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Abstract
We prove sharp bounds on the enstrophy growth in viscous scalar conserva-
tion laws. The upper bound is, up to a prefactor, the enstrophy created by the
steepest viscous shock admissible by the L∞ and total variation bounds and
viscosity. This answers a conjecture by Ayala and Protas (2011 Physica D 240
1553–63), based on numerical evidence, for the viscous Burgers equation.
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enstrophy amplification

Mathematics Subject Classification numbers: 35K59, 35K15, 35K15, 35L65,
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1. Introduction

We consider the initial-value problem for the one-dimensional viscous Burgers equation{
∂tuν + uν∂xuν = ν∂2

xu
ν , t> 0, x ∈ T ,

uν (0,x) = u0 (x) , x ∈ T ,
(1.1)
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where ν > 0, T := R/Z is the unit circle equipped with periodic boundary conditions, and u0
has zero average. Solutions to (1.1) exhibit ‘steepening of gradients’, caused by the advec-
tion term, which is subsequently arrested by viscous dissipation when the diffusion begins to
dominate.

We are interested in studying the maximum amplification achieved by the ‘enstrophy’
E(t) := ∥∂xuν(t, ·)∥2L2 . This problem has two variants. Lu and Doering [3], who were origin-
ally motivated by connections between enstrophy growth in the 3D Navier–Stokes equations
and potential finite-time singularity, proposed tomaximize the instantaneous enstrophy growth
rate, namely,

1
2
dE
dt

=−ν

ˆ (
∂2
xu

ν
)2

dx+
1
2

ˆ
(∂xu

ν)
3 dx (1.2)

subject to the constraint E = E0. The maximizers are explicit and saturate the analytical upper
bound

dE
dt

⩽ CE 5
3

ν
1
3

, E0 ⩾ 1 , (1.3)

thereby resolving the problem. However, Ayala and Protas [1] observed numerically that
the growth of Lu and Doering’s maximizers is not sustained. They proposed to maximize
supt>0 E(t) subject to the constraint E(0) = E0. As a proxy, the authors numerically maximize
the finite-time enstrophy E(T) and observe the scaling

E (T)∼ E
3
2
0 , E0 →+∞ , (1.4)

for the maximal enstrophy under O(1) viscosity at various times T. Subsequently, Pelinovsky
exhibited solutions with enstrophy satisfying the scaling (1.4) with T∼ E−1/2

0 through the
Hopf–Cole transformation ([6, theorem 1.1] and [5]).3

Notably, the analytical upper bound

sup
t>0

E (t)⩽ CE3
0

ν4
, E0 ⩾ 1 , (1.5)

deduced in [1, appendix A], does not match the numerical evidence (1.4). In this paper, we
clarify this discrepancy by proving the sharp upper bound.

It will be convenient to non-dimensionalize time so that either ν= 1 and E0 →+∞, as
in [1], or E0 = 1 and ν → 0+, which is the convention we follow. This is accomplished via the
rescaling

uλ (t,x) = λu(λt,x) , λ > 0 , (1.6)

with λ= E−1/2
0 . In our normalization, the analytical upper bound (1.5) becomes supt>0 E(t)⩽

Cν−4, whereas the numerically predicted upper bound supt>0 E(t)⩽ CE3/2
0 at unit viscosity

becomes

sup
t>0

E(t)⩽ Cν−1 , ν ∈ (0,1] . (1.7)

In [2, equation (2.11)], Biryuk proved (1.7), but with a constant C depending on higher
Sobolev norms of the initial datum. His bound does not apply to the maximization problem
in [1].

3 We recommend the survey [7] for Burgers’ enstrophy maximization in the context of the systematic search for
extreme solutions to fluid equations via PDE optimization.
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The upper bound (1.7) has a natural interpretation. It is the enstrophy created by the
developed viscous shock

u(x) =−U tanh
x
ℓ

(1.8)

with U= O(1) and characteristic length scale ℓ= ν/U. In a size O(ℓ) neighbourhood of the
origin, its enstrophy is O(U2/ℓ) = O(U3/ν); that is, the viscous shock dissipates energy at
the rate O(U3). Then we anticipate that the most advantageous configuration for enstrophy
growth is to develop the steepest viscous shock possible from initial data with O(1) enstrophy.
This process is primarily restricted by the total variation ∥∂xuν(t, ·)∥L1 , which is monotonically
decreasing and, on the torus, controlled by the initial enstrophy. We leverage this observation,
not exploited in [1], to prove the sharp upper bound.

Theorem 1.1 (upper bound on the enstrophy growth for the viscous Burgers equation).
There exists an absolute constant C0 > 0 such that the following holds. Let u0 ∈ H1(T)
with ∥∂xu0∥L2 ⩽ 1 and zero mean. Let ν > 0 and uν be the solution of the viscous Burgers
equation (1.1) on the unit torus T with initial data u0. Then

∥∂xuν (t, ·)∥2L2 ⩽ C0
(
1+ ν−1

)
, for all t⩾ 0 . (1.9)

We further provide an alternative proof (see [6]) of the corresponding lower bound.

Theorem 1.2 (lower bound on the enstrophy growth for the viscous Burgers equation).
There exists u0 : T→ R satisfying the conditions of theorem 1.1 and a constant c0 > 0 such
that

liminf
ν→0+

ν∥∂xuν∥2L∞t L2x(R+×T) ⩾ c0 . (1.10)

Finally, we apply the same strategy as in theorem 1.1 to prove sharp upper bounds on the
enstrophy growth for solutions to the Cauchy problem for a multi-dimensional viscous scalar
conservation law{

∂tuν + div f(uν) = ν∆uν , t> 0, x ∈M,

uν (0,x) = u0 (x) , x ∈M,
(1.11)

with locally Lipschitz continuous flux f : R→ Rn on the domain M := Rn or M := Tn
L :=

(R/LZ)n with L⩾ 1. The key point is to leverage the monotonicity of the L∞-norm and the
total variation.

Theorem 1.3 (multi-dimensional conservation laws with Lipschitz continuous flux).
There exists an absolute constant C0 > 0 depending only on the Lipschitz norm of f |[−1,1]

and the dimension n⩾ 1 such that the following holds. Let M := Rn or M := Tn
L, with L⩾ 1.

Let u0 ∈ L∞ ∩ Ẇ1,1 ∩ Ḣ1(M) satisfying

∥u0∥L∞ , ∥∇u0∥L1 , ∥∇u0∥L2 ⩽ 1 . (1.12)

Let ν > 0 and uν be the solution of the viscous scalar conservation law (1.11) on M with initial
data u0. Then

∥∇uν (t, ·)∥2L2 ⩽ C0
(
1+ ν−1

)
, for all t⩾ 0 . (1.13)

The constant C0 is independent of the domain. We view theorem 1.1 as an immediate corol-
lary of theorem 1.3.
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2. Proofs

The Cauchy problem (1.11) is globally well-posed in the subcritical space L∞ in any dimen-
sion. The finiteness of the enstrophy, Ẇ1,1-seminorm, and various other quantities can be
proven a posteriori by considering the equation (2.6) satisfied by ∇uν with f ′(u) viewed as a
known bounded function. We refer to [4, theorem 2.9 and lemma 2.16] for well-posedness in
L2 ∩L∞ and L∞ ∩H1.

Our strategy is based on L∞ and TV-bounds for the viscous conservation law and two
subsequent estimates. First, we propagate the initial enstrophy bound on the time interval (0,ν];
after time O(ν), the estimate degenerates—see (2.9). Then we view uν as solving the heat
equation with data and right-hand side controlled only by the monotone quantities, and we
rely on smoothing, which is effective after time O(ν), to bound the enstrophy—see (2.12)
and (2.13). The smoothing estimate depends only on the monotone quantities and controls the
solution on (ν,+∞).

We collect the necessary linear estimates in the following lemma.

Lemma 2.1 (heat estimates). Let v0 ∈ L∞ ∩ Ẇ1,1(M). Then, for all t> 0, we have

∥∇eνt∆v0∥L2 ≲ (νt)−
1
4 ∥v0∥

1
2
L∞∥∇v0∥

1
2
L1 , (2.1)

∥∇2eνt∆v0∥L2 ≲ (νt)−
3
4 ∥v0∥

1
2
L∞∥∇v0∥

1
2
L1 . (2.2)

All implied constants are allowed to depend on the dimension n.

Proof. By the representation formula via the heat kernel on Rn (notably, we may consider
L∞(M)⊂ L∞(Rn) in the periodic setting), we have

∥∇eνt∆v0∥L∞ ≲ (νt)−
1
2 ∥v0∥L∞ . (2.3)

Since ∇ commutes with eνt∆, we compute

∥∇eνt∆v0∥L1 ≲ ∥∇v0∥L1 . (2.4)

Then the interpolation inequality ∥ · ∥L2 ⩽ ∥ · ∥
1
2
L∞∥ · ∥

1
2
L1 yields (2.1).

To obtain (2.2), we combine the Ḣ1 → Ḣ2 smoothing estimate (proven via the Fourier rep-
resentation and the inequality |ξ|se−ν|ξ|2t ≲ (νt)−

s
2 , s⩾ 0) and (2.1):

∥∇2eνt∆v0∥L2 ≲ (νt/2)−
1
2 ∥∇eνt∆/2v0∥L2

(2.1)

≲ (νt/2)−
3
4 ∥v0∥

1
2
L∞∥∇v0∥

1
2
L1 . (2.5)

Proof of theorem 1.3. Step 1. Conserved quantities. By the maximum principle for the PDE
∂tuν + f ′(u) ·∇uν = ν∆uν and using the transport–diffusion equation

∂t∇uν +∇
(
f ′ (uν) ·∇uν

)
= ν∆∇uν (2.6)

for ∇uν , we deduce

∥uν∥L∞ , ∥∇uν∥L1 ⩽ 1 , (2.7)

respectively; see [4, theorem 2.29] for further details.
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Step 2. Propagation estimates for the enstrophy in the time interval t ∈ (0,ν]. We mul-
tiply (2.6) by ∇uν and integrate by parts to obtain a differential inequality for the enstrophy:

d
dt

1
2

ˆ
M
|∇uν |2 dx=

ˆ
M

(
f ′ (uν) ·∇uν

)
∆uν dx− ν

ˆ
M
|∆uν |2 dx

⩽ ν−1

2

ˆ
M
| f ′ (uν) |2|∇uν |2 dx+ ν

2

ˆ
M
|∆uν |2 dx− ν

ˆ
M
|∆uν |2 dx

⩽ ν−1

2
∥ f |[−1,1]∥2Lip

ˆ
M
|∇uν |2 dx− ν

2

ˆ
M
|∆uν |2 dx ,

(2.8)

where we used Young’s inequality ab⩽ a2/2ν+ νb2/2 in the second line and the L∞-bound
in the third line. By Gronwall’s inequality, (2.8) yields

ˆ
M
|∇uν |2 dx⩽ ∥∇u0∥2L2 exp

(
ν−1∥ f |[−1,1]∥2Lip t

)
. (2.9)

In particular,

sup
t∈(0,ν]

∥∇uν(t, ·)∥2L2 ≲ 1 . (2.10)

Step 3. Duhamel’s formula and smoothing effect: t ∈ (ν,∞). By Duhamel’s formula, we
write

uν (t0 + τ, ·) = eν∆τuν (t0, ·)−
ˆ t0+τ

t0

eν(t0+t−s)∆ div f(uν)(s, ·) ds , t0, τ ⩾ 0 . (2.11)

We bound the right-hand side in terms of the conserved quantities. First, we have

∥eν∆τuν (t0, ·)∥Ḣ1

(2.1)

≲ (ντ)
− 1

4 ∥uν (t0, ·)∥
1
2
L∞∥∇uν (t0, ·)∥

1
2
L1 . (2.12)

Second, we have ∥ f(uν)∥L∞ ⩽ ∥ f |[−1,1]∥L∞ and ∥∇f(uν)∥L1 ⩽ ∥ f |[−1,1]∥Lip∥∇uν∥L1 . Then,
moving the divergence onto the heat kernel and applying (2.2), we have∥∥∥∥ˆ t0+τ

t0

∇eν(t0+τ−s)∆ · f(uν)(s, ·) ds
∥∥∥∥
Ḣ1

≲
ˆ τ

0
(ν (τ − s))−

3
4 ds

≲ ν−
3
4 τ

1
4 .

(2.13)

We can optimize the above inequalities by choosing τ = ν. Then

sup
t⩾ν

∥∇uν (t, ·)∥2L2 ≲ ν−1 . (2.14)

Step 4. Conclusion of the proof. Combining steps 2 and 3, we conclude the proof: we use
the propagation estimate (2.10) to handle times t ∈ (0,ν]; and the smoothing estimate (2.14)
(with t0 = t− ν) for t ∈ (ν,+∞).

Remark 2.2 (viscous Burgers equation in 1D). In the setting of the Burgers equation (1.1),
we can avoid using the heat estimates from lemma 2.1. Indeed, since Ẇ1,1 and L∞ have roughly
the same ‘strength’ in dimension one, we may substitute
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∥∂xeνt∂
2
x u(t0, ·)∥L2 ≲ (νt)−

1
4 ∥∂xu(t0, ·)∥L1 ≲ (νt)−

1
4 (2.15)

for (2.12) and∥∥∥∥ˆ t0+τ

t0

∂xe
ν(t−s)∂2

x uν∂xu
ν ds

∥∥∥∥
L2
≲
ˆ t

0
(ν (t− s))−

3
4 ds∥uν∥L∞t L∞x ∥∂xuν∥L∞t L1x (2.16)

for (2.13). On the other hand, the interpolation argument from lemma 2.1 is necessary when
n⩾ 2 to maximally utilize the L∞-bound.

Remark 2.3 (less restrictive assumption). From (2.9), we observe that theorem 1.3 remains
valid under the assumption ∥u0∥L∞ , ∥∇u0∥L1 , ν∥∇u0∥2L2 ⩽ 1.

Finally, we present the proof of theorem 1.2.

Proof of theorem 1.2. First, we prescribe initial data v0 for the inviscid problem whose
entropy solution v shocks only at the origin. Let v0 ∈ C∞(T) be odd on the fundamental
domain [− 1

2 ,
1
2 ), non-negative and concave on [−

1
2 ,0), increasing on [−

1
2 ,−

1
3 ), equal to+1 on

[− 1
3 ,−

1
6 ], and decreasing on [− 1

6 ,0]. Concavity ensures that the solution is described by the
method of characteristics on [− 1

2 ,0): indeed, given a particle label α, the ‘local turnover time’
t∗(α) =−1/v ′0(α), at which the derivative of the flow map η(α) = α+ v0(α)t vanishes, will
be at least the time ts(α) = v0(α)/α at which the characteristic enters the origin. For t> t∗(0),
v has the desired shock at the origin.

Let u0 = Uv0 where U= 1/∥∂xv0∥L2 > 0 is a normalizing factor to ensure that the condi-
tions of the above theorem are satisfied. This amounts to a time rescaling: u(t,x) = Uv(Ut,x).
The whole family of smooth solutions {uν}ν>0 to the viscous equation (1.1) converges to the
unique entropy solution u of the inviscid problem{

∂tu+ u∂xu= 0, t> 0, x ∈ T ,

u(0,x) = u0 (x) , x ∈ T .
(2.17)

Indeed, compactness in Lp, with p<+∞, is ensured by the uniform bounds in L∞ and W1,1

and the convergence along the whole sequence is guaranteed by the uniqueness of the limit
entropy solution (owing to Urysohn’s subsequence principle); for further details on the com-
pactness argument and on the entropy-admissibility of the limit point, we refer to [4, theorems
4.62, 4.71, and 5.1].

Notably, the energy density measure u2/2 satisfies

∂t

(
1
2
u2
)
+ ∂x

(
1
3
u3
)
=− lim

ν→0+
ν|∂xuν |2 ⩽ 0 . (2.18)

The right-hand side of (2.18) is uniformly bounded in L1 and converges in the weak-∗ sense
of finite measures. On the time interval I := ( 1

6U + ε, 1
3U − ε), for 0< ε≪ 1, we have that

u= U(1(−Uε,0) −1(0,Uε)) in the neighbourhood O := (−Uε,Uε) and, therefore, the left-hand
side of (2.18) is given by − 2

3 U
3 δ{x=0} in O. Hence, we conclude

liminf
ν→0+

ν∥∂xuν∥2L∞t L2x(I×O) ⩾ liminf
ν→0+

ν
1
|I|

ˆ
I

ˆ
O
|∂xuν |2 dxdt⩾

2
3
U3 . (2.19)
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