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Abstract. It is widely believed that the success of deep networks lies in
their ability to learn a meaningful representation of the features of the data.
Yet, understanding when and how this feature learning improves performance
remains a challenge. For example, it is beneficial for modern architectures to
be trained to classify images, whereas it is detrimental for fully-connected net-
works to be trained on the same data. Here, we propose an explanation for this
puzzle, by showing that feature learning can perform worse than lazy training
(via the random feature kernel or the neural tangent kernel) as the former can
lead to a sparser neural representation. Although sparsity is known to be essen-
tial for learning anisotropic data, it is detrimental when the target function is
constant or smooth along certain directions of the input space. We illustrate
this phenomenon in two settings: (i) regression of Gaussian random functions
on the d -dimensional unit sphere and (ii) classification of benchmark data sets
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of images. For (i), we compute the scaling of the generalization error with the
number of training points and show that methods that do not learn features
generalize better, even when the dimension of the input space is large. For
(ii), we show empirically that learning features can indeed lead to sparse and
thereby less smooth representations of the image predictors. This fact is plausibly
responsible for deteriorating the performance, which is known to be correlated
with smoothness along diffeomorphisms.

Keywords: deep learning, neuronal networks, machine learning
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1. Introduction

Neural networks are responsible for a technological revolution in a variety of machine
learning tasks. Many such tasks require learning functions of high-dimensional inputs
from a finite set of examples, and thus should be generically hard due to the curse of
dimensionality [1, 2]: the exponent that controls the scaling of the generalization error
with the number of training examples is inversely proportional to the input dimension d.
For instance, for standard image classification tasks with d in the range of 103− 105, the
exponent should be practically vanishing, in contrast to what is observed in practice [3].
In this respect, understanding the success of neural networks is still an open question.
A popular explanation is that, during training, neurons adapt to features in the data
that are relevant for the task [4], effectively reducing the input dimension and making
the problem tractable [5–7]. However, understanding quantitatively if this intuition is
true and how it depends on the structure of the task remains a challenge.

Recently, much progress has been made in characterizing the conditions that lead
to feature learning, in the overparameterized setting where networks generally perform
best. When the initialization scale of the network parameters is large [8] one encounters
the lazy training regime, where neural networks behave as kernel methods [9, 10] (coined
neural tangent kernel or NTK) and features are not learned. By contrast, when the ini-
tialization scale is small, a feature learning regime is found [11–13] where the network
parameters evolve significantly during training. This limit is much less well understood
apart from very simple architectures, where it can be shown to lead to sparse repres-
entations where a limited number of neurons are active after training [14]. These sparse
representations can also be obtained by regularizing the weights during training [2, 15].

In terms of performance, most theoretical works have focussed on fully-connected
networks. For these architectures, feature learning was shown to significantly outperform
lazy training [11, 16–19] for certain tasks, including approximating a function that
depends only on a subset or a linear combination of the input variables. However,
when these primitive networks are trained on image data sets, learning features are
detrimental [20, 21], as illustrated in figure 1(see [19, figure 3] for the analogous plot
in the case of a target function depending on just one of the input variables, where
learning features are beneficial). A similar result was observed in simple models of data
[22]. These facts are unexplained, yet central to understanding the implicit bias of the
feature learning regime.

1.1. Our contribution

Our main contribution is to provide an account of the drawbacks of learning sparse
representations based on the following set of ideas. Consider, for concreteness, an image
classification problem: (i) image class varies little along smooth deformations of the
image; (ii) because tasks like image classification require a continuous distribution of
neurons to be represented; (iii) thus, requiring sparsity can be detrimental to perform-
ance. We build our argument as follows.

https://doi.org/10.1088/1742-5468/ad01b9 3
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Figure 1. Feature versus lazy in image classification. Generalization error as a func-
tion of the training-set size n for infinite-width fully connected networks (FCNs)
trained in the feature (blue) and lazy regime (orange). In the latter case the limit
is arrived at exactly by training an SVC algorithm with the analytical NTK [23].
In the former case, the infinite-width limit can be accurately approximated for
these data sets by considering very wide nets (H = 103), and performing ensemble
averaging on different initial conditions of the parameters shown in [24, 25]. Panels
correspond to different benchmark image data sets [26–28]. Results are averaged
over ten different initializations of the networks and data sets.

• In order to find a quantitative description of the phenomenon, we start from the
problem of regression of a random target function of controlled smoothness on the
d -dimensional unit sphere and study the properties of the minimizers of the empirical
loss with n observations, both in the lazy and the feature learning regimes. More
specifically, we consider two extreme limits—the NTK limit and mean-field limit—as
representatives of lazy and feature regimes, respectively (section 2). Both these limits
admit a simple formulation that allows us to predict generalization performance. In
particular, our results on feature learning rely on solutions that have atomic support.
This property can be justified for one-hidden-layer neural networks with ReLU activ-
ations and weight decay. Yet, we also find such sparsity empirically using gradient
descent (GD) in the absence of regularization, if the weights are initialized to be
small enough.

• We find that lazy training leads to smoother predictors than feature learning. As a
result, lazy training outperforms feature learning when the target function is also
sufficiently smooth. Otherwise, the performance of the two methods is comparable,
in the sense that they display the same asymptotic decay of generalization error
with the number of training examples. Our predictions are obtained from asymptotic
arguments that we systematically back up with numerical studies.

• For image data sets, it is believed that diffeomorphisms of images are key transform-
ations along which the predictor function should only mildly vary to obtain good
performance [29]. Based on the results above, a natural explanation as to why lazy
outperforms feature for fully connected networks is that it leads to predictors with
smaller variations along diffeomorphisms. We confirm that this is indeed the case
empirically on benchmark data sets.

Numerical experiments are performed in PyTorch [30], and the code for reproducing
the experiments is available online at github.com/pcsl-epfl/regressionsphere.

https://doi.org/10.1088/1742-5468/ad01b9 4
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1.2. Related work

The property training ReLU networks in the feature regime leads to a sparse represent-
ation that was observed empirically [31]. This property can be justified for one-hidden-
layer networks by casting training as an L1 minimization problem [2, 32], then using
a representer theorem [15, 33, 34]. This is analogous to what is commonly done in
predictive sparse coding [35–38].

Many works have investigated the benefits of learning sparse representations in
neural networks [2, 16–19, 39, 40] and study cases in which the true function only
depends on a linear subspace of the input space, and show that feature learning profit-
ably captures such property. Even for more general problems, sparse representations of
the data might emerge naturally during deep network training—a phenomenon coined
neural collapse [41]. Similar sparsification phenomena, for instance, have been found to
allow for learning convolutional layers from scratch [42, 43]. Our study builds on this
body of the literature by pointing out that learning sparse features can be detrimental,
if the task does not allow for it.

There is currently no general framework to rigorously predict the learning curve
exponent β defined as ϵ(n) =O(n−β) for kernels. Some of our asymptotic arguments
can be obtained by other approximations, such as assuming that data points lie on a
lattice in Rd [44] or by using the non-rigorous replica method of statistical physics [45–
47]. In the case d =2, we provide a more explicit mathematical formulation of our
results, which leads to analytical results for certain kernels. We systematically back up
our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance
and ‘stability’ or smoothness towards small diffeomorphisms of the inputs has been
conjectured by [29, 48]. Empirically, a strong correlation between these two quantities
was shown to hold across various architectures for real data sets [49]. In this reference,
it was found that fully connected networks lose their stability over training. Here, we
show that this effect is much less pronounced in the lazy regime.

2. Problem and notation

Task. We consider a supervised learning scenario with n training points {xi}ni=1 uni-
formly drawn on the d -dimensional unit sphere Sd−1. We assume that the target function
f ∗ is an isotropic Gaussian random process on Sd−1 and control its statistics via the spec-
trum, by introducing the decomposition of f ∗ into spherical harmonics (see appendix A
for definitions),

f ∗ (x) =
∑
k⩾0

Nk,d∑
ℓ=1

f ∗
k,ℓYk,ℓ (x) with E

[
f ∗
k,ℓ

]
= 0, E

[
f ∗
k,ℓf

∗
k ′,ℓ ′
]
= ckδk,k ′δℓ,ℓ ′. (2.1)

We assume that all the ck with k odd vanish apart from c1. This is required to guarantee
that f ∗ can be approximated as well as desired with a one-hidden-layer ReLU network

https://doi.org/10.1088/1742-5468/ad01b9 5

https://doi.org/10.1088/1742-5468/ad01b9


Learning sparse features can lead to overfitting in neural networks

J.S
tat.

M
ech.(2023)

114003

Figure 2. Gaussian random process on the sphere. We show two samples of the
task introduced in section 2 when the target function f∗(x) is defined on the 3D
unit sphere. (a) and (b) show samples of large and small smoothness coefficient νt ,
respectively.

with no biases, as discussed in appendix A. We also assume that the non-zero ck decay
as a power of k for k ≫ 1, ck ∼ k−2νt−(d−1). The exponent νt>0 controls the (weak)
differentiability of f ∗ on the sphere (see appendix A) and also the statistics of f ∗ in real
space:

E
[
|f ∗ (x)− f ∗ (y)|2

]
=O

(
|x−y|2νt

)
=O ((1−x ·y)νt) as x→ y. (2.2)

Examples of such a target function for d =3 and different values of νt are reported in
figure 2.

Neural network representation in the feature regime. In this regime, we aim to
approximate the target function f ∗(x) via a one-hidden-layer neural network of width
H,

fH (x) =
1

H

H∑
h=1

whσ (θh ·x) , (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to
be optimized, and σ(x) denotes the ReLU function, σ(x)=max{0,x}. If we assume that
{θh,wh}Hh=1 are independently drawn from a probability measure µ on Sd−1×R so that
the Radon measure γ =

´
Rwµ(·,dw) exists, then as H →∞,

lim
H→∞

fH (x) =

ˆ
Sd−1

σ (θ ·x)dγ (θ) a.e. onSd−1. (2.4)

This is the so-called mean-field limit [11, 12], and it is then natural to determine the
optimal γ via,

γ∗ = arg minγ

ˆ
Sd−1

|dγ (θ)| subject to:

ˆ
Sd−1

σ (θ ·xi)dγ (θ)=f ∗ (xi) ∀i = 1, . . . ,n.

(2.5)

https://doi.org/10.1088/1742-5468/ad01b9 6
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In practice, we can approximate this minimization problem using a network with large
but finite width, constraining the feature to be on the sphere |θh|= 1, and minimizing
the following empirical loss with L1 regularization on the weights,

min
{wh,θh}Hh=1
|θh|=1

1

2n

n∑
i=1

(
f ∗ (xi)−

1

H

H∑
h=1

whσ (θh ·xi)

)2

+
λ

H

H∑
h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H →∞ and λ→ 0. Note that, by
homogeneity of ReLU (2.6) can be shown to be equivalent to imposing a regularization
on the L2 norm of all parameters [32, theorem 10], i.e. the usual weight decay.

To proceed, we make the following assumption about the minimizer γ∗:

Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ⩽ n atoms, i.e.
{w∗

i ,θ
∗
i }

nA
i=1 exists so that,

γ∗ =

nA∑
i=1

w∗
i δθ∗

i
. (2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds, the
sparsity of γ∗ follows from the representer theorem, see e.g. [33]. Both the uniqueness
and sparsity of the minimizer can be justified to hold generically using asymptotic argu-
ments involving recasting the L1 minimization problem (2.5) as a linear programming
one. These arguments are standard (see e.g. [50]) and are presented in appendix B
for the reader’s convenience. From our arguments below to deduce the scaling of the
generalization error, we will mainly use that nA =O(n)—we shall confirm this fact
numerically even in the absence of regularization if the weights are initialized to be
small enough. Note that from assumption 1 it follows that the predictor in the feature
regime corresponding to the minimizer γ∗ takes the following form:

fFEATURE (x) =

nA∑
i=1

w∗
i σ (θ

∗
i ·x) . (2.8)

Neural network representation in the lazy regime. In this regime, we approximate
the target function f ∗(x) via,

fNTK (x) =
n∑

i=1

giK
NTK (xi ·x) , (2.9)

where the weights {gi}ni=1 solve,

f ∗ (xj) =
n∑

i=1

giK
NTK (xi ·xj) , j = 1, . . . ,n. (2.10)

https://doi.org/10.1088/1742-5468/ad01b9 7
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and KNTK(x ·y) is the NTK [9]:

KNTK (x ·y) =
ˆ
Sd−1×R

(
σ (θ ·x)σ (θ ·y)+w2x ·yσ ′ (θ ·x)σ ′ (θ ·y)

)
dµ0 (θ,w) . (2.11)

Here, µ0 is a fixed probability distribution which, in the NTK training regime [9], is the
distribution of the features and weights at initialization. It is well-known [51] that the
solution to the kernel ridge regression problem 2.10 can also be expressed via the kernel
trick as,

fNTK (x) =

ˆ
Sd−1×R

(gw (θ,w)σ (θ ·x)+wx · gθ (θ,w)σ
′ (θ ·x))dµ0 (θ,w) , (2.12)

where gθ and gw are the solutions of,

min
gw,gθ

ˆ
Sd−1×R

(
g2w (w,θ)+ |gθ (w,θ) |2

)
dµ0 (θ,w)

subject to:

ˆ
Sd−1×R

(gw (w,θ)σ (θ ·xi)+wxi · gθ (w,θ)σ
′ (θ ·xi))dµ0 (θ,w) = f ∗ (xi)

∀i = 1, . . . ,n. (2.13)

Another lazy limit can be obtained equivalently by training only the weights while
keeping the features at their initialization value. This is equivalent to forcing gθ(θ,w) to
vanish in equation (2.13), again resulting in a kernel method. The kernel, in this case,
is called the random feature kernel (KRFK) and can be obtained from equation (2.11)
by setting dµ0(θ,w) = δw=0dµ̃0(θ). The minimizer can then be written as in equation
(2.9) with KNTK replaced by KRFK.

3. Asymptotic analysis of generalization

In this section, we characterize the asymptotic decay of the generalization error ϵ(n)
averaged over several realizations of the target function f ∗. Denoting with dτ d−1(x) the
uniform measure on Sd−1,

ϵ(n) = Ef∗

[ˆ
dτ d−1 (x) (f n (x)− f ∗ (x))2

]
=Adn

−β + o
(
n−β

)
, (3.1)

for some constant Ad, which might depend on d but not on n. For both the lazy (see
equation (2.9)) and feature regimes (see equation (2.8)) the predictor can be written as
the sum of O(n) terms:

f n (x) =

O(n)∑
j=1

gjφ
(
x ·yj

)
:=

ˆ
Sd−1

gn (y)φ(x ·y)dτ (y) . (3.2)

https://doi.org/10.1088/1742-5468/ad01b9 8
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In the feature regime, the gj’s (y j ) coincide with the optimal weights w∗
j (features θ∗

j),
and φ with the activation function σ. In the lazy regime, y j are the training points
x j , φ is the NTK or RFK and the gj’s are the weights solving equation (2.10). We
have defined the density gn(x) =

∑
j |Sd−1|gjδ(x−yj) in order to cast the predictor as

a convolution on the sphere. As a result, the projections of fn onto spherical harmonics
Yk,ℓ read fn

k,ℓ = gnk,ℓφk, where gnk,ℓ is the projection of gn(x) and φk that of φ(x ·y). For
ReLU neurons one has (as shown in appendix A):

φLAZY
k ∼ k−(d−1)−2ν with ν = 1/2(NTK),3/2(RFK), φFEATURE

k ∼ k− d−1
2

−3/2. (3.3)

Main result. Consider a target function f ∗ with smoothness exponent νt as defined
above, with data lying on Sd−1. If f ∗ is learnt with a one-hidden-layer network with ReLU
neurons in the regimes specified above, then the generalization error follows ϵ(n)∼ n−β

with:

βLAZY =
min{2(d− 1)+ 4ν,2νt}

d− 1
with ν =

{
1/2for NTK,

3/2for RFK,
, (3.4a)

βFEATURE =
min{(d− 1)+ 3,2νt}

d− 1
. (3.4b)

This is our central result. This implies that if the target function is a smooth isotropic
Gaussian field (realized for large νt), then lazy outperforms feature, in the sense that
training the network in the lazy regime leads to a better scaling of the generalization
performance with the number of training points.

Strategy. There is no general framework for a rigorous derivation of the generalization
error in the ridgeless limit λ→ 0. Predictions such as those of equation (3.4) can be
obtained by either assuming that training points (for equation (3.4a)) and neurons
(for equation (3.4b)) lie on a periodic lattice [44] or (for equation (3.4a)) using the
replica method from physics [45], as shown in appendix F. Here, we follow a different
route, by first characterizing the form of the predictor for d=2 (proof in appendix C).
This property alone allows us to determine the asymptotic scaling of the generalization
error. We use it to analytically obtain the generalization error in the NTK case with
a slightly simplified function φ (details in appendix D). This calculation motivates
a simple ansatz for the form of gn(x) entering equation (3.2) and its projections onto
spherical harmonics, which extends naturally to arbitrary dimensions. We systematically
confirm in numerical experiments the predictions resulting from this ansatz.

Properties of the predictor in d =2. On the unit circle S1 all points are identified by
a polar angle x ∈ [0,2π). Hence, both the target function and the estimated predictor
are functions of the angle, and all functions of the scalar product are in fact functions
of the difference in angle. In particular, introducing φ̃(x) = φ(cos(x)),

f n (x) =
∑
j

gjφ̃(x−xj)≡
ˆ 2π

0

dy

2π
gn (y) φ̃(x− y) , (3.5)

https://doi.org/10.1088/1742-5468/ad01b9 9
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Figure 3. Feature versus lazy predictor. Predictor of the lazy (left) and feature
(right) regime when learning the constant function on the ring with eight uniformly
sampled training points.

where we defined,

gn (x) =
n∑

j=1

(2πgj)δ (y−xj) . (3.6)

For both the feature regime and the NTK limit, the first derivative of φ̃(x) is continuous
except for two values of x (0 and π for lazy, −π/2 and π/2 for feature) so that φ̃(x) ′ ′

has a singular part consisting of two Dirac delta functions.
As a result, the second derivative of the predictor (fn) ′ ′ has a singular part consisting

of many Dirac deltas. If we denote with (fn) ′ ′r the regular part, obtained by subtracting
all the delta functions, we show that (see appendix C):

Proposition 1 (informal). As n→∞, (fn) ′ ′r converges to a function having a finite second
moment, i.e.

lim
n→∞

Ef∗
[
(fn) ′ ′r (x)

]2
= const.<∞. (3.7)

In the large n limit, the predictor displays a singular second derivative at O(n)
points. Proposition 1 implies that outside of these singular points the second derivative
is well defined. Thus, as n becomes large and the singular points approach each other,
the predictor can be approximated by a chain of parabolas, as highlighted in figure 3
and noted in [47] for a Laplace kernel. This property alone allows us to determine
the asymptotic scaling of the error in d=2. In simple terms, Proposition 1 follows
from the convergence of gn to the function satisfying f ∗(x)=

´
dy
2πg(y)φ̃r(x− y), which

is guaranteed under our assumptions on the target function—a detailed proof is given
in appendix C.

Decay of the error in d=2 (sketch). The full calculation is in appendix D. Consider
a slightly simplified problem where φ̃ has a single discontinuity in its derivative, located
at x =0. In this case, f n(x) is singular if and only if x is a data point. Consider then the
interval x ∈ [xi,xi+1] and set δi = xi+1−xi, xi+1/2 = (xi+1+xi)/2. If the target function
is smooth enough (νt>2), then a Taylor expansion implies |f ∗(xi+1/2)− f n(xi+1/2)| ∼
δ2i . Since the distances δi between adjacent singular points are random variables with
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mean of order 1/n and finite moments, it is straightforward to obtain that ϵ(n)∼∑
i (f

∗(xi+1/2)− f n(xi+1/2))
2 ∼

∑
i δ

4
i ∼ n−4. By contrast, if f ∗ is not sufficiently smooth

(νt⩽2), then |f ∗(xi+1/2)− f n(xi+1/2)| ∼ δ2νti , leading to ϵ(n)∼ n−2νt. Note that for this
asymptotic argument to apply to the feature learning regime, one must ensure that
the distribution of the rescaled distance between adjacent singularities nδi has a finite
fourth moment. This is obvious in the lazy regime, where the δi ’s are controlled by the
position of the training points, but not in the feature regime, where the distribution of
singular points is determined by that of the neuron’s features. Nevertheless, we show
that this must be the case in our setup in appendix D.

Interpretation in terms of spectral bias. From the discussion above, it is evident
that there is a length scale δ of order 1/n so that f n(x) is a good approximation of

f ∗(x) over scales larger than δ. In terms of Fourier modes3, one has (i) f̂ n(k), which

matches f̂ n(k) at long wavelengths, i.e. for k ≪ kc ∼ 1/n. (ii) In addition, since the
phases exp(ikxj) become effectively random phases for k ≫ kc, ĝn(k)=

∑
j gj exp(ikxj)

becomes a Gaussian random variable with zero mean and fixed variance and thus (iii)

f̂ n(k)= ĝn(k)̂̃φ(k) decorrelates from f ∗ for k ≫ kc. Therefore,

ϵ(n)∼
∑
|k|>kc

Ef∗

[(
ĝn (k) ̂̃φ(k)− f̂ n (k)

)2]
∼
∑
|k|⩾kc

Ef∗

[(
ĝn (k)

)2] ̂̃φ(k)2+Ef∗

[(
f̂ n (k)

)2]
. (3.8)

For νt>2, one has
∑

j g
2
j ∼ n−1 limn→∞

´
gn(x)2dx∼ n−1. It follows (see appendix E for

details) that the sum is dominated by the first term, hence entirely controlled by the

Fourier coefficients of f̂ n(k) at large k. A smoother predictor corresponds to a faster

decay of f̂ n(k) with k, thus a faster decay of the error with n. Plugging the relevant
decays yields ϵ∼ n−4 for feature regime and lazy regime with the NTK, and n−6 for
lazy regime with the RFK (which is smoother than the NTK). For νt⩽2, the two terms
have comparable magnitude (see appendix E), thus ϵ∼ n−2νt.

Generalization to higher dimensions. The argument above can be generalized for
any d by replacing Fourier modes with projections onto spherical harmonics. Thus, the
characteristic distance between training points scales as n−1/(d−1), thus kc ∼ n−1/(d−1).
Our ansatz is that, as in d=2: (i) for k ≪ kc, the predictor modes coincide with those
of the target function f n

k,l ≈ f ∗
k,l (this corresponds to the spectral bias result of kernel

methods, stating that the predictor reproduces the first O(n) projections of the target
in the kernel eigenbasis [45]); (ii) for k ≫ kc, g

n
k,l is a sum of uncorrelated terms, thus

a Gaussian variable with zero mean and fixed variance; (iii) fn
k,ℓ=gnk,ℓφ̃k decorrelates

from f ∗
k,ℓ for k ≫ kc. (i), (ii) and (iii) imply that,

ϵ(n)∼
∑
k⩾kc

Nk,d∑
l=1

Ef∗

[(
f n

k,l − f ∗
k,l

)2]∼∑
k⩾kc

Nk,d∑
l=1

Ef∗

[(
gnk,l
)2]

φ2
k + k−2νt−(d−1). (3.9)

3 The Fourier transform of a function f (x ) is indicated by the hat, f̂ (k).
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As shown in appendix E, from this expression it is straightforward to obtain equation
(3.4). Note again that when the target is sufficiently smooth so that the predictor-
dependent term dominates, the error is determined by the smoothness of the predictor.
In particular, since d>2, the predictor of feature learning is less smooth than both the
NTK and RFK ones, due to the slower decay of the corresponding φk .

4. Numerical tests of the theory

We successfully test our predictions by computing the learning curves of both lazy and
feature regimes when (i) the target function is constant on the sphere for varying d,
see figure 4, and (ii) the target is a Gaussian random field with varying smoothness νt ,
as shown in figure G1 of appendix G. For the lazy regime, we perform kernel regres-
sion using the analytical expression of the NTK [52] (see also equation (A.19)). For
the feature regime, we find that our predictions hold when having a small regulariza-
tion, although it takes unreachable times for GD to exactly recover the minimal-norm
solution—a more in-depth discussion can be found in appendix G. An example of the
atomic distribution of neurons found after training, which contrasts with the initial
distribution, is displayed in figure 5(a), left panel.

Another way to obtain sparse features is to initialize the network with very small
weights [14], as proposed in [8]. As in the presence of an infinitesimal weight decay,
this scheme also leads to sparse solutions with nA =O(n)—an asymptotic dependence
confirmed in figure G3 of appendix G. This observation implies that our predictions
must apply in that case too, which we confirm in figure G3.

5. Evidence for overfitting along diffeomorphisms in image data sets

For fully-connected networks, the feature regime is well adapted to learn anisotropic
tasks [16]. If the target function does not depend on a certain linear subspace of the
input space, e.g. the pixels at the corner of an image, then neurons align perpendicularly
to these directions [19]. In contrast, our results highlight a drawback of this regime when
the target function is constant or smooth along directions in input space that require a
continuous distribution of neurons to be represented. In this case, the adaptation of the
weights to the training points leads to a predictor with a sparse representation. This
predictor would be less smooth than in the lazy regime and thus underperform.

Does this view hold for images and explain why learning their features is detrimental
for fully connected networks? The first positive empirical evidence is that the neurons’
distribution of networks trained on image data indeed becomes sparse in the feature
regime, as illustrated in figure 5(a), right, for CIFAR10 [28]. This observation raises the
question of which are the directions in input space (i) along which the target should
vary smoothly, and (ii) that are not easily represented by a discrete set of neurons. An
example of these directions is global translations, which conserve the norm of the input
and do not change the image class. The lazy regime predictor is indeed smoother than
the feature one with respect to translations of the input (see appendix H). Yet, these
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Figure 4. Generalization error for a constant function f∗(x) = 1. Generalization
error as a function of the training set size n for a network trained in the feature
regime with L1 regularization (blue) and kernel regression corresponding to the
infinite-width lazy regime (orange). Numerical results (full lines) and the exponents
predicted by the theory (dashed) are plotted. Panels correspond to different input-
space dimensions (d= 2,3,5). Results are averaged over ten different initializations
of the networks and data sets. For d =2 and large n, the gap between experiments
and prediction for the feature regime is due to the finite training time t. Indeed our
predictions become more accurate as t increases, as illustrated on the left.

Figure 5. Features sparsification and example of a diffeomorphism. (a) Features
sparsification. 1st Panel: Distribution of neuron’s feature for the task of learning a
constant function on the sphere in 2D. Arrows represent a subset of the network fea-
tures {θh}Hh=1 after training in the lazy and feature regimes. Training is performed
on n =8 data points (black dots). 2nd Panel: FCN trained on CIFAR10. On the
axes the first two principal components of the features {θh}Hh=1 after training on
n =32 points in the feature (blue) and lazy (orange) regimes. Similar to what is
observed when learning a constant function, the θh angular distribution becomes
sparse with training in the feature regime. (b) Example of diffeomorphism. Sample
of a max-entropy deformation τ [49] when applied to a natural image, illustrating
that it does not change the image class for the human brain.
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Figure 6. Sensitivity to diffeomorphisms versus number of training points. Relative
sensitivity of the predictor to small diffeomorphisms of the input images, in the
two regimes, for varying number of training points n and different image data
sets. Smaller values correspond to a smoother predictor, on average. Results are
computed using the same predictors as in figure 1.

transformations live in a space of dimension 2, which is small in comparison with the
full dimensionality d of the data and thus may play a negligible role.

A much larger class of transformations believed to have little effect on the target
are small diffeomorphisms [29]. A diffeomorphism τ acting on an image is illustrated in
figure 5(b), which highlights that our brain still perceives the content of the transformed
image as in the original one. Near-invariance of the task to these transformations is
believed to play a key role in the success of deep learning, and in explaining how neural
networks beat the curse of dimensionality [48]. Indeed, if modern architectures can
become insensitive to these transformations, then the dimensionality of the problem is
considerably reduced. In fact, it was found that the architectures displaying the best
performance are precisely those that learn to vary smoothly along these transformations
[49].

Small diffeomorphisms are likely the directions we are looking for. In order to test
this hypothesis, following [49], we characterize the smoothness of a function along these
diffeomorphisms, relative to that of random directions in the input space. Specifically,
we use the relative sensitivity :

Rf =
Ex,τ∥f (τx)− f (x)∥2

Ex,η∥f (x+ η)− f (x)∥2
. (5.1)

In the numerator, the average is given over the test set and over an ensemble of
diffeomorphisms, reviewed in appendix I. The magnitude of the diffeomorphisms is
chosen so that each pixel is shifted by one on average. In the denominator, the average
runs over the test set and the vectors η sampled uniformly on the sphere of radius
∥η∥= Ex,τ∥τx−x∥, and this fixes the transformation magnitude.

We measure Rf as a function of n for three benchmark data sets of images, as
shown in figure 6. We indeed find that Rf is consistently smaller in the lazy training
regime, where features are not learned. Overall, this observation supports the view
that learning sparse features is detrimental when data present (near) invariance to
transformations that cannot be represented sparsely by the architecture considered.
Figure 1 supports the idea that—for benchmark image data sets—this negative effect
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overcomes the well-known positive effects of learning features, e.g. becoming insensitive
to pixels on the edges of images (see appendix H for evidence of this effect).

6. Conclusion

Our central result is that learning sparse features can be detrimental if the task presents
invariance or smooth variations along transformations that are not adequately captured
by the neural network architecture. For fully connected networks, these transformations
can be rotations of the input, but also continuous translations and diffeomorphisms.

Our analysis relies on the sparsity of the features learned by a shallow fully connec-
ted architecture. Even in the infinite width limit, when trained in the feature learning
regime, these networks behave as O(n) neurons. The asymptotic analysis that we per-
form for random Gaussian fields on the sphere leads to predictions for the learning
curve exponent β in different training regimes, which we verify. These kinds of results
are scarce in the literature.

Note that our analysis focuses on ReLU neurons because (i) these are very often
used in practice and (ii) in that case, β will depend on the training regime, allowing for
stringent numerical tests. If smooth activations (e.g. softplus) are considered, we expect
that learning features will still be detrimental for generalization. Yet, the difference will
not appear in the exponent β, but in other aspects of the learning curves (including
numerical coefficients and pre-asymptotic effects) that are harder to predict.

Most fundamentally, our results underline that the success of feature learning for
modern architectures still lacks a sufficient explanation. Indeed, most of the theoretical
studies that previously emphasized the benefits of learning features have been con-
sidering fully connected networks, for which learning features can, in practice, be a
drawback. It is tempting to argue that, in modern architectures, learning features are
not at a disadvantage because smoothness along diffeomorphisms can be enforced from
the start—due to the locally connected, convolutional and pooling layers [29, 53]. Yet,
the best architectures often do not perform pooling and are not stable towards diffeo-
morphisms at initialization. During training, learning features lead to more stable and
smoother solutions along diffeomorphisms [49, 54]. Understanding why building sparse
features enhances stability in these architectures may ultimately explain the magical
feat of deep CNNs, learning tasks in high dimensions.
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Appendix A. Quick recap of spherical harmonics

Spherical harmonics. This appendix collects some introductory background on spher-
ical harmonics and dot-product kernels on the sphere [55]. See [56, 57] for an expanded
treatment. Spherical harmonics are homogeneous polynomials on the sphere Sd−1={x ∈
Rd |∥x∥=1}, with ∥.∥ denoting the L2 norm. Given the polynomial degree k ∈ N, there
are Nk,s linearly independent spherical harmonics of degree k on Ss−1, with,

Nk,d =
2k+ d− 2

k

(
d+ k− 3

k− 1

)
,

{
N0,d = 1 ∀d,
Nk,d ≍Adk

d−2 for k ≫ 1,
(A.1)

where ≍ means logarithmic equivalence for k →∞ and Ad =
√
2/π(d− 2)

3
2
−ded−2. Thus,

we can introduce a set of Nk,d spherical harmonics Yk,ℓ for each k, with ℓ ranging in
1, . . . ,Nk,d, which are orthonormal with respect to the uniform measure on the sphere
dτ(x),

{Yk,ℓ}k⩾0,ℓ=1,...,Nk,d
, ⟨Yk,ℓ,Yk,ℓ ′⟩Sd−1 :=

ˆ
Sd−1

Yk,ℓ (x)Yk,ℓ ′ (x) dτ (x) = δℓ,ℓ ′. (A.2)

Because of the orthogonality of homogeneous polynomials with different degree, the set
is a complete orthonormal basis for the space of square-integrable functions on Sd−1.
For any function f : Sd−1 → R, then,

f (x) =
∑
k⩾0

Nk,d∑
ℓ=1

fk,ℓYk,ℓ (x) , fk,ℓ =

ˆ
Sd−1

f (x)Yk,ℓ (x)dτ (x) . (A.3)

Furthermore, spherical harmonics are eigenfunctions of the Laplace–Beltrami operator
∆, which is nothing but the restriction of the standard Laplace operator to Sd−1,

∆Yk,ℓ =−k (k+ d− 2)Yk,ℓ. (A.4)

Legendre polynomials. By fixing a direction y in Sd−1, one can select, for each k,
the only spherical harmonic of degree k, which is invariant for rotations that leave y
unchanged. This particular spherical harmonic is, in fact, a function of x ·y and is
called the Legendre polynomial of degree k, Pk,d(x ·y) (also referred to as Gegenbauer
polynomial). Legendre polynomials can be written as a combination of the orthonormal
spherical harmonics Yk,ℓ via the addition theorem [56, theorem 2.9],

Pk,d (x ·y) = 1

Nk,d

Nk,d∑
ℓ=1

Yk,ℓ (x)Yk,ℓ (y) . (A.5)

Alternatively, Pk,d is given explicitly as a function of t=x ·y ∈ [−1,1] via the Rodrigues
formula [56, theorem 2.23],
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Pk,d (t) =

(
−1

2

)k Γ
(
d−1
2

)
Γ
(
k+ d−1

2

) (1− t2
) 3−d

2
dk

dtk
(
1− t2

)k+ d−3
2 . (A.6)

Here, Γ denotes the Gamma function, and Γ(z)=
´∞
0 xz−1e−xdx. Legendre polynomials

are orthogonal on [−1,1] with respect to the measure with density (1− t2)(d−3)/2, which
is the probability density function of the scalar product between two points on Sd−1:

ˆ +1

−1

Pk,d (t)Pk ′,d (t)
(
1− t2

) d−3
2 dt= |Sd−1|

|Sd−2|
δk,k ′

Nk,s
. (A.7)

Here, |Sd−1|=2π
d
2/Γ(d2) denotes the surface area of the d -dimensional unit sphere

(|S0|=2 by definition).
To sum up, given x,y ∈ Sd−1, functions of x or y can be expressed as a sum of

projections on the orthonormal spherical harmonics, whereas functions of x ·y can
be expressed as a sum of projections on the Legendre polynomials. The relationship
between the two expansions is elucidated in the Funk–Hecke formula [56, theorem 2.22]:

ˆ
Sd−1

f (x ·y)Yk,ℓ (y) dτ (y) = Yk,ℓ (x)
|Sd−2|
|Sd−1|

ˆ +1

−1

f (t)Pk,d (t)
(
1− t2

) d−3
2 dt := fkYk,ℓ (x) .

(A.8)

A.1. Expansion of ReLU and combinations thereof

We can apply equation (A.8) to have an expansion of neurons σ (θ ·x) in terms of
spherical harmonics [2, appendix D]. After defining,

φk :=
|Sd−2|
|Sd−1|

ˆ +1

−1

σ (t)Pk,d (t)
(
1− t2

) d−3
2 dt, (A.9)

one has,

σ (θ ·x) =
∑
k⩾0

Nk,dφkPk,d (θ ·x) =
∑
k⩾0

φk

Nk,d∑
ℓ=1

Yk,ℓ (θ)Yk,ℓ (x) . (A.10)

For ReLU activations, in particular, σ(t)=max(0, t), thus,

φReLU
k =

|Sd−2|
|Sd−1|

ˆ +1

0

tPk,d (t)
(
1− t2

) d−3
2 dt. (A.11)

Note that when k is odd, Pk,d is an odd function of t, thus the integrand tPk,d(t)(1− t2)
d−3
2

is an even function of t. As a result, the integral on the right-hand side of equation (A.11)
coincides with half the integral over the full domain [−1,1]:
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ˆ +1

0

tPk,d (t)
(
1− t2

) d−3
2 dt= 1

2

ˆ +1

−1

tPk,d (t)
(
1− t2

) d−3
2 dt= 0 for k > 1, (A.12)

because, due to equation (A.7), Pk,d is orthogonal to all polynomials with degree strictly
lower than k. For even k we can use equation (A.6) and obtain [2] (see equation (3.3),
main text):

ˆ +1

0

tPk,d (t)
(
1− t2

) d−3
2 dt=

(
−1

2

)k Γ
(
d−1
2

)
Γ
(
k+ d−1

2

) ˆ 1

0

t
dk

dtk
(
1− t2

)k+ d−3
2 dt

=−
(
−1

2

)k Γ
(
d−1
2

)
Γ
(
k+ d−1

2

) dk−2

dtk−2

(
1− t2

)k+ d−3
2

∣∣∣∣t=1

t=0

⇒ φReLU
k ∼ k− d−1

2
− 3

2 for k ≫ 1 and even.

(A.13)

Because all φReLU
k with k>1 and odd vanish, even summing an infinite number of

neurons σ(θ ·x) with varying θ does not allow us to approximate any function on Sd−1,
but only those that have vanishing projections on all the spherical harmonics Yk,ℓ with
k>1 and odd. This is why we set the odd coefficients of the target function spectrum
to zero in equation (2.1).

A.2. Dot-product kernels on the sphere

In addition, general dot-product kernels on the sphere admit an expansion such
as equation (A.10),

C (x ·y) =
∑
k⩾0

Nk,dckPk,d (θ ·x) =
∑
k⩾0

ck

Nk,d∑
ℓ=1

Yk,ℓ (θ)Yk,ℓ (x) , (A.14)

with,

ck =
|Sd−2|
|Sd|

ˆ 1

−1

C (t)Pk,d (t)
(
1− t2

) d−3
2 dt. (A.15)

The asymptotic decay of ck for large k is controlled by the behavior of C(t) near t= ±
1, [58]. More precisely [58, theorem 1], if C is infinitely differentiable in (−1,1) and has
the following expansion around ±1,{

C (t) = p1 (1− t)+ c1 (1− t)ν + o((1− t)ν)near t=+1;

C (t) = p−1 (−1+ t)+ c−1 (−1+ t)ν + o((−1+ t)ν)near t=−1,
(A.16)

where p±1 are polynomials and ν is not an integer, then,

k even: ck ∼ (c1+ c−1)k
−2ν−(d−1);

k odd: ck ∼ (c1− c−1)k
−2ν−(d−1).

(A.17)
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The result above implies that that if c1=c−1 (c1= − c−1), then the eigenvalues with
k odd (even) decay faster than k−2ν−(d−2). Moreover, if C is infinitely differentiable in
[−1,1], then ck decays faster than any polynomial.

NTK and RFK of one-hidden-layer ReLU networks. Let Eθ denote expectation
over a multivariate normal distribution with zero mean and unitary covariance matrix.
For any x , y ∈ Sd−1, the RFK of a one-hidden-layer ReLU network equation (2.3) with
all parameters initialized as independent Gaussian random numbers with zero mean
and unit variance reads,

KRFK (x ·y) = Eθ [σ (θ ·x)σ (θ ·y)]

=
(π− arccos(t)) t+

√
1− t2

2π
, with t= x ·y.

(A.18)

The NTK of the same network reads, with σ ′ denoting the derivative of ReLU or
Heaviside function,

KNTK (x ·y) = Eθ [σ (θ ·x)σ (θ ·y)]+ (x ·y)Eθ [σ
′ (θ ·x)σ ′ (θ ·y)]

=
2(π− arccos(t)) t+

√
1− t2

2π
, with t= x ·y.

(A.19)

As functions of a dot-product on the sphere, both NTK and RFK admit a decompos-
ition in terms of spherical harmonics as equation (A.15). For dot-product kernels, this
expansion coincides with the Mercer’s decomposition of the kernel [55], that is, the
coefficients of the expansion are the eigenvalues of the kernel. The asymptotic decay of
the eigenvalues of these kernels φNTK

k and φRFK
k can be obtained by applying equation

(A.16) [58, theorem 1]. Equivalently, one can see that KRFK is proportional to the con-
volution on the sphere of ReLU with itself, therefore φRFK

k =(φReLU
k )2. Similarly, the

asymptotic decay of φNTK
k can be related to that of the coefficients of σ ′, derivative of

ReLU, φk(σ
′)∼ kφ(σ), thus φNTK

k ∼ k2(φReLU
k )2. Both methods lead to equation (3.3)

of the main text.

Gaussian random fields and equation (2.2). Consider a Gaussian random field f ∗

on the sphere with covariance kernel C(x ·y),

E [f ∗ (x)] = 0, E [f ∗ (x)f ∗ (y)] = C (x ·y) , ∀x,y ∈ Sd−1. (A.20)

f ∗ can be equivalently specified via the statistics of the coefficients f ∗
k,ℓ,

E
[
f ∗
k,ℓ

]
= 0, E

[
f ∗
k,ℓf

∗
k ′,ℓ ′
]
= ckδk,k ′δℓ,ℓ ′, (A.21)

with ck denoting the eigenvalues of C in equation (A.15). Note that the eigenvalues
are degenerate with respect to ℓ because the covariance kernel is a function x ·y. As a
result, the random function f ∗ is isotropic in law.
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If ck decays as a power of k, then this power controls the weak differentiability (in
the mean-squared sense) of the random field f ∗. In fact, from equation (A.4),∥∥∥∆m/2f ∗

∥∥∥=∑
k⩾0

∑
ℓ

(−k (k+ d− 2))m
(
f ∗
k,ℓ

)2
. (A.22)

Upon averaging over f ∗ one gets,

E
[∥∥∥∆m/2f ∗

∥∥∥]=∑
k⩾0

(−k (k+ d− 2))m
∑
ℓ

E
[(

f ∗
k,ℓ

)2]
=
∑
k⩾0

(−k (k+ d− 2))mNk,dck.

(A.23)

From equation (A.16) [58, theorem 1], if C(t)∼ (1− t)νt for t → 1 and/or C(t)∼ (−1+
t)νt for t→−1, then ck ∼ k−2νt−(d−1) for k ≫ 1. In addition, for finite but arbitrary d,
(−k(k+ d− 2))m ∼ k2m and Nk,s ∼ kd−2 (see equation (A.1)). Hence, the summand in

the right-hand side of equation (A.23) is ∼ k2(m−νt)−1, thus,

E
[∥∥∥∆m/2f ∗

∥∥∥]<∞ ∀m< νt. (A.24)

Alternatively, one can think of νt as controlling the scaling of the difference δf ∗ over
inputs separated by a distance δ. From equation (A.20),

E
[
|f ∗ (x)− f ∗ (y)|2

]
= 2C (1)− 2C (x ·y) = 2C (1)+O ((1−x ·y)νt)
= 2C (1)+O

(
|x−y|2νt

) . (A.25)

Appendix B. Uniqueness and sparsity of the L1 minimizer

Recall that we want to find the γ∗ that solves,

γ∗ = arg minγ

ˆ
Sd−1

|dγ (θ)| subject to

ˆ
Sd−1

σ (θ ·xi)dγ (θ)=f ∗ (xi) ∀i = 1, . . . ,n.

(B.1)

In this appendix, we argue that the uniqueness of γ∗, which implies that it is atomic
with at most n atoms, is a natural assumption. We start by discretizing the measure
γ into H atoms, with H arbitrarily large. Then, the problem equation (B.1) can be
rewritten as,

w∗ = argmin
w

∥w∥1, subject to Φw = y, (B.2)

with Φ ∈ RH×n, Φh,i = σ(θh ·xi) and yi = f ∗(xi).

https://doi.org/10.1088/1742-5468/ad01b9 20

https://doi.org/10.1088/1742-5468/ad01b9


Learning sparse features can lead to overfitting in neural networks

J.S
tat.

M
ech.(2023)

114003

Given w ∈ RH , let u= max(w,0)⩾ 0 and v =−max(−w,0)⩾ 0 so that w = u−v.
It is well known (see e.g. [50]) that the minimization problem in (B.2) can be recast in
terms of u and v into a linear programming problem. That is, w∗ = u∗−v∗ with,

(u∗,v∗) = argmin
u,v

eT (u+v) , subject to Φu−Φv = y, u⩾ 0, v ⩾ 0, (B.3)

where e= [1,1, . . . ,1]T . Assuming that this problem is feasible (i.e. there is at least one
solution to Φu−Φv = y so that u⩾ 0, v ⩾ 0), it is known that it admits an extremal
solution, i.e. solutions so that at most n entries of (u∗,v∗) (and hence w∗) are non-zero.
The issue is whether such an extremal solution is unique. Assume that there are two,
say (u∗

1,v
∗
1) and (u∗

2,v
∗
2). Then, by convexity,

(u∗
t ,v

∗
t ) = (u∗

1,v
∗
1) t+(u∗

2,v
∗
2)(1− t) , (B.4)

is also a minimizer of (B.3) for all t ∈ [0,1], with the same minimum value u∗
t +v∗

t =
u∗
1+v∗

1 = u∗
2+v∗

2. Generalizing this argument to the case of more than two extremal
solutions, we conclude that all minimizers are global, with the same minimum value,
and they live on the simplex where eT (u+v) = eT (u1+v1). Therefore, nonuniqueness
requires that this simplex has a nontrivial intersection with the feasible set where Φu−
Φv = y with u⩾ 0, v ⩾ 0. We argue that, generically, this will not be the case, i.e. the
intersection will be trivial, and the extremal solution unique. In particular, since in our
case we are in fact interested in the problem (B.1), we can always perturb slightly the
discretization into H atoms of γ to guarantee that the extremal solution is unique. Since
this is true no matter how large H is, and any Radon measure can be approached to
arbitrary precision using this discretization, we conclude that the minimizer of (B.1)
should be unique as well, with at most n atoms.

Appendix C. Proof of Proposition 1

In this section, we provide the formal statement and proof of Proposition 1. Let us
recall the general form of the predictor for both lazy and feature regimes in d=2.
From equation (3.6),

f n (x) =
n∑

j=1

gjφ̃(x−xj) =

ˆ
dy

2π
gn (y) φ̃(x− y) . (C.1)

where n is the number of training points for the lazy regime and the number of atoms
for the feature regime and, for x ∈ (−π,π],

φ̃(x) =


max{0,cos(x)} (feature regime),

2(π− |x|)cos(x)+ sin(|x|)
2π

(lazy regime, NTK),

(π− |x|)cos(x)+ sin(|x|)
2π

(lazy regime, RFK).

(C.2)
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All these functions φ̃ have jump discontinuities on some derivative. The first for feature
and NTK, the third for RFK. If the lth derivative has jump discontinuities, the l+1th
only exists in a distributional sense and it can be generically written as a sum of a
regular function and a sequence of Dirac masses located at the discontinuities. With m
denoting the number of these discontinuities and {xj}j their locations, f (l) denoting the
lth derivative of f, for some cj ∈ R,

f (l+1) (x) = f (l+1)
r (x)+

m∑
j=1

cjδ (x−xj) , (C.3)

where fr denotes the regular part of f.

Proposition 2. Consider a random target function f ∗ satisfying equation (2.1) and the
predictor fn obtained by training a one-hidden-layer ReLU network on n samples

(xi,f
∗(xi)) in the feature or in the lazy regime (equation (C.1)). Then, with f̂(k)

denoting the Fourier transform of f(x), one has,

lim
|k|→∞

lim
n→∞

(̂fn) ′ ′r (k)

f̂ ∗ (k)
= c, (C.4)

where c is a constant (different for every regime). This result implies that as n→∞,
(fn) ′ ′(x) converges to a function having a finite second moment, i.e.

lim
n→∞

Ef∗
[
(fn) ′ ′r (x)

]2
= lim

n→∞
Ef∗

[ˆ
dx
(
(fn) ′ ′r

)2
(x)

]
= lim

n→∞
Ef∗

[∑
k

(̂fn) ′ ′r
2

(k)

]
= const.<∞, (C.5)

using the fact that Ef∗[(fn) ′ ′r (x)]
2 does not depend on x and Ef∗[

∑
k (̂f

∗)
2
(k)] = const.

Proof. Because our target functions are random fields that are in L2 with probability
one, and the Reproducing Kernel Hilbert Space of our kernels are dense in that space,
we know that the test error vanishes as n→∞ [59]. As a result,

f ∗ (x) = lim
n→∞

f n (x) = lim
n→∞

ˆ
dy

2π
gn (y) φ̃(x− y) . (C.6)

Consider first the feature regime and the NTK lazy regime. In both cases φ̃ has two jump
discontinuities in the first derivative, located at x=0,π for the NTK and at x= ±π/2.
Therefore, we can write the second derivative as the sum of a regular function and two
Dirac masses,(
φ̃FEATURE

) ′ ′
=−max{0,cos(x)}+ δ (x−π/2)+ δ (x+π/2) ,(

φ̃NTK
) ′ ′

=
−2(π− |x|)cos(x)+ 3sin(|x|)

2π
− 1

2π
δ (x)+

1

2π
δ (x−π) .

(C.7)
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As a result, the second derivative of the predictor can be written as the sum of a regular
part (fn) ′ ′r and a sequence of 2n Dirac masses. After subtracting the Dirac masses, both
sides of equation (C.1) can be differentiated twice and yield,

(fn) ′ ′r (x) =

ˆ
dy

2π
gn (y) φ̃ ′ ′

r (x− y) . (C.8)

Hence, in the Fourier representation we have,

(̂fn) ′ ′r (k) = ĝn (k)
(
−k2 ̂̃φr (k)

)
, (C.9)

where we defined,

̂̃φ(k) =

ˆ π

−π

dx√
2π

eikxφ̃(x) , ̂̃φr (k) =

ˆ π

−π

dx√
2π

eikxφ̃r (x) , (C.10)

and used ̂̃φ ′ ′
r (k) =−k2̂̃φr(k). By universal approximation we have,

f̂ ∗ (k) =

ˆ π

−π

dx√
2π

eikxf ∗ (x) = lim
n→∞

ĝn (k) ̂̃φ(k) ⇒ lim
n→∞

ĝn (k) =
f̂ ∗ (k)̂̃φ(k)

. (C.11)

As a result, by combining equations (C.9) and (C.11) we deduce,

lim
n→∞

(̂fn) ′ ′r (k) =−k2 ̂̃φr (k)̂̃φ(k)
f̂ ∗ (k) . (C.12)

To complete the proof using this result it remains to estimate the scaling of ̂̃φr(k)

and ̂̃φ(k) in the large |k| limit.
For the feature regime, a direct calculation shows that φ̃ ′ ′

r = − φ̃, implying that̂̃φr(k) =−̂̃φ(k). This proves that equation (C.4) is satisfied with c= − 1.
For the NTK lazy regime φ̃ ′ ′

r and −φ̃ are different but they have similar sin-
gular expansions near x=0 and π. Therefore, their Fourier coefficients display the
same asymptotic decay. More specifically, with t= cos(x) (or x= arccos(t)), so that
φ̃(x)=φ(t), one has,

φNTK (t) = t− 1√
2π

(1− t)1/2+O
(
(1− t)3/2

)
near t=+1;

φNTK (t) =− 1√
2π

(−1+ t)1/2+O
(
(−1+ t)3/2

)
near t=−1,

(C.13)

and 
(
φNTK

) ′ ′
r
(t) =−t+

5√
2π

(1− t)1/2+O
(
(1− t)3/2

)
near t=+1;(

φNTK
) ′ ′
r
(t) = +

5√
2π

(−1+ t)1/2+O
(
(−1+ t)3/2

)
near t=−1.

(C.14)

Therefore, due to equations (A.17) and (C.4) is satisfied with c= − 5. The same pro-
cedure can be applied to the RFK lazy regime, with the exception that it is the fourth
derivative of φ̃RFK, which can be written as a regular part plus Dirac masses, but one
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can still obtain the Fourier coefficients of the second derivative’s regular part by dividing
those of the fourth derivative’s regular part by k 2.

Appendix D. Asymptotics of generalization in d=2

In this section, we compute the decay of generalization error ϵ with the number of
samples n in the following 2D setting:

f n (x) =
n∑

j=1

gjφ̃(x−xj) , (D.1)

where the xj’s are the training points (as in the NTK case) and φ has a single discon-
tinuity on the first derivative in 0.

Let us order the training points clockwise on the ring so that x1=0 and xi+1 > xi

for all i=1, . . . ,n, with xn+1 :=2π. On each of the xi the predictor coincides with the
target,

f n (xi) = f ∗ (xi) ∀ i = 1, . . . ,n. (D.2)

For large enough n, the difference xi+1−xi is small enough so that, within (xi,xi+1),
f n(x) can be replaced with its Taylor series expansion up to the second order. In
practice, the predictors appear like the cable of a suspension bridge with the pillars
located on the training points. In particular, we can consider an expansion around
x+
i :=xi+ ϵ for any ϵ>0 and then let ϵ→ 0 from above:

f n (x) = f n
(
x+
i

)
+
(
x−x+

i

)
f n ′ (x+

i

)
+

(
x−x+

i

)2
2

(fn) ′ ′
(
x+
i

)
+O

((
x−x+

i

)3)
. (D.3)

By differentiability of fn in (xi,xi+1), the second derivative can be computed at any
point inside (xi,xi+1) without changing the order of approximation in equation (D.3).
In particular, we can replace (fn) ′ ′(x+

i ) with ci , the mean curvature of fn in (xi,xi+1).
Moreover, since ϵ→ 0, f n(x+

i )→ f ∗(xi) and f n(x−
i+1)→ f ∗(xi+1). By introducing the

limiting slope m+
i := limx→0+ f

n ′(xi+x), we can write,

f n (x) = f ∗ (xi)+ (x−xi)m
+
i +

(x−xi)
2

2
ci+O

((
x−x+

i

)3)
. (D.4)

Computing equation (D.4) at x=xi+1 yields a closed form for the limiting slope
m+

i as a function of the mean curvature ci , the interval length δi :=(xi+1−xi) and
∆fi :=f ∗(xi+1)− f ∗(xi). Specifically,

m+
i =

∆fi
δi

− δi
2
ci. (D.5)

The generalization error can then be split into contributions from all the intervals.
If νt > 2, a Taylor expansion leads to the following:
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ϵ(n) =

ˆ 2π

0

dx

2π
(f n (x)− f ∗ (x))2

=
n∑

i=1

ˆ xi+1

xi

dx

2π

[
(x−xi)

(
m+

i − (f ∗) ′ (xi)
)

+
(x−xi)

2

2

(
ci− (f ∗) ′ ′ (xi)

)
+ o
((

x−x+
i

)2)]2

=
n∑

i=1

ˆ δi

0

dδ

2π

[
δ
(
m+

i − (f ∗) ′ (xi)
)
+

δ2

2

(
ci− (f ∗) ′ ′ (xi)

)
+ o
(
δ2
)]2

=
n∑

i=1

1

2π

[
δ3i
3

(
m+

i − (f ∗) ′ (xi)
)2

+
δ5i
20

(ci− (f ∗) ′ ′(xi))
2
+

δ4i
4

(
m+

i − (f ∗) ′(xi)
)
(ci− (f ∗) ′ ′(xi))+ o(δ5i )

]
. (D.6)

In addition, since ∆fi =(f ∗) ′(xi)δi +(f ∗) ′ ′(xi)δi
2/2+O(δ3i ),

m+
i − (f ∗) ′ (xi) =

δi
2

(
(f ∗) ′ ′ (xi)− ci

)
+ o(δi)

2 , (D.7)

thus,

ϵ(n) =
1

2π

n∑
i=1

[
δ5i
120

(
ci − (f ∗) ′ ′ (xi)

)2
+ o
(
δ5i
)]

. (D.8)

This implies that,

ϵ(n) =
n−4
(
n−1

∑n
i=1 (nδi)

5
)

240π
lim
n→∞

ˆ
Ef∗

[(
(fn) ′ ′ (x)− (f ∗) ′ ′ (x)

)2]dx+ o
(
n−4
)
∼ 1

n4
,

(D.9)

where we used that (i) the integral converges to some finite value, due to Proposition

2. From appendix C, this integral can be estimated as
∑

kEf∗[
(
cf ∗(k)− k2f ∗(k)

)2
],

which indeed converges for νt > 2. (ii)
(
n−1

∑n
i=1(nδi)

5
)
has a deterministic limit for

large n. It is clear for the lazy regime since the distance between adjacent singularities
δi follows an exponential distribution of mean ∼ 1

n . We expect this result to also be
true for the feature regime in our set-up. Indeed, in the limit n→∞, the predictor
approaches a parabola between singular points, which generically cannot fit more than
three random points. There must thus be a singularity at least every two data points
with a probability approaching unity as n→∞, which implies that

(
n−1

∑n
i=1(nδi)

5
)

converges to a constant for large n.
Finally, for νt < 2, the same decomposition in intervals applies, but a Taylor expan-

sion to second order does not hold. The error is then dominated by the fluctuations of
f ∗ on the scale of the intervals, as indicated in the main text.
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Appendix E. Asymptotic of generalization via the spectral bias ansatz

According to the spectral bias ansatz, the first n modes of the predictor fn
k,ℓ coincide

with the modes of the target function f ∗
k,ℓ. Therefore, the asymptotic scaling of the error

with n is entirely controlled by the remaining modes,

ϵ(n)∼
∑
k⩾kc

Nk,d∑
ℓ=1

(
fn
k,ℓ− f ∗

k,ℓ

)2
with

∑
k⩽kc

Nk,d ∼ n. (E.1)

Since Nk,d ∼ kd−2 for k ≫ 1, one has that, for large n, kc ∼ n
1

d−1 . After averaging the
error over target functions we obtain,

ϵ(n)∼
∑
k⩾kc

Nk,d∑
ℓ=1

{
Ef∗

[(
fn
k,ℓ

)2]
+Ef∗

[(
f ∗
k,ℓ

)2]− 2Ef∗
[(
fn
k,ℓf

∗
k,ℓ

)]}
. (E.2)

Let us recall that, with the predictor having the general form in equation (3.2), then,

fn
k,ℓ = gnk,ℓφk with gnk,ℓ =

n∑
j=1

gjYk,ℓ

(
yj

)
, (E.3)

where the y j ’s denote the training points for the lazy regime and the neuron features
for the feature regime. For k≪kc, where fn

k,ℓ=f ∗
k,ℓ, g

n
k,ℓ=f ∗

k,ℓ/φk. For k≫kc, due to the

highly oscillating nature of Yk,ℓ, the factors Yk,ℓ(yj) are essentially decorrelated random

numbers with zero mean and finite variance since the values of (Yk,ℓ(yj))
2 are limited

by the addition theorem equation (A.5). Let us denote the variance with σY . By the
central limit theorem, gnk,ℓ converges to a Gaussian random variable with zero mean and

finite variance σ2
Y

∑n
j=1 g

2
j . As a result,

ϵ(n)∼
∑
k⩾kc

Nk,d∑
ℓ=1


 n∑

j=1

g2j

φ2
k +Ef∗

[(
f ∗
k,ℓ

)2]
=

 n∑
j=1

g2j

∑
k⩾kc

Nk,dφ
2
k +

∑
k⩾kc

Nk,dck,

(E.4)

where we have used the definition of f ∗ (equation (2.1)) to set the expectation of (f ∗
k,ℓ)

2

to ck.

Large νt case. When f ∗ is smooth enough, the error is controlled by the predictor
term proportional to

∑n
j=1 g

2
j . More specifically, if,

∑
k⩾0

Nk,d∑
ℓ=1

ck
φ2
k

<+∞, (E.5)

https://doi.org/10.1088/1742-5468/ad01b9 26

https://doi.org/10.1088/1742-5468/ad01b9


Learning sparse features can lead to overfitting in neural networks

J.S
tat.

M
ech.(2023)

114003

then the function gn(x) converges to the square-summable function g∗(x) so that
f ∗(x)=

´
g∗(y)φ(x ·y)dτ(y). With ck ∼ k−2νt−(d−1) and Nk,d ∼ kd−2, in the lazy regime

φk ∼ k−(d−1)−2ν equation (E.5) is satisfied when 2νt>2(d− 1)+ 4ν (ν=1/2 for the NTK
and 3/2 for the RFK). In the feature regime φk ∼ k−(d−1)/2−3/2, equation (E.5) is sat-
isfied when 2νt>(d− 1)+ 3. If gn(x) converges to a square-summable function, then,

n∑
j=1

g2j =
1

n

ˆ
gn (x)2 dτ (x)+ o

(
n−1
)
=

1

n

∑
k⩾0

Nk,d
ck
φ2
k

+ o
(
n−1
)
, (E.6)

which is proportional to n−1. In addition, since Nk,d ∼ kd−2 and kc ∼ n
1

d−1 , one has,

n−1
∑
k⩾kc

Nk,dφk ∼


n−1kd−1k−2(d−1)−4ν

∣∣∣
k=n

1
d−1

∼ n−2− 4ν
d−1 (Lazy),

n−1kd−1k−(d−1)−3
∣∣∣
k=n

1
d−1

∼ n−1− 3
d−1 (Feature),

(E.7)

and ∑
k⩾kc

Nk,dck ∼ kd−1k−2νt−(d−1)
∣∣∣
k=n

1
d−1

∼ n− 2νt
d−1 . (E.8)

Hence, if νt is large enough so that equation (E.5) is satisfied, the asymptotic decay of
the error is given by equation (E.7).

Small νt case. If equation (E.7) does not hold, then gn(x) is not square-summable
in the limit n→∞. However, for large but finite n only the modes up to the kcth are
correctly reconstructed. Therefore,

n∑
j=1

g2j ∼
1

n

∑
k⩽kc

Nk,d
ck
φ2
k

∼


n−1k−2νtk2(d−1)+4ν

∣∣∣
k=n

1
d−1

∼ n− 2νt
d−1n1+ 4ν

d−1 (Lazy),

n−1k−2νtk(d−1)+3
∣∣∣
k=n

1
d−1

∼ n− 2νt
d−1n

3
d−1 (Feature).

(E.9)

For both feature and lazy, multiplying the term above by
∑

k⩾kc
Nk,dφk from equation

(E.7) yields ∼ n−2νt/(d−1). This is also the scaling of the target function term equation
(E.8), implying that for small νt one has,

ϵ(n)∼ n− 2νt
d−1 , (E.10)

in both the feature and lazy regimes.

Appendix F. Spectral bias via the replica calculation

Due to the equivalence with kernel methods, the asymptotic decay of the test error
in the lazy regime can be computed with the formalism of [45], which also provides a
non-rigorous justification for the spectral bias ansatz. By ranking the eigenvalues from
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the largest to the smallest, so that φρ denotes the ρth eigenvalue and denoting with cρ
the variance of the projections of the target onto the ρth eigenfunction, one has,

ϵ(n) =
∑
ρ

ϵρ (n) , ϵρ (n) =
κ(n)2

(φρ+κ(n))2
cρ, κ(n) =

1

n

∑
ρ

φρκ(n)

φρ+κ(n)
. (F.1)

It is convenient to introduce the eigenvalue density,

D (φ) :=
∑
k⩾0

Nk,d∑
l=1

δ (φ−φk) =
∑
k⩾0

Nk,dδ (φ−φk)∼
ˆ ∞

0

kd−2δ
(
φ − k−(d−1)−2ν

)
for k ≫ 1.

(F.2)

After changing variables in the delta function, one finds,

D (φ)∼ φ− 2(d−1)+2ν
(d−1)+2ν for φ ≪ 1. (F.3)

This can be used for inferring the asymptotics of κ(n),

κ(n) =
1

n

∑
ρ

φρκ(n)

φρ+κ(n)
∼ 1

n

ˆ
dφD (φ)

φκ(n)

φ +κ(n)

∼ 1

n

ˆ κ(n)

0

dφD (φ)φ +
κ(n)

n

ˆ φ0

κ(n)

dφD (φ)

∼ 1

n
κ(n)1−

(d−1)
(d−1)+2ν ⇒ κ(n)∼ n−1− 2ν

d−1 . (F.4)

Once the scaling of κ(n) has been determined, the modal contributions to the error can
be split according to whether φρ ≪ κ(n) or φρ ≫ κ(n). The scaling of φρ with the rank
ρ is determined self-consistently,

ρ∼
ˆ φ1

φρ

dφD (φ)∼ φ
− d−1

(d−1)+2ν
ρ ⇒ φρ ∼ ρ−1− 2ν

d−1 ⇒ φρ ≫ (≪)κ(n)⇔ ρ≪ (≫)n. (F.5)

Therefore,

ϵ(n)∼ κ(n)2
∑
ρ≪n

cρ
φ2
ρ

+
∑
ρ≫n

cρ. (F.6)

Note that κ(n)2 scales as n−1
∑

k⩾kc
Nk,sφk in equation (F.6), whereas

∑
ρ≪n cρ/φ

2
ρ cor-

responds to n
∑

j g
2
j in equation (E.9) so that the first term on the right-hand side

of equation (F.6) matches that of equation (E.4). The same matching is found for the
second term on the right-hand side of equation (F.6) so that the replica calculation
justifies the spectral bias ansatz.
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Appendix G. Training wide neural networks: does GD find the minimal-norm
solution?

In the main text, we provided predictions for the asymptotics of the test error of the
minimal norm solution that fits all the training data. Does the prediction hold when the
solution of equations (2.5) and (2.13) is approximately found by GD? More specifically,
is the solution found by GD the minimal-norm one?

Feature learning. We answer these questions by performing full-batch GD in two
settings (further details about the trainings are provided in the code repository,
experiments.md file),

1. Min-L1. Here, we update weights and features of equation (2.3), with ξ=0, by
following the negative gradient of,

LMin-L1 =
1

2n

n∑
i=1

(f ∗ (xi)− f (xi))
2+

λ

H

H∑
h=1

|wh|, (G.1)

with λ→ 0+. The weights wh are initialized to zero and the features are initialized
uniformly and constrained to be on the unit sphere.

2. α-trick. Following [8], here we minimize,

Lα-trick =
1

2nα

n∑
i=1

(f ∗ (xi)−αf (xi))
2 , (G.2)

with α→ 0. This trick allows us to be far from the lazy regime by forcing the weights
to evolve to O(1/α), when fitting a target of order 1.

In both cases, the solution found by GD is sparse, in the sense that it is supported on
a finite number of neurons—in other words, the measure γ(θ) becomes atomic, satisfying
Assumption 1. Furthermore, we find that

1. for Min-L1, the generalization error prediction holds (figures 4 and G1) as the min-
imal norm solution if effectively recovered, see figure G2. Such clean results in terms
of features position are difficult to achieve for large n because the training dynam-
ics becomes very slow and reaching convergence becomes computationally infeasible.
Furthermore, we observe the test error to plateau and reach its infinite-time limit
much earlier than the parameters, which allows for the scaling predictions to hold.

2. α-trick, however, does not recover the minimal-norm solution, figure G2. Moreover,
the solution found is of the type (2.7) since it is sparse and supported on a number
of atoms that scales linearly with n, figure G3, left. Therefore, we find that our
predictions for the generalization error also hold in this case, see figure G3, right.

Lazy learning. In this case, the correspondence between the solution found by GD
and the minimal-norm one is well established [9]. Therefore, numerical experiments are
performed here via kernel regression and the analytical NTK equation (A.19). Given a
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Figure G1. Generalization error decay versus target smoothness and training
regime. Here, data points are sampled uniformly from the spherical surface in
d =5 and the target function is an infinite-width FCN with activation function

σ(·) = | · |νt−
1
2 , corresponding to a Gaussian random process of smoothness νt . 1st

row: generalization error decay exponent as a function of the target smoothness
νt . Three curves correspond to the target contribution to the generalization error
(black) and the predictor contribution in either the feature (blue) or lazy (orange)
regime. Full lines highlight the dominating contributions to the generalization error.
2nd row: agreement between predictions and experiments in the feature regime for
a non-smooth (left) and smooth (right) target. In the first case, the error is dom-
inated by the target f∗, in the second by the predictor fn—predicted exponents β
are indicated in the legends. 3rd row: analogous of the previous row for the lazy
regime.

data set {xi,yi = f ∗(xi)}ni=1, we define the gram matrix K ∈ Rn×n with elements Kij =
K(xi,xj) and the vector of target labels y = [y1,y2, . . . ,yn]. The qi’s in equation (2.9)
can easily be recovered by solving the linear system:

y = 1
nKq. (G.3)

Experiments. Numerical experiments are run with PyTorch on GPUs NVIDIA V100
(university internal cluster). Details for reproducing experiments are provided in the
code repository, experiments.md file. Individual trainings are run in 1 min to 1 h of
wall time. We estimate a total of a thousand hours of computing time for running the
preliminary and actual experiments present in this study.
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Figure G2. Comparing solutions. Solutions to the spherically symmetric task in
d =2 for n =4 (left) and n =8 (right) training points. Minimal norm solution in red
(equation (2.5)), as found by basis pursuit [50]. Solutions found by GD in the Min-
L1 and α-trick setting, respectively, are shown in blue and orange. Dots correspond
to single neurons in the network. X -axis reports their angular position while the y-
axis reports their norm, |wh|∥θh∥2. Total norm of the solutions, α

H

∑H
h=1 |wh|∥θh∥2,

is indicated in the legend.

Figure G3. Solution found by the α-trick. We consider the case of approximating
the constant target function on Sd−1 with an FCN. Training is performed starting
from small initialization through the α-trick. Left: number of atoms nA as a function
of the number of training points n. Neurons that are active on the same subset of the
training set are grouped together and we consider each group to be a distinct atom
for the counting. Right: generalization error in the same setting (full), together
with the theoretical predictions (dashed). Different colors correspond to different
input dimensions. The case of d =2 and large n suffers from the same finite time
effects discussed in figure 4. Results are averaged over ten different initializations
of the networks and data sets.

Appendix H. Sensitivity of the predictor to transformations other than
diffeomorphisms

This section reports experiments to integrate the discussion of section 5. In particular,
we (i) show that the lazy regime predictor is less sensitive to image translations than
the feature regime one (as is the case for deformations, from figure 6) and (ii) provide
evidence of the positive effects of learning features in image classifications, namely
becoming invariant to pixels at the border of images that are unrelated to the task.
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Figure H1. Sensitivity to input transformations versus number of training points.
Relative sensitivity of the predictor to (left) random one-pixel translations and
(right) white noise added at the boundary of the input images, in the two regimes,
for varying number of training points n and when training on FashionMNIST.
Smaller values correspond to a smoother predictor, on average. Results are com-
puted using the same predictors as in figure 1. Left: for small translations, the
behavior is the same compared to applying diffeomorphisms. Right: the lazy regime
does not distinguish between noise added at the boundary or on the whole image
(Rf = 1), while the feature regime becomes more insensitive to the former.

To prove the above points we consider, as in figure 6, the relative sensitivity of the
predictors of lazy and feature regime with respect to global translations for point (i) and
corruption of the boundary pixels for point (ii). The relative sensitivity to translations
is obtained from equation (5.1) after replacing the transformation τ with a one-pixel
translation of the image in a random direction. For the relative sensitivity to boundary
corruption, the transformation consists of adding zero-mean and unit-variance Gaussian
numbers to the boundary pixels. Both relative sensitivities are plotted in figure H1, with
translations on the left and boundary pixel corruption on the right.

In section 5, we then argue that differences in performance between the two training
regimes can be explained by gaps in sensitivities with respect to input transformations
that do not change the label. For (i), the gap is similar to the one observed for dif-
feomorphisms (figure 6). Furthermore, the space of translations has negligible size with
respect to input space, hence we expect the diffeomorphisms to have a more promin-
ent effect. In case (ii), the feature regime is less sensitive with respect to irrelevant
pixel corruption and this would give it an advantage over the lazy regime. The fact
that the performance difference is in favor of the lazy regime instead, means that these
transformations only play a minor role.

Appendix I. Maximum-entropy model of diffeomorphisms

Here, we briefly review the maximum-entropy model of diffeomorphisms as introduced
in [49].

An image can be thought of as a function x (s) describing intensity in position
s= (u,v) ∈ [0,1]2, where u and v are the horizontal and vertical (pixel) coordinates.

https://doi.org/10.1088/1742-5468/ad01b9 32

https://doi.org/10.1088/1742-5468/ad01b9


Learning sparse features can lead to overfitting in neural networks

J.S
tat.

M
ech.(2023)

114003

We denote τx the image deformed by τ , i.e. [τx](s) = x(s− τ(s)) [49] and propose an
ensemble of diffeomorphisms τ(s) = (τu, τv) with i.i.d. τ u and τ v defined as,

τu =
∑

i,j∈N+

Cij sin(iπu)sin(j π v) , (I.1)

where the C ij ’s are Gaussian variables of zero mean and variance T/(i2+ j2) and T
is a parameter controlling the deformation magnitude. Once τ is generated, pixels are
displaced to random positions. See figure 5(b) for an example of such a transformation.
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