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Abstract
This study investigated the impact of participating in a year-long digital-fabrication course 
on high-school seniors’ problem-solving skills, with a focus on problems involving mech-
anistic systems. The research questions centered on whether working in a makerspace 
impacted students’ abilities to solve such problems and whether the process data generated 
during problem-solving activities could be used to identify the different problem-solving 
approaches taken by the participants. A novel set of hands-on, mechanistic problems were 
created to answer these questions, and the results showed that after taking part in the course 
students performed significantly better on these problems, with the post-course students 
making more progress towards the solutions than the pre-course students. The process data 
revealed two distinct problem-solving approaches for each problem, one adopted primarily 
by experts (the expert approach) and one by pre-course students (the novice approach). The 
post-course students were more likely to adopt the expert approaches, which were strongly 
associated with better performance on each problem. The study found that participation in 
the course made the high-school students better able to “see” the various components and 
their ways of interacting, making them more like expert engineers.
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Introduction

The concept of “learning by making” has gained tremendous popularity and recognition 
in education over the past 15 years, with hundreds, if not thousands, of dedicated mak-
erspaces being established in educational institutions across the United States (Melo 
et  al., 2023). As a result, millions of students across the United States now have the 
opportunity to work in these makerspaces over the course of their K-12 education (Pep-
pler et al., 2015). This growth has been driven by the belief in the potential of making 
to fundamentally change the way people teach and learn (Dougherty, 2013; Martinez 
& Stager, 2016). Makerspaces, as opposed to more traditional K-12 learning environ-
ments, promote student autonomy and agency, provide opportunities for hands-on activ-
ities, and encourage a shift towards a less hierarchical teacher–student dynamic (Martin, 
2015; Martinez & Stager, 2016). While the varied nature of makerspaces and the activi-
ties that take place within them present a number of challenges to researching the learn-
ing that occurs in these environments, there is preliminary evidence that makerspaces 
may foster learning of STEM concepts (Vossoughi et al., 2013) and the development of 
critical skills such as problem solving (Blikstein, 2013; Marshall & Harron, 2018).

Because making presents students with multiple opportunities to work on authentic 
problems that emerge from and are situated within their projects, we hypothesize that 
students who work on maker projects over longer periods of time will improve at solv-
ing problems with mechanistic systems (e.g., mechanical or electronic devices). How-
ever, this potential learning outcome has received relatively little attention. A handful of 
studies have reported positive changes in problem-solving skills (Galaleldin et al., 2016; 
Harnett et al., 2014; Hartry et al., 2018), but these were based on student self-reports 
and provided few details about the types of problems students were better able to solve 
or what aspects of making might have led to these changes.

The current study seeks to fill this gap by examining the impact of makerspaces on 
problem-solving skills in K-12 students, specifically exploring how working through 
multiple cycles of the engineering design process affects high-school students’ mecha-
nistic problem-solving skills. To investigate this we developed two hands-on problems 
involving mechanistic systems and asked a group of 19 high-school students to work 
on the problems before and after taking part in a year-long course on digital fabrica-
tion. Additionally, we asked 17 experts (graduate students in mechanical engineering) 
to work on the same set of problems. The main finding was that participation in the 
course had a positive effect on the high-school students’ problem-solving abilities. By 
comparing the expert mechanical engineers to the high-school students, it was possible 
to show that participation in the year-long course made the high-school students more 
like experts. Furthermore, by examining the differences in problem-solving processes 
between groups it was possible to hone in on the nature of this change: experts and post-
course students focused more on the mechanistic relationships between components, 
while pre-course students seemed to ignore these relationships. In other words, the bet-
ter performing participants seemed to be able to “see” aspects of the problem that made 
them better able to understand and solve them.

Overall, the results of this study suggest that makerspaces have the potential to fos-
ter the development of problem-solving skills in students, leading to better prepared-
ness for the technological challenges of the twenty-first century. The research highlights 
the importance of working on long-term design projects in makerspaces and sheds light 
on how the development of problem-solving skills can be measured and characterized. 
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These findings contribute to the growing body of knowledge on makerspaces and learn-
ing, and have significant implications for the design and use of makerspaces in schools.

Background

What are students learning in makerspaces?

While schools perform many functions, their primary one is to foster learning. Thus, as 
the number of makerspaces in K-12 institutions continues to grow, the natural question is 
“What are students learning in makerspaces?” (Petrich et  al., 2013; Timotheou & Ioan-
nou, 2019; Vuorikari et al., 2019). This question is particularly difficult to answer due to 
the varied nature of makerspaces and the varied nature of making activities that students 
engage in. This wide variety of experiences is a feature, not a bug, of educational making, 
since providing students with the autonomy to choose what projects to work on and what 
roles to take on is one of its most celebrated aspects (Cohen et al., 2017; Harron & Hughes, 
2018; Kajamaa & Kumpulainen, 2019). For example, even within a single group work-
ing on a project, one student might specialize in programming, another might specialize 
in CAD, and a third might specialize in using the digital fabrication tools. Nevertheless, 
this variety of experiences is precisely what makes it difficult to identify the things that 
students in general are learning in makerspaces, since when students are free to follow their 
interests different students in a single class will learn different things and develop different 
areas of expertise.

One activity that most students working in makerspaces have in common in is working 
through the iterative design process while working on their projects (Petrich et al., 2013). 
This is the process through which students develop and test prototypes, encounter unex-
pected problems with their designs, hypothesize solutions to these problems, and develop 
improved prototypes. This activity provides students with opportunities to make mistakes 
and deal with failure in a way that is healthy, expected, and even celebrated (Martin, 2015; 
Vossoughi et al., 2013). However, as Martinez and Stager note, the point of this process is 
not simply to encounter failure, but to overcome it by figuring out how to solve the prob-
lems that arise (2016). This echoes Papert’s debugging philosophy, which is the viewpoint 
that “Errors benefit us because they lead us to study what happened, to understand what 
went wrong, and, through understanding, to fix it” (Papert, 1980, p. 114).

Since the iterative design process lies at the heart of making, and since problem solv-
ing lies at the heart of the iterative design process, this suggests that problem solving may 
be an activity that many students who work in makerspaces will gain experience with, 
regardless of the types of tools or materials available to them. Despite the fact that students 
already have many opportunities to engage in problem solving during their time in K-12 
schooling, we argue that students working in makerspaces are likely to gain substantial 
experience with a class of important problems that they would not otherwise encounter in 
their K-12 education, and that makerspaces support unique ways of approaching and work-
ing on these problems.

The problems students encounter in makerspaces and digital fabrication labs are often 
ill-defined, in the sense that it is obvious that something is wrong, but understanding the 
precise nature of the problem requires further investigation and testing (Robertson, 2003). 
The failure to provide students with opportunities to work on ill-structured problems has 
been identified as a weakness in other problem-based pedagogies, since these pedagogical 
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methods typically provide students with well-defined problems which bear little resem-
blance to those encountered in non-schooling situations (Jonassen et  al., 2006). Solving 
ill-structured problems requires much more than simply finding the right answer. Students 
must work to identify and characterize the nature of the problem, to hypothesize solutions, 
to implement these possible solutions during prototyping, and to evaluate their solutions by 
testing and observing their prototypes. This type of problem solving extends over longer 
periods of time, and is capable of producing deeper and more nuanced understanding of 
the problem (Sheppard et al., 2006).

The ways that these problems are framed, and the types of support and guidance that 
students receive during problem solving, are also not typically encountered in K-12 set-
tings. In makerspaces, mistakes and failures are framed as an important part of the design 
process, essential to achieving the goal of arriving at a satisfactory design, as opposed to 
something to be avoided in fear of receiving a bad grade (Vossoughi & Bevan, 2014). This 
has been described as one of the distinguishing features that separates making from other 
problem- and project-based approaches (Martin, 2015) Furthermore, students have many 
opportunities to encounter and work on these types of problems in makerspaces. Digital 
fabrication tools dramatically increase the speed at which students can iterate through the 
iterative design process. By rapidly making changes to digital design files using CAD/
CAM software and sending them to digital fabrication tools (e.g., 3D printers, laser cut-
ters) to be physically produced, it is possible for students to quickly test and refine their 
designs, sometimes making multiple iterations within a single class period. Each iteration 
of the design cycle provides students with opportunities to gain more practice in encoun-
tering and solving problems.

Defining and operationalizing problem solving in makerspaces

There is little prior work on the development of problem-solving skills in makerspaces. 
The work that does exist has relied on student self-reports to measure changes in prob-
lem-solving abilities. Harnett et al. (2014) found that some university students who spent a 
semester working in a community hackerspace reported increased confidence in their prob-
lem solving and project-planning abilities, and Galaleldin et al. (2016) reported that 60% 
of university engineering students reported feeling “more confident in their engineering 
knowledge and skills to solve a complex engineering problem”. At the K-12 level, Hartry 
et al. (2018) found that students working as interns in a museum makerspace self-reported 
increases in problem-solving skills, attributing this to their experience working on open-
ended problems during their internship. However, to date there is no research that directly 
measures a change in students’ abilities to solve problems after working in makerspaces.

The goal of the current study was to address this gap in the literature. In order to meas-
ure such a change directly, a specific class of problems and associated problem-solving 
skills needed to be identified so that appropriate assessments can be developed. We 
observed that many of the projects that students work on in makerspaces involve the design 
and construction of mechanistic systems, such as electronic circuits, mechanical systems, 
or objects with multiple interlocking parts. Formally, a mechanistic system consists of (a) 
a phenomenon or phenomena that can be explained or understood by (b) decomposing it 
into parts or components that (c) are organized in such a way that (d) they give rise to the 
phenomenon through their causal interactions (Illari & Williamson, 2012). In makerspaces, 
when students encounter problems with these systems, they engage in a hands-on process 
of tinkering and debugging that is different from the types of problem solving typically 
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used in schools. Because of this, we hypothesized that makerspaces would engender a set 
of problem-solving skills involving mechanistic systems that students would have little 
opportunity to develop in other educational settings.

In order to measure differences in students’ abilities to solve problems involving mecha-
nistic systems, we designed a set of hands-on problems that involved building and trouble-
shooting mechanistic systems called the Gearbox-Assembly Task and the Flashlight-Repair 
Task. The Gearbox-Assembly Task involved figuring out how to reassemble a differential 
without any instructions or information about what was being assembled (Fig. 2), and the 
Flashlight-Repair Task involved figuring out how to repair a flashlight that had been delib-
erately broken in three ways (Fig. 3). These problems were designed to be similar to the 
types of problems students might encounter in a makerspace, so that a failure to measure 
changes in problem-solving skills could not be blamed on a lack of construct validity. At 
the same time, it was important to present students with problems that they had not yet 
solved, otherwise the assessment would simply be testing their ability to remember previ-
ously-encountered solutions. For this reason the problems involved mechanistic elements 
that the students would not directly work with in the year-long course (geared mechanisms 
and electronic circuits).

These tasks were also designed to make the students’ problem-solving processes visible. 
This way, we could more easily capture all of the actions participants took while work-
ing on the problem, and record all of the problem states that they visited. Our goal was to 
use this information to identify distinct problem-solving approaches [conceived of as paths 
through the problem space (Newell & Simon, 1972)] and to examine the details of these 
approaches so that we could not only understand if there was a change, but also what the 
nature of this change might involve.

Analysis of problem‑solving processes

Historically, the study of problem solving has focused more on the process than the out-
come, and this approach has led to a series of important discoveries in the field. Meticulous 
analyses of problem-solving processes, derived from detailed observations of individuals 
working on carefully designed problems, led to the seminal discoveries of functional fix-
edness (Duncker & Lees, 1945), where individuals tend to limit themselves to only using 
objects in established ways, and the Einstellung effect, a phenomenon where individuals 
prefer a familiar solution approach even when better alternatives exist (Luchins, 1942). 
Soon after, Newell et al. proposed a formalization of problem solving that viewed it as a 
search through a problem space—a conceptual landscape of all possible problem states 
along with the actions that transform one state into another (1972). A cornerstone of their 
approach was the think-aloud method, which made it possible to study the internal, mental 
conceptualizations and processes involved during problem solving.

Building upon this foundation, and utilizing a similar methodology of process analy-
sis, Chi et  al. showed how domain-specific knowledge could impact problem solving 
approaches. Experts, possessing a deeper and more structured understanding of a domain, 
don’t just approach problems differently; they perceive them differently. They categorize 
problems based on their deep structures and the underlying principles involved, allowing 
them to navigate the problem space more efficiently. In contrast, novices, whose under-
standing of a subject is more fragmented and superficial, tend to fixate on the surface fea-
tures of a problem. This leads novices to miscategorize problems, resulting in the construc-
tion of inaccurate and misleading problem spaces. Novices searching through inaccurate 



	 R. L. Davis et al.

1 3

problem spaces are “off the map”, searching down pathways that rarely end in successful 
solutions. This work underscores how expertise fundamentally alters the way problems are 
perceived, categorized, and approached.

More recently, as computer-based problem-solving environments have become more 
prevalent, a new method for analyzing and understanding process data has emerged: unsu-
pervised clustering of action sequences to identify different problem-solving approaches 
(Antonenko et al., 2012). Noteworthy contributions include the employment of sequence 
mining to investigate students’ strategies in interactive simulation tasks (Wang & Wie-
man, 2022), clustering of behavioral patterns in PIACC problem-solving items (He et al., 
2019), and identification of discussion patterns in computer-support collaborative learning 
environments (Kapur, 2011). This method has the advantage of efficiently handling large 
amounts of data, providing more objective and replicable insights, and reducing the human 
biases and labor-intensive processes often associated with manual coding and analysis of 
observation and think-aloud data.

While sequence mining and clustering methods are commonly used to analyze stu-
dent behavior in computer-based environments, their use in analyzing hands-on problem-
solving activities has been limited. Collecting process data in dynamic real-world envi-
ronments such as makerspaces and workshops is substantially more difficult than simply 
logging actions taken in computational environments. Multi-modal learning analytics 
(MMLA) (Blikstein & Worsley, 2016; Schneider & Blikstein, 2015) attempts to address 
this gap by instrumenting real-world environments with sensors that log students’ actions. 
While this approach has proven successful in many cases, it was not appropriate for the 
study of hands-on problem solving, as existing sensors are incapable of reliably measuring 
small-scale manipulations of pieces and parts. Instead, we built on an approach pioneered 
by Suomala which combined qualitative video coding methods with clustering techniques 
(1996). This approach overcomes the limitations of MMLA by combining the acute obser-
vational abilities of humans to code video data with the robust and objective abilities of 
unsupervised clustering techniques to identify common patterns across participants.

Research questions

The research questions in the study were as follows: 

1.	 Does working in a makerspace impact students’ abilities to solve problems involving 
mechanistic systems?

2.	 By examining the process data generated during the problem-solving activities, ...

(a)	 ...can we identify the different problem-solving approaches taken by the students?
(b)	 ...can we identify meaningful differences between expert and novice problem 

solvers?

To answer these questions, we designed a set of hands-on problems to measure changes 
in problem-solving skills, and recruited a group of high-school students to take part in a 
year-long course in digital fabrication. The students worked on the problems before and 
after the course, and by analyzing the differences in their approaches we were able to meas-
ure changes in their hands-on problem solving skills. Additionally, we recruited a group 
of expert mechanical engineers to work on the hands-on problems. The engineers’ perfor-
mance on the assessments provided a kind of ground truth that made it easier to determine 
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if any changes in the high-school students’ problem-solving approaches were random, or 
reflected a change in expertise.

Methods

Participants

We recruited 19 high-school seniors (15 females, 4 males) to take part in this study. Given 
their lack of exposure to formal engineering courses or training, we considered these stu-
dents to be “novice” engineers. These students participated in study activities during their 
normal school day schedules and were not compensated for their participation.

We also recruited 17 graduate students (8 females and 9 males, mean age  =  24.67, 
SD  =  2.13) in mechanical engineering (ME) from an R1 university to take part in this 
study. Having completed a bachelors degree in engineering and been granted entry into 
a top 25 graduate engineering program, we considered these ME graduate students to be 
expert engineers. The graduate students received a $20 gift card as compensation for their 
participation.

Study design

The study employed a between-subjects design with the high-school students being ran-
domly split into two groups at the start of the study. Group A (N  =  10) worked on the 
Gearbox-Assembly Task before the course and the Flashlight-Repair Task after the course, 
while Group B (N  =  9) worked on the Flashlight-Repair Task before and the Gearbox-
Assembly Task after (Fig.  1). On the Gearbox task, students in Group A served as the 
control group for students in Group B, who worked on the Gearbox problem after taking 
part in the course. On the Flashlight-Repair task, students in Group B served as the control 
group for students in Group A, who worked on the Flashlight-Repair problem after the 
course. The mechanical engineering experts worked on both tasks in a single session and 
did not take part in the course on digital fabrication. The choice to use a between-subjects 
design was made to avoid test-retest effects; however, this effectively reduced the sample 

Fig. 1   Study design. This does not show the experts, who worked on the Gearbox and Flashlight-Repair 
tasks in a single session
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size and the power of the study. The dependent variable in this study was change in prob-
lem-solving skills, and the independent variable was participation in the course.

Materials

The Gearbox‑Assembly Task

The Gearbox-Assembly Task was designed to measure the participants’ ability to assem-
ble a complex geared mechanism with no instructions, images, or information about the 
completed object. The Gearbox was presented to the students in ten pieces (Fig. 2a). Each 
of the pieces contained magnets that stuck together when two pieces were correctly assem-
bled. It is important to note that there were many ways of magnetically connecting the 
pieces that were not correct, while there was only one way of correctly assembling the 
Gearbox (Fig. 2b).

The Flashlight‑Repair Task

The Flashlight-Repair Task was designed to measure the participants’ ability to trouble-
shoot and repair a faulty device. Two flashlights—one green, one red—were presented to 
each participant (Fig. 3). The green flashlight was working and the red flashlight was bro-
ken. Three errors were present in the red flashlight: one of the batteries was reversed, the 
electrical contact in the base of the battery was inverted and disconnected, and the bulb 
was burnt out. The participants were not provided with any information about the broken 
flashlight, nor were they presented with any additional resources.

Procedure

The high school students’ work took place in three distinct phases: pre-course, course, 
post-course. The experts’ work occurred after the end of the high school course and was 
independent of these phases.

(a) Unassembled Gearbox (b) Assembled Gearbox

Fig. 2   The Gearbox-Assembly Task. Participants received the Gearbox in the unassembled state and had 5 
min to assemble it with no instructions or images of the final assembly
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Pre‑course

On the first day of the course each high-school student was randomly assigned to work on 
either the Gearbox-Assembly Task or the Flashlight-Repair Task. The student was seated at 
a table and the task was placed in front of them. The participant was instructed not to touch 
the task until the timer was started, at which time they had 5 min to try and solve the task. 
When time expired, the task was removed from the table, and the student returned to class. 
Video was collected using a GoPro camera facing the student.

If the student had been assigned to the Gearbox-Assembly Task, they were told that the 
object in front of them had been disassembled, that it was their job to try and put it back 
together in 5 min, and that they should try their hardest and not be frustrated if they were 
unable to solve the puzzle. They were not given any further information about the object 
(i.e., no instructions on how to assemble the object).

If the student was assigned to the Flashlight-Repair group, the two flashlights were 
placed in front of them. The participant was told that the red flashlight was not working, 
and that it was their job to repair it. They were shown how to turn on the green flashlight by 
twisting the head, which also demonstrated that the green flashlight was working.

Course

This course took place in a makerspace on a university campus and was facilitated by the 
students’ physics teacher and the lab managers. The high-school students visited the mak-
erspace twice a week for roughly 1 h per visit. In total, students spent between 30 and 40 h 
on the course.

Students worked on two multi-week design projects that, aside from certain specified 
goals, were designed to allow for creative freedom otherwise. The students worked on 

Fig. 3   The Flashlight-Repair Task. Students were presented with two flashlights, one working (green) and 
one broken (red), and were tasked with fixing the broken flashlight. The red flashlight is shown disassem-
bled here for illustration purposes, but both flashlights were fully assembled at the start of the task (Color 
figure online)
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the first project, the Omni-Animal, during the first 2 months of the course. Administra-
tive issues then resulted in a 2 month break, after which the students returned to the 
makerspace to work on the second project, a Rube Goldberg machine, for an additional 
2 months.

The Omni-Animal project required students to design a three-dimensional creature 
out of multiple two-dimensional pieces. Outside of the requirement to use four types of 
specified connectors, students had full creative freedom. This project was designed to 
give students experience using two-dimensional vector-drawing software (CorelDRAW) 
to create a multi-part, three-dimensional construction. Students received a template with 
vector drawings of the required connectors (see Fig. 4a), an example Omni-Animal that 
had been cut out of wood and assembled, and direct instruction on using CorelDRAW.

The second project was the creation of a Rube Goldberg machine, a mechanical con-
traption that uses a complicated series of interactions to perform a simple task. This 
project was designed to give students experience with designing a multi-component, 
mechanistic system though a collaborative engineering design process. The students 
were broken into small groups, and each group was tasked with designing one compo-
nents in a Rube Goldberg machine. Groups received constraints having to do with the 
start and end actions of their component (e.g., activated by heat and trigger the follow-
ing stage with a loud noise). The groups were required to collaborate with one another 
in order to ensure that the components they were designing would interact properly. 
Aside from satisfying these constraints, the groups were given full creative freedom. 
Like the Omni-Animal project, the Rube Goldberg project was intended to guide stu-
dents through multiple iterations in the design cycle, and required students to make con-
nections between the function, behavior, and structure of their stage in the machine.

Post‑course

In the final week of the course, the high-school students were asked to leave class for a 
short period of time to work on a hands-on problem. If the student had been assigned to 
the Gearbox-Assembly Task in the pre-course phase, that student worked on the Flash-
light-Repair Task in the post-course phase. Similarly, if the student had worked on the 
Flashlight-Repair Task in the pre-course phase, they worked on the Gearbox-Assembly 
Task in the post-course phase. Like the pre-course phase, each student was seated at a 

(a) Omni-Animal template
(provided to students)

(b) Example of a Completed Omni-Animal (not pro-
vided to students)

Fig. 4   Design files for the Omni-Animal project
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table with the task in front of them, and after time expired the student returned to class. 
During the task, video was collected using a GoPro camera facing the student.

Experts

After the course had concluded, 17 graduate students in mechanical engineering 
(experts) were recruited to work on the hands-on tasks. Each expert was seated at a 
table and tasked with working on both the Gearbox-Assembly Task and the Flashlight-
Assembly Task. The order of the tasks was randomized, and each expert had 5 min for 
each task. Video of their activity during both tasks was recorded using a GoPro camera.

Video coding schemes

We had two objectives which resulted in the development of two distinct video coding 
schemes. First, we were interested in evaluating how close each participant came to the 
correct solution on each task. The Correct-Combination Coding Scheme was developed 
for this purpose. Second, we were interested in each participant’s sequence of actions 
and the corresponding sequence of problem states. We designed the Actions-in-Time 
Coding Scheme for this purpose.

Correct combinations

In order to meaningfully compare the participants on each task, it was necessary to 
develop a metric that accurately measured how close each participant came to the cor-
rect solution. This provided more information about each participant’s progress than a 
binary complete/incomplete coding scheme. While completing each task required a dif-
ferent number of correct part combinations—11 for the Gearbox and 4 for the Flash-
light—a similar coding procedure was separately followed for each task. Each correct 
part combination was assigned a distinct code. If the participant performed an action 
that matched one of the codes, they received 1 point. If the participant’s action matched 
a code partially, they received a half-point (0.5). No time information was recorded, so 
two participants who carried out the same actions in different orders would receive the 
same score. The scores for each combination were summed within each task to create a 
single index of how close that participant came to solving that task. A score of 0 meant 
the participant made no progress on the problem, while a score of 11 for the Gearbox or 
4 for the Flashlight meant the participant completely solved the problem. The higher the 
score, the closer to finishing successfully.

Actions in time

In addition to comparing how close participants came to each solution, we were also 
interested in comparing differences in the participants’ sequences of actions. We devel-
oped two time-based coding schemes for this purpose, one for the Gearbox problem and 
one for the Flashlight problem.

The Gearbox-Assembly Actions-in-Time coding scheme was developed to categorize 
and track the different types of actions participants carried out while attempting to solve 
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the Gearbox problem. The final coding scheme contained 16 codes, each representing a 
type of action that a participant could take (Table 1).

Similarly, the Flashlight-Repair Actions-in-Time coding scheme tracked each par-
ticipant’s actions as they worked through the problem. The coding scheme also con-
tained 1–3 prefixes to: (1) keep track of which flashlight the participant was work-
ing on—functioning (G–green) or broken (R–red) and (2) denote which specific 
component(s) the participant was focusing on. The resulting codes took the form of: 
<flashlight> <component> <component> <action code>. See Table 2 for an exam-
ple of how this coding scheme was applied to one participant’s series of actions in the 
Flashlight problem.

Table 1   Actions-in-time coding 
scheme for the Gearbox problem

Code Meaning

rot Rotating a piece
mesh Meshing two gears
mag Connecting magnets correctly
axle Mounting axle correctly
plas Stacking two plastic pieces
magx Connecting magnets incorrectly
axlex Mounting axles incorrectly
disx Disassembling incorrectly
look Looking at components
exp Exploring components
org Organizing components
dis Disassembling components
fdis Fully disassembling components
adj Adjusting components
test Testing
end Stopped working on problem

Table 2   Example of applying the actions-in-time coding scheme on the flashlight problem

Coding scheme Meaning

R,C,det Unscrew the tail cap from the red flashlight
R,S,det The contact spring falls out of the red flashlight
R,B,det Remove the batteries from the red flashlight
G,C,det Unscrew the tail cap from the green flashlight
G,B,det Remove the batteries from the green flashlight
B,comp Compare the batteries from the red and green flashlights
B,swap Swap the batteries between the red and green flashlights
R,B,att Put the batteries back into the red flashlight correctly
R,C,att Put the tail cap back onto the red flashlight
R,test Test the red flashlight
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We designed custom software to streamline the process of coding the videos. Each 
time the participant carried out an action, the appropriate code was entered and linked 
to the video using a timestamp. After coding a participant’s video, we were left with a 
full sequence of the participant’s actions during the problem. This process transformed 
video of the participants’ actions into a time-stamped sequence of codes.

Findings

Proximity to solution

The Gearbox-Assembly Task proved to be particularly challenging for the participants 
in this study. Few were able to completely solve the problem, regardless of their level 
of expertise: Only 2 out of 17 experts solved the problem, and none of the high-school 
students were able to solve it.

However, by counting the number of correct combinations that each participant car-
ried out, we were able to measure how close each participant got to finding the cor-
rect solution. 11 unique part combinations were required to solve the Gearbox-Assem-
bly Task. The maximum score a participant could receive was an 11, and the minimum 
score was zero.

The post-course students ( M = 3.69, SD = 1.85 ) got significantly closer to the solu-
tion than pre-course students ( M = 1.94, SD = 1.15 ), t(11.69) = −2.27, p < .05 , Cohen’s 
d = 1.14 . Additionally, the experts ( M = 6.82, SD = 2.44 ) outperformed post-course stu-
dents, t(17.88) = −3.56, p < .01 , Cohen’s d = 1.38 (Fig. 5).

The Flashlight-Repair Task was not as difficult as the Gearbox problem, but it still posed 
a significant challenge to the participants. 9 out of 17 experts solved the flashlight-repair 
problem, 1 out of 10 post-course students solved the problem, and 0 out of 9 pre-course 
students solved the problem.

Fig. 5   Correct combinations on the Gearbox-Assembly Task split between pre-course students, post-course 
students, and experts. The minimum possible score was 0 and maximum possible score was 11
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In this problem, the broken flashlight had three sources of error: the batteries were 
inserted incorrectly, the spring contact in the cap was upside-down and failed to close the 
circuit, and the bulb was burned out. Successfully completing the task required repairing 
all three sources of error. By counting the number of errors corrected by each participant, it 
was possible to construct an index to measure distance to the solution. The minimum score 
a participant could receive was a zero (no sources of error corrected), and the maximum 
score was a three (all sources of error corrected).

The experts ( M = 2.47, SD = 0.62 ) got significantly closer to the solution than the post-
course students ( M = 1.9, SD = 0.57 ), t(20.52) = 2.43, p < .05 , Cohen’s d = 0.94 . Addition-
ally, the post-course students made it marginally significantly closer to the solution than the pre-
course students ( M = 1.22, SD = 0.97 ), t(12.61) = 1.83, p < .1 , Cohen’s d = 0.86 (Fig. 6).

Grouping problem‑solving strategies

To better understand whether different approaches to solving the problems could explain 
the differences in performance, we used an unsupervised clustering method to identify 
groups of participants with similar approaches to the problems. For each problem we com-
puted the edit distance between all participants’ Actions-in-Time sequences using TraMin-
eR’s optimal matching algorithm (Gabadinho et al., 2011), which allowed us construct a 
symmetric distance matrix that captured the similarity between all pairs of participants. 
After constructing this matrix, we used agglomerative hierarchical clustering (Maechler, 
2018) to identify groups of participants who were most similar to each other.

Problem‑solving approaches on the Gearbox Assembly Task

On the Gearbox task, we identified two distinct approaches to tackling the problem. The 
first approach was adopted by 16 experts and 3 post-course students. The second approach 
was used of all 7 pre-course students, 5 post-course students, and 1 expert1 (Fig.  7). 

Fig. 6   Closeness to flashlight solution

1  Video data from 4 of the high-school students was corrupted and not used in this analysis.
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Subsequently, we will refer to the first approach as the expert approach (as it contains 94% 
of the experts) and the second approach as the novice approach (as it contains 100% of the 
pre-course high-school students).

To better understand the nature of each approach, we visualized the proportion of 
actions within each cluster and identified a number of differences (Fig. 8). First, we iden-
tified four actions that the expert cluster performed at a higher frequency than the nov-
ice cluster: meshing gears (mesh), rotating pieces (rot), mounting axles (axle), and mak-
ing correct magnetic connections (mag). In subsequent analysis we call these four actions 
“mechanical actions”. Second, we identified two actions that the expert cluster performed 
at a lower frequency than the novices: incorrect plastic connections (plas) and incorrect 
magnetic connections (magx). We call these “structural actions” in subsequent analysis.

Fig. 7   Makeup of the two groups found using hierarchical agglomerative clustering on the Gearbox prob-
lem

Fig. 8   Proportion of actions for each cluster. Note the higher proportion of axle-related actions (green), 
meshing gears (dark purple), and rotation (fuchsia) in the expert cluster, and the higher proportion of incor-
rect magnetic connections (sky blue) and incorrect plastic connections (beige) in the novice cluster (Color 
figure online)
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We created a mechanical-action index for each participant by dividing the sum of 
the four mechanical actions by the total number of actions for each participant. We 
performed 2 two-tailed t-tests to compare the differences in mechanical-action fre-
quency between the pre-course students and the post-course students, as well as the 
differences between the post-course students and the experts. The post-course students 
( M = 0.24, SD = 0.14 ) performed significantly more mechanical actions than pre-course 
students ( M = 0.12, SD = 0.06 ), t(11.69) = −2.27, p < .05 , Cohen’s d = 1.14 . The 
experts ( M = 0.38, SD = 0.10 ) performed significantly more mechanical actions than 
post-course students ( M = 0.24, SD = 0.14 ), t(17.87) = −3.56, p < .01 , Cohen’s d = 1.38 
(Fig. 9).

There is one action in particular that we want to highlight: meshing gears (mesh). 
Incredibly, none of the pre-course students meshed any of the gears during the 5-min 
task, despite the fact that five of the ten pieces included gears.

We compared the proportion of mesh actions using 2 two-tailed t-tests between 
pre-course students, post-course students, and experts. The post-course students 
( M = 0.02, SD = 0.02 ) performed significantly more mesh actions than pre-course 
students ( M = 0.0, SD = 0.0 ), t(7) = −3.5, p < .001 , Cohen’s d = 1.69 . The experts 
( M = 0.08, SD = 0.05 ) performed significantly more productive actions than post-
course students ( M = 0.02, SD = 0.02 ), t(21.34) = −4.88, p < .001 , Cohen’s d = 1.53 . It 
is worth highlighting that none of the pre-course students meshed any of the gears dur-
ing the 5-min task despite the fact that five of the ten pieces included gears.

The final analysis examined whether the problem-solving approach was related to 
performance on the problem. To determine this, a correlation analysis was done to 
compare the proportion of mechanical actions to closeness to the solution. These two 
measures were significantly correlated, r(33) = 0.82, p < .001, r2 = 0.67 , indicating that 
the proportion of mechanical actions taken by a participant was a good predictor of 
how close they would come to solving the problem (Fig. 10).

Fig. 9   Proportion of mechanical actions taken by pre-course students, post-course students, and experts
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Problem‑solving approaches on the Flashlight Repair Task

On the Flashlight task a cluster analysis identified two distinct approaches to the problem. 
The first approach was adopted by 13 experts, 8 post-course students, and three pre-course 
students, and the second approach was adopted by four experts, one post-course student, 

Fig. 10   Comparison of scores on the Gearbox problem to the proportion of mechanical actions for each 
participant. These were significantly correlated, r(33) = 0.82, p < .001, r2 = 0.67

Fig. 11   Makeup of the two groups found using hierarchical agglomerative clustering on the Flashlight-
Repair task
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and six pre-course students2 (Fig. 11). We refer to the first approach as the expert approach 
since it was adopted by 76% of the experts, and we refer to the second approach as the nov-
ice approach since it was adopted by 67% of the pre-course students.

In order to understand the differences between approaches, we visualized the interaction 
histories within each cluster across the entire task (Fig. 12). The expert histogram showed 
that the experts interacted with a more-uniform set of components, with more attention 
being paid to the batteries, cap, head, and bulb than the reflector, replacement bulb, and 
spring. This stood in contrast to the novice histogram, where the majority of interaction 
was weighted on a small number of components—the cap, batteries, and spring—with very 
little attention paid to the other components.

A second, longitudinal plot of interaction with components over the course of the task 
(Fig. 13) provided more insight into this difference. Throughout the task, the expert clus-
ter fluidly shifted their attention across components, presumably searching and testing for 
sources of error. In contrast, the novice cluster becomes increasingly fixated on a single 
source of error: the cap and spring. Additionally, the novice cluster paid little attention to 
the bulb, indicating that they had failed to consider it as a potential source of error.

This analysis suggested that a primary difference between the two problem-solving 
approaches might be related to the number of components interacted with. To test this, we 
created an index to measure breadth of interaction by counting the number of components 
each participant interacted with during the problem, where the maximum number of com-
ponents a participant could interact with was 14 (7 in each of the flashlights). Post-course 
students interacted with a significantly higher number of components ( M = 8.7, SD = 1.34 ) 
than pre-course students (M = 6.56, SD = 1.01);t(16.56) = 3.96, p < .01 . However, experts 
( M = 9.24, SD = 1.30 ) did not interact with a significantly larger number of components 
than post-course students, t(18.56) = −1.01, p < .33.

Fig. 12   Cross-sectional plot of time spent attending to different components during the Flashlight-Repair 
Task

2  Video data from 1 high-school student was corrupted an not included in the analysis.
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The final analysis examined the relationship between the problem-solving approach and 
performance on the problem. The participants’ scores on the Flashlight-Repair problem 
were compared to the number of unique states visited. These were significantly correlated, 

Fig. 13   Longitudinal plot of attention paid to different components during the Flashlight-Repair Task

Fig. 14   Comparison of scores on the Flashlight-Repair task to number of components interacted with. 
These were significantly correlated, r(36) = 0.46, p < .01, r2 = 0.21
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r(36) = 0.46, p < .01, r2 = 0.21 , indicating that the number of components interacted with 
was a good predictor of their ability to solve the problem (Fig. 14).

Discussion

This study was designed to learn more about how taking part in a year-long digital-fab-
rication course could affect high-school seniors’ problem-solving skills. We found that 
that after taking part in the course, students were significantly better at solving a set of 
hands-on, mechanistic problems, with the post-course students making significantly more 
progress towards the solutions than the pre-course students. Additionally, by examining 
the process data we were able to identify and characterize two distinct problem-solving 
approaches for each problem, one adopted primarily by experts (the expert approach) and 
one adopted primarily by pre-course students (the novice approach). We found that post-
course students were significantly more likely to adopt the expert approaches than pre-
course students, providing evidence that participation in the course made them more like 
expert engineers. Furthermore, we found that each of the expert approaches was strongly 
associated with better performance on each of the problems: the higher the proportion of 
mechanical actions a participant took during the Gearbox task, the closer to the solution 
they came; and on the Flashlight-Repair problem, the more components that a participant 
interacted with, the closer they came to the solution.

Despite the fact that the high-school students did not learn about or work with geared 
mechanisms or electrical devices in the course, they still performed significantly better on 
both the Gearbox-Assembly Task and Flashlight-Repair task after taking part in the course. 
This suggested that the students had experienced a change during the course that affected 
their ability to solve a class of problems involving mechanistic systems. To understand the 
nature of this change we examined the similarities and differences between the expert and 
novice approaches to each problem.

On the Gearbox problem, experts performed a higher proportion of mechanical actions, 
such as meshing gears, while novices (i.e., pre-course students) performed a higher propor-
tion of structural actions, such as stacking pieces on top of one another. The post-course 
students were significantly more likely to perform mechanical actions than the pre-course 
students, indicating that participation in the course made the high-school students more 
like experts in this regard. A particularly striking finding was that none of the pre-course 
students meshed the gears during the 5-min task, despite the fact that 5 of the 10 compo-
nents were gears, while 7 of the 8 post-course students performed this action. On the Flash-
light-Repair problem, the experts were more likely to interact with all of the components in 
the flashlight that could have been potential sources of error, fluidly shifting their attention 
across components. In contrast, the pre-course students became increasingly fixated on a 
single source of error—the cap and spring—while failing to attend to the burned-out bulb.

In both cases, it was as if the post-course students were better able to “see” the vari-
ous components and their ways of interacting than the pre-course students, and this way 
of “seeing” made them more like expert engineers. On the Gearbox problem, focusing 
on mechanical relationships had the practical effect of restricting the problem space by 
reducing the number of free parts and ways of combining them, while simultaneously 
producing a more coherent understanding of the object-to-be-constructed. On the Flash-
light problem, focusing on the mechanical (i.e., causal) relationships between compo-
nents ensured that all of the sources of error were inspected, including the bulb, and 
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helped participants avoid getting stuck repeatedly examining a single component. In 
both cases, the ability to “see” the mechanistic relationships between components had 
the practical effect of guiding the search for a solution down more productive avenues.

This finding is consistent with nearly a century of research on problem solving that 
has linked the ability to solve problems with perceptual acumen. Gestalt psychologists, 
cognitive scientists, and learning scientists have all identified ways that experts are able 
to better solve problems by perceiving things that novices do not, attributing their per-
ceptual differences to their profound and well-structured domain knowledge (Chase & 
Simon, 1973; Chi et al., 1981; Duncker, 1939; Luchins, 1942).

However, these established explanations do not fully explain our findings. The hands-
on problems that were used to assess problem-solving skills were specifically chosen 
because they involved mechanistic systems that students did not gain experience with 
during the course. Thus, improvement in students’ ability to solve these problems can’t 
be attributed to a change in domain knowledge, suggesting that other factors must be 
responsible for this change.

Theories of professional vision (Goodwin, 1994) and disciplined perception (Stevens 
& Hall, 1998) provide an alternative explanation that better agrees with our findings. 
Both theories hold that these new ways of “seeing” are learned through participation 
in authentic, situated social activities, where experts help novices learn to see in new 
ways. Thus, seeing is not merely a mental or perceptual process, but a socially organ-
ized activity “accomplished through the deployment of a range of historically consti-
tuted discursive practices” (Goodwin, 1994, p. 606). Fostering this “vision” is not solely 
about imparting domain knowledge but also about immersing students in authentic 
experiences where they can socially cultivate and refine their perception.

Theories of situated cognition argue that learning is tightly bound to the activities 
and contexts in which it takes place, and that traditional classroom environments and 
ways of learning are too different from everyday life to provide useful, robust knowl-
edge (Brown et al., 1989). A more ideal learning environment is one where people can 
work together in authentic activities (i.e., the ordinary practices of a culture). While 
makerspaces may not be perfectly authentic learning environments, they support types 
of activities that are more aligned with theories of situated cognition than other environ-
ments in K-12 institutions. Students typically have the autonomy to choose their pro-
jects, define their roles in group work, and decide their daily tasks. The student–teacher 
dynamic is often fundamentally altered, with teachers and students collaborating on 
problems which don’t have an obvious solution. The iterative design approach mirrors 
methods used by experts, and the tools that students work with are practically identical 
to those used in engineering workshops, companies, and factories.

Thus, the primary value of incorporating makerspaces in schools may be that they 
offer students a situated, authentic learning environment, conducive to developing genu-
ine, applicable knowledge and skills for non-academic settings. And given the unique 
nature of makerspaces within the K-12 landscape, they stand out as a fertile ground 
for enabling the cultivation of new ways of “seeing” mechanistic systems and problems 
that are more like those of experts. The ability to perceive and work on these types of 
problems is not just theoretically significant but has practical implications. Not only are 
these types of problems commonly encountered in STEM domains, but they are also 
encountered in everyday situations, such as when a household appliance breaks or when 
one needs to assemble a piece of furniture or a children’s toy. Thus, educational mak-
erspaces may not only prepare students for future studies in STEM disciplines, but may 
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also empower students with problem-solving capabilities invaluable in everyday life, 
bridging the gap between academic learning and real-world applicability.

Limitations and next steps

The analyses of the process data were valuable in identifying and characterizing the distinct 
approaches taken to work on the hands-on problems. However, because we did not assess 
the students’ knowledge of the mechanisms used in these problems, it was not possible to 
conclude with full certainty whether the differences in approaches were due to differences 
in knowledge, skill, or some combination of both. One way of determining this would be to 
use a think-aloud protocol during the problems. This method would not only make it possi-
ble to determine each participant’s familiarity and prior knowledge about the problem, but 
it would also provide more insight into the problem-solving strategies that each participant 
was using. In a future study, using a think-aloud protocol to compare experts and novices 
on the same set of hands-on tasks could provide deeper insight into how the differences in 
actions reflected differences in strategy.

A second limitation was that this study used a between-subjects design to assess changes 
in problem-solving skills. This choice that was made to avoid test–retest effects; however, 
this effectively reduced the sample size and the power of the study, leaving open the pos-
sibility that the effects were not due to changes in problem-solving skill, but simply due to 
an uneven distribution of students within each group (e.g., the students with prior electrical 
knowledge ended up in one group, and the students with prior knowledge of gears ended 
up in another). A within-subjects design would have avoided these problems, and would 
have also made it possible to investigate the effects of the course on individual students, as 
opposed to only being able to examine group effects.

Even a within-subjects design would not be able to account for the possibility that 
observed changes were due to something that occurred outside the course. This would only 
be possible with the use of a control group who did not participate in the course, which 
the current study did not use. Because of this, there is a possibility that the changes we 
observed were due to other experiences that the high-school students had over the course 
of the school year. For example, there is the possibility that the students learned about cir-
cuits or geared mechanisms in another course, which could explain the differences found in 
this study. Use of a control group sampled from the same population would make it possi-
ble to establish a causal link between participation in the makerspace and the development 
of problem-solving skills.
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