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Atomic-level structure determination of
amorphous molecular solids by NMR

Manuel Cordova 1,2, Pinelopi Moutzouri1, Sten O. Nilsson Lill3,
Alexander Cousen4, Martin Kearns5, Stefan T. Norberg 6,
Anna Svensk Ankarberg 6, James McCabe5, Arthur C. Pinon7,
Staffan Schantz 6 & Lyndon Emsley 1,2

Structure determination of amorphous materials remains challenging, owing
to the disorder inherent to these materials. Nuclear magnetic resonance
(NMR) powder crystallography is a powerful method to determine the struc-
ture of molecular solids, but disorder leads to a high degree of overlap
between measured signals, and prevents the unambiguous identification of a
single modeled periodic structure as representative of the whole material.
Here, we determine the atomic-level ensemble structure of the amorphous
form of the drug AZD4625 by combining solid-state NMR experiments with
molecular dynamics (MD) simulations andmachine-learned chemical shifts. By
considering the combined shifts of all 1H and 13C atomic sites in the molecule,
wedetermine the structure of the amorphous formby identifying an ensemble
of local molecular environments that are in agreement with experiment. We
then extract and analyze preferred conformations and intermolecular inter-
actions in the amorphous sample in terms of the stabilization of the amor-
phous form of the drug.

Structure-activity relations drive most areas of modern chemistry. For
example, the design of efficient and safe pharmaceutical drugs can be
rationalized through the understanding of their atomic-level structure.
This cangreatly accelerate the search for new compoundswith specific
properties1–3. Tools to determine atomic-level structures have thus
become a vital part of modern chemistry research. This is a particular
challenge for powdered molecular solids.

In contrast to methods such as powder X-ray diffraction4–6 or
electron diffraction7–12, NMR directly probes the local atomic envir-
onment, allowing for structural characterization without the need for
long-range order13. In this direction, solid-state NMR has seen specta-
cular progress in the last few years13–16, and methods have been
introduced to solve crystal structures of bulk inorganic17–20 or

molecular solids14,15,21–28. This has resulted in successful structure
determination of a variety of powdered materials13, including organic
solids14,23–25,29–34, enzyme active sites35, cementitious materials36–38,
battery materials39,40, and hybrid perovskite materials41. These struc-
tures have been solved by comparing density functional theory (DFT)
chemical shifts (or other NMR parameters) computed on model
structures (typically generated through crystal structure prediction
(CSP) protocols) with experimental values22–25.

Despite these remarkable results, complete atomic-level structure
determination of amorphous molecular solids remains extremely
challenging42,43. Nevertheless, amorphous solids are becoming
increasingly important. For example, the development of amorphous
drug formulations is of current high interest in the pharmaceutical
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industry, owing to their enhanced solubility and bioavailability with
respect to crystalline drugs44–47. However, in the absence of methods
for atomic-level structure determination, it is not possible to rationa-
lize the factors that lead to the stabilization of amorphous forms,
which is a crucial step in developing stable formulations.

The disorder inherent to these compounds leads to the broad-
ening of NMR signals, which leads to significant overlap between the
peaks associated with different atomic sites. Consequently, this
increases the need formulti-dimensional experiments, which aremore
difficult to obtain than for crystalline materials due to the lower sen-
sitivity associated with broader lineshapes. The assignment of chemi-
cal shifts for amorphous compounds is thus often challenging. Recent
advances in dynamic nuclear polarization (DNP)48–50 have resulted in
significant gains of sensitivity in crystalline and amorphous molecular
solids, leading to a significant reduction in experimental time required
to obtain multi-dimensional NMR spectra of solids.

In addition to these experimental considerations, modeling
amorphous structures of materials generally requires the use of
molecular dynamics (MD) simulations of large cells typically contain-
ing hundreds of molecules. This results in a prohibitive cost for com-
puting chemical shifts using DFT for such large systems. Several
approaches have been introduced in order to circumvent this draw-
back, ranging from using small (hundreds of atoms) amorphous sys-
tem sizes36–38,51,52 to isolating local environments to compute chemical
shift35,53,54 to including the effect of long-range interactions by
approximate methods55–59. While these methods do enable the com-
putation of chemical shifts at the DFT level of theory for amorphous
solids, the computational cost remains significant, preventing large-
scale chemical shift computations.

Structural disorder has been investigated in proteins by a com-
bination of solid-state NMR, structure generation algorithms, and
chemical shift predictions60–62. However, such studies have relied on
models of chemical shifts in proteins based in part on their primary
and/or secondary structure63–66. Such models are thus not directly
applicable to other molecular solids.

Machine learning (ML) models developed in recent years have
proven able to reproduce quantummechanical properties ofmaterials
with similar accuracy as DFT, and at a fraction of the computational
cost67,68. In particular, ML models of chemical shifts have been intro-
duced and shown to be as accurate as DFT64,65,69–78. Recently, we
introduced ShiftML, an ML model trained to predict chemical shifts in
molecular solids79. In its most recent version, the model is trained to
reproduce DFT results for solids containing up to 12 elements, and
includes distorted geometries, which would be key to describing
amorphous systems80.

We previously showed how combiningMDsimulations with large-
scale chemical shift predictions obtained using ShiftML allowed the
determination of the hydrogen bonding structures in an amorphous
drug by comparison with experimentally obtained shifts42. However,
this approach used a single chemical shift, to focus on the determi-
nation of the hydrogen bonding motifs in the structure, as a proof of
concept.

Here, we determine the complete ensemble atomic-level struc-
ture of the amorphous drug AZD462581,82 through the combination of
DNP-enhanced solid-state NMR, MD, and machine-learned chemical
shifts. To do this we introduce a general approach that integrates
multiple chemical shifts and includes the experimental spread of
chemical shift distributions inNMRspectraofmolecular solids, thatwe
use to select an ensemble of local molecular environments that best
match the chemical shift distributions in the measured spectra. This
process is applied to over onemillionmolecules fromMD simulations,
for whichwe predict chemical shifts. From an analysis of the extracted
ensemble of local molecular environments in best agreement with the
experiments, we identify key intermolecular interactions and con-
formations present in the amorphous sample. The local atomic

environments determined by NMR were found to accurately repro-
duce the radial distribution function measured for the sample by
powder X-ray diffraction, and to correspond to energetically favorable
local structures.

Results
Figure 1 shows the chemical structure of AZD4625 and the labeling
scheme used here, as well as the experimental 1D and 2DNMR spectra
obtained for the amorphous form of AZD4625. The spectra display
broad linewidths, typical of disordered systems. This highlights the
need formulti-dimensional experiments in order to obtain a confident
assignment, by spreading the signals over multiple dimensions. With
this set of spectra the 1H and 13C chemical shifts obtained were
assigned as described in the Methods section, leading to the assign-
ments given in Supplementary Table 6. Byfitting Gaussian functions to
resolved peaks in the 1D 1H and 13C MAS spectra, and 2D 1H-1H DQ/SQ
spectrum, we obtained linewidths between 2 and 6ppm for 13C, 0.6
and 1 ppm for C–H protons, and 1.8 ppm for the OH proton (see Sup-
plementary Table 6 and Supplementary Figs. 2–5). Here, we assume
Gaussian shapes for all experimental distributions of chemical shifts.
The extracted experimental chemical shift distributions will then serve
as the basis to score molecular environments as described in the
Methods section. We note that no crystalline form of pure AZD4625
has previously been reported.

To generate a broad ensemble of possible structures, eight MD
simulations were carried out with cells containing 128 molecules of
AZD4625, randomly initialized in order to model the amorphous sys-
tem, as described in the Methods section. Chemical shift predictions
performed using ShiftML2 were then compared with the experimental
values obtained for 1H and 13C (excluding the protons and carbon
labeled 1 in Fig. 1a due to the ambiguity in their assignment). A total of
1,025,280 molecular environments, each comprising a central mole-
cule and all molecules that have at least one atom within 7 Å from any
atom of the central molecule (see Methods section), were extracted
from theMDsnapshots. For each atomic site in the centralmolecule of
a molecular environment, we compute the probability that the pre-
dicted shift is drawn from the corresponding experimental chemical
shift distribution. The probabilities across all atomic sites are then
combined into a global probability that the local molecular environ-
ment matches the NMR experiments. More details are given in the
Methods section. Fig. 2a shows the root-mean-square error (RMSE)
between 1H and 13C chemical shifts computed for all AZD4625 mole-
cules in each of the 8010 snapshots taken from the MD trajectories, as
well as the calculated probability that the localmolecular environment
of each molecule is consistent with the NMR experiments. This
includes the computation of chemical shifts for over a million mole-
cules. As expected, higher probability is correlated with lower 1H and
13C shift RMSE, but it is very important to note that the RMSEs only
consider the difference between the center of the experimental dis-
tributions of shifts, and the corresponding chemical shift prediction
for each atomic site,while theprobability calculatedusing Eqs. 1–4also
take into account thewidth of the experimental distributions as well as
the prediction uncertainty, providing an improved picture of the
compatibility of a given local molecular environment with the
experiments. The histogram of all probabilities of local molecular
environments (pj) to match the experiments is shown in Fig. 2b. Here,
we selected the 1% of local molecular environments in best agreement
with the experiment to construct the NMR ensemble, which corre-
sponds to the probabilities above 33%, as indicated by the dashed
vertical line in Fig. 2b.

Here, we independently select molecular environments compa-
tible with the NMR experiments. The generation of environments
through theMD simulations is inherently biased by the forcefield used
and the starting configurations. The selection of the subset that best
matches the experimental data does not aim here to reproduce the
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exact experimental ensemble of molecular environments in the sam-
ple (as is done, e.g., in NMR studies of intrinsically disordered
proteins83–85), but here it provides anadditional bias in order to identify
systematic structural differences from the ensemble generated byMD,
as seen below.

Figure 2c–e shows thehistogramsof chemical shifts computed for
carbon labeled 3, proton labeled 13, and of the OH proton for all
AZD4625 molecules in the MD trajectories as compared to those from
the NMR ensemble. These examples are taken to illustrate the typical
changes of chemical shift distributions seen upon the selection of local
atomic environments. The distributions for all other protons and car-
bons considered are given in Supplementary Figs. 7–11. The

distribution of predicted shifts for carbon labeled 3 (Fig. 2c)was found
to be significantly closer to the experimental distribution of shifts
upon selection of local molecular environments, suggesting that this
chemical shift does discriminate between the structures. In contrast,
for example, the distribution of predicted shifts for the proton labeled
13 (Fig. 2d), which already displays a large overlap with the corre-
sponding experimental distribution of shifts, does not display a sig-
nificant change upon the selection of local molecular environments.
Then we note that the distribution of predicted chemical shifts for the
OH proton (Fig. 2e) displays a large difference after the selection of
local molecular environments, again suggesting that this shift is a
powerful discriminator. However, even after the selection of the best
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Fig. 1 | NMR spectra of the amorphous form of AZD462 used for chemical shift
assignment. a Chemical structure of AZD4625 and carbon (blue numbers) and
nitrogen (red letters) labeling schemes used here. 1D (b–d) DNP-enhanced 13C
CPMAS spectra without (b, c) and with (d) CPPI spectral editing. f 1D 1H 100 kHz
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match structures, the overlap with the predicted distribution is not
perfect. We attribute this to the significant proportion of OH protons
weaklybonded tohydrogenbondacceptors in theMD trajectories (see
Supplementary Fig. 12). This effect may also be due to bias in the shift
predictions. We also note that importantly the best match selection
does not critically depend on any single shift, but is the result of the
joint match to all the shifts in the molecule.

Figure 3 shows the analysis of structural properties in the set of
best-match molecular environments, compared to all molecular
environments present in all MD snapshots. As seen in Fig. 3a, the
selection of local molecular environments compatible with the NMR
experiments promotes hydrogen bonds, in particular with the oxygen
labeled 3 and the nitrogen labeled c. Accordingly, the proportion of
OHprotons not forminghydrogenbonds is significantly reduced in the
set of selected local molecular environments. Hydrogen bonding to
nitrogen was found to generally lead to further deshielding of the OH
proton compared to hydrogen bond to oxygen, as seen in Supple-
mentary Fig. 12.

Preferred conformations of AZD4625 can be extracted from the
NMR ensemble. Figure 3b shows that the position of the OH proton is
generally preferred tobepointing away from thebodyof themolecule,
and that this trend is slightly reinforced in the NMR ensemble. Simi-
larly, the Z conformation of the enone group is found to be preferred,
and that preference is retained in the NMR ensemble (Fig. 3c). The
conformation yielding dihedral angles between the aromatic planes
from −120 to −90° were found to be promoted in the NMR ensemble
(Fig. 3d). We note that for this case, five of the eight MD simulations
carried out started with a dihedral angle around −90° and three of
them started with an angle around 90°, which explains the difference
in the height of the distributions for positive and negative values in all
molecules from the MD snapshots (more details are given in SI). The
chair conformation of the aromatic 6-membered ring was also found
to be promoted by theNMRselection of localmolecular environments
compared to the boat conformation that was also observed in the MD
simulations (Fig. 3e).

It is interesting to compare the total radial distribution function
G rð Þ and differential correlation function D rð Þ obtained from the
ensembles before and after the selection of local molecular environ-
ments with the functions obtained experimentally by powder X-Ray
diffraction (Fig. 4). The MD trajectories were found to accurately
reproduce the experimental data, with the largest differences found in
the two peaks at 1.4 and 2.4 Å. This can be attributed to differences in
bond lengths between the MD simulations and the sample. Impor-
tantly, the features at distances above 3 Å are correctly captured by the
MD simulation. The selection of local molecular environments was not
found to significantly change the similarity between the simulated and
experimentalG rð Þ orDðrÞ. This result highlights that the scatteringdata
is unable to sensitively discriminate between ensembles of local
molecular environments in the samples studied here.

Figure 5 shows the predicted formation energies of molecules of
AZD4625 with their local environment, including the formation
energy of the central molecule (as described in theMethods section).
This is a measure of the stabilization of the molecules by their
environment. The local environments in the NMR ensemble were
found to result on average in stabilization of the central molecule as
compared to random local molecular environments extracted from
the MD simulations, by 8.7 ± 0.7 kJ/mol on average (Fig. 5a). This
result suggests that that the selection of molecular environments,

Fig. 2 | Ensemble structure determination. aA comparison of 1H and 13C chemical
shift RMSEs for each molecule in the MD snapshots, colored according to its
probability to be simultaneously compatible with the experimental shift distribu-
tions for all assigned atoms (as described by Eqs. 1–4 in the Methods section).
b Histogram of the probabilities of all molecules in the MD snapshots to be com-
patible with the experimental shift distributions. The dashed line indicates the
probability threshold used to select local molecular environments. The ranges of
probabilities included in thewhole and theNMRensembles are indicated above the
histogram. Examplesof thepredicted chemical shift distributions for the (c) carbon
labeled 3, (d) proton labeled 13, and (e) OH proton in all molecular environments
(blue) in the MD snapshots and in the NMR ensemble (red), compared to the
corresponding experimentally measured distributions (black). Equivalent figures
for all the other assigned atoms are given in Supplementary Figs. 7–11.
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based purely on NMR chemical shifts, also led to the selection of
energetically favorable local molecular environments. Figure 5b
shows that hydrogen bonding of the OH proton of a central molecule
to either oxygen labeled 3 or nitrogen labeled d leads to enhanced
stabilization of the central molecule by its whole environment. This
also corroborates the increase in hydrogen bonds formed with these
two atoms in the NMR ensemble of molecular environments dis-
cussed above (Fig. 3a).

A set of 20 randomly selected central molecules from the NMR
ensemble is shown in Fig. 6a. This highlights the structural flexibility of
AZD4625 in the amorphous state. Fig. 6b shows three-dimensional
atomic densitymaps around theOHproton in theNMR(left panel) and
the random (middle panel) local molecular environments, as well as
the difference between the two atomic density maps (right panel). As
expected fromFigs. 3a and 5b, hydrogen bonding towards oxygen and
nitrogen atoms is promoted by the selection of local molecular
environments. This is highlighted by the contours representing nitro-
gen and oxygen atomic densities in the rightmost panel in Fig. 6b. This
suggests that these interactions are critical to stabilizing the structure
of amorphous AZD4625. Figure 6c shows similar atomic density maps,
aligned around themethyl group of AZD4625. The difference between
atomic density maps highlights the preferred conformation of the 6-
and 8-membered aliphatic rings.

Discussion
We have determined the ensemble atomic-level structure of the
amorphous form of AZD4625 by combining solid-state NMR experi-
ments with MD simulations and prediction of chemical shifts for over
onemillion AZD4625molecules in theMD trajectories. Importantly, no
crystalline structure of the pure compound has previously been
reported.

Local molecular environments compatible with the NMR spectra
measured were selected through a general approach that integrates
multiple chemical shifts, and includes the spread of chemical shift
distributions in the experimental spectra as well as the uncertainty of
the chemical shift predictions. We expect that the method presented
here can be straightforwardly applied to determine the structure of
any molecular solid.

The local atomic environments determined by NMR were found
to accurately reproduce the radial distribution function measured for
the sample by powder X-Ray diffraction. The NMR ensemble was also
found to lead to an overall stabilization of the selected molecules by
their environment.

The ensemble of selected local molecular environments high-
lights key structural properties in the amorphous sample that play a
critical role in the structure and stabilization of the material in its
amorphous form.

Methods
Synthesis
The synthesis of AZD4625 is described in ref. 81. The amorphous
AZD4625 solid was precipitated from 2-methyltetrahydrofuran (2-
MeTHF) and n-heptane. Crude API was initially dissolved in 2-MeTHF,
the solution of which was charged directly to n-heptane at 18 °C. The
precipitate was isolated under vacuum and dried from 25–70 °C.

X-ray diffraction experiments
Synchrotron X-ray PDF data were collected on the I15-1 beamline at
DiamondLight Source, UK. Powdered sampleswere containedwithin a
1mm inner diameter polyimide capillary with a 0.025mm wall thick-
ness and spun perpendicular to the beam during data collection. An
empty capillary was also collected for background subtraction. Scat-
teringdatawere collected at an incident X-ray energy of 76.69 keVwith
one Perkin Elmer XRD4343CT area detector placed close to the sample
(~200mm) for PDF data and a second Perkin Elmer XRD1611CP3 area

0

5

N
or

m
al

is
ed

 c
ou

nt
 x

10
00

10

15

20

N
N

CH3

N
N

H3C

N

N

N

N

O

CH2
CH3

*
* **

e

0
2

N
or

m
al

is
ed

 c
ou

nt
 x

10
00

4
6
8

10
12
14
16

FCl

OH

F

FCl

HO

F

FCl

F

HO

FCl

F

OH

OH

F
Cl

F

*
**
*

d

0 0810909--180
0

2

4

6

8

10

N
or

m
al

is
ed

 c
ou

nt
 x

10
00

O

O

*

* *
*

*
*

*

*

Angle [°]

c

FO

H
FO

H* * *
* *

* *
*

0

2

4

N
or

m
al

is
ed

 c
ou

nt
 x

10
00

6

8

10

12

0 0720909-
Angle [°]

b

F OH···X

Proportion [%]
0 20 40 60

None
Nd
Nc

O23
O9
O3

All
NMR

a

Na/Nb/
F15/F19

10 30 50

180

0 0810909--180
Angle [°]

180 063072090
Angle [°]

All
NMR

All
NMR

All
NMR

All
NMR

Fig. 3 | Structural properties of the amorphous form of AZD4625. a Proportions
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detector placed further from the sample (~850mm) for higher reso-
lution Bragg data; the precise detector geometries were calculated
using DAWN86 from data collected on a crystalline standard (NIST
SRM640c). Total data collection times were 30min for the PDF data
and 2min for Bragg data. 2D scattering data were corrected for
polarization, solid angle, and detector thickness prior to integration to
1D using DAWN86. The GudrunX program was then used to perform
container background, multiple scattering, Compton scattering, and
absorption corrections on data in the range 0.3 ≤Q ≤ 26 Å−1, prior to
Fourier transform to produce the PDF87.

NMR experiments
Experimentswere carried out using either room temperature ultra-fast
MAS rate techniques that enhance 1H spectral resolution or DNP
approaches that enhance the sensitivity of NMR signals. DNP is per-
formed at temperatures of ~100K and relies on the transfer of high
electron spin polarization, typically fromexogenously added solutions
of organic radicals, to nuclei of interest upon microwave
irradiation48,49,88,89.

The DNP-enhanced NMR experiments were carried out on com-
mercial Bruker Avance Neo NMR spectrometers at a nominal field
strength of 9.40 T equipped with either a 264GHz klystron or a
263GHz gyrotron microwave source and a 3.2mm LTMAS DNP probe
in a 1H/13C/15N configuration which was cooled to about 100K before
sample insertion. The DNP sample was packed into a 3.2mm sapphire
rotor, plugged with a Teflon insert, and topped with a zirconia drive
cap. Prior to packing, the powder sample of the amorphous form of
AZD4625 was ground by hand in a pestle and mortar and then
impregnated48,49,88,89 with a 20mM solution of the AMUPol biradical90

dissolved in a mixture of H2O:D2O:
12C-glycerol (10:30:60 v/v). A DNP

enhancement of a factor 6–8 was achieved, measured as the ratio of
the (1H)13C cross-polarization (CP) signal intensity between spectra
acquired with and without microwaves. While this is a modest
enhancement, it was sufficient to enable the acquisition of the natural
abundance 13C-13C INADEQUATE experiments described below. DNP
spectra were acquired at MAS rates of 8 or 10 kHz.

The room temperature NMR experiments were performed on a
dry sample of the powder at a MAS rate of 100 kHz, using a Bruker
0.7mm room temperature HCN CPMAS probe at a magnetic field of
21.1 T. A States-TPPI acquisition scheme was used to obtain phase-
sensitive two-dimensional spectra. The 1H and 13C chemical shifts were
referenced to literature values. More experimental details and a link to
the raw NMR data can be found in the SI.

Chemical shift assignment
The 1H and 13C resonances of the amorphous form of AZD4625
(Fig. 1a) were assigned using one-dimensional 1H and 13C MAS NMR
experiments, 13C CPPI spectral editing91, (Fig. 1b–d, f), in combination
with two-dimensional 1H-1H, 13C-13C, and 1H-13C correlation spectra.
The 1H-1H DQ/SQ (Fig. 1e) spectrum provides through-space dipolar
correlations between protons, the natural abundance DNP-enhanced
refocused 13C-13C INADEQUATE49 (Fig. 1h) provides the covalent
connectivities between carbon atoms, and the short- and long-range
1H-13C DNP-Enhanced DUMBO-HETCOR experiments (Fig. 1g, i),
provide 1H-13C heteronuclear shift correlations. A DNP-enhanced
natural abundance 13C-13C INADEQUATE spectrum recorded for a
crystalline form was also used to guide the assignment (Supple-
mentary Fig. 1). The chemical shift assignments obtained from an
analysis of these spectra for the 1H and 13C nuclei are given in Sup-
plementary Table 6. The chemical shift of C1 was not taken into
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Fig. 4 | Radial distribution functions. The total radial distribution function G(r)
(a, b) and the differential correlation function D(r) (c, d) measured from powder
X-ray diffraction (seemethods) (blue) and simulated (red) using (a, c) all molecules
and (b, d) the best match ensemble by NMR. The lower panels show the residual

between the experiment and simulations in each case, along with the RMSE
obtained. The plots on the right of each panel show the range between 3 and 10Å,
and the RMSE in the corresponding range.
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consideration in the subsequent analysis due to high uncertainty in
the assignment.

MD simulation of AZD4625
The amorphous structure of AZD4625 was modeled by carrying out
MD simulations with the OPLS4 force-field92 in Desmond93,94 on peri-
odic amorphous cells containing 128 molecules. Eight different
amorphous cell simulations were generated and evaluated using
Materials Studio95. After equilibration for 1 ns using the canonical NVT
ensemble first at 100K and then at 298K followed by 22 ns using the
isothermal-isobaric ensemble (NPT) at 298K and 1 bar, production
simulations were carried out for 500 ns using the NPT ensemble at
298Kand 1 bar. Snapshots of eachMDsimulationwere extracted every
100ps and input directly to ShiftML280 for 1H and 13C chemical shift
predictions. The chemical shielding valueswere converted to chemical
shifts using offsets of 30.78 and 170.04 ppm for 1H and 13C, respec-
tively. The input files of the MD simulation, extracted MD snapshots,
and predicted shifts are given with the raw data. Further information
about the MD simulations is given in SI.

Selection of local molecular environments
Local molecular environments, comprising a central molecule and all
other molecules having at least one atom within 7 Å from any atomic
site in the central molecule, were extracted from the MD snapshots
(1,025,280 environments in total) and selected based on the prob-
ability of the molecule at the center of each environment tomatch the
experimental distributions of chemical shifts. Considering one atomic

site ai in AZD4625, we describe the associated distribution of experi-
mental chemical shifts as aGaussian function centeredon the chemical
shift experimentally measured, δexp,ai

, and with a width given by the
linewidth of the peaks observed in the spectra, σexp,ai

. Based on the
measurement of the linewidths in the resolved peaks in the spectra of
Fig. 1, here we obtained widths between 2 and 6ppm for the 13C
resonances, and 0.6 and 1 ppm for the 1H resonances, except for the
OH proton for which we obtained a width of 1.8 ppm. The centers and
widths of the experimental chemical shift distributions are given in
Supplementary Table 6 and Supplementary Figs. 2–5.

The chemical shift δpred,a jð Þ
i

and uncertainty σpred,a jð Þ
i

predicted
using ShiftML2 for that atomic site aðjÞ

i in a molecule j within a given
MD snapshot can similarly be described as a Gaussian function cen-
tered on the shift prediction and with a width given by the prediction
uncertainty.We then define the probability that the computed shift is
within the experimental distribution of chemical shift with the two-
tailed p value resulting from the Z score computed between the two
Gaussians:

ZaðjÞ
i
=

δexp,ai
� δpred,a jð Þ

i

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
exp,ai

+ σ2
pred,a jð Þ

i

q : ð1Þ

The p value pval

�
Za jð Þ

i

�
thus corresponds to the probability that the

computed shift is drawn from the experimental distribution of che-
mical shift for that atomic site:

pval Za jð Þ
i

� �
=

ffiffiffiffi
2
π

r
�
Z 1

Z jð Þ
ai

exp � x2

2

� 	
dx: ð2Þ

We note that the p value corresponds to the null hypothesis,
which is here that the shift is drawn from the experimental distribu-
tion. A large p value thus indicates a better correspondence between
the predicted shift and experimental distribution. To obtain the
probability that the computed shift corresponds to the experimental
distribution of shifts, we divide the p value obtained by the prediction
uncertainty divided by the first quartile of all predicted uncertainties
obtained for that atomic site in all molecules of all MD snapshots,
σ0
pred,ai

, capped to aminimumvalue of 1. This stepwas done in order to
prevent chemical shifts predicted with very high uncertainty, thus
where the shift prediction is unreliable, from being artificially asso-
ciated with a high probability of corresponding to the experimental
distribution.

pa jð Þ
i
=

pval Za jð Þ
i

� �

max 1,
σ
pred,a jð Þ

i
σ0
pred,ai

� 	 : ð3Þ

The probability pj that a given molecular environment j within an
MD snapshot corresponds to the experimental spectrum was then
evaluated as the geometric mean of the probabilities obtained using
Eq. 3 for all protons and carbons in the molecule (except, here, for the
protons and carbon labeled 1 in Fig. 1a, due to the high uncertainty in
the assignment of that carbon). This probability was computed for all
local environments in all MD snapshots:

pj =
Yn

i

pa jð Þ
i

 !1
n

ð4Þ

The selection of the ensemble of local molecular environments
most compatible with the experimental spectra, that we refer to as
the NMR ensemble, was then performed by selecting all environ-
ments having an overall probability pj above 0.33, corresponding to
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Fig. 5 | Formation energies. a Relative formation energies of intermolecular
complexes of 8000 randomly selected molecules (blue) and the molecules from
the NMR ensemble (red). The zero is set to be the mean formation energy of all
intermolecular complexes. b Relative formation energies of the local molecular
environments in theNMRensemble for different hydrogen bondacceptorsbonded
to the OH proton. The zero is set to be the mean formation energy of inter-
molecular complexes where no hydrogen bonding acceptor is bonded to the OH
proton of the central molecule. Formation energies were computed as the differ-
ence in energy between a molecular environment (all molecules with at least one
atom within 7 Å from any atom of the central molecule) with and without the
central molecule, and thus contain both intermolecular interactions and the con-
formational energy of the central molecule. The error bars shown are the standard
error on the mean.
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about 1% of all local molecular environments present in the MD
snapshots (10,107 environments). We note that the cutoff value of
0.33 was chosen as a balance between the maximization of the
overlap and minimization of the Jensen-Shannon divergence96 with
the experimental shift distributions, and the selection of large
enough ensemble to describe the amorphous compound (see Sup-
plementary Fig. 6).

In addition, 1000 local molecular environments were randomly
selected fromeachMDsimulation to construct a randomensemble for
comparison with the experimentally determined ensemble.

Computation of formation energies of local molecular
environments
The formation energy of local molecular environments was computed
as the energy differencebetween the environments (allmoleculeswith
at least one atom within 7 Å from any atom of the central molecule)
with and without the central molecule. This energy thus includes both
the intermolecular interactions and conformational energy of the

central molecule. The energies were computed using the DFTB-D3H5
semiempirical level of theory using the 3ob-3-1 parameter set and the
DFTB+ software version 22.297–103. The computed energies are given
with the raw data.

Identification of hydrogen bonds in local molecular
environments
Hydrogen bonds involving the OH proton of the central molecule in
each local molecular environment were identified by defining hydro-
gen bonds as O–H� � �X motifs (X =O, N) with an O–H–X angle above
130° and H–X distance shorter than 2.5 Å.

Three-dimensional atomic density maps
The three-dimensional atomic density maps were constructed by
aligning the selected and random ensembles of local molecular
environments on given atoms in the central molecule. This was done
by minimizing the root-mean-square displacement between the posi-
tions of the atomsused for the alignment in the centralmoleculeof the

a

b

NMR Random Difference

- =

c

NMR Random Difference

- = * *
*
*

: H : C : N : O

**
*

H C N
O F Cl

Fig. 6 | Structures representative of the molecular conformations present in
the amorphous form of AZD4625. a Superposition of 20 molecules of AZD4625
randomly selected from the NMR ensemble. Three-dimensional atomic density
maps inNMR-selected and randommolecular environments aligned around (b) the
OHand (c) themethyl groups. The differencebetween the 3Dmaps for the selected
and random molecular environments are shown on the right panels, where the
atoms aligned are indicated by asterisks in the difference maps. 3D contours are

drawn at levels of 0.2, 0.4, 0.6, and 0.8 for the atomic density maps and 0.05, 0.1,
0.15, and 0.2 for the differencemaps. The conformation of the molecule displayed
alongwith the atomicdensitymapwas chosen such that the various dihedral angles
best correspond to the maxima of the distributions for selected local molecular
environments in Fig. 3b–e. The three-dimensional contours in the rightmost
panel in b and c highlight the overall structural features promoted by the NMR-
based selection.
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different molecular environments. Three-dimensional atomic density
maps were then generated by summing three-dimensional Gaussian
functionswith awidth σ =0.5 Åplaced at the atomic positions rai

of the
aligned local environments, divided by the number of environments
aligned.

Gð r!Þ= 1
Nenv

XNenv

i

X
ai2i

exp � j r!� r!ai
j2

2σ2

0
@

1
A ð5Þ

Individual atomic density maps were constructed for each ele-
ment present in the set of aligned environments. The Gaussian func-
tions where not normalized, and this leads to a value of 1 at a given
position if an atom of a given element is found at that position in all
environments. Each atomic densitymapwas evaluated on a 31 × 31 × 31
cubic grid centered at the aligned atomic sites andwith 12 Å sides. This
corresponds to a spatial sampling of 0.4Å.

Data availability
The NMR raw data are available from the Materialscloud repository
https://doi.org/10.24435/materialscloud:gk-51 in JCAMP-DX version
6.0 standard format and original TopSpin format, as well as the input
files for the MD simulations, the MD snapshots extracted, formation
energies of intermolecular complexes, and all scripts used to perform
the data analysis. All data and scripts are available under the license
CC-BY-4.0 (Creative Commons Attribution-ShareAlike 4.0
International).
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