ≃ MP /

√
ξ1 which is

well below MP and thus fails to conform with (4.27). For completeness, we note that the
low-energy cutoff of the Higgs-dilaton model is [25] Λcutoff ≃ MP /ξ1 < Λconf .

To remedy the situation with conformality-breaking, we can make a different choice of
non-minimal couplings, namely ξ1 = ξ2. Then it follows from eqs. (5.9) to (5.11) that the
Einstein-frame action becomes

S =
∫
d4x

√
g

[
M2

P

2 R̊−M2
P

2σ2

( 1
ξ1

+6
)
(∂µρ)2−M2

P

2ξ1
(∂µθ)2−λM4

P

4ξ2
1

cos4 θ

]
. (5.21)

Since γρρ = constant and γρθ = 0, the target manifold is flat at all field values:

κ = 0 . (5.22)

Thus, the model (5.21) fulfills requirement (4.27). It remains to be checked, however, if
inflation can be realized. To this end, we introduce a canonically normalized angular field

θ̃ = MP√
ξ1

(
θ + π

2

)
, (5.23)

where we additionally shifted θ such that the potential has its minimum at vanishing field
values. Then the part of the action (5.21) that is relevant for inflation reads

S =
∫
d4x

√
g

[
M2

P

2 R̊ − 1
2
(
∂µθ̃

)2
− λM4

P

4ξ2
1

sin4
(√

ξ1θ̃

MP

)]
. (5.24)

In the limit ξ1 → 0, the potential becomes λθ̃4/4. As is well-known (see e.g., [97]), this
model cannot match the observed amplitude of perturbations in the CMB unless λ ∼ 10−13.

We shall now show that ξ1 = ξ2 cannot be much bigger than 1. To this end, we first
compute the inflationary indices

ϵ = 8ξ1
1

tan2
(√

ξ1θ̃

MP

) , (5.25)

η = 4ξ1

 3

tan2
(√

ξ1θ̃

MP

) − 1

 . (5.26)

– 22 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
1

We see that the requirements ϵ ≪ 1 and |η| ≪ 1 can only be fulfilled simultaneously if

ξ1 ≲ 1 . (5.27)

However, we shall not employ this — or any other — approximation in the following. Next,
the equations ϵ ≈ 1 and |η| ≈ 1 lead to similar conditions, and so the end of inflation
occurs around

θend ≃ MP√
ξ1

arctan
√

ξ1 . (5.28)

We did not show numerical factors of order 1 and as always they depend on the precise
definition of the end of inflation.

Evaluating the number N of inflationary e-foldings, we obtain

N = 1
4
√

ξ1MP

∫ θ̃⋆

θ̃end
dθ̃ tan

(√
ξ1θ̃

MP

)
= 1

4ξ1
log

cos
(√

ξ1θ̃end
MP

)
cos

(√
ξ1θ̃⋆

MP

)
 , (5.29)

meaning that the horizon exit takes place for

θ̃⋆ = MP√
ξ1

arccos
(
exp (−4Nξ1) cos

(√
ξ1θ̃end
MP

))
. (5.30)

Thus, the slow-roll parameters evaluated on θ̃⋆ read

ϵ = 8ξ1
1

exp (8Nξ1) cos−2
(√

ξ1θ̃end
MP

)
− 1

, (5.31)

η = 4ξ1

 3

exp (8Nξ1) cos−2
(√

ξ1θ̃end
MP

)
− 1

− 1

 . (5.32)

Finally, we can evaluate the amplitude of perturbations

U

ϵ
= λM4

P

32ξ3
1

(
1− exp (−8Nξ1) cos2

(√
ξ1θ̃end
MP

))3

exp (−8Nξ1) cos2
(√

ξ1θ̃end
MP

) . (5.33)

Since ξ1 ≲ 1, we can expect that generically the amplitude of perturbations is too large,
i.e., it is hard to fulfill the condition U/ϵ = 5 · 10−7M4

P . In an attempt to make U/ϵ small,
we can choose the parameters such that exp (−8Nξ1) ≈ 1, or equivalently

8Nξ1 ≲ 1 . (5.34)

Additionally using that cos
(√

ξ1θ̃end
MP

)
≈ 1, our result reduces to

U

ϵ
= 16λN3M4

P . (5.35)
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This is identical to what we would have obtained in pure quartic inflation, i.e., for
ξ1 → 0. Thus, we cannot match the amplitude of observed perturbations in the CMB
unless λ ∼ 10−13.

In summary, we have illustrated that in the metric formulation of GR it is hard to obtain
a scenario of inflation that agrees with CMB and at the same time preserves conformality up
until the Planck scale. The parameter choice ξ1 ≫ ξ2 violates the latter condition whereas
the model with ξ1 = ξ2 is incompatible with the former.

5.3 Palatini Higgs-dilaton

For comparison, we shall also discuss the Higgs-dilaton model in the Palatini formulation of
GR, see e.g., [56]. In this case, the action is given by

S =
∫
d4x

√
g

[
1
2
(
ξ1ϕ2

1 + ξ2ϕ2
2

)
R − (∂µϕ1)2

2 − (∂µϕ2)2

2 − λ

4ϕ4
1

]
, (5.36)

where in contrast to eq. (5.7) now R is the scalar curvature defined in terms of the full
connection. After splitting in the Levi-Civita part R̊ and contributions due to torsion, this
leads to (see [9, 10])

−ζv
1 = ξvv = ξaa = ξ1 , −ζv

2 = ξ2 , cvv = −2
3 , caa = 1

24 , ζa
1 = ζa

2 = cva = ξva = 0 .

(5.37)
Then the Einstein frame action (4.9) is given by

S =
∫
d4x

√
g

[
M2

P

2 R̊− M2
P

2σ2(ξ1 cos2 θ+ξ2 sin2 θ)

(
∂µσ∂µσ+σ2∂µθ∂µθ

)
− λM4

P

4(ξ1+ξ2 tan2 θ)2

]
.

(5.38)
This formula can be derived by plugging the choice (5.37) into eqs. (4.11) to (4.13) or —
much more easily — by directly applying the Weyl rescaling (4.8) to the action (5.36),
taking into account that Rµν is independent of the metric. Finally, introducing the variable
Z as in eq. (5.15), the field-space curvature takes the simple form (see also [59])

M2
P κ = 2(2Z − 1) (ξ1 − ξ2) . (5.39)

We see that a small M2
P |κ| at all field values cannot be realized unless ξ1 is very close to ξ2.

However, this does not lead to successful inflation. In order to see this, we can consider the
extreme case ξ1 = ξ2, which turns eq. (5.38) into

S =
∫
d4x

√
g

[
M2

P

2 R̊ − M2
P

2σ2ξ1

(
∂µσ∂µσ + σ2∂µθ∂µθ

)
− λM4

P

4ξ2
1

cos4 θ

]
. (5.40)

Comparing with the corresponding findings in the metric formulation, as shown in eq. (5.21),
we observe that the θ-sector is identical. Therefore, the considerations of section 5.2 still
apply and show that a CMB amplitude that is compatible with observations cannot
be achieved.
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5.4 Higgs-dilaton beyond the metric formulation

Finally, we shall present a prototype model that fulfills all requirements of our above
conjecture; its action reads

S =
∫
d4x

√
g

[
1
2

(
ξ1ϕ2

1+
1
ξ2

1
ϕ2

2

)
R̊− (∂µϕ1)2

2 − (∂µϕ2)2

2 +∂µϕ2
2vµ+(ξ1∂µϕ2

1+∂µϕ2
2)aµ

+ 1
2ξ1

(
8ξ3

1
ξ1−2ϕ2

1+
ϕ2

2
ξ2

1

)
vµvµ+ 1

ξ1

(
1
ξ1

ϕ2
1+

ϕ2
2

ξ2
1

)
vµaµ+ 1

2ξ1

(
1
ξ1

ϕ2
1+

ϕ2
2

ξ2
1

)
aµaµ−λ

4ϕ4
1

]
.

(5.41)

A direct comparison with (4.20), reveals that the above corresponds to choosing

ζv
1 = 0 , ζv

2 = ζa
2 = 1 ,

√
ξ2 = ξva = ξaa = 1

ζa
1
= cvv = cva = caa = 1

ξ1
, ξvv = 8ξ3

1
ξ1 − 2 .

In terms of the angular variable θ the various theory-defining coefficient functions become

GR = ξ1 cos2 θ + 1
ξ2

1
sin2 θ , fθθ = 1 , Gvv = 1

ξ1

(
8ξ3

1
ξ1 − 2 cos2 θ + 1

ξ2
1
sin2 θ

)
,

Gva = Gaa = 1
ξ1

( 1
ξ1

cos2 θ + 1
ξ2

1
sin2 θ

)
, ζv

σ = sin2 θ , ζv
θ = sin 2θ ,

ζa
σ = ξ1 cos2 θ + sin2 θ , ζa

θ = −(ξ1 − 1) sin 2θ ,

(5.42)
In turn, the Einstein-frame action is given by (4.9), where γρρ, γρθ and γθθ are determined
by eqs. (4.11) to (4.13).

Following closely what we did in the previous section, we first diagonalize the kinetic
sector by introducing ρ̃ as in eq. (5.12); we obtain

S =
∫
d4x

√
g

M2
P

2 R̊−M2
P

2
(
γρρ(∂µρ̃)2+K(∂µθ)2

)
−λM4

P

4ξ2
1

(
ξ3

1
ξ3

1+tan2 θ

)2
 , (5.43)

where K can be explicitly found by using the expression (5.14). Defining h̃2 = M2
P (tan2 θ +

ξ3
1)/(ξ1 tan2 θ), we can bring eq. (5.43) to the form

S =
∫
d4x

√
g

M2
P

2 R̊−M2
P

2
(
γρρ(∂µρ̃)2+Kh̃(∂µh̃)2

)
−λM4

P

4ξ2
1

(
1− M2

P

ξ1h̃2

)2
 , (5.44)

where Kh̃ = ( dθ
dh̃
)2K.

First, we analyze inflation. To this end, we leave out ρ̃ since it decouples from inflationary
dynamics, the latter being for all practical purposes effectively single-field [18, 22, 36, 52].
For large ξ1, the coefficient of the kinetic term of h̃ has the asymptotic form

Kh̃

ξ1→∞→ 13
2h̃2 . (5.45)
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Figure 2. The absolute value of the field-manifold curvature M2
P |κ| for ξ1 = 104 as a function of the

inflaton field Z. We notice that its value for Z → 0 is M2
P |κ| ∼ 2. For non-vanishing values of the

field it rapidly decays and becomes approximately constant and equal to M2
P |κ| ∼ 4/13. Inflation

takes place at field values Z ∼ ξ−1
1 , meaning that the tensor-to-scalar ratio is expected to depend

on the “equilibrated” value of the field-space curvature.

We are now in position to compare our findings with the action (5.4) of single-field metric
Higgs inflation. Upon identifying h with h̃, we see from eq. (5.44) that the potentials coincide
and the coefficient of the kinetic terms only differ slightly in their numerical prefactors: the
coefficient 6 of metric Higgs inflation is replaced by 13/2, as is evident from the asymptotic
form (5.45). Correspondingly, the model (5.44) yields the inflationary indices16

ns ≈ 1− 2
N

, r ≈ 13
N2 . (5.46)

We observe that the spectral index is identical to the one of metric Higgs inflation and the
tensor-to-scalar ratio is slightly larger.

We checked the above findings with a full numerical analysis of the inflationary dynamics,
where we use U/ϵ = 5 · 10−7 for the CMB normalization [81] and choose N = 55 as well
as λ = 10−3 as typical values (see [67]). For comparison, we first analyze the original
model (5.3), for which we obtain17

nHI
s, num = 0.965 , rHI

num = 0.00351 . (5.47)

Repeating the same procedure in our model (5.44) (without performing any approximations
in Kh̃) yields

ns, num = 0.965 , rnum = 0.00379 . (5.48)

We see that the spectral indices coincide and the ratio rnum/rHI
num = 1.080, which is very

close to 13/12. This confirms the validity of formula (5.46).
16For example, this can be read off from [67] after identifying (in the notation and nomenclature of this

article) ξ2
η/ξ2 = 13/12 in the Nieh-Yan case.

17Formula (5.5), which is derived to leading order in 1/N , would give r = 0.00400; more precise analytic
results are available [98]. The only goal of our present analysis, however, is to compare metric Higgs inflation
as defined by eq. (5.3) with our model (5.44). This is possible as long as we employ the same approximations
in both theories.
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To study the geometry of field-space, we work with Z = M2
P /(ξ1h̃2). Then we get from

eq. (5.44)

S ≈
∫
d4x

√
g

[
M2

P

2 R̊ − M2
P

2
(
γρρ(∂µρ̃)2 +KZ(∂µZ)2

)
− λM4

P

4ξ2
1

(1− Z)2
]

, (5.49)

where KZ = ( dh̃
dZ )2Kh̃. Now we can compute the field-space curvature (see eq. (4.27)) and

the result is shown in figure 2. We conclude that M2
P |κ| < 4 for all relevant field values.

In particular, the limiting cases are M2
P κ = −2 for Z = 0 as well as M2

P κ = 4 for Z = 1,
corresponding to the limits of high energies and the electroweak epoch, respectively. In
summary, we conclude that our model eq. (5.41) fulfills our conjecture. Conformality is
preserved up to the Planck scale, i.e. Λconf ≃ MP , and in agreement with eq. (5.1), the
predictions (5.46) are close to their counterparts (5.5) of single-field metric Higgs inflation.

Finally, we establish a direct connection of field-space curvature and inflationary
predictions. For ξ1 ≫ 1, our theory in the form (5.49) becomes

S ≈
∫
d4x

√
g

[
M2

P

2 R̊−M2
P

2

(
4ξ5

1Z(∂µρ̃)2+13
8
(∂µZ)2)

Z2

)
−λM4

P

4ξ2
1

(
1−Z2

)2
]

, (5.50)

where we used that during inflation h̃ remains below MP and correspondingly Z ≳ O(1/ξ1).
It is straightforward to compute the field-space curvature

M2
P κ ≈ − 4

13 . (5.51)

Now we can use eq. (5.2), which is approximately valid for intervals of constant κ. Plugging
in the value −4/13, we arrive at the tensor-to-scalar ratio r = 13/N2, in agreement with
eq. (5.46). In summary, we conclude that both conformal properties and inflationary
predictions can be deduced from the field-space curvature κ. In particular, an upper bound
on κ from the requirement of approximate conformal invariance leads to a lower bound on
the tensor-to-scalar ratio.

Before turning to the conclusions, we shall evaluate the cutoff scale, above which
perturbation theory breaks down. Reading-off the energy scale that suppresses higher-
dimensional operators from the potential in eq. (5.44) suggests

Λcutoff ≈ MP√
ξ1

, (5.52)

as we confirmed by explicitly expanding our theory (in the form of eq. (4.23)) around the
vacuum. At first sight, the result (5.52) is very appealing: even though the inflationary
predictions are close to the ones of singe-field metric Higgs inflation, the cutoff MP /

√
ξ1

is much higher and similar to the more favorable scale encountered in Palatini Higgs
inflation [76]. Note that the cutoff generically depends on the background [71], whereas
the result (5.52) only refers to the vacuum. Since a non-vanishing field value during
inflation is expected to increase the cutoff [71, 77], this effect can only make the model
more well-behaved.
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However, there is an important caveat to this statement: eq. (5.52) is only valid for the
scalar sector of the biscalar theory. It is known that including other fields, in particular
longitudinal gauge bosons, can significantly lower the cutoff scale [71, 77, 99, 100]. We shall
leave a detailed investigation of this issue for the future [101].

6 Conclusions

In this paper, we first discussed in detail the constraints that linearly as well as nonlinearly
realized conformal invariance imposes on the dynamics of multiscalar field theories. We
showed that the target manifolds are endowed with a rather specific geometry. To reiterate
our finding, there exists an appropriate set of variables in which the field-space metric
of such conformal theories not only becomes block-diagonal (as is the case for theories
invariant under dilatations only) but its uppermost left component — corresponding to the
dilaton field “coordinate” — is unity. In other words, there always exists an appropriate set
of variables such that the dilaton has a canonical kinetic term and no kinetic mixings with
the rest of the fields. From the phenomenological point of view, the interesting situation
corresponds to biscalar theories for which conformal symmetry fixes the target manifold to
actually be flat.

We then presented how the inclusion of Einstein-Cartan gravity may be effectuated in
a manner that preserves invariance under global dilatations. Deviating from the commonly
used metric incarnation of General Relativity, one has to and actually should account for
invariants constructed out of torsion, too. This has to be done with care as shown in our
previous works [1, 9] (see also [11, 66, 67, 102]), where we devised a comprehensive set of
criteria for constructing actions that encompass EC gravity and matter fields and propagate
only the two polarizations of the massless graviton in their (purely) gravitational sector.
In general, the presence of (large) nonminimal coupling(s) translates into gravitational
contributions finding their way into the kinetic sector. This breaks conformal invariance
at energies (significantly) below the Planck mass (whereas scale symmetry is preserved).
We showed how to remedy the situation by formulating a condition ensuring approximate
conformality of the resulting theories up to the Planck scale, where the theory becomes
scale invariant “gravitationally.”

Our motivation for imposing this requirement is twofold. On the one hand, conformal
invariance can improve the high-energy limit of the theory, by opening up a perspective for
“self-completion” above the naive perturbative cutoff scale. On the other hand, subjecting a
theory to such a condition reduces the built-in arbitrariness due to the numerous parameters
that emerge in the EC formulation of GR. Investigating several concrete examples, we found
indications that the situation may even be better than expected and — along with similar
behavior noticed before [36] — this led us to conjecture that the requirement of approximate
conformality up to the Planck scale implies nearly model-independent statements about
inflationary observables, which turn out to be close to the predictions of single-field metric
Higgs inflation. How far this universality goes and if it holds in all parts of parameter space
remains to be determined.

Finally, our findings add a new argument to the long-standing debate about the UV-
completion of Higgs inflation. In the single-field scenario, it is known that the Palatini
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formulation has advantageous properties [76] as compared to metric GR [69, 70]. In contrast,
we have shown that the Higgs-dilaton setup endowed with an approximate conformal
invariance favors metric Higgs inflation, albeit in an emergent rather than fundamental
sense. This provides another indication that the predictions of single-field metric Higgs
inflation can emerge from a theory which — instead of requiring input from new physics —
allows for a self-completion above some naive cutoff scale [71, 103].
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A Going beyond polynomial coefficient functions

In this appendix we shall briefly discuss what would happen if we deviated from the
requirement of having the various coefficient functions polynomial in the fields ϕ1 & ϕ2.
In other words, we will investigate what changes if the condition i) of our conjecture is
dropped. To make things clear, we shall confine ourselves to an arguably extreme situation
in which the curvature of the field-manifold is constant and equal to the Planck area for
all field values. It will become clear that the inflationary predictions stop being unique,
even though the curvature has been fixed and conformality of the kinetic sector is preserved
until the Planck scale.

We start from (cf. eq. (4.27))

M2
P κ =

γ′
ρρΓ′ − 2Γγ′′

ρρ

2Γ2 = 1 , (A.1)

with Γ = γθθγρρ − γ2
ρθ; assuming that γρρ ̸= const. we obtain [36]

Γ = −
γ′2

ρρ

2γρρ − c
, (A.2)

where c is an arbitrary (dimensionless) constant. Therefore, the inflaton’s kinetic function
reads as (cf. eq. (5.14))

K = Γ
γρρ

= −
γ′2

ρρ

γρρ(2γρρ − c) . (A.3)

Even though the arbitrariness has been reduced, we notice that the behavior of K is not
unique but depends on whether or not one can neglect c. As long as inflation takes place
for field values such that γρρ > c, then the canonical field χ follows from an exponential
map, χ ∼ ln γρρ, and the predictions mimic the ones of metric Higgs inflation. If, on the
other hand, γρρ < c, then the inflationary dynamics is more intricate and depend on c, too.
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A particular choice of functions yielding this kind of behavior can for instance be the
following “parity preserving” situation in eq. (4.3):

Gaa = ζa
σ = ζa

θ = 0 . (A.4)

Additionally, we take

GR = ξ1 cos2 θ + ξ2 sin2 θ , fθθ = 3
2

(
G′

R

GR

)2 f(θ)
1 + 6GR

, (A.5)

with f(θ) to be determined. From this choice, we obtain

γρρ = 6 + 1
GR

, γρθ = 3G′
R

GR
, γθθ = 3

2

(
G′

R

GR

)2 (
1 + f(θ)

1 + 6GR

)
, (A.6)

which translates into a rather involved f(θ)

f(θ) = −1− 2
3(2 + (c + 12)GR)

. (A.7)

Clearly, the resulting fθθ deviates from fθθ = 1, which would be the only choice allowed
according to our criteria i)–iii).18
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