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Il v a longtemps de cela, ¢’était en acut 1875, Pétais assis sur une
pierre de la greve 4 Romanshorn, et je suivais de U'wil le fotteur de
mon plémyrametre gui oscillait sous 'impulsion des seichies du lac de
Constance. Un habitant de la ville, un institnteur, je crois, qui m’avait
vu stationner, sans motif apparent, pendant quelques heures sur cette
plage marécageuse, me questionna sur mes recherches ; je lul expli-
quai de mon mieux le phénomeéne des seiches et le but de mes études,
‘mais quand il termina par un : « Zu wasniitzt das? » A quoi cela sert-
il? je fus, je l'avoue, un peu interloqué. Jessayai de lui dive gue je
m’appliquais & la solution d’'un probléme de la nature ; je ne sus pas
Jui indiquer d’utilité immédiate ou pratique, et mon interlocuteur se
retica évidemment peu satisfait. 1} avair Yair de voir en mol « un Mon-
sieur qui ne craint pas de perdre son temps. » — Il est vrai que jai
consacré a ces recherches bien des heures, bien des journces, bien
des années de ma vie. Muis javoue que, dans mon for intéricur, ji ne
me suis jamais senti humilié d'avoir dépensé auntant de cette demée
précieuse entre toules, le temps (qui s’¢eoule et ne vevient pas, i un
theme =ans utilité immddiate et pratique. La recherche désintéressce
des faits et des lois de la nature west pas un travail vain et sans
résultat : la grandeur de 'homme ne réside-t-elle pas en partie dans
cette curiosité singuliere qui Pentraine 4 surprendre et & comprendre
les secrets de la nature qui P'entoure? n’est-ce pas une noble tiche
que la recherche de la vérité, sous quelque forme quelle se présente
a nous?

N’est-ce pas quelque chose d’avoir trouvé une explication plausible
des grandes seiches de Geneve el une solution satisfaisante du pro-
bléme de I'Euripe?

Mais il y a plus, et c’est 14 une des beautés de nos études scientifi-
ques. Toute recherche, quelque désintéresseée (u’elle paraisse aun pre-
mier abord, peut amener, par des voies souvent bien détournées, a

" des résultats pratiques et utiles. Notre étude des seiches peut, elle
aussi, avoir son utilité pratique. Quand il sera définitivement démontré
que les mouvements de balancement de 'eau des lacs répondent aux
lois générales de la mécanique pure, que loscillation des seiches suit
le ryvthme que Merian a déduit des équations différentielles de la
mécanique analytique de Lagrange, ou le rythme que M. du Boys a
tiré de considérations d’hydraulique supérieure; quand nous aurons
trouve une confirmation de quelques données de la théovie pure pur
Pobservation directe d’osciflations qui mettent en mouvement de
balancement aussi bien la masse énorme des 89 milliards de métres du
Léman, que les quelques litres d’eau de nos aunges d’expérimentation,
n’aurons-nous pas la une vérification précieuse ? Sur une échelle vrai-
ment gigantesque, nous aurons lu preuve de quelques-unes des lois
(qui sont 4 la base de la science hamaine ; nous aurons, dans la faible
mesure de nos forces, donné une certitude nouvelle au fondement
scientifique sur lequel est biti tout P'édifice du travail de I'humanité
agissante, de 'humanité active et industrielle.

Mon cher inconnu de Romanshorn, & ta question : « Wozu nitzt
es? » je réponds : « Es nitzt doch etwas ».

From Forel (1895), pages 212-213.
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Abstract

Combining the neat representation of boundary geometry of fini-
te element models with the advantage of fast numerical solution
of finite difference models, an irregular-grid finite differen-
ce scheme was developed to solve the hydrodynamic equations of
motion in a three-dimensional homogeneous lake. The operation

of the model was first demonstrated by applying it in a one-

and a three-layer formulation to a lake of arbitrary shape. With
an initially coarse irregular grid, the model was then used to
simulate water level fluctuations observed in the Lake of Geneva
(Le Léman) during a 60-hour episode of strong north-easterly
winds. It was found that numerical instabilities arising from
the use of a completely irregular finite-difference grid can be
largely eliminated if the grid is modified in such a way that
each interior grid point is placed centrally with respect to

all surrounding points. With a '"smoothed-irregular' grid scheme,
modified in this way, it was possible to reproduce in consider-
able detail the water level responses observed by Forel and
others in the Léman, i.e., the surges generated by wind stress
and the free oscillations (seiches) which follow.

DREIDIMENSIONALES NUMERISCHES MODELL ZUR SIMULATION VON WIND-
ERZEUGTEN WASSERSPIEGELSCHWANKUNGEN UND STROMUNGEN IN EINEM
HOMOGENEN SEE UNTER VERWENDUNG EINES UNREGELMASSIGEN FINITEN
DIFFERENZENSCHEMAS MIT ANWENDUNGEN AUF DEN GENFERSEE

Zusammenfassung

Ein mathematisches Modell zur L&sung der hydrodynamischen Bewe-
gungsgleichungen in einem dreidimensionalen homogenen See wurde
vorgestellt. Das verwendete finite Differenzen-Schema erlaubt
unter Anwendung eines unregelmissigen Gitters die geschmeidige
numerische Darstellung der Geometrie von Seen, normalerweise nur
bei finiten Element-Modellen méglich, mit der schnellen Rechen-
weise von finiten Differenzen-Modellen zu verbinden. Die Arbeits-
weise des Modells wurde zuerst an einem willkiirlich gewdhlten
Test-See in einer ein- und in einer dreischichtigen Formulie-
rung demonstriert. Unter Verwendung eines groben, unregelmdssi-
gen Gitters wurden dann Wasserspiegelschwankungen des Genfer-
Sees (Le Léman), die wdhrend 60 Stunden starker nord-&stlicher
Winde beobachtet worden waren, simuliert. Weiterhin wurde ge-
zeigt, dass durch Unregelmidssigkeiten des Gitters erzeugtes un-
stabiles Modellverhalten weitgehend mittels Plazierung jedes
inneren Gitterpunktes in der Mitte seiner umliegenden Punkte eli-
miniert werden kann. Mit Hilfe eines solchen '"gleichmissig-un-
regelmidssigen'" Gitters war es dann mdglich, die von Forel und
anderen beobachteten winderzeugten Wasserspiegelschwankungen

und ihre nachfolgenden freien Schwingungen (Seiches) in beacht-
lichem Detail zu simulieren.
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DEVELOPPEMENT D'UN MODELE TRIDIMENSIONNEL AUX DIFFERENCES FINIES
A MAILLES TRREGULIERES PERMETTANT DE SIMULER LES FLUCTUATIONS

DE LA SURFACE D'EAU ET LES COURANTS INDUITS PAR LE VENT DANS

UN LAC HOMOGENE AVEC APPLICATIONS AU LEMAN

Résumé

En associant 1'élégance de la représentation géométrique des

modéles aux éléments finis avec la rapidité d'exécution des mo-

déles aux différences finies, un modeéle aux différences finies

a4 mailles irréguliéres a permis de résoudre les é&quations hydro-
dynamiques du mouvement tridimensionnel dans un lac homogeéne.

La démonstration du fonctionnement du modéle a &té faite sur

un lac de forme arbitraire en intégrant les équations sur une

ou trois couches. A 1'aide d'une maille irréguliére d'abord
grossiére, ce modéle a ensuite permis de simuler les fluctua-
tions du plan d'eau observées sur le Lac de Genéve (Le Léman)
pendant une période de fortes bises de 60 heures. Les instabi-
lités numériques provenant de 1l'utilisation de mailles compléte-
ment irréguliéres ont pu &tre largement €liminées, en modifiant
la maille de sorte que chaque point intérieur de la grille soit
situé au centre de la maille formée par ceux qui 1'entourent.
Avec une telle grille a mailles "irréguliéres-lissées' on a pu
reproduire de facon trés détaillée les réactions du plan d'eau
observées par F.A. Forel et autres sur le Léman, a savoir les
oscillations en masse générées par le frottement du vent et les
oscillations libres (seiches) qui en résultent.



1. Introduction

F.A. Forel's pioneering work on the Lake of Geneva (Le Léman)
has made this lake a classic object for study by limnologists.
Apart from the fact that Forel invented the word "1imnology”,
i.e., an oceanography of lakes (Forel, 1895), he is probably
best known for his work on the periodic water level fluctua-
tions in the Léman. It was, in fact, this work that made limno-
logists adopt the word '"seiches" (an old Léman-region vernacu-
lar) for this phenomenon, and which prompted Chrystal's (1905)
reference to Forel as the '"Faraday of seiches'". A review of

other important "firsts" on the Léman is given by Mortimer (1979).

Seiches are free oscillatory movements of water in lakes and bays.
Movement of real fluids can be described with the aid of the
Navier-Stokes equations. Analytical solutions of the Navier-
Stokes equations exist only for simplified situations. If it is
desired to solve the Navier-Stokes equations for irregular ba-
~sins, i.e., for natural lakes, numerical solution procedures

must be used. One of the earliest applications of numerical
methods for the simulation of wind driven currents and water
levels 1is given by Hansen (1956). Since then, a large number of
mathematical models have been developed simulating currents and

water levels 1n oceans, estuaries, lakes and rivers.

The phenomenon of periodic water level fluctuations of lakes
has been observed for a long time. The earliest european record
of such fluctuations stems from Lake Constance, where on Fe-
bruary 23, 1549, Christoph Schulthaiss (Forel, 1893) observed

a serlies of extraordinary seiches with an amplitude of nearly
one meter in the narrows of Constance. These seiches were ac-
companied by dramatic reversals of the normal current direction
at this location. Other early observations of seiches were made

on November 1, 1755, in northwestern Europe; these being caused




by the great earthquake that devastated Lisbon on the same day
(Hutchinson, 1975).

The seiches of the Léman are particularly conspicuous in the
vicinity of Geneva due to the narrowing of the lake near that
city. Periodic water surface fluctuations of the Lé&man were
first reported by Fatio de Duillier (1730), who mentions three
or four seiches attaining a height of about five feet near the
harbour of Geneva on September 16, 1600. After this date many
more observations of water level fluctuations were recorded on
the Léman (Hutchinson, 1975; Forel, 1895). It was however only
due to F.A. Forel's painstaking personal observations over many
years ‘and his analytic work that the mechanism of these seiches
became understood. Forel was also able to show that seiches may
exist in seas and oceans by resolving the classic problem of
the alternating, violent currents in the straits of Euripe
(Forel, 1897) which for over 2300 years had remained unsolved.
To study the seiches of the Léman in detail, Forel constructed
various portable limnigraphs allowing vefy precise measurement
of changes in water level. In 1876 Forel installed a stationary
limnigraph at Morges (Forel, 1876b), which he kept operational
until 1884 (Forel, 1895). Analysing his data containing records
of seiches of many different periods, he came to the conclusion
that seiches are standing waves in the Léman, oscillating be-
tween various extremities of the lake. The experimental proof

for his hypothesis was obtained by Forel in 1873,

Forel distinguished betweenA”dénivellations continues" (Forel
1895, p. 29), i.e., temporary deviations or "set-ups' of the
lake surface from its equilibrium position caused by meteoro-
logical forces, notably wind stress on the water surface and
"dénivellations rythmiques" (Forel 1895, p. 39) which he de-
scribes as follows: '"Sous 1'influence d'actions mécaniques di-
verses, l'eau du lac peut subir une dénivellation temporaire
trés rapide, dont 1'impulsion est assez prompte pour qu'elle

se transforme en un mouvement rythmique d'oscillation, de ba-
q ’



‘lancement. Sous une impulsion violente et rapide, 1'eau subit
une dénivellation qui souldve le lac 4 une des extrémités en le
déprimant a 1'autre; l'action dénivellatrice ne dure pas et le
lac tend 3 reprendre son niveau; mais au lieu de s'arréter a
1'horizontalité, sous l'entrainement du mouvement acquis, il
dépasse ce niveau, et pour revenir a 1'€tat d'équilibre stable,
il décrit une série d'oscillations de plus en plus faibles. Ces
oscillations rythmiques, ou pendulaires, sont connﬁes sur les
bords du lac Léman sous le nom de seiches." Although the term
"seiche'" has later been loosely applied to lake oscillations

in general, a clear distinction should be made between (a) the
impulsive oscillations generated during the forcing phase and
(b) the free oscillations which follow when the force is removed.
In modern terminology the term "surge" or "storm surge' has been
reserved for (a) and the term "seiche" for (b). However, in a
storm, the distinction between (a) and (b) is not always clear;
and the present thesis, concerned with simulation of the gener-
ation of seiches by wind impulses therefore treats both (a) and
(b) under the general heading of "seiche', i.e., the manner in
which (in Forel's sense) "1'impulsion ... se transforme en un
mouvement rythmique d'oscillation, de balancement”. The model
can thus be viewed as a combination of a storm surge model and a
seiche model, using the term "'seiche'" to cover both phases of

a lake's oscillatory response to the appiied force.

Searching for a mathematical expression for the calculation of
the period of seiches, Forel discovered, in 1876, that the for-
mula of Merian (1828) for water surface oscillations in a rect-
angular vessel was also valid for the seiches of the Léman; thus
giving the proof that the two types of oscillations follow es-
sentially the same principle. In cases where the seiche periods
of the Léman did not correspond to Merian's formula, Forel was
able to show that such seiches were either binodal seiches or
superpositions of seiches with different periods. In 1891 Du Boys
(1891a) presented an extension of Merian's formula to allow cal-

culation of seiche periods in irregular basins, which Du Bois



(1891b) and Forel applied to the Léman and to the lakes of
Zurich and Constance. Further analytical progress on the mathe-
matical determination of seiche periods was made by Chrystal
(1904, 1905) for lakes with a basin of a mathematically treat-
able shape. However, numerical methods proved to be more con-
venient to use, providing additional information on vertical
and horizontal displacements .(Defant, 1918, 1961). Using a
method developed by Proudman, Doodson et al. (1920) calculated
seiche periods for the Léman with very good results. More re-
cent information concerned with the seiches of the Léman is
found in a report by the-Servicé fédéral des eaux (1954) and

_in a paper by Mortimer (1979).

A

1.2 Mathematical model

T T e S

To simulate water surface elevations and -currents in a homoge-
" neous, shallow lake, a mathematical model has been developed

by Bauer (1979). The present model is a further step in the re-
‘search program of the Hydraulics Laboratory (LHYDREP) of the
Swiss Federal Institute of Technology (EPFL) in Lausanne. In
this project on lake currents, mathematical models are being
developed, and a measuring program to allow for testing of these
models is being undertaken. A steady state finite element model
for a homogeneous lake was reported by Bauer et al. (1977); sub-
sequently a calibration with field data of the Léman was pre-
sented by Bauer and Graf (1979). The measuring campaign is de-
scribed by Prost et al. (1977) and by Graf et al. (1979). Data
handling and visualization is described by Bauer and Perrin-
jaquet (1979).

At present there already exists a large number of mathematical
models for the simulation of lake currents. A general survey

of models for lakes and shallow seas is given by Lindijer (1976).
The reason for developing still another model at LHYDREP is
that a new method of solution (Thacker, 1977a) has recently be-



come available, offering promising avenues for future research.

The present model is a first attempt at LHYDREP to simulate

time dependent lake circulation. Due to the fact that repeti-

tive calculations for the simulation of unsteady flow are ne-
cessary, it is highly desirable to develop an algorithm, which
requires the least possible amount of numerical operations. Ge-
nerally two methods for solving the hydrodynamic equations
describing flows in shallow bodies of water are available, i.e.,
the finite difference method and the finite element method.
Thacker (1977b) found, comparing the two methods, that the com-
putational requirements for the finite element method are about
one order of magnitude larger than those for the finite dif-
ference method. One reason for this is that finite element com-
putations, being time implicit, require time consuming matrix
inversions and a smaller time step to remain stable (Thacker,
1978a, 1978b).

Comparing however finite element models with conventional, i.e.,
rectangular, finite difference models, a major disadvantage of
finite difference models is found to be their rather inelegant
way of representing the boundary lines of a given geometry.

This can become a serious problem, if one is required to si-
mulate flow situations in bodies of water such as estuaries,
where there is the large, relatively uniform sea, which could
well be represented by a rather coarse grid and an often very
distorted shore line, which can be represented properly only

by a rather fine grid. One way of handling such a situation

has been suggested by Ramming (1973), whereby rectangular grids
of different mesh size are combined. In a series of applications,
Ramming (1976, 1978a, 1978b) demonstrates the workability of
such an approach. Some problems however are created at the
frontiers between the areas of different mesh size (Ramming,
1976). With finite element models, problems of representing
‘geometry normally do not occur since a completely irregular

grid can be selected and thus any complicated geometry can



readily be represented.

Combining the advantages of a smooth geometrical representation
of finite element models with the advantages of fast execution
of finite difference models, Thacker (1977a) proposed an ir-

regular-grid finite-difference model. Thacker demonstrated suc-:

cessfully the power of his technique by applying it to one-
(Thacker 1978a) and two-dimensional (Thacker 1977a, 1978b),
linearized shallow water wave equations. In a further article,
Thacker (1979) applied his method to the full hydrodynamic,
nonlinear, two-dimensional and vertically averaged equations
governing a storm surge. He then applied it to the simulation

of a storm surge in an ocean bay.

In the.present research, the Thacker finite difference method
is applied to the equations governing the motions in a shallow,
‘homogeneous lake. The model has been developed such that it
‘can be run either for a lake represented by one layer only, as
in Thacker's (1979) mddel,.or for a lake which has been subdi-

vided into several horizontal layers.

2. -Description of the mathematical model

The motion in a homogeneous, shallow lake on a large scale can

be described by the following equations (Liggett, 1970):

LI A R TR HEOO - oy .1 _ 9p .93 , 034 .3 3% .9 3%
o[at * 37 @)+ 5y () + 2 (@w) - £¥] il + az(”az) + ax(€3x) + ay(eay
..... (1)
W 08 .- 3 ~p 03 . .o Bp 3 9V 3 3% 3 DY
Plgg + 57 @) + 5y (V) * 55 (vw o+ fu] = - sy F 3232t ox G t 5y oy
..... (2)



—tio 4t =0 , (4)

where

i, V and W are the velocity componehts in the x, y and z di-
rections respectively . >
with x being positive towards east,
y being positive towards north and
z being positive upwards, |
is the time,
is the Coriolis parameter,

is the density of the water,

'‘C » th ot

is the local pressure,
n and ¢ are the vertical and horizontal components of the eddy
viscosity and

g is the acceleration of gravity.

Equation 4 is the equation of continuity for an incompressible
fluid. Equations 1 and 2 have been derived under the assumption
that, on a large scale, an "eddy" viscosity, several orders in
magnitude greater than the molecular viscosity, can parameterize
the effects of turbulent fluctuations of the movement in lakes
and oceans (Neumann and Pierson, 1966). In the derivation of
equation 3, all dynamic effects have been neglected and it ex-
presses thus the hydrostatic equilibrium. For a shallow lake,

this is a valid assumption.

Equations 1 and 2 can be further simplified by considering the

following:

(a) the inertia forces are small when compared with the Coriolis

forces, i.e., the Rossby number is small. In this case equa- -

tions 1 and 2 may be linearized:

%—%GG) = Q, é—(fn?) =0 etc.
X

oy




(b) in a shallow lake, the change of vertical shear in the hori-
zontal directions is small compared to the change of hori-

zontal shear in the vertical direction (depth):

—(€ ) =0, —418-—ﬂ =0 etc.
: y

(c) the vertical component of the eddy viscosity is assumed to

be constant over the entire lake depth:

E—( §§9 o 2 t
82”82 —ng‘z' etc.

(d) the influence of external in- and outflows of a lake is
negligible. Thus, only in the immediate vicinity of river

mouths are equations 1-4 notapplicable.

With the above simplifications and assumptions, the system of
equations describing wind induced currents in a homogeneous shal-

low lake becomes:

3 _ o~ _ 9 9%4
R T )
A R (6)
P =T 3y 922 ,
. |
o = - 5> | 3)
3%, 9% oW _ "

3% | By | oz

The above equations may be further manipulated to reduce the
number of equations to three by integrating equation 3 between
the lake bottom and the water surface as shown in Figure 1.

Thus équation 3 becomes
Pg(H - 2z) =p ‘ (7)

where H is the water surface elevation.



Figure 1:

Definition sketch for
vertical integration
in single layered
lake

Substituting equation 7 in equations 5 and 6 gives

3 _ o, 0%
ot~ VT T 95t 0 a2 8)
A 3  n 3%V
T A Wy 3 &

thus eliminating equation 3.

N

Figure 2:

Definition sketch for
-z : vertical integration
in multilayered lake

Defining the volume transports per unit width in a layer, j, of

a multilayered lake as shown in Figure 2, by

u, = f ddz = (ul) . , . (10)
j , 3 _

it

3o :
v, = f Yaz = (VL) . ' : (11)
Z J R .



10.

equation 4 becomes by integration and summation

M

by (%E-+ %X)_ + %§-= 0 : (12)
j=1 0% vy 3
where Lj is the thickness of a layer j and

M 1is the number of layers.

Similarly, 1if the viscosity terms 1in equations 8 and 9 are re-

placed by unit-mass shear stresses « Ty and *Ty at the layer in-

.terfaces (as shown in Figure 2) in the x and y directions re-

spectively, equations 8 and 9 yield

du JH

(o - fv="-gL —+ (1T - T I (13)
ot 9x Xtop *pottom =LM

oV oH

[T-+ fu=-gL ==+ (,T -7 )1, (14)
ot 9y Ytop * Ypottom I M

where the subscript , indicates shear stress per unit mass

and the subscripts "top" and "bottom" indicate the top-

and bottom boundaries of a layer j respectively.

Assuming that Newton's law of (laminar) friction is applicable

‘also to the turbulent case, the above shear stresses can be

introduced as follows:

_ _9u _nou _ '

Tx T %z or /e = 03z *'x (13)
- 3 _nav oo :

'y T4 o P T oz T Ty . e

In terms of transports, equations 15 and 16 may be approximated
by

T = ‘8(%)/82 | | oan

o |3

T =3 B(E?/Bz | ' S (18)

©.|3
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It should furthermore be noted that in equations 13 and 14,

" using vectorial notation,

[T, ] T ' (19
*TtOp i=1 a *Twind )
[*Tbottom]lsj<M =[*Ttop]l<j+l£M ’ (20)
{ ] T ’ 21
«Thottom §=M  * bed ' (21

.
where « T and b g are shear stress Vectors at the water

wind
surface due to wind and at the lake bottom (bed) due

to bed shear stress respectively.

As can be seen in Figure 2, the number of layers is not con-
stant over the entire lake but depends on the position of the
point considered in the lake. Furthermore, equations 12, 13

and 14 are still subject to geometric boundary conditions which
will be discussed later.

_—_— e e e e e e e S a e, - e e e e e e — e e m e . e - .- —-—-———-

The surface shear stress due to wind action on a lake is ge-

nerally given by
- : . '
T =c p_ V|v| ' (22)

+ - »
where T 1is a wind shear vector,
c_is a dimensionless wind shear coefficient,
is the density of air and

is a wind velocity vector

Following the conventions for wind directions as shown in
Figure 3, the wind shear stress per unit mass, ,t, is given
by




Yy
U=-VsinB ¢
V=-Vcosn | \
X Figure 3:
> Definition sketch for
xf angle of wind direction
'
pa .
«T = c ——-UVEZ + V2 (23)
xwind wPp
o, '
T = C —-V¢Uz + V2 (24) -
ywind w P

where U and V are the x and y components of the wind velocity

respectively.

Similarly, the lake bed stress is given by

> > :

- v, v .

T=c,p 5151 f (25)

and

*Tx o= <, w/u? + vz/L2 - (26)
bed

%7 = cb v»/u2 + vzyL2 27
Yped

- .
where 17 is a bottom shear vector,

<y is a dimensionless lake bed shear stress coefficient and

<V

is a water transport vector (in equations 25-27 the di-
vision by L is necessary to obtain mean -velocities

rather than transports).
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Equations 12, 13 and 14 can,readily be expressed in finite
differences. It should be noted however, that if the numerical
approximation is to be stable, the spatial grid must be such
that the fastest moving disturbance occurring will not pass
beyond one grid point within one time step, At. In the model
described herein the fastest moving disturbance is associated
" with a surface gravity wave (see for example Elliott, 1976).
If one assumes that the grid is uniform with a mesh size of

. Ax, that there is no depth variation and that there are no
boundaries, stability of a finite difference scheme is sup-
posedly guaranteed (Thacker, 1978b), if

1,70x

VgD

At < (28)

where D is the depth of water.

A derivation of equation 28 and some concluding remarks. on
the problem of numerical stability of the present model are

given in an appendix.

It can be seen from equation 28 that if it is desired to use
an optimum, i.e., near maximum allowable constant time step
for the entire region, the distance between grid points in an
irregular grid should be approximately proportional to the
square root of the depth at a point. Also, in order to avoid
time consuming matrix inversion techniques, it is highly de-
sirable that the variables H, u and v of equations 12, 13 and
14 be expressed explicitly. Finally, in order to obtain best
results, it has been suggested (Simons, 1973; Stindermann,
1966; Thacker, 1977a, 1978a, 1978b, 1979) that a '"leap-frog"
time scheme be used, in which velocities and water levels are

evaluated at times which are 0,5 At time steps apart.

As has been remarked, equation 28 1is valid only for regular
grids. Thacker (1977a) found that instabilities might still
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occur if a very irregular grid is used, and this in spite of

the fact that equation 28 has been satisfied. Also, Stindermann

(1966) states that equations of the type of equation 28 (also

- known as Courant's condition) are no longer strictly applicable.

in the case of non-linear equations such as used in the present

‘model.

With n indicating positions in time, the finite difference

forms of equations 13, 14 and 12 become, respectively:

o .
5  n-h n+k AH n-% n-%
[un+ = u + At( fv - gL — 4 T - - T )] fe 2
bx " ®ep " *pottom M (29
. [Vn+l: = vn-l’.‘i + At(-fun-i-lz - gL %{— + "*Tn 5 - *Tn L )]j=l M (30)
Y Yiop Ypottom !
L g (A[l’(uthli N DT Vn_%)]) (31)
- 3=1 Ax dy

In equations 29-30, the shear stress at the upper layer inter-
face is given for j = 1 by '

e ’ -
T n—’ X Tn = ¢c —E-Un+%]$n %] (32)
* 3 * x . W p
top wind
n-% n p _
* 'y = *Ty = c a2 Vn+%l§;n Lil (33)

top . “wind w P

Similarly, the shear stress at the lower layer interface for

j =M is given by

RS S W0 2 (Vn-%)Z/LZ]j=M | (34)
xbottom xbed

* o z *Tn = [c vn+%/qun—%)2 + (Vn—%)z/Lz]. (35)
bottom bed



The solution of the system of equations 29-31 proceeds in such
a way that first all variables at times n-} and n are ini-
tialized, i.e., they are either assumed to be zero or they are
assigned reasonable initial values. Then; starting with
equations 29 and 30, all velocities at time n+} can be evalu-
ated. The velocity gradients at time n+i can now be calculated,
permitting solution of equation 31 for the water surface at
time n+l, and performing this operation for each point of the
model. "

At first sight it might be thought that equations 29 and 30
3 . .. . . n+} n+}
require an implicit solution, since the unknowns u and v
appear on both sides of both equations. This however 1s not
the. case, as equations 29 and 30 can be rewritten such that

the unknowns are given in explicit form.

Denoting, with *Tbottom._ = 0
j=M
a .
n-% AH n-% n-%
(u_ =u + AM(-gL — + _T - .1 1. (36)
T Ax * xtop f *pottom J=1.M
n
n- AH n-% - n-% o
[v =v + At (-gL — + T - .1 1. (37)
T By - Yiop * Ypottom J+M
and with y =0
j#M
- n-% » n-% 5 o ' o
[d = l'+ At cb/(u Y+ (v )S/L ]j=l,M (38)

whereby all terms on the right hand sides of equations 36-38
are known, equations 29 and 30 can be written

+3

o5 At £ VP v uy/a] ’ ' (39)
T j=1 .

fu
,M

n+% +35

. n
fv (=Mt £ u + vT)/d]j=l (40)

M

Substituting equation 40 into equation 39

15.
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n+?

- 2 .2
fu (At £ VT/d + uT)/(d + At° f /d)]j=l

After solving equation 41, equation 40 can be solved. To cal-
culate the next step, all variables existing at the end of a
“time step become the initial variables for the new calculations.

This process can thus be repeated any number of times.

Since, so far, no geometric boundary conditions have been im-
posed, equations 29-31 are only valid at pointsnot situated

on the lake boundaries.

In conclusion, it should be noted that equations 29-41 are
valid for any finite difference grid. Ohly for the evaluation

of the derivatives the form of the finite difference grid is

important.

2.4 Evaluation of derivatives

—— s v v m w w — ———

M (41) |

— e e o - -

2.4.1 Vertical derivates

As follows from equations 17-27, vertical derivatives appear

only in a layered lake as shown in Figure 2. Following a scheme

as outlined in Figure 4, the vertical derivatives of equations

=t ;L =<

<

—
+
—

Lj-2
Lj-1 |
L ' Figure 4:
_ ~Definition of layers for
Lj+ vertical derivatives

|

Vj+2




17 and 18 are approximated for the top of a layer, j, by

. -> - ->
: ;_’ _(V/L)j_l - (V/L)j
{[3(50/32]top =

v I H<sm _ (42)

%(Lj_l

and for the bottom of a 1ayer,Aj, by

- >
> (V/L)j - (v/L),

v - j+1 . .
EICoVALI NI T, T, Jici<m (43)

For j = 1, equation 42 is replaced by equations 32 and 33.

For j M, equation 43 is replaced by equations 34 and 35,

2.4.2 Horizontal derivatives

Although there have been attempts to use irregular grids with
finite-difference procedures (Crowley, 1971; Boris et al.,
1975), it appears that Thacker (1977a) was the first to propose
the use of an irregular finite-difference scheme for the so-

lution of the shallow water wave equations.

While in a conventional rectangular finite-difference scheme
the approximation of horizontal gradients is straightforward,
some thought must be given to the horizontal gradient approxi-

mation in an irregular difference scheme as shown in Figure S.

Figure 5:

Irregular finite dif-
ference grid (from Bauer,
1979)

17.
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As can be seen in Figure 5, an irregular grid can be thought of
as being a patchwork of triangles. In the vicinity of each such
triangle, the derivatives of a function in the x and y direc-
tions can be approximated by the slopes, in the x and y di-
rections respectively, of the plane determined by the values

of the function at .the three vertices of the triangle.

If it is now required to evaluate derivatives at a grid point,

P, as shown in Figure 5, one finds that each grid point, P, 1is
simultaneously a vertex of several triangles. Thacker (1977a)
suggested thus a scheme in which the x and y gradients of a
function, f, at a point P(x,y) are approximated by the weighted
means -of the slopes of the planes in the x and y directions,
defined by the functions at the vertices of the triangles ad-
jacent to the point P. The weight of each slope is given by

the area of the corresponding triangle. If a point P(x,y) 1is
surrounded by N points Pi(xi,yi), where the surrounding.points?
Pi’ are indexed counterclockwise about P, the mean gradients in

the x and y directions are respectively given by

df N N

ax S E R v P X Y T Y ) (44)
i=1 Coi=1

Sf N N .

3y - T R Xi—l)/,Z x, (¥~ Y5) (45)
i=1 i=1

where the summation is cyclic, modulo N. When the point P 1s
situated on a lake boundary, it is simply included as one of
the surrounding points of equations 44 and 45. It is worth
noting that if equations 44 and 45 are applied to a point in a

rectangular grid as shown in Figure 6, equations 44 to 45 reduce

~to the conventional finite difference approximation

f - f .
L S (46)
9 X - X

a C

£f - £

oy Yy - Y4
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VA‘

Pb
Figure 6:
: . Point within a rectan-
R Py gular grid '
r
X
~—

A further question rémains: does one not, by introducing an
irregular grid, violate the continuity equation? Thacker
(1977a) has shown that equétions 44 and 45 satisfy Green's
lemma (see, for example, Wylie, 1960) and thus the total vo-

lume of water remains constant as long as there is no flow
across the boundaries.

- - - -y oy - —— e - -

The lateral boundary condition states that, at the lake boundary,
there shall be no flow across that boundary. As can be seen in
Figure 7, the direction of the tangent to the boundary at a
boundary]point P is parallel to the straight line defined by

I ooy

v v cosf

"

vg = v cos (B+ag)
vy = v cos Bcos at

-v sin Asinag
u = - vt sin gt

Yt = vi 005 &t

Figure 7: Determination of
boundary vectors
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the two neighboring boundary points Pa and Pb. The condition of

no flow across the boundary at point Pt requires the flow to be
parallel to the tangent at point Pt' From Figure 7 it follows
that the x and y components, u, and Ve of any vector ?t, which
were obtained by projecting a vector Vv with the components u

and v onto the tangent in point Pt’ are given by:

ut = (u sin cy.t - v cos O"t) sin OLt (48)
vt = (v cos oct - u sin (xt) cos o (49)
where
X - X
sin OLt = 2 2 (50)
- 2 _ 2
J(x x )4+ (v, -y
-y, -vy)
coSs ut = a b (51)
Yix. ~x)% + (y - Ybff

Thus, for boundary points, the terms in equations 29 and 30
containing the pressure gradient and the top- and bottom shear
stresses must be replaced by their equivalent terms but cor- .
rected according to equations 48-51 for the boundary directions.
The Coriolis term at boundary points being balanced by an op-
posing boundary force is zero. The subsequent solution proce-

dure remains unchanged.

2.6__Smoothing of calculation_results

As mentioned earlier the system of equations 29-31 may be un-

stable even if the Courant criterion, equation 28, has been

met. To render such a system nevertheless stable, Stindermann

(1966) introduced an additional horizontal numerical "viscosity"

by replacing the variables u, v and H resulting from equations

29-31 by a weighted mean,
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N .
L f (52)

where f is a function standing for u, v or H,
| | a is a weighting factor and

N is the number of surrounding points.

The factor o may vary according to O < o < 1 (Silindermann, 1966).
Since the smoothing of the boundary vectors changes not only
their size but also their directions, they have to be corrected
once more according to equations 48 and 49. Furthermore, smoo-
thing creates a volume error which is positive for a mean sur-
face that is concave and negative for a mean surface that is
convex. This error however can be corrected by moving the en-
tire smoothed surface back over a distance which is equal to
the total volume error divided by the lake surface area. Using
the same indexing system as shown in Figure 5 and employed in
equations 44 and 45, the shaded surface area, Ap, shown 1in
Figure 8 and associated with a point P(x,y) which is surrounded

by N points Pi(xi’yi)’ is given by:

N
A, =% I Doy + % +0/3 - (x, + %, +x/3]
i=1 '
Dty vy +9/3 % (v, +y, )0+ v)/31} (53)
?y
Figure 8:

. Grid definition for area
and volume calculation

=T




The volume, Vp; associated with a point P is given by

vp =% igl{[(Di_l +D, + D)/3 +.(Di + Di+% + D)/a + D1/3}
T, %, +x/3 - (xp +x, 0 +008M Gy, +y, +9/3
+ oy, + yi+lJL + /31 + L 4ok v x)/3 - xIlty, vy F V)3 4]
+Ix - x v x, v 003y + (v, +y; o+ /30 (54)

In equations 53 and 54 the summation is again cyclic, modulo N.
: For points situated on the lake boundaries, equations 53 and 54

must be slightly modified.

3. Applicatioh of mathematical model to hypothetical test lake

- - - - vm o am — ——— - - - - ————

To perform mathematical simulations as outlined in section 2,
program CIRCUL was developed. To allow for control of the lake
geometry and the scales and other input parameters to be used

by program CIRCUL, program FIDIGR was written.

3.1.1 Program FIDIGR

This program permits control of a FInite DIfference GRid as
shown in Figures 9-12. The geometry described by Figures 9-12
is for a hypothetical test lake to be used later when de-
monstrating the operation of the mathematical model. The water

surface of the test lake 1is 4,54-108 mz, its volume 1is

1,5-10lo m3 and its mean depth is therefore 33 m.

As can be seen in Figure 9, the irregular finite difference
grid strongly resembles a conventional finite element grid.
Furthermore, in Figure 9, the number of each point, P, is

shown. The small marks on the. lines connecting the points
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allow control of the counterclockwise sense of rotation ne-
cessary for the evaluation of equations 44, 45, 53 and 54.

The geometrical data input is in order if there are two marks
on all lines having at least one end point not situated on the
lake boundary and if there is one mark only on all lines having
both end points situated on the lake boundary. The direction '
of the rotation can be detected with the aid of the position

of the marks on the lake boundary.

On Figure 10, the depth and the number of layers are indicated
for each point. The lake boundary points in Figure 10 are marked
by a small square. Furthermore, the boundary ''tangents' as

shown in Figure 7 are drawn whereby their associated point-

and layer numbers have been indicated.

While Figure 10 shows the number of layers and the boundary
~tangents for the lake represented by one layer, Figure 11
shows them for the lake represented by three layers. To dis-
tinguish the inner from the outer boundary points, the former

are surrounded by a square standing on one of its corners.

In Figure 12 the irregular finite difference grid is displayed
in three dimensions. It should be noted that in Figure 12 the
vertical dimensions are greatly exaggerated. Furthermore, it
can be seen that the geometry of the lake is rather irregular.
The positions of points 4, 21 and 41 marked in Figure 12 are

for later reference.

In Figures 13 and 14, to which reference will be made later on,
the parameters used in a model execution are listed. Comparing
Figures 13 and 14 with Figure 12, one finds that the "box" of
Figurés 13 and 14 corresponds exactly to the box of Figure 12
containing the three-dimensional irregular finite difference
grid. Thus the boxes of Figures 13 and 14 may be used to
visualize the position in space of the lake, the ellipses in-

dicating the mean positions of the léyers. The scales shown




24

T
00

AXE X (KM)
9. 00 .D ) 10. 00 12 00 lk 0o 16 []D IE 00 20. 00 22 00 26 00 28 OD 28 OD 30 00 32 DU 36 D] 36 00 38 OU 40.00
i GRILLE DES DIFFERENCES|FINIES L
21" LAC TEST [g
S NOMBRE DE| NOEUDS: 46 g
87 e AN SUPERFICIE EN M2: 454000000 I
8 s \/ VOUOVE EN{ ™3y 1500381441 &
=1 2
= 44 ix
2°] 3
w # L
o o>
ae . e
2 / \J ~ 2
g] - =
w o
«sJ L&
: ‘ MA]; -Z

L

<500 200 400 E.00 8.0
. AXE X (KM}

Figure 9:

test lake (from Bauer, 1979)

ID 00 12 00 14 00 16 00 18. OD 20 00 22 00 21. 00 25 00 28 00 30 00 32 00 34 () 36 00 38 00 40 ?0

Plan view of irregular finite difference grid of

AXE X (KM}
0.00 2,00 4.00 6.00 €.00 10.00 12,00 14.00 16.00 18,00 20.00 22.00 24.00 26.00 26.00 30.00 32.00 34.00 36.00 38.00 40.00
o S M e e e e
. g
;4 . PROFONDEUR DU LAC EN M| AVEC NOMBRE Ls
31 DE COUCHES ET LIGNES FRONTIERES F
.o T o
° 2.0 e LRC TES I
51 . re
< 10.0 1g.0 <
] . L% ]
z -
=] 1.0 30.0 25.0 38.0 20 |l s
® 1 T 1 =
j 1o 2.0 L
g B! 0 g
e He
8.0 S0.0
S 15 ! ! S
T 4 " 19.0 | 2.0 . .0 s5.0 P,g
2 1 i 0 Iz
x_] 38.0 L=
=4 1 S
> i §0.0 saln Fos ™
(= 18.0 25.0 48.0 60.0 .
Ks ! ; ; \ 3%
- 20.0 . s
4 50.0 j&"
a { T =
S 25.0 51,0 6.0 e
© 1 L 1 Fe
_ 33,0 L
- s
2 | 3s.0 }_=
P i ! 3.0 ©
= T~ —
] m// ".
s T W =4
] T o
<1 J .
3 g
2 T ———— +
2.00 2.00 4,00 6.00 8.00 10.00 12.00 14.00 15.00 15.00 20.00 22,00 24,00 26.00 26.00 30.00 32.00 34.00 36.00 38.00 40 o

AXE X (KM}

Figure 10: Depth and number of layers of one-layer test lake

including boundary tangents (from Bauer,

1979)



25.

. AXE X (KM)
™90, 27,00 400 500 800 10.00 12.00 14.00 16.00 16.00 20.00 22.9 24.90 26.00 28.00 30.00 32.00 34.08 36.00
.““
\J‘S\;,\Q 41
Q:'}&’ \'L'@ -t B
L e ——H =
o é % 1 = S
o iq | K | /) \__
) A N </‘ ’ g
81 7<
g Mi;7
e} 1 ’\ \
=9 |
Mo %; 7z
~ < .
HO
:- GRILLE DE FFERENCES FINIES TRIDIMENSIONNELLE AVEC
©1 UNE D1 TIONDE X : Y : Z =12 2.00: 0.005
S LAC FLST
T T T T T T T T T T T T T T T
S0.00 2,00 4.00 6.00 9.00 10.00 12.00 14,00 16.00 18.00 20.00 22.00 24.00 26.00 28,00 30.00 32.00 34.00 35.00 38.00 w

Figure 12: Three dimensional grid of test lake (from Bauer,

1979)

AXE X (KM)

AXE X (KM)

0.00 2.00 4.00 6,00 8,00 10.00 {2.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28,00 30.00 32.00 34.00 36.00 38.00 40.00

ooy ST, 0 507, ;00 1900 200 Tk oy S Sl b Sl AW ety B S Bl et S e Sl i B S W A

g 2

g T PROFONUEUﬁ 0y LAC EN M| AVEC NOMBRE F H

=1 DE COUCHEP ET LIGNES FRONTIERES Fa

o Lo

N o a0 LAC TEST ]

o Lo

e W0 ] 100 2

& | - |

27 10.0 3.0 25,0 0 20.0 e

Z] ; o mel % : 2

d 1.0 d L

o =

8 350 L‘!

=2 =

50,0
1]

° a3 °
Py ) 54,0 T".
£ 31 m =
< 0
= oA 38.0 -

e s 2 E
> i 50,0 o
W 2s/o 48,8 3 6.0 43,0 ["
< o % \ o
a< <

21 re

t + S E\:;o ]

=4 .0 S} 0 =4

= . ' [a

o1 o o

2 £ 30 : A ]

o - ] = f @

<1 \ﬁébﬂ 2

g] T 15.0 3

o~ T o~

g] g

‘:' T T T Y T T T =TT T T ™ T * T T T DL L e A | Y.r T T o

.00 2.00 4.00 6.00 8,00 10.00 12.00 14.00 16,00 18.00 20.00 22.00 24.00 26.00 26.00 30.00 32,00 34.00 36.00 38.00 40.T0

AXE X

(KM)

AXE Y (KM)

Figure 11: Depth and number of layers of three-layer test lake
including boundary tangents (from Bauer, 1979)




26.

(W) Z 3XY

00°0E

i

0.08

M =10%

— .

AT T T
.00  4.00 B.00 12,00 16.00 20.00. 24,00 28,00 32.00 3 40.00
KM/H

0.00

KM}
850 2.00  4.00 00 18.00 20.06 22.00 26.00 26.00 28.00 3

nh MR SRV R S S S di L

32,00 34.00 36.00
MRS S R

COURANTS INDUITS PAR LE VENT DANS UN LAC HOMOGENE
LAC TEST
VITESSE MDYENNEE VERTICRLEMENT

PROPRIETES PHYSIQUES

COEFFICIENT DE FROTTEMENT DU VENT: 0.00300 I ———
COEFFICTENT DE FROTTEMENT DU FOND: 1.00250/8.00  0.02  0.0% 0,06 0.08 0.0 08.12 0.16 0.16 0.18~0.20
4 PARAMETRE OE CORIOLIS: 0.000 RRDIANS/S CM/S

ACCELERATION DE LA PESANTEUR: 9.81 M/ (Swx2) y

MASSE SPECIFIQUE DE L. + 1,200 KG/M3

1MASSE SPECIFIQUE QE-C"EAU: 1008 KG/M3 *
PONDERATION ALPHA: 0.950 RS
PAS DE TEMPS« 10 SECONDS RV

ool 00
PR

00°02

-

2@
o
,90
@
e

00°0S 00°0%

T T T T T T T T T T T T T T
{00 2,00 4.00 6.0 6.00 10.00 12.00 15.00 16.00 18.00 20.00 22.00 24.00 25.00 25.00 30.00 32.00 34.00 35.00 36.00 408}
AXE X (KM)

Figure 13: Scales and 1list of parameters for one-layer formu-
lation (from Bauer, 1979)

within those ellipses refer to the water velocity vectors which
will be computed in model runs. The ellipses have been drawn
to‘permit'evaluation of velocities in directions which are not
parallel to the velocity scales shown. Due to the axonometric
presentation, there exists a strong lateral distortion of the
horizontal scales. According to the ellipses of Figures 13

and 14, a vector parallel to the short axes of these ellipses
appears about one fifth as large as a vector of the same size

being parallel'to the long axis of an ellipse.

In the model simulation to be presented, the displacement of
the water surface will also be shown. To avoid visual confusion
with the vectors presented within the box, the 1id of the box
containing the water surface of the lake has been moved upwards
as can be seen in Figures 13 and 14. The velocity scale, also
shown in the 1id of Figures 13 and 14, is for the wind velocity
vector. The distortion for the wind velocity vector is again

the same as that of the water velocity vectors. The vertical
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scales shown in the '"1ids" of Figures 13 and 14 are for the
displacement of the water levels. It should be noted that in
Figures 13 and 14, all parameters and all scales are the same.
The only difference with.respect to parameters arises because,
in the one-layer formulation, no eddy viscosity is required
for the model simulation. The value of the eddy viscosity has

therefore been omitted in Figure 13.

3.1.2 Program CIRCUL

vProgram:CIRCUL contains the FORTRAN IV code to solve equations

29-31 for the CIRCULation in a homogeneous lake using the
Thacker (1977a) irregular-grid finite difference scheme. Progrém
CIRCUL has been written such that it can simulate currents ei-
ther in the one-layer or in the multi-layer formulation. The
data file describing a lake geometry read by program CIRCUL is
the same as the one read by progrém FIDIGR. In this way the

graphical output from program FIDIGR can be used to control
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the geometrical input data for program CIRCUL and to correct

them where necessary. Parameters and wind input are read from

a different file which again is read by program FIDIGR when

producing drawings as shown in Figures 13 and 14. Thus, human

~error is eliminated to a large extent, and agreement between

the outputs of programs FIDIGR and CIRCUL is assured. Since,

for continuous simulation, the output of program CIRCUL may be

‘rather voluminous, special thought has been given on how best

to present simulation results. Two output options are available:

output may be either numerical and/or graphical. The numerical

KM/H %10~
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M %10?
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M/S *1D*
-0.02 0.02 -0.02 0.02

M/S =10%
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oy}
e

output is in a form which can be used by program TRACE (Bauer

and Perrinjaquet, 1979) to draw the results as shown in Figures

15 and 16. Graphical output of program CIRCUL is in the form
shown in Figure 17. '
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gure 15: Simulation for test lake with the one-layer for-

o

mulation (The capital letters U and V in § 3.2.1
correspond to small letters-u and v in the remain-.
der of the dissertation; from Bauer, 1979)




3.2 Model simulation for test lake

Program CIRCUL was executed with the geometry of the test lake

described by Figures 9-12 and with the parameters listed in

Figures 13-14. Although for the test lake shown in Figures 9-12

the model should be stable for times steps of up to about 10

29.

minutes (see equation 28), first simulation attempts showed that

the model becomes unstable in the one- and in the three-layer
formulation when using time steps even as small as 10 seconds.
However, very slight smoothing according to equation 52 with
a = 0,95 was already sufficient to stabilize the model. Using
a time step of 10 seconds, 100 time steps with no wind input

were applied to the horizontal lake (to show that the model
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Figure 16: Simulation for test lake with the three-layer
formulation (The capital letters U and V in 8 3.2.1
correspond to small letters u and v in the remain-
der of the dissertation; from Bauer, 1979)




itself generates numerically no movement), followed by 2000 time-
steps, 1.e., 5 hours, 33 minutes and 20 seconds, of constant
easterly wind. Subsequently, another 2000 steps without any in-
put were calcuiated to show the return of the wind induced cir-
culation to zero. These calculations were carried out for the
lake in a one-layer and a three-layer formulation, with a wind

3, a bottom shear stress

, the Coriolis parameter of 1,05-1077 51

shear stress coefficient of 3,0-10
coefficient of 2,5-10__3
and an eddy viscosity in the three-layer formulation of

20 kg nls7L.

3.2.1 Discussion of simulation results for three points

The results of the simulation using the one-layer formulation
for the points 4, 21 and 41 as indicated on Figure 12, are
shown in Figure 15. The time axis is horizontal with the date
indicated each 300 time steps, starting at step 300. Proceeding
from top to bottom the first two bands on which the data are
plotted contain the x and y components of the wind. Then the
water levels and the x and y velocity components of the points.
4, 21 and 41 follow respectively. The vertical scales are in-
dicated at the beginning and near the end of the trace. When
.thé data exceed the band width of one band, their trace is con-
tinued over the next band whereby the original scale is main-

tained.

In Figure 12, it can be seen that the points 4 and 41 are si-
tuated near the western and the eastern boundaries of the lake
respectively, point 21 is located near the center of the lake.
Investigating first the output from the one-layer formulation
in Figure 15, one finds that the geographical situations of
points 4, 21 and 41 are clearly reflected in their behaviour.
The easterly wind produces a rise of water level at the western
end of the lake (band 4:H) and a fall of the water level at the
eastern end of the lake (band 41:H). The water level near the
center of the lake (band 21:H) appears to be little affected.
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Considering the velocities, one finds that the x components of
the velocities (bands 4:U*, 21:U and 41:U) react much more
strongly than the y components (bands 4:V, 21:V and 41:V).

This is to be expected, since firstly the wind blows in the

x direction and, secondly, the dimensions of the lake in the

x direction are larger than those in the y direction. Most
notable however, are the forced oscillations (seiches) created
by the sudden wind which starts blowing with a force of 10 km/h
without any slow build-up. Similarly, when the wind suddenly
stops, the equilibrium between all forces that has been estab-
lished is suddenly disturbed and the lake approaches its start-
ing position, again displaying the phenomenon of seiches. One
finds, from Figure 15, that the period of the seiches is about
3200 seconds. Calculating the period; T, of a longitudinal
seiche with the simplified formula of Merian (Forel, 1895),

(55)

i

where B is a mean length of the lake and
D.is the mean depth of the lake,

1 and with D = 33 m a period of

one obtains with B = 2,910
T = 3224 seconds which agrees well with the simulated value

of 3200 seconds. It should be noted that the period of the
water surface and the velocity fluctuations is the same, even
though the optical impression might be different. Only in the
beginning of the y velocity components at the two extremities
of the lake (bands 4:V and 41:V) does it appear that there is
a secondary period of about T = 2200 s which is probably due

~to a transverse seiche in the corners of the lake.

In Figure 16, the simulation for the test lake with a three-

* Note that capital letters for velocities U and V in & 3.2.1
correspond to small letters u and v in the remainder of the
dissertation.
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Figure 17: Simulation of wind-induced, unsteady currents in a
homogeneous lake (after Bauer, 1979).

“layer formulation is shown. Thus, while point 4 has again only
one layer, points 21 and 41 (see Figures 11 and 12) have three
layers. This is also refleéted by Figure 16, where the point 4
has only one U and V band, and where the points 21 and 41 have
three U and V bands respectively. The scales relative to the
band width in Figure 16 are the same as those of Figure 15.
Comparing now. the simulation results of the one-layer formula-
tion, Figure 15, with those of the thrée-layer formulation,
Figure 16, one finds that the principal tendencies have remained
the same. However, the amplitudes of the fluctuations have been
increased by about one tenth and also, damping is more rapid

in the three-layer formulation than in the one—layér formulation.
The increase in damping is attributed to the additional internal
friction between the layers, as it is introduced in the present

model.

3.2.2 Discussion of simulation results for entire lake

In Figure 17 entire vector fields together with the water
surfaces are shown every 100 time steps using the priciples
outlined in § 3.1.1. To save space the simulation sequence has’
been shortened by omitting the first 100 ''idle' steps and by
cutting the following two 2000 step sequences to 1000 steps

each*,

* A computer drawn film showing every time step for the "un-
shortened" sequence of Figures 15 and 16 has been produced as
well.
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In Figure 17, the left side shows the simulation of the one-
layer formulation, the right side, the simulation of the three-
. layer formulation. The time is indicated in days, hours, mi-
nutes and seconds in the lower, left corner of each image.
Underneath, the number of time steps is shown. The wind velo-
city vectors are shown in the upper right corner of the '"1id".

Water velocity vectors are shown within the box.

As can be seen on the first two images of the one- and the
three-layer formulation, the lake surface is, at the onset

of simulation, horizontal and there are no currents. Consider-
ing first the simulation of the one-layer formulation of the
lake, one finds that at image 100, all vectors point westwards,
resulting in a water level rising at the western extremity of-
the lake and falling at its eastern extremify. At image 200,
the vectors appear to be turning; however, the vectors at the
northern and southwestern boundaries remain pointing westward.
- At image 300, a return current covering the central part and
the southeastern boundaries 1is well established, resulting in
a tendency for the water level elevations to reverse. The vec-
tors at the southwestern boundary have been strongly reduced.
At image 400, the water level in the west has nearly reached
its lowest position. The vectors have again turned indicating

a new reversal of trends of the water surface. This oscillatory
phenomenon repeats itself until, at image 1000, the equilibrium
situation has become almost established. The special behaviour
of the boundary points corroborates, to some extent, earlier
applications of a stationary model to the Lake of Geneva

(Bauer et al., 1977; Bauer and Graf, 1979). A similar oscilla-
tory pattern can be observed after cessation of the easterly
wind (images 1100 - 2000). Now however, the boundary points no
longer display a behaviour distinctly different from that of

the center points.

Turning now to the simulation of the three-layer formulation,
it can be seen that the behaviour of the water surface of the

three-layer simulation is very similar to that of the one-
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layer formulation. Considering the velocities in the twc lower
layers, one finds that a return current has established itself.
This current, although fluctuating in magnitude, changes very
little in direction. The vector field of the first layer be-
haves similarly to the one-layer mean vectors: at image 100,
all vectors pointing westwards result in a risé of the water
level. In the following images, one finds that the first-layer
vectors change their directions in the western extremity of

the lake only. Also, velocities in the three-layer formulation
are generally higher than those of the_pne—layer formulation.
In image 1000, equilibrium between all forces is almost obtained.
At the cessation of the wind, the vector fields of all three
layers change their directions periodically, whereby the velo-

cities return gradually to zero.

Comparing the results of the one- and the three-layer formula-
tion, one finds that their behaviour is in principle similar.

As might be expected, the three-layer formulation allows visua-
lization of the velocity fields in greater detail. The fact that
damping is more pronounced in the three-layer simulation is pro-
bably due to internal friction between the layers, which in the

one-layer formulation cannot be taken into consideration. Fi-

nally however it should be kept in mind that all simulation re-

sults have been obtained from hydrodynamic equations which have
been simplified as outlined in § 2.1. Further investigations
comparing simulation results with observations in real lakes

will show to what degree these simplifications are justified.

3.3 Conclusions from the test-lake simulation

—— v R e e e e - e e e e A o = A - o e o b me e T A e Em A o e e e M e e e

Using Thacker's irregular-grid finite-difference method, a
three-dimensional mathematical mpdel for the simulation of water
level variations and currents in a homogeneous, shallow lake

has been developed and applied to a hypothetical test lake in

a one-. and a three-layer formulation. Application of a steady

easterly wind for a limited period to the model resulted in



the development of currents and, most notably, of surges and
seiches. The simulation results of the one-layer and the three-
layer formulation were very similar. Since the numerical effort
of the three-layer formulation is substantially greater than
that of the one-layer formulation, a multi-layer simulation 1s
only necessary if detailed knowledge of the lake currents is

required for that particular set of simplifying assumptions.

This might be the case if it is desired to study current patterns

both while the wind is blowing as well as after cessation of the

wind. As can be seen in the three-layer simulation of Figure 17,

a strong return current exists in the two lower layers while the
wind blows. Once the wind has stopned blowing, the currents in
all three layers have the same general direction and a return
current no longer exists. For the simulation of wind induced
seiches in a lake, the one-layer formulation should therefore

sufficer

In Figures 15 and 16 it can be seen that the lake response is
quasi-immediate, reaching its maximum within half of the natural
seiche period of a lake. This is an important finding since a
frequently asked question is, how long does it take until a

lake gets into motion after a strong wind has started blowing
over its water surface. Moreover, measurements in the Léman un-
dertaken by LHYDREP have confirmed this rapid response to wind
(see Graf et al., 1979; Figures 10-15). |

The parameters for the simulations described in § 3.2 were
selectéd such that they corresponded to findings of earlier re-
search. The wind shear stress coefficient was taken to be 0,003.
This value is reasonable and falls well within the wide spread
of values quoted in the literature for wind shear stress coef-
ficients. Applying boundary layer theory to wind profile mea-
surements on the water surface of the Léman, Graf and Prost
(1979) determined a mean shear stress coefficient, € of about
0,0013. On the other hand, Bauer and Graf (1979), in a model

calibration for the Léman had to use a value’ 'of Cy = 0,004 to

39.
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obtaln reasonable agreement between simulation results and
current observations in the lake. The bottom shear stress co-
efficient, C» Was taken to be 0,0025, a value that has been
suggested by Simons (1973). The eddy viscosity, n, in the three-
layer formulation was chosen to'bé 20 kg/ms. According to va-
rious relatioﬁships given by Neumann and Pierson (1966), this

is probably a somewhat high value for a wind velocity as low

as 10 km/h. For a hypothetical situation however, this value

1s quite acceptable since it allows the modeler to visualize

the effect of the internal shear stress on the simulation re-
1

b

sults. The Coriolis parameter, f, was taken as 0,000105 s~

which corresponds to the mean latitude of the Léman.

From a numerical point of view, it was found that the model
becomes unstable even if the Courant condition, equation 28,

is met. However, the introduction of a smoothing procedure
suggested by Stindermann (1966) rendered the system stable. It
should be noted that this smoothing of the numerical results

of the mathematical simulation corresponds to a filtering by a
low-pass filter, i.e., all higher frequencies are eliminated

to a degree which depends on the amount of smoothing. This can
be observed very well in the computer-drawn films produced in
conjunction with this dissertation. In the films corresponding

to Figure 17, i.e., calculated with an o = 0,95, it can be seen
that the lake surface remains rather smooth at all times, moving
only up and down and bending itself in a somewhat global fashion.
In other films produced with a = 1,00, i.e., no smoothing at all
the water surface consists of a great number of waves superimposed
on the smooth surface. The instability however becomes obvious
only after cessation of the wind, when the wind induced motions

of the lake no longer return to a state of complete calm.

In 8 2.6, it has been stated that the o-mean acts as a numerical
viscosity. An increase in smoothing therefore corresponds also
to an increase in damping. Thus, when increasing the time step,

instability of the simulation will be postponed, and will occur
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the later, the higher the degree of smoothing. Investigating
the influence of a change of time step on simulation results,
it has been found that slight changes in seiche amplitudes,
-periods and damping may take place. However, as long as one
stays away from a staté of instability, these changes are not

very important.

4. Earlier work on seiches and surges in the Léman

An excellent general summary on the theory of seiches is given

by Hutchinson (1975). Work and observations of seiches in the

Léman had already been started well before Forel. In a short
chapter on "Histoire ancienne des seiches du Léman”; Forel

(1895) quotes é dozen names of persons who were concerned with
seiches and who put forward theories, some of them quite fan-
tastic, to explain this phenomenon. The first sound work on seiches

of the Léman however was that of Forel himself.

——— - —— ———

Forel's (1873) first work on seiches of the Lé&man took place in
the harbour of Morges, where, in a small opening of 2 m width
~in the northern pier of the Morges harbour basin, shown in
Figure 18a, the currents changed their direction depending on
the rising or falling of the water level. By carefully observ-
ing the times at which the current changed, Forel (1873) deter-
mined a mean seiche period at Morges of 4} minutes calculated
from 93 current reversals. In order to study seiches in more
detail, Forel (1876b) constructed a limnigraph at Morges which,
as previously mentioned, he kept operational from 1876 to 1884.
It appears that quite a few contemporaries of Forel also worked
on Léman seiches and had constructed limigraphs (Forel, 1895):

Plantamour: in Genéve, Sécheron, 1877;

Forel: portable limnigraph, 1878;

Sarasin: portable limnigraph, 1879;

Ingénieurs des Ponts et Chaussées francais: in Thonon, 1880.
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(a) Opening in the Morges (b) General view of the site
harbour wall (today with Mont Blanc in the
closed) with sceptical background on the left

scientist (Prof. Mortimer)

Figure 18: Site of discovery of Léman-seiches by F.A. Forel

Forel (1895) states that he has published a large number of
papers on seiches alone. Without going too much into detail,

it should be noted that Forel understood the mechanism of
seiches perfectly, as well as the fact that there are longi-
tudinal-, transverse-, uninodal-, binodal-, multinodal-, etc.,
seiches, each having a different period depending on their po-
sition in the lake and on the number of nodes. Forel was also
aware that the period of a seiche increases with a decrease of
water level and that the seiche-period is independent of the
density of water. Forel's most important findings with respect
to seiche-periods of the Léman are summarized in Table 1. (It
should be noted that there exist still many more seiches with
other periods than those shown in Table 1.) Forel (1895) states
that the periods summarized in Table 1 were determined from
abundant measurements taken from the limnigraphs of Plantamour,
Sarasin and Forel ("une vingtaine de kilomé&tres de longueur de
ces dessins automatiquement figurés par le lac lui-m@me"). Fi-

gure 19 shows a map of the Léman, as it is reproduced in Forel



(1895), to allow placement of the stations mentioned in Table 1

(see also Figure 27).

Some of the seiche observations- shown by

Forel (1895) are repro-

duced in Figures 20-25. In Figures 20 and 21 the normal trans-

verse uninodal- and binodal seiches at Morges are shown. Fi-

gure 22 shows a superposition of the two

, termed dicrote seiches

by Forel. In Figure 23 various seiches are shown, notably, the

longitudinal uninodal seiches at Geneva and Morges and the di-

crote seiches and binodal seiches at Geneva. In Figure 24, the

occurrence at Morges of longitudinal uninodal seiches, transverse

uninodal, and transverse dicrote seiches
sition of traces of longitudinal seiches
Morges with traces of transverse seiches

Figure 25.

Table 1: Principal seiche-periods of the
Forel (1895)

is shown. A superpo-
observed at Geneva and

at Morges is shown in

Léman observed by

Station Type of seiche Period (min.) Remarks
longitudinal uninodal - 73,5 probable

Geneve longitudinal binodal 35,5 mean
longitudinal dicrote* 73 - 35 values

Rivage

and same as Geneva, but less high

Bellevue

Rolie longitudinal binodal 35,5 less high

and © . than at
transverse uninodal 7

Thonon Geneva

Morges longitudinal uninodal 73,5 very weak

and transverse uninodal 10 very distinct

Evian transverse binodal 5 very distinct

Chillon same as Geneva, but less high

* dicrote seiches are created by superposition of uninodal and

binodal seiches as shown in Figure 22.

43.
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Figure 24: Occurrence of longitudinal uninodal seiches and
transverse uninodal and transverse dicrote seiches
at Morges observed by Forel (from Forel, 1895)

Forel states that seiches never occur alone, i.e., it is impos-

sible to observe only one singular seiche. Seiches occur in
series which may last for a long time, generally until one
series of seiches is destroyed by another series of seiches.

In Figure 24, it can be seen that there is a first series of

small, regular seiches with a period of 10 minutes (i.e., trans-

verse),which is being replaced at 1 hours by a series of higher,

| \ ’
J%qﬂw // \ Morges Figure 25:

.§/ \ and Morges by
\g/ Plantamour and

g4 774 1895)

Synchronisme et opposition des sciches longitudinales uninodales ;
tienéve ot Morges,

/\{Av /\JuﬁJk_/ KU\PJ- Superposition of

\ various simulta-
\ ! \ neous seiches ob-
served at Geneva

Forel (from Forel,
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irregular seiches. Around 5 hours, some dicrote transverse sei-
ches may be observed. At 10 hours, a new series of 10 minute
seiches starts, which lasts all the wéy to the end of the trace.
Furthermore, one finds that the event creating the larger ir-
regular seiches at 1 hours also gave rise to a series of longi-
tudinal uninodal seiches, which were not influenced by the sub-
sequent events modifying the transverse seiches. In Figures
20-25 attenuation of seiche motion is not really visible. Sei-
ches however will not last indefinitely long. Even if it is some-
times difficult to show a decrease in amplitude of the seiches
in the Léman, their size does diminish, and, if no other event
interferes in the meantime, the seiche motion will return to
zero. In' a most beautiful series of 147 longitudinal uninodal
seiches, Forel (1895) observed a decrease of mean amplitude as

listed in Table 2, from which it can be seen that the amplitude

Table 2: Mean height of seiches reproduced in Figure 26

" Number of seiche mean height (mm)

1 - 20 167

21 - 40 . 198

41 - 60 - v 163

61 - 80 o 169

81 - 100 153

101 - 120 ' 109

121 - 140 81

141 - 145 , 70

starts to decrease only at the 60th cycle and that the decrease
becomes more regular only after the 80th cycle (Forel, 1895).
Figure 26 shows the last 64 cycles of this series, i.e., from
cycle 83 to cycle 147. At the 148th cycle a new series of dicrote’
seiches interrupted the regular ones. Between seiches 79 and 139
Forel estimated a mean amplitude decrease.rate of 1,65 mm/cycle.
Using this rate, Forel (1895) calculated that the series of sei-

ches shown in Figure 26 would have lasted 182 cycles with a to-
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Reproduced on opposite page:

Figure 26: Longitudinal uninodal seiches at Geneva observed by
' Plantamour (from Forel, 1895)

tal duration of 224 hours or over 9 days. He noted, furthermore,
that Figure 26 corresponded to a period of 74 minutes as compared
to the more generally observed mean of 73,5 minutes. Forel at-
tributed this increase in period to the fact that the seiches in
Figure 26 were observed at a time when the water level of the

Léman was about 30 cm lower than normal.

In the search for a mathematical expression from which the seiche
period could be calculated, Forel discovered, in 1876, that

Merian's (1828) formula, equation 55 for the water surface oscil-

. lation 1in a rectangular vessel, was also valid for a "vessel"

as large as the Léman. The problem with equation 55 was only

_that of determining a mean equivalent depth, D, to enable the

seiche period to be calculated. However, it was only in 1890

that Forel was able to determine a mean depth, D, since it was
then that the first map showing the depth configuration of the
Léman became available. Using a mean depth of 112,4 m, Forel

(1895) found that the agreement with observations was neverthe-
less poor. Forel then approached du Boys in order to develop a
formula for irregular basins. Du Boys proposed a numerical ex-

tension of Merian's formula (Du Boys, 1891a):

2 28

== F——
/E '/6-3:+ Di+l

T (56)

49.

where S, is the length between two successive lake cross-sections.

Application of equation 56 is difficult insofar as personal
judgment is required when tracing a "median track' along the
thalweg of the lake. Furthermore, no account is taken of the

variations in the width of the lake or of its longitudinal curvat

ure.
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Due to the determination of a median track and its associated
profiles, equation 56 is even more difficult to apply for the

calculation of transverse seiches.

Using equation 56, Forel (1895) obtained 77,4 minutes for the

"period of a uninodal longitudinal seiche. Du Boys using dif-

ferent subdivisions obtained 74,6 minutes thus already approxi-
mating well Forel's observations. From the fact that the longi-
tudinal uninodal seiches are practically absent on the traces

of the limnigraphs of Rolle and Thonon, Forel concluded that

the node of the longitudinal seiches must be situated near these
locations. This he was able to prove also with his calculations

using equation 56.

Considering the binodal longitudinal seiches, Forel was not

able to explain why they have a period of 35 minutes, i.e.,

1 3/4 minutes less than half the period of a longitudinal uni-

nodal seiche. From the absence of traces of binodal seiches at
certain stations, Forel was also able to indicate the positioné
of the nodes of the longitudinal binodal seiches in the lake.
Forel's (1895) positions of the nodes of the longitudinal uni-
nodal and the longitudinal binodal seiches in the Léman are
shown in Figure 27.

Morges o/ ™"~ _, Pull v.
~ !“\f Figure 27:

R:l”(!. —/ N . .T"
e doau, i e Je s
}%21?7//_f;~\@“ e Y de Peilz Positions of nodes
YR T : . Fegtaux and anti-nodes of
/i/“{ L ToeFolan fourroil . 7y Chillon longitudinal Léman
. ~ » . N N
' Sechex Villeneuoe seiches as deter-
\‘\/’1 ¢ 5
Coppetd . Coudre€ mined by Forel
7 Herinanca (from Forel, 1895)

Bellevue ./ '/

Rwage J .
Sc‘dlgy
== (eneve

Studying the causes of seiches, Forel found that, in general,

Ventres et nweuds des seiches longitudinales du Lémau.

seiches are larger when the barometric pressure is low (i.e.,

when the weather 1s bad), and that seiches are largest when the



wind is the strongest. Also, local variations in atmospheric
pressure may contribute to the occurrence of seiches. The fact
that sometimes uninodal and sometimes binodal seiches are crea-
ted, Forel (1895) contributed to differences of the time history

of the atmospheric perturbations creating the seiches.

4.2 Doodson et al.

o v wm v wn e - —

Using thirty-one cross-sections for the mathemathical répre—
sentation of the L&man, Doodson et al. (1920) calculated, with
Proudman's method, longitudinal seiche periods as summarized

in Table 3. According to Doodson et al. (1920), all figures

Table 3: Longitudinal seiche periods of the Lé&man calculated
by Doodson et al. (1920)

Number of nodes Period (min.)
1 74 ,45
2 35.1
3 28

shown in Table 3 may be regarded as significant. Comparing the
seiche periods of the uni- and binodal longitudinal seiches as
observed by Forel (see Table 1) it can be seen that agreement

between theory and observations is indeed very good.

Doodson et al. (1920) also determined the elevations of uni-
and binodal longitﬁdinal seiches. These elevations have been
plotted by the author in Figure 28. In Figure 28 it can be seen
that the uninodal longitudinal seiches at Morges are already
opposite in phase to the Geneva seiches, and furthermore, that
the:amplitude of the Morges seiches is about 1/10 that of the
Geneva seiches. Comparing these findings with Forel's obser-
vations shown in Figure 25, it can again be seen that agreement
between theory and observations is excellent. The amplitude of

uninodal longitudinal seiches at Montreux is, according to

51.
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Figure 28, about 1/6 that of Geneva. Since Forel does not give
any traces of seiches mear Montreux, no comparison with ob-

servations can be made at this stage.
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Figure 28: Vertical displacements of longitudinal Lé&man seiches
according to Doodson et al. (1920)

The positions of the nodes of the first two longitudinal Léman
seiches have also been determined by Doodson et al. (1920). The
author has drawn them on Figure 29 together with the nodes as

observed by Forel (1895). As can be seen in Figure 29, there is

- EXPLANATION OF SUBSCRIPTS

: according to Doodson et al. (1920)
: according to Forel (1895)

¥ : UNINODAL SEICHE
2 : BINODAL SEICHE
E : EAST

W . WEST

D

-F

Figure 29: Positions of nodes of longitudinal Léman seiches
according to Doodson et al. (1920) and Forel (1895)
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again excellent agreement between the theoretical ﬁosition of
the node of the first order 1oﬁgitudina1 seiche and its posi-
tion observed by Forel. As for the positions of the nodes of
the binodal seiches, one finds that agreement between Doodson's
et al. (1920) positions and those indicated by Forel (1895) 1is
less good. In Figure 29, it can be seen that the second order
nodes are both situated a little closer to the Geneva end of

the Léman when compared with those indicated by Forel (1895).

4.3 Service fédéral des eaux

- - - - A A e e - e e v =

In order to study non—periodic water surface fluctuations of
the Léman,'the service fédéral des eaux (SFdE) set up 14 tem-
porary limnigraphs, which are shown together with the permanent

SFdE-stations in Figure 30. An example of a long series of
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"Hermance Légende:

" A stations limnigraphiques permanentes

Bellevue (] A station permanente avec limnigraphe de seiches (Services Jndustriels de Genéve)

sécheron

A stations limnigraphiques femporaires
Cointrin—@

A stations limnigraphiques temporaires supprimées au cours des levés

® shations mé}éorologiques
RHONE '
GENEVE

Flgure 30: Limnigraphs existing in 1950 on the Léman (from
Service fédéral des eaux, 1954)
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Station limnigraphique permanente de Genéve-Sécheron.

Exemple d’enregistrement de fortes seiches avec Pappareil du Service fédéral des eaux.

Example of extraordinary seiches registered by the

Figure 31:

Swiss Service fédéral des eaux (from Service fédéral

1954)

des eaux,



seiches, observed by the SFdE in August 1927, is shown in Figure
31. There it can be seen that the decrease in amplitude of a
seiche is very slow, and as was already observed by Forel (see

Figure 26) at times not readily predictable.

Examples of typical registrations by the SFAE of Léman seiches
are shown in great detail on Figures 32 and 33. The positions

of the recording stations used for the tracing of Figures 32

and 33 are shown in Figure 30. Without going into too much de-
tail it may be noted in Figures 32 and 33 that the longitudinal
uninodal seiches are very conspicuous (see in particular Figure
32; Genéve - Sécheron, Coppet). At St. Prex and Thonon, the
amplitude of the uninodal longitudinal seiches is again about
1/10 of those at Geneva. The longitudinal uninodal seiches at
Vevey are larger than those at St. Prex, i.e., about 1/6 of the
Geneva seiches, thus confirming the theoretical deductions by
Doodson et al. (1920)..A series of binodal longitudinal seiches
occurring at St. Gingolph can be observed in Figure 33. Occurring
simultaneously with the principal longitudinal seiches are
transverse seiches, notably at St. Prex, Thonon, St. Gingolph,
St. Sulpice, Rolle, etc. The particular appearance of the sei-
ches at Les Grangettes is, according to the ServiceAfédéral des
eaux (1954), due to some interaction with the mouth of the Rhdne.
In Figure 33, the change from one regime of seiches to another

can be observed on July 28, 1950 at 17 hours.

Investigating the change of period of a seiche with changes of
water level, the SFdE was also able to show that the principal
seiche period increases with a decrease of water level. This

can be seen in Figure 34.

The SFdE also investigated the influence of wind on the water
surface of the lake. For this purpose, the Service fédéral des
eaux (1954) determined 6-hourly mean water levels, every 3 hours,

for all stations situated on the shores of the Léman. Using these

55.
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values, the SFAE calculated a mean level each time by means

of a weighted mean procedure, the weights being proportional
to the water surface surrounding each station. In this way,
the SFJE obtained changes of water levels relative to the
mean lake level as shown in Figures 35-37. The wind set-up

for a "Bise'", a northeasterly, rather regular strong wind

. is shown in Figures 35 and 36. In Figure 37, the wind set-up
for a typical "Vent" situation is shown. Comparing the two
types of winds, it appears that the two Bises were both of a
more regular nature than the Vent. In Figures 35 and 36, i.e.,
for Bises, it should be noted that the wind set-up near Geneva
is substantially larger than that at Chillon. In Figure 38,
the water level elevations along the northern and the southern
lake shores for some Bise- and Vent (Sudois) situations are
shown. For the Bise it can again be seen that, at Geneva, the
wind set-ups are substantially more important than at Chillon.
Furthermore, it should be noted that the intersection of the
water levels with the mean lake level, in the case of Bises,
does not coincide with the node of the longitudinal uninodal
seiche (situated near Rolle), but is located near the line

St. Prex - Thonon, i.e., at about the midpoint of the thalweg

Genéve - Villeneuve (see also Figure 30).

4.4 Mortimer

B e

Although Mortimer;s work on the Léman was mainly concerned

with internal seiches, i.e.; fluctuations of the thermocline
(Mortimer; 1953, 1963, 1974, 1979), he also performed calcu-
lations on the surface seiches of this lake. Applying a Defant
(1918) method for the determination of seiche periods and using
the same cross-sections of the Léman as Doodson et al. (1920),
Mortimer (1979) calculated the periods of longitudinal seiches
as summarized in Table 4. Considering first the uninodal seiche,
one finds that Mortimer's period was the shortest one when com-

pared with other calculated periods, i.e., Forel's (1895) calcu-
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Figure 37: Wind set-up in the Lé&man caused by
25-28/9/1952 (from Service fédéral

Table 4:

the "Vent"
des eaux,

on
1954)

Longitudinal seiche periods of the Léman calculated

by Mortimer (1979)

Number of nodes

Period (min.)

(S R A N

74,1

35,5
29,1
21
18
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lated period of 77,4 minutes, Du Boys’' (Forel, 1895) calculated

period of 74,6 minutes and Doodson's et al.

(1920) calculated

period of 74,45 minutes. As such, Mortimer's calculations for

the longitudinal uninodal seiches compare best with Forel's

(1895) observed value of a mean period of 73,5 minutes. Morti-

mer's (1979) period of a binodal seiche being 35,5 minutes is

slightly longer than that obtained by Doodson et al. (1920) of

0,2 e 6, 18 20 22 2% %28 %,
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Km from Geneva along medial track
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35,1 minutes, and coincides exactly with Forel's (1895) observed

period of 35,5 minutes.

In contrast to other earlier calculations, Mortimer's (1979)

work also gives information on mass transport and horizontal
displacement, as can be seen in Figure 39. The maximum horizontal
current speed associated with a "typical' surface seiche ampli-
tude of + 3 cm at Geneva only exceeds 1 cm/s near the uninode.

In the main basin the corresponding maximum velocities are

0,1 cm/s or less. Compared with internal seiches therefore, the
effect of surface seiches on water transport is small. The verti-
cal displacement calculated by Mortimer is very similar with

that of Doodson et al. (1920) and consequently agrees well with
the observations by Forel (1895) and with those of the Service
fédéral des eaux (1954). The node of the uninodal seiche, accord-
ing to Mortimer, is again situated at the same place as observed
by Forel (1895) and calculated by Doodson et al. (1920).

- e = s me T h am = - s e e - - A e e e e e e e G e e e e e S e EE A e G v M M v -

Comparing Forel's observations of surface seiches of the Léman
with later investigations, one finds that Forel's work has, in
general, been confirmed. This, in particular, applies to seiche
periods and -durations (compare Figures 31 and 26), to the large
number and variability of seiches (compare Figures 32 and 33 with
Figures 20-25) and to the change in seiche period with changes

in water level (compare Figure 34 and the increase in seiche
period, noted by Forel, at water levels lower than normal of the

seiches shown in Figure 26).

The position of the node of the uninodal longitudinal seiche as
deduced by Forel (1895) has been confirmed by later theoretical
investigations (compare Figures 39, 29, 28 and 27). Slight dis-
crepancies, however, do exist between the theoretical positions
of the nodes of binodal longitudinal seiches as indicated by

Doodson et al. (1920) and Forel (1895); This can be seen in Fi-

- gure 29.
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Theoretical determination of seiche periods appear to be im-
proving with time since they agree more closely with Forel’s
observations, the more recently they have been performed (com-
pare seiche periods shown in Tables 4 and 3 with the periods
calculated respectively by Du Boys and Forel of 74,6 and 77,4
minutes with Forel's observations summarized in Table 1). Al-
though progress has been made, it seems, nevertheless, that all
‘theoretical seiche period determinations still consider the
problem only in one dimension, i.e., for lakes with an elongated
shape, and are neglecting possible influences of the curvature
along the thalweg of a lake. If one were to calculate transverse
seiche periods using a one-dimensional procedure, it would be
necessary to chose a transverse thalweg and lake profiles parallel
to the longer axis of a lake. This 1is, particularly when the

1aké has a curved longitudinal thalweg such as the Lé&man, practi-
cally impossible. The reason for the apparent absence of calcu-
lations of transverse seiche periods is probably due to these
difficulties.

The variations of seiche amplitude along the shores of the Lé&man,
already observed by Forel (1895), were also confirmed by later
theoretical work. From Figures 39 and 28 it can be seen that the
theoretical amplitudes of a longitudinal uninodal seiche at
Chillon are about 1/6 and at Morges about 1/10 that.of a seiche
amplitude at Geneva. This can also be confirmed by observations

(see Figures 32 and 33 and Figure 25).

Finally, considering wind set-ups as shown in Figure 38, it can
be seen that in cases of Bise the wind set-up at Geneva is al-
ways much larger than near Chillon and also more pronounced than
in the cases of a Vent (Sudois). It can also be seen that the
intersection of the inclined lake water surface with its mean
elevation does not coincide with the node of a uninodal seiche,
but is situated about midway between Geneva and Chillon (see

Figure 38, particularly cases of Bise).
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5. Mathematical simulations for the Léman

Using observations of Léman water levels as described in chap-
ter 4, it will be shown that the mathematical model presented

in chapter 2 and demonstrated with a hypothetical test lake

in chapter 3 can also successfully be applied to a real lake,
i.e., le Léman. It will be shown furthermore that the wind shear
stress coefficient obtained by model célibrations corresponds

reasonably with values known from the literature.

In chapter 2 it can be seen that the only external forces ad-
mitted in the présent model are surface wind shear stress and
lake bottom stress. This approximation must be considered as a
first step in the model developﬁent since barometric pressure
effects ‘may not always be safely neglected (Hamblin and Hollan,
1978). The model runs will show that results obtained without
barometric pressure influences can nevertheless be acceptable.
It should be noted, however, that the present model has been
written for a homogeneous lake only. Thus, if model simulations
for the Léman are to be meaningful, the period of simulation
must coincide with a time in which the Lé&man is more or 1less
homogeneous. This condition is usually fulfilled in the winter
months (Forel, 1895).

The simulation of seiches will be restricted to demonstrate
that the major seiches occurring in the Léman can be simulated,
and that the principal properties of seiches such as periods,
position of nodes and ratios of their heights at the extremi-
ties of the lake correspond well to theoretical results and

to observations.

The quality of simulation depends obviously on how well the real
lake geometry has been represented by the network of discrete
points at which the hydrodynamic equations are solved. It will

be seen that the only major drawback to a coarse, irregular




- grid is the fact that instabilities are created. To stabilize
the system, smoothing of the calculations with o = 0,90 is ne-
cessary. This smoothing results in a strong damping of seiche
motion making it impossible to simulate seiches of long duration.
However, as will be demonstrated, choice of a "smoothed-irre-

gular” grid eliminates this problem.

If 1t'is required to simulate the behaviour of the Léman for
long time periods and with greatest computational economy, it

is necessary to choose a very coarse grid, thus allowing larger
time steps (see equation 28). At the same time the number of
calculations necessary per time stép will be a minimum since the
amount of calculations per time step is roughly proportional to
the number of points. On the other hand, the coarser the grid,
the poorer the geometric representation of the lake. A grid
should therefore be chosen such that the specified purpose of

the simulation run can be achieved.

As a first attempt, the Léman is represented by the irregular
grid system shown in Figures 40-42. The grid of the Léman,

shown in Figure 40, consists of 52 points; its water surface
is 5,42 . 108 mz, and its volume is 7,86 - 1010 m3, resulting

in a mean depth of 144,90 m. The point numbers 1, 22 and 52,

nearest to Chillon, Morges and Geneva respectively, are for later

reference. Figure 41 shows the depth at all points and the num-
ber of-layers. Since, as has been stated in § 3.3, the behaviour
of a single- and a multi-layer model is essentially the same,
simulation will be performed using a one-layer formulation only.
The boundary tangents shown.in Figure 41 correspond to the prin-
ciples explained in § 2.5. A three-dimensional view of the
coarse Léman grid is shown in Figure 42. Comparing Figures 42
and 43, one finds that although the grid of Figure 42 is rather

"coarse when compared with that of Figure 43, all principal fea-

69.
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Figure 43: Three-dimensional view of a finite element grid of
- the Léman consisting of 579 points (from Bauer et
al., 1977)

tures of the Léman are already quite well represented by the
coarse grid.
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Figure 44: Scales and list of parameters used in coarse Lé&man
grid simulations
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Unless indicated differently, all runs using the Léman grid
shown in Figures 40-42 will be executed using the parameters
indicated on Figure 44. These parameters correspond to those
used for the simulations with the test lake discussed in chap-
ter 3. The criteria used for the choice of these parameters are
found in § 3.3. However, since the model is to be applied to

the Léman- only in its one-layer formulation, no eddy viscosity
has to be calibrated. Assuming the basic physical constants such
as acceleration of gravity, etc., as invariable, the only para-
meters subject to calibrétipn are the wind shear stress-coeffi-
cient, the bottom shear stress coefficient and the a-mean. (It
should be noted that the a-mean for the water surface is not ne-
cessarily equal to that of the velocities). Preliminary runs
with the coarse Léman grid varying the a-mean showed that the

model goes unstable for a = 1,0. For a = 0,95 the simulation
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seemed to be stable with a time step of At = 30 s. For a time
step of At = 30 s, the model did remain stable with o = 0,90

for both water surfaces and velocities.

Keeping wind shear stress- and bottom shear stress coefficients
constant, variation of At and a does not significantly influence
the simulation of mean water levels. Furthermore, it should be
noted that the influence of the bottom shear stress coefficient,
Cp» Was found to be extremely small. Comparing runs with

Sy = 0,0 and Cy = 0,0025, it was found that there is no visible
difference in the graphical display of the two runs. Numerically
it was found that the first 4 significant figures were at all
times identical in the two executions. Performing a rough ana-
lysis of magnitudes assuming a wind velocity of 50 km/h and

a (very high) mean water velocity of 1 cm/s, equation 23 yields
with the parameters listed in Figure 44 the shear stress

Tying = 6,94 - 1077
cities rather than transports) yields ,t = 2,50 - 10

bottom
The difference of the two stresses 1s thus at least three or-

mz/s2 and equation 26 (rewritten for velo-
7 mz/sz.
ders of magnitude which confirms the numerical observations.
- The only parameter remaining to be calibrated for a given wind

is thus the wind shear stress coefficient.
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In order to simulate wind set-up in a lake, the wind should be
known, with good resolution in time and in space for the en-
tire period of simulation. Moreover, for testing the model re-
sults, at least water level recordings around the shoreline
are necessary. These requirements, however, can be met only by
means of an extensive measuring program that is beyond the

scope of the present study.

In a literature survey the only data sets having a potentional

for wind set-up calculations in the Léman were found in Service




fédéral des eaux, 1954,‘in the form shown in Figures 35-37.

As has been stated in § 4.3, six-hourly mean water levels were
plotted every three hours for water level recorders situated
on the banks of the lake. Also shown are mean wind vectors
every hour at Geneva and Lausanne and some sporadic wind mea-
surements at Clarens. With this information the data require-
ments for simulations with respect to time are reasonably well
satisfied. Not much, however, is known on how representative
the Geneva and Lausanne wind measurements are for the Léman
water surface as a whole. Even in the vicinity of these two
cities application of the above winds on the lake surface is
problematic. Furthermore, due to the mountains surrounding the
eastern one-third of the Léman, winds in this region may be
guite different from those observed in Lausanne and Geneva.

The spatial requirements of the data are thus very poorly ful-
filled.

To allow nevertheless some use of the available data it was as-
sumed that the wind will be the more evenly distributed over
the Léman the more the winds observed at Geneva and Lausanne
are similar to each other and the smaller the variation of the
winds are with respect to time. From Figures 35-37 it can be
seen that this condition is best satisfied for the Bise on
17-19 January 1950 shown in Figure 36. For this period one may
also assume that the Léman was homogeneous as required by the
present model. o

From the considerations in chapter 4 it is clear that the maxi-

mum wind set-up must be expected at Geneva. From this it follows
that changes in wind (or wind shear stress-) intensity will be most
notable in simulation results for Geneva. This is very fortunate
since, due to the configuration of the mountains surrounding the
Léman, it can be expected that the winds over the western two-
thirds of the lake will correspond to a large degrée to those
measured in Geneva and Lausanne. Winds blowing over the eastern

third of the lake will have very little influence on Geneva
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MO CH

GE

Wi DL

and water level observations for the Bise on
DG

17-19/1/1950 (abstracted from Figure 36 in its

original size)*
WG

Wind-
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water levels. Disregarding the one wind measurement at Clarens,

simulations can thus be performed assuming that the Geneva- or a

‘combination of the Geneva- and lausanne winds blow over the en-

tire lake. Under the given circumstances, calibration of the model

must be considered to be good if the water levels observed and
simulated at Geneva agree well. While the agreement of water

levels observed and simulated at Morges and Chillon is only of
secondary importance, it will be‘seen that even there, the si-

mulation results are quite good.

For the purpose of simulation the information contained in Fi-
gure 36 was abstracted and tabulated in Table 5, in which the

first four columns headed by Y, M, D and H contain the date of

observation in years, months, days and hours respectively. The

next two pairs of columns headed by WG and DG and by WL and DL
contain the wind velocities in km/h and the wind direction in
degrees for Geneva and Lausanne respectively. The contents of
the columns headed by W and D will be explained later. The last
three columns headed by GE, MO and CH present (in cm) the six-
hourly mean vertical displacements from the whole-lake mean of
the water levels observed at Geneva, Morges and Chillon respect-

ively.

Since the primary interest is centered around the Geneva water '
levels, simulation was started with the assumption that the
winds observed in Geneva have been blowing over the entire lake.
Using the same principles as outlined in § 3.2.1 and already
used in Figures 15 and 16, the results of this simulation using
wind shear coefficients Cy = 0,0035, Cw = 0,003 and Cy = 0,0025
are shown in Figure 45. For each simulation 5 horizontal bands
are used for plotting. The vertical scales are indicated at the
beginning and towards the end of each band. In case data to be
plotted exceed the width of one band, their trace 1is continued
over the neighbouring bands without change of their original
scale. The time is indicated every 6 hours in years, months,

days, hours and minutes. On the first two bands the components




in the x and y directions of the winds used for simulation are
plotted in km/h respectively; see'Figure 3 for the conventions
used. The simulated water levels for Geneva, Morges and Chillon
are plotted in m on the next three bands respectively. As can
be seen, points 52, 22 and 1, as indicated in Figure 40, are
assumed to represent the above three locations. To allow com-
parison of simulation results with the observed water levels
listed in Table 5, the observed water levels have also been
drawn as thicker lines on the three water level bands. For ea-
sier distiqction between the various traces 1t 1s useful to
note that, as can be seen in Table 5, wind data are available
every hour and water level data only every three hours and

that furthermore the three-hourly water levels are not point-
measurements but six-hourly means. The observed water level
changes are therefore very smooth when compared with the water
levels simulated every 30 seconds. The wind input required every
30 seconds was obtained by linear interpolation. Finally, in
Figure 45 it can also be seen that the lines of observed water

levels are drawn thicker than those of the simulated water

-levels.

Considering now in detail the simulation results, the following

can be observed in Figure 45:

(a) Simulated water levels are much more variable than observed
water levels. Since the observed water levels are six-hourly

means only, this is to be expected.

(b) The simulation with c = 0,0035 yields water levels that
are generally too high at Geneva and too low at Chillon.
With the exception of the time period 18/1/1950 12:00 h -
19/1/1950 6:00 h the water levels at Morges are very well
simulated.

(c) Decreasing the wind shear stress coefficient to c, = 0,003
and to C,y = 00,0025, the simulation of the water levels at

Geneva is improved (see in particular the time periods

77.
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17/1/1950 8:00 h - 18/1/1950 12:00 h and 19/1/1950 8:00 h -
20/1/1950 0:00 h with ¢ = 0,0025). The simulation for Morges |
is excellent with cy = 0,003. The results for Chillon are

best for Cw = 0,0025 or possibly even lower.

(d) The period 18/1/1950 12:00 h - 19/1/1950 8:00 h, containing
the strongest winds within the simulation period, seems to
be subject to a different regime than the rest of the en-
tire simulation period.~With the exception of this period,
agreement between simulated and observed water levels is
excellent with Cy = 0,0025, a value that corresponds well
to findings of Wu (1969) for wind velocities higher than
50 km/h. To achieve'agreement of the water levels for the
period 18/1/1950 12:00 h - 19/1/1950 8:00 h, however, a wind
shear stress coefficient still smaller would have to be se-

lected. This in turn would result in disagreement of simul-

ated and observed water levels for the rest of the simulation.

From the above considerations it follows that if one accepts

the Geneva wind to be representative for the entire water sur-
face of the Léman, good agreement between simulation and ob-
servation can only be obtained if the wind shear stress coef-
ficient decreases with wind velocity. From an analysis of wind
measurements. on the Léman (Graf and Prost, 1979) it can be seen
that the wind shear stress coefficient, in this range of wind
velocities, is about 0,0015 and that 1if there is a tendency for
variation of this coefficient, then it is one of increase up to
the above value. The reason for the disagreement seems therefore
to be due to the fact that the wind observed at Geneva cannot

be accepted as being representative for the entire lake. Having
only two sets of wind observations, i.é., from Geneva and Lau-
sanne available, it was tried to determine a representative wind

‘vector series using the two data sets from Geneva and Lausanne.

Keeping in mind the preeminence of the Geneva water level fluc-
tuations, a mean overall wind was calculated by a weighted vector

mean whereby 70 % of the weight was assigned to the Geneva winds
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and 30 % to the Lausanne winds. In case no record was avail-
able at Lausanne the winds observed at Geneva were assumed to

be representative. The velocities in km/h and the directions

in degrees of this '"representative" wind are listed in Table S
in the columns headed by W and D respectively. The results of
the simulation with the composite wind as input using again
wind shear stress coefficients of cw'= 0,0035, Cy = 0,003 and
c, = 0,0025 are shown in Figure 46. Comparing Figures 45 and 46,
~one finds that using a composite wind as input results in an
elimination of the particularly high response of water levels
for the period 18/1/1950 12:00 h - 19/1/1950 8:00 h. Consider-
ing the water levels at Geneva and Chillon, it can be seen in
Figure 46 that simulation with Cy = 0,003 yields the best agree-
ment between simulation and observation. This value is about

two times the experimental value determined by Graf and Prost
(1979), a fact that corresponds well to statements by Donelan
(1977). Even though agreement is not perfect, it is certainly
better than anything that can be achieved using Geneva winds
only. Thus, longitudinal wind set-up can be well simulated.
Surprising however, ‘is the fact that the simulated transverse
wind set-up, which manifests itself by the water levels at
Morges, is in better agreement with observations if Geneva winds

alone are used (see Figure 45), but amplitudes there are small.

To allow a more global description of the movements of the

Léman as simulated for the Bise on 17-19/1/1950, a synoptic

view of the simulation results has also been produced. In Fi-
gure 47, the step numbers at which a synoptic view has been
drawn are indicated. Figure 48 shows the synoptic views follow-
ing the same principles as uéed in Figure 17. Comparing Figures
42, 44 and 48, one finds that the "boxes" of Figures 42 and 44
correspond to fhose in Figure 48 and serve as an indication of
the position of the lake body in space only. The water sur-

face of the Léman’is situated in the 1id of the box of Figure 42.

To avoid visual confusion between water surface and velocity




82.

o © (=] (=] [ o (=} Q (=3 Q o o Q =] (=] = o © Q
[ =4 [~} 2] < [=] © N [ < Q © o © < o (%] [\ © < (=) [2-]
© N o < © — n © N 0 » ™ © o < ™~ - < «© o~ v
(=} ™ ~ - - - o N N ™ m m < < 0 0 e} © © © el Land
2y Y VY Y VY Y Y YYYYYYVYY XYY VY VeY ¥
Eq- . 24-
*
NN VENT (X} 3
o 7 e S w— e
§l q'g . El «1'2
VENT (Y) o
%ﬁ?b4‘AV“~--\\-«J e N JGES
2| ' e e s T s 7 2 s s =)'E
< z 8 o ® = 8 o ® = ¢
o] . . 5 : ; ° ' i c;
g T T T D : 0 0 _
= - — -— - - )
I i 1 I !
g 7 2 8 2/ 3. 3
aj A D?C:h
ST HE
L S— o
i (=3 IL:

o (5 ' MORGES [(22): H e
O‘ 4 o Ll
>:gj Jr e LCHILLON (1 Lr;—\:l Q__QT—-%%

L]
] 1

Figure 47: Simulation for the Léman using composite wind with
shear stress coefficient ¢, = 0,003, showing step
numbers at which synoptic view has been produced

vectors, the 1id of the box coﬁtaining the Léman has again been
moved upwards as can be seen in Figures 44 and 48. The vertical
scale shown in the 1id of Figure 44 is for the displacement of
the water level, the horizontal scales placed within the ellip-
ses are; in the 1id for the wind velocity vector, and in the

box for the water velocity vectors. The ellipses allow evalua-
tion of velocity vectors not paraliel to the velocity scales.

It should be noted that the scales of Figure 44 have to be Te-
duced when applied to Figure 48 using the same degree of re-

duction as that of the boxes.

-In Figure 48 the date in years, months, days, hours, minutes

and seconds 1s indicated in the lower left corner of each image
together with its step number corresponding to those indicated
in Figure 47. Also shown in Figure 48 are the observed water
levels, indicated by the lower edges of the letters G, M and C
standing for Geneva, Morges and Chillon respectively. In the
first image of Figure 48 with the date 50 1 17 8 O O and step




83.

nunber 0, it can be seen that the water surface of the lake

has been assumed to be horizontal. No velocity vectors are vi-
sible within the box indicating that at the onset of simulation
no currents were assumed to exist. In the next image with step
number 360 the lake surface is still horizontal, the observed
water levels M-'and C however have moved from their original
positions. Point M is higher, point C is lower than the cal-

culated lake level. This can also be confirmed in Figure 47.

Appearing 1n the 1id, outside of the lake surface, is a small
vector indicating the wind velocity and direction at this in-
'stant. Within the box, small vectors can be seen which are mar-
kedly larger in the "Petit Lac" (western shallower region of
the Léman). In the next image with step number 720 the water
surface of the Léman is no longer horizontal; now also point G
has left its original position, the wind vector has grown lar-
ger, the current vectors have increased in size indicating a
clear movement of water towards Geneva. In the following images

the trend sofar established continues. In image 1440 one notes

that a return current has established itself in the center points

of the Petit Lac. It should be noted here that the vectors are
indicating mean velocities, i.e., vertically integrated velo-
cities and then divided by the depth of integration. Comparing
for example images 2520 and 2880 having about the same water
level at Geneva (i.e.,; the same volume in the Petit Lac), one
might be misled to believe that the strong westward lateral
current cannot be balanced by the relatively weak return current
in the center of the Petit Lac. As however can be seen in Fi-
gure 42, this conclusion is wrong since the depth in the center

of the Petit Lac, as it is numerically represented, 1s about

" four times that of the lake boundaries. Investigating the water -

level at Geneva in Figure 47 for this time period, it can be
seen that the situation is even more complicated by the fact
that between steps 2520 and 2880 the water level did not remain
‘constant as one might have assumed when considering the '"'snap-

shots” 2520 and 2880 in Figure 48. In images 2520-3960 it can
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Figure 48: Simulation of wind induced water level fluctuations
(storm surges) and currents in the Léman caused by
the Bise on 17-19/1/1950. (It should be noted that a

computer-drawn film has also been produced for the
same period)
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also be seen that there is quite some discrepancy between the
simulated and the observed water levels at Geneva and, in an
accordingly smaller proportion, at Morges. Currents are ever
increasing and reach their maximum around images 3600-4320. It
can also be seen that the maximum currents coincide with the

maximum wind set-up.

As has already been observed in the test lake, the northern
lake boundaries show a stronger tendency for the westbound
currents than the southern ones., Comparing images 3600-5400 of
Figure 48 with the longitudinal profiles of wind set-ups ob-
served by the Service fédéral des eaux (1954) during &arious
cases of Bise and shown in Figure 38, one finds that there 1is
excellent agreement of the general tendencies, qualitatively

as well as quantitatively. As in the observed wind set-ups (see
in particular the Bises on 28 October 1949 and on 30 July 1950
of Figure 38) the intersection of the simulated water surface
with the mean lake water surface is situated near the midline
of the Léman between Geneva and Chillon (line St-Prex - Thonon).
The shapes of the longitudinal profile of the simulated wind
set-ups are the same as those shown ih Figure 38. The ratios
between the surelevations at Geneva and the depressions at
Chillon, as have been observed by the Service fédéral des eaux
(1954) and shown in Figure 38, are very close to those obtained
by simulation. In image 5760 it can be seen that the wind has
decreased in force, resulting in a first decrease of the wind
set-up. In spite of'this decrease, the velocity vectors at the

lake boundaries of the Petit Lac are still pointing westwards.

‘The return current in the center line of the Petit Lac however

has become stronger in relation to the current on the boundaries.

Concluding, it can be noted that, considering the lack of de-
tailed information on winds blowing over the L&man, excellent
agreement between observed and simulated water levels on the
Léman for the Bise 17-19/1/1950 has been obtained. The wind

shear stress coefficient used was.c = 0,003, which falls well
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within the range of wind shear stress coefficients quoted in
the literature. One may postulate that the disagreements be-
tween observation and simulation are mainly due to the assump-
tions made with respect to a "representative wind" and in a
secondary degree due to the smoothing of the observed water
levels. Finally, it should be noted that agreement between ob-
served and simulated water levels does not necessarily imply
that the calculated currents, shown in Figure 48, agree with
real currents in the lake (Slindermann, 1979). Since however no
current observations for this period are available, no further

calibration attempts are possible.

5.3 Determination of Eeriod and node of the Qrincigal Léman

The principal, i.e., uninodal longitudinal seiche 1is simulated
using the coarse Léman gridvshown in Figures 40-42 and the para-
meters listed in Figure 44. Similar to Figures 15-17, a constant
wind of 50 km/h with a direction of 60 degrees lasting for 8

hours 31 minutes is applied to the Léman until equilibrium be-
tween all forces has been established and accelerations no lon-
‘ger exist anywhere in the lake. Then the wind is suddenly stopped,
allowing the lake to return to its starting position, i.e., ho-

rizontal water surface and no currents.:

Using the method applied in Figure 15, the simulation results

for the Léman are presented in Figure 49. In Figure 49 the first
two bands show the components of the wind velocity in the x

and y directions respectively. The next three bands contain the
water level surface elevations of the points 52, 22 and 1 cor-
responding to Geneva, Morges and Chillon respectively. As can

be seen 1n Figure 49, the easterly wind results in a rise in the
water level at Geneva and in a fall of the water levels at Morges

and Chillon, whereby the amounts of water level displacements
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Figure 49: Simulation for the Lé&man using grid and parameters
as shown in Figures 40-42 and Figure 44

reflect well the geometry of the Léman. From Figure 49 the pe-
riod can be estimated to be 74 minutes. Assuming the exact, i.e.,

observed seiche period to be between 73,5 minutes (see Table 1)

and 74,0 minutes (see Figure 26 and accompanying text), the

agreement between simulation and observation must be considered
to be excellent, keeping in mind that the Léman was represented
by only 52 points. For'comparison it might be interesting to
note that Hamblin and Hollan (1978), using a finite element mo-
del with some 200 points for Lake Constance (a lake with di-
mensions similar to those of the Lé&man), obtained a period of
55,5 minutes of the principal longitudinal seiche, resulting in
a difference of 2,10 minutes between their simulations and the

observations.

Comparing Figure 49 however with, say, Figure 26, one finds that
damping of the seiche motion does not at all correspond to rea-
lity. As will be shown later, this damping is due to the smooth-
ing procedure introduced by the a-mean, which in turn is asso-

ciated with the choice of grid.
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Following the scheme identical to that of Figure 48, images of
the Léman are shown in Figure 50 for the same interval covered
by Figure 49. The arrows on top of Figure 49 indicate the poF
sition in time of each image of Figure 50. The scales and para-
meters are again indicated in Figure 44. In contrast to Figure
48 which showed the simulation for a Bise, i.e., an observed
wind, the wind input for Figure 50 is purely hypothetical. Du-
ring the time when the constant wind blows, it can be seen in
Figure 50 that there exist uninodal longitudinal seiches (storm
surges). As can be observed however from images 73-1022, i.e.,
during the wind-forces phase, the hinge-line of these oscilla-
tions does not correspond to the nodal point of the free seiches
as shown in Figures 27 and 29, but rather to the "region of in-
tersection'" between the undisturbed water surface and that dur-
ing wind set-up as indicated in Figure 38 (see cases of Bise).
The last picture showing the wind set-up is image 1022. The wind
stops blowing immediately afterwards. In image 1095, i.e., the
snap-shot following image 1022, it can be seen that the node of
the uninodal longitudinal seiche, now no longer under the in-
fluence of wind, has moved westwards and now coincides well with.
the positions indicated in Figures 27 and 29. The following
images show the "dying away'" of the seiche motion. The wind-

and seiche-induced currents behave similarly to those already
shown in Figure 17. In Figure 51 the region defined by the eastern
and western extreme.positions of the points of intersection of
the water surface of images 1095-1533 with the undisturbed sur-
face on the lake boundaries has been indicated. The position of
the simulated uninodal node lies well within this region. From Fi-
gure 50, exact determination of this position is not readily
possible. To allow comparison of the simulation results with
earlier work, the node positions according to Forel (1895) and
to Doodson et al. (1920) are shown as well. As one can see 1in
Figure 51, agreement between the present results and those of

Forel and Doodson et al. is quite good.
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free oscillations
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5.4 Examination of stability of the coarse-grid model of

- o e e v mm e e v v e e e e e m T e e e e s e e e e e B e e e e

In Figures 49 and 50 it can be seen that-at the onset of si-
mulation the Léman water level was horizontal and that there
were no currents in the lake. Applying wind shear stress, a
state of equilibrium between all forces was attained. This equi-
librium was disturbed when the wind stopped blowing and, con-
sequently, the lake approached asymptotically a new equilibrium.
This equilibrium was (almost) attained at the end of simﬁlation,
when the lake had returned to its 6rigina1 state. It should be
noted that the time step used in the simulations shown in Fi-
gures 49 and 50 was 30 seconds, the smoothing was performed
withao = 0,90 (see Figure 44) and the grid was that shown in Fi-
gures 40-42. Varying only a and keeping all other parameters

constant, the consequences of the a-mean on an irregular grid

93.
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were investigated by applying a 75 km/h easterly wind for one

hour and then simulating the return of the lake to its undis-

turbed

State.

In Figure 52 this simulation is shown for o = 0,95. Comparing

Figures 52 and 49, one finds that there is no principal dif-
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Figure 52: Simulation for coarse Léman grid with a 0,95,

showing water levels in three points

-0.02

ference in appearence and one might therefore conclude that runs

with a

= 0,95 are also stable. Examining however Figure 52 more

carefully, one finds that the water level at Geneva, point 52,

no longer returns exactly to zero but remains slightly below

zero (see encircled region). A first conclusion could be that

the lake has lost water. This however is impossible since trial

runs of the model with a = 1, i.e., without volume correction,

showed that continuity 1is numerically well preserved. From early

test runs of the model it was found that instabilities are not




always obvious and that they may be noticed first either at the
water levels or at the velocities. For this reason, runs were per-
formed showing also the velocities. Outputs of these runs with

a = 0,90, o = 0,95, 2=0,96 and o« = 0,99 are shown in Figures 53
and 54. In Figure 53 it can be seen that apparently o = 0,90
really stabilizes the system since all water levels and veloci-
ties return well to zero. In the output for the execution with

a = 0,95 it should bg noted first that the scales of the velo-
city bands have been changed in order to keep the traces of the
velocities within the figure. It can be seen that the water le-
vels are identical to those of Figure 52 and very similar to
those obtained with a = 0,90. The velocities however behave
differently. In paricular, considering the velocity compo-

nents of point 52, one finds that théy no longer return to zero
but that they stabilize at values around 0,275 m/s and - 0,12 m/s
in the x and y directions respectively. All other velocities
however seem to return to zero. It is evident that the non-zero
water level at point 52 is associated with this phenomenon. In
the output for the run with o = 0,96 shown in Figure 54 the velo-
city scales have again been changed. It can be seen that the
tendency (first noted with o = 0,95) is now roughly ten times
greater than with g = 0,95. In all three runs sofar however, the
seiche period remained unchanged. In the output for ¢ = 0,99,
also shown in Figure 54, the scales have again been changed; this
time for both the water levels and the velocities. Apart from

the enormous changes in amplitude (not immediately obvious due

to the changes of scales), the most important new phenomenon
seems to be a change in seiche period. As will be seen in the
next paragraph, it seems thét this 1s not a real change of period
but rather the phenomenon of "beating' between oscillations of
frequencies close to each other. The phenomenon of "beating" will
be demonstrated in Figure 71. Comparing the last two runs, one
finds that the maximum amplitude of the run with ¢ = 0,99 occurs
each three standard seiche periods as produced by the run with

o = 0,96. On the trace of the water level for point 52, calculated

95.
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with a = 0,99, the influence of the standard seiche period can

even be distinguished.

Concluding, it can be stated that for the Léman grid shown in
Figures 40-42 the system is unstable for executions with

o 2 0,90, The instability can be identified by the fact that
after cessation of the disturbing influence, the system no
longer returns to the initial undisturbed state. Nevertheless,
with o = 0,90, very useful results can already be obtained from

this rough grid.

5.5 Investigation of the connection between grid configuration,

Comparing Figures 15, 16, 49, 52, 53 and 54 (representing si-
mulation results of seiches by the present mbdel) with Figures
20-26, i.e., with Forel's (1895) observations of seiches and
with Figures 31-33, i.e., the seiche observations of the Ser-
vice fédéral des eaux (1954), one finds that the major diffe-
rence between simulated and observed seiches is to be found in
their persistence. Compared with observed seiches, the simulated
seiches display an extremely strong rate of damping. The reason
for the strong damping of the simulated seiches appears to be
the smooting effect of the g-mean. On the other hand, as stated
in §s 3.2, 5.1 and 5.1.2 and investigated in § 5.4, smoothing

is essential when using irregular finite difference grids, as
in Figures 9-12 and 40-42, since otherwise the system is un-
stable. As already mentioned in § 2.3, it appears from state-
ments by Thacker (1977a) that instabilities are associated with
the irregularities of the grid being used. In order to simulate
seiches without an excessive rate of damping it is therefore ne-
cessary to use a grid which does not display instabilities for
a = 1 or at least o very close to unity. To establish some cri-
teria for a better choice of grid, four types of grid were in-
vestigated.

From the literature it can be seen that conventional, i.e.,
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réctangular finite difference schemes do not display damping
effects unless physical causes are present (see for example Siin-
dermann, 1966). Furthermore, it has been stated in § 2.4.2 that
the present irregular finite difference system becomes equiva-
lent to a conventional finite difference system if a rectangular
grid is used (compare equations 44-45 with equations 46-47 and
Figures 5 and 6. The first grid investigated is therefore a
rectangular, box-like lake with a rectangular grid as shown in

Figure 55. As can be seen in Figure 55, the rectangular-grid
"box" lake has dimensions in the same order of magnitude as the

8

- . ' 2 . .
Léman. Its water surface is 9,0 - 10" m™, - 1ts volume 1is

9,9 - 1OlO m3 and its depth is 110 m. To induce seiche motion,
an easterly wind of 75 km/h was again épplied for one hour.

- Varying only the a-mean, all other parameters were kept constant

at the values listed in Figure 44. The results are shown for

points 3, 23 and 48 (as marked in Figure 55a) in Figure 56 follow-
ing the scheme used earlier. In Figure 56 it can be seen that
damping of seiche motion clearly increases with the inteﬁsity

of smoothing. With o = 0,999 a seiche motion similar to that
shown in Figures 26 and 31 can be produced. The simulated seiche
period, T, is 2760 seconds when determined from 59 seiches cal-
culated with o = 0,999 and a = 0,99. For o = 0,95 the seiche
period is the same. From equation 55, the theoretical period is
T = 2739,75 seconds calculated with a length B = 4,5 - lO4 m.
There exists thus excellent agreement between the simulated and
the theoretical seiche period. It may also be noted that the
amplitudes of points 3 and 48 are the same.and that the seiches
of these two points are opposite in phase. The amplitude of
point 23, being situated close to the center of the lake, is
substantially smaller.

It has been demonstrated that, with a rectangular grid applied
to a box as shown in Figure 55, seiches displaying natural rates
of démping can be well reproduced. Since however using a rectan-

gular grid implies loss of one of the principal advantages of the
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present model, i.e., smooth representation of geometry, the

next grid tested was that shown in Figure 57. There it can be
seen that, again, a box-like lake is represented. This time how-
ever the grid is no longer rectangular but hexagonal, i.e., each
point 1s surrounded by a regular hexagon. The hexagonal-grid
"box'" lake shown in Figure 57 has the same length and the same
depth as the rectangular-grid "box" lake of Figure 55. To ac-
comodate regular hexagons however, the width of this lake is
somewhat larger. The water surface of the hexagonal-grid "box"

lake shown in Figure 57 is 1,04 - 109 mz,-its volume is

1,14 - 1011 m3. Simulation results for points 3, 23 and 48 (as
“marked in Figure 57a) are shown in Figure 58. Comparing Figures
58 and 56, it can be seen that the simulation results for these
two lakes are practically identical. There exists thus again ex-
cellent agreement between simulated and theoretical seiche pe-
riod and seiches of long duration can easily be simulated if so
desired.

The two grids tested so far were€ both situated within a rectan-
gular box, a shape that does not readily correspond to that of
natural lakes. The next step was therefore to investigate how a
lake with a plan resembling somewhat that of the Léman, but
having a horizontal bottom, reacts. Such é lake is shown in Fi-
gure 59. It should be noted that the grid within the lake shown-
in Figure 59 is still perfectly regular, 1.e., each "inner" point
is surrounded by regular hexagons. The water surface of this
hexagonal-grid "Léman-box" lake is 7,79 - 108 mz, its volume 1is
8,57 - 100 p?

procedures as for the two earlier model lakes, the simulation re-

and 1ts depth is again 110 m. Applying the same

sults for points 2, 13 and 38 (as marked in Figure 59a) are shown
in Figure 60. Comparing Figure 60 with Figures 56 and 58, one
finds that the principal features of behaviour have remained un-
changed. One feature that differs from the previous simulations
is that the seiche amplitudes of points 2 and 38 are no longer
the same. From Figure 60 it can be seen that this is due to the

difference 1in width of the lake at i1ts eastern and western ex-
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tremities. Furthermore, it seems that a decrease of o in the
hexagonal-grid "Léman-box" lake results in stronger damping
than in the two previous lakes. Natural durations of seiches
however can still readily be simulated with a = 0,999. The si-
mulated seiche period, T, 1is now 2421 seconds. Solving equation
55 for the mean length, B, a value of B = 3,98 - 104 m is ob-

tained, which fits the given geometry well.

While the lake shown in Figure 59 already somewhat resembles

the shape of the Léman, its lake bottom does not yet correspond
to natural conditions. As a final step, a hexagonal-grid "Léman-
like" 1éke shown in Figure 61 was tested. In this lake the grid
is identical to that of the hexagonal-grid "Léman-box" lake
shown in Figure 59 but thé depth varies to simulate the real
form of the Léman. Its volume is 1,41 ',1011 m3 which, with a
water surface of 7,79 - 108 m2 yields a mean depth D = 181 m.
Following the principles enunciated earlier, the simulation re-
sults for points 2, 13 and 38 (as marked in Figure 6la) are
shown in Figurez62. In Figufe 62 it can be seen that the ten-
dencies are again the same. The influence of the a-mean is still
stronger and it seems now that even with an o = 0,999 natural
seicheldurations can no longer be simulated. A notable new
phenomenon is-the occurrence of dicrote seiches, which can be
seen particularly well at point 38. Furthermore, a secondary,
not very well defined fluctuation of magnitude of seiche ampli-
tude is present. A similar phenomenon has been observed in the
real Léman as can be seen 1n Figure 26 and to a lesser degree

in Figure 31. The period of this observed, secondary fluctuation
is about half a day. The period of the principal longitudinal
seiche is 2697 seconds. With a mean depth of D = 181 m the equi-
valent length, B, according to equation 55 is thus 5,68 - 104 m.
From Figure 61 it can be seen that this is substantially longer
-than the length of the lake. Consequently, for this lake, equa-
tion 55 no longer gives'good results, an observation that has
already been made by Forel (1895; see also § 4.1). Nevertheless

it should be noted that this is also in contradiction with the



-00% H/WM W = 0T% H/W W - =0T H/ZWY - W

boofer-|1- o=

=
=
=—

00°Z  00°%-  ®8'0  ®0°0- 00z 002 2070  28°0- 90°2  00°-  20°0  0'0-
1 .
T
00'4- | pOF—ra gz oofe |00-4-__ I Eiim—rert—s - oofe foo0-q- It -
-5 — _ —
HAWA | ==t {01 HAbH— = - B R ===
L,\\.\I‘“v —— i.w g —
; ——
T D e SR ]
e e MM L oot~ | === e L o081- | F—te=—p=
—
p =gl
P — =
B — e ———
=
B e e
ﬂ."lll

L oH421-| 1=

iy
e e
iy
il A
]
T
iR

title; see opposite page

110.

puis y =t 7
-~ —~ - —~~
> - > S
{W ﬂ.\ JM == -+ wl.\lm —
Vo] = -1~ = 0,6~ 1-Jp—f =
R A e = 2 =S
o | b === iy ==
= S T — = e
“‘M - J“M ‘IH.M
L 0-j81-| 0- Ho—be— " o-er-{ 0 == o-{er-| o—e !IT
—— L — P — -
i ——— Wl . — e — L
AUW —_T C..D I =" - i — e
B E— T — T X =
b o0e1- g = o} 092 = o | oer- s——F i
o> < [ o e Py — e
= - == : —=
(@] N " ey,
) — W o2} Por)
g - F———— 7 =t 7 |
- T ] od o- — el o od o s —— =
9- — e e
M —— R e 1] St 1 i ———
. R e
3 e e - 3 = e - B PP s e T
T AN \GLSAS T’% T A ARt %ﬂ I
0072 U0 g~ IW 007 007 4= pan N 0012 CUg= paan
T — T Al - N = ™ 1
00'2 00°2- Z0'0 20°0- 2070 2070 00°2 00°2-  20°0 20°0- 20°0 2070~ 00°2 00°'2-  20°0 @00~ 2070 Z0'U-
-0T* H/WX W W -0T% H/ZKWA W W -00x H/WM W W

Figure 63:



111.

[
a = 0,9999999
. ” 5 e T 2 3
SétE r il 7 ki 0 T F23.
>zé' N9 caﬂn = FFLM - = : » EE Sp
(= od D D E\H"‘(]J 5 :)*
g ‘TiEL 18 L b AAA H A ‘\A _ﬂj L1 ” ‘rn’\ 2 ::EE
o IS
T R
TIH \H ' g
. I \ﬁ A M\M\/\WMW \/WV i L=
S ! 4 [ LTI L " 1& mm\ 4 ;

-90.02

L BEARE AN

“

R o

a = 0,99999 ¢, = 0,0

< b o
T4 =
g« ' - N ) - oN
- -—

* J 2 < < ucNFTeyy 9 < < %

o o © ] e YLEIV]I UAT) © E_\]‘ 2 g Q
Ez QT ] | Q| 1 I I I;\; Q.-’t
= 1 NS & =3 o - — — ::[ No

3 - S
o ‘ L veNT | o E L =

NEEYITE T ST i T ==

SRERLS i | I | Ml llih ! ﬂ 518 AN

o T 1j# [1 [ H [

S
= T A \ il <

I J J il o

o '8 A

1 #\ v T f wa

/Bll | { 1 L

P

F O

-0.02 0
M

o
=
——
-
-

LIRS LA B B

02
——
c_\:’&

Figure 63: Seiches simulated for hexagonal-grid '"Léman-like"
lake with further variation of o and Cy

results obtained from the test lake simulations as discussed in

§ 3.2.1.

To investigate whether further increase of o allows simulation
of long duration seiches, the hexagonal-grid "Léman-like" lake
of Figure 61 was used for further simulations with a = 0,9999,
a = 0,99999, o = 0,999999 and o = 0,9999999. The output of those

runs is shown in Figure 63. There it can be observed that di-




112.

crote seiches occur with a maximum intensity just about evefy
ten hours. This can be observed best at the fluctuations of
point 38. Comparing these dicrote seiches with L&man observations,
one finds that they strongly resemble seiches shown in Figures
22 and 23 (Genéve). It hés been mentioned in & 4.1 that Forel
(1895) already explained the phenomenon of dicrote seiches by
superposition of seiches whose periods (or multiples of periods)
are very close to each other but not identical. In Figure 63 it
can furthermore be seen that the amplitude is at its maximum when
the phenomenon of dicrote seiches is not visible, i.e., at times
when the peaks of the two different seiches coincide. In this
way the fluctuations in seiche amplitude can now alsb be ex-
plained by resonance of the two different seiche motions. In Fi-
gure 63 it can be seen that an increase of o results generally
also in an increase of amplitudes (decrease in damping). The
maximum value which still gives some noticeable effect is

o = 0,999999 since there is no longer any visible difference if
one 1increases a from a = 0,999999 to o = 0,9999999 (noting that
all calculations were performed with 14 significant figures). To
investigate again any possible influence of a change in the
bottom shear stress coefficient, C,» & Tun was performed with

& = 0,99999 and Cy = 0,0. Comparing the output from this run
with the output of the run with @ = 0,99999 and Cy = 0,0025, one
finds that, this time, there are visible differences (compare
statement of 8 5.1.2, that with o = 0,90 no visible difference
was observed). TheSe differences are however so small that it is
not worth considering the problem of the bottom shear stress co-
efficient in a one-layer formulation in further detail. Runs
with o = 1,0 were found to be unstable at all times (using a
time step of At = 30 seconds) with or withouﬁ bottom friction.
This instability was observed in spite of the fact that, ac-

cording to equation 28, a time step of about three minutes

should still be stable. In this context it is interesting to

note that, as has been remarked already in § Z.3, according to

Sindermann (1966) instabilities are also due to the non-linear-



ity of the system of equations being solved. Using a conventio-
nal finite difference grid, Siindermann (1966) demonstrated that
his conventional finite difference grid produced stable results
using a linear bottom friction, i.e., a friction which is a
linear function of velocity. It has not been investigated

whether the same holds for the present grid.

It should be noted that in the hexagonal-grid "Léman-like" lake
the distance between the grid points is not roughly proportional
to the square root of the depth at each point as it has been
shown to be desireable if an optimum time step is to be appli-
cable for the entire lake (see § 2.3). Since in a lake of the
.Shape of the Léman this criterion can not readily be applied

(see &8 5.6.1), it has not been investigated further.

In conclusion, it can be stated that seiches with very low rates
of damping can apparently be simulated as long as a '"smoothed"

grid is used for the representation of the lake.

In 8s 5.2 and 5.3 it was shown that, with a coarse, irregular
Léman grid consisting of only 52 points, very useful results
can be obtained. However, because of the instabilities created
by the irregularities of such a grid it 1s necessary to apply
a smoothing procedure with ¢ ~ 0,90 to stabilize the system.
The investigation of regular grids of various shapes in § 5.5
demonstrates that those instabilities are largely eliminated

if the grids are made more regular and that calculations with

113.

o very close to unity yield water level fluctuations that closely

resemble the seiéhés observed in the Léman. It follows that,
if a grid for the Léman can be established which satisfies the
"smoothness" criterion, it should be possible to perform cal-
culations of seiches with a rate of damping which corresponds

to natural conditions.
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Figure 67: Depth and number of layers including boundary tan-
gents of "smoothed-irregular" finite difference grid
of the Léman
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5.6.1 Construction of a smoothed Léman grid
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In an initial attempt to establish a smoothed grid it was de-
cided that a distance of about 1,5 km between grid points might
be small enough to allow construction of a reasonably smooth

grid for the Léman and still be large enough to limit the number

~of grid points needed. The criteria to be considered in such a

choice have already been discussed in § 5.1.1. The procedures
established for this purpose are semi-automatic, i.e., genera-
tion of the grid is carried out by programs combined with

manual adjustment.

As a first step, a hexagonal mesh was generated covering a
region greater than the water surface of the Léman. Then, as
shown in Figure 64, a set of hexagons was selected to roughly
resemble the plan of the lake. Then, as demonstrated in Figure
65, the frontiers of this grid were adjusted to coincide with '
the Léman shoreline. Thus, while in the interior of this grid
all hexagons are still absolutely regular, those bordering the
lake frontiers have been more or less distorted, depending on
their position. To distribute these irregularities, the grid
was then '"smoothed'" by shifting each interior point in such

a way that its x and y coordinatés are equal to the means of
the x and y coordinates of all its surrounding points. The
resultant smoothed finite-difference grid is shown in Figure 66.

The numerical procedure was one of iteration; and only 28 ite-

rations were necessary to arrive at the final solution with an

error tolerance of less than one meter in distance. The points
marked on the grid of Figure 66 are for later reference. The

smoothed grid shown in Figure 66 (with a three-dimensional

‘view in Figure 68) contains 151 points; the water surface is

5,69 - 10° m?

mean depth of 140,19 m. Figure 67 shows the depth at all points

and the volume is 7,98 - 1010 m3, resulting in a

and the number of layers as well as the boundary tangents. A
three-dimensional view of the smooth Léman grid is shown in

Figure 68. Comparing Figures 68 and 42, one finds that the
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Figure 68: Three-dimensional view of "smoothed-irregular"
finite difference grid of the Lé&man consisting of
151 points

smooth Léman grid clearly shows more detail than the coarse
Léman grid. When compared with Figure 43 however, it can be
seen that particularly in the "Petit Lac", i.e., the western
portion of the Lé&man, improvements of representation are still

possible.

In § 2.3 it was stated that it is desirable to design the grid
in such a way that the distance between points is roughly pro-
portional to the square root of the depth at that point since
in this way a nearly maximum time step can be applied to the
entire lake. A grid based on this principle has been used by
Thacker (1979) for the simulation of a storm surge in an ocean
bay with a gently sloped bottom configuration. If one wishes to
construct a smoothed grid for the Léman in which the mesh size
is a function of depth, possibly several thousand points would
be required. This is because of the extremely steep bottom topo--
graphy of the Léman near its north-eastern and south-eastern

borders.
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5.6.2 Simulation _using the "smoothed-irregular" Léman grid
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With the grid shown in Figures 66-68 simulations were again
performed using the same wind input and for the same duration

as in §s 5.4 and 5.5. The water levels are shown for 8 sites
well distributed around the basin aﬁd‘coinciding with some
stations from which observations are shown in Figures 32 and 33.
The sites selected are, with their point numbers indicated in
parenthses, Genéve (1), Coppet (15), St-Prex (135), Vevey

(119), Chillon (82), St-Gingolph (58), Thonon (38) and Hermance
(14). The exact positions of these sites are indicated on Fi-
gure 66. With the exception of o, all parameters used were
again those listed in Figure 44. Following the same principle
as in Figure 63, outputs for various values of o and using the
""smoothed-irregular' Léman grid are shown 'in Figure 69. In order

to save space, the band showing the y component of the wind

(which is zero at all times) has been omitted. The bands which

follow below that showing the x-component of wind velocity,

show water levels at the locations in the above listed sequence.

Comparing Figure 69 with Figures 62 and 63, one finds that ap-
parently the behaviour of the '"smoothed-irregular" Léman grid

is identical to that of the hexagonal-grid "Léman-like" lake.
Again, with a = 0,999 damping is still too strong, when compared
with natural seiches; and an increase of o corresponds to a fur-
ther decrease in damping. There is no longer any visible dif-
ference between the calculations with a = 0,999999 and

a = 0,9999999. The léss the seiche motion is smoothened, the
more seiches of higher order appear on the traces creating a
multitude of dicrote seiches. A notable difference between Fi-
gures 69 and 63 arises from the fact that the number of second-
ary seiches is substantially larger . -in Figure 69 than in Figure
63. The reason for this is most probably due to the boundary
geometry of the 'smoothed-irregular'" Léman grid shown in Figure

66, which when compared with the boundaries of the hexagonal-
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grid "Léman-1like" lake is indeed very irregular.

Having shown that the use of a "smoothed-irregular” grid permits
simulation of seiches with natural rates of damping, it should
be recalled that the final objective of these calculations is
the demonstration that, in principle, any seiche observed in

the Léman (or any other lake) can be simulated by this model.
:Accepting the run with o = 0,9999999 as closest to reality,

1ts output has been reproduced on a larger scale 'in Figure 70.
Comparing Figure 70 with Figures 32 and 33, it can immediately
be seen that, on a large scale, there is substantial similarity.
Within the:scope of the present study it is not possible; how-
ever, to perform an exhaustive anaiysis of the similarities and
differences that exist between the simulation results and ob-
servations. Nevertheless, the following short discussion will

present the most important results.

First, considering Figure 33, one finds that two different
"seiche regimes" were generated; the first between July 27,

1950 9:00 h and July 28, 1950 17:00 h and the second for the re-
mainder of the interval studied. This secbnd regime appears to

be similar to that of Figure 32 and corresponds probably better
to the simulations shown in Figure 70. Comparison of the simu-
lation results of Figure 70 will therefore be restricted to

this secénd "regime'. Considering first the amplitude of the
simulated seiches, one observes in Figure 70 that the mean sei-
che range at Geneva is of the order of 16 cm. This seiche was
created by an easterly wind of 75 km/h lasting for one hour. The
mean seiche amplitude of the observed Geneva seiches in Figure 32
is around 17,5 cm. Considering the fact that the seiche amplitude
in Geneva is the oné most sensitive to variations in wind regime,
one may speculate that, because these two values are reasonably
close to each other, the Geneva seiches of Figure 32 were also

generated by a wind with a speed of about 75 km/h.

Comparing next the seiche amplitudes, one finds that the ratios



120.

KMFH m10f

M/H %10
M) (]
|

04 -0.0 0.04 -2.80 2.00
B . .
-

KM/H =10
*-2,00 2

Figure 69

title, see opp051te page




121.

a = 0,99999

W a =.0,999999

B R R IS S _ % 1

|
.

:
2=
:
g

T S R S A NRRREE
b |

Q
it

0,9999999

Figure 69: ©Seiches simulated for "smoothed-irregular" Léman grid
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of sizes of amplitude of the different stations are about the
same in the observations and the simulations. Exact numerical
evaluation of these ratios is however difficult, particularly
for the simulated seiches since, in these, the phenomenon of
resonance creates a variation in seiche amplitude at each site.
Also a statement about a possible resonance observed in the
Léman is difficult to make since the number of seiches shown

for the second "regime" in Figures 32 and 33 is not 1ong(enough.

In Figure'SZ it can be seen that at St-Prex and Thonon and to a
lesser degree also at Coppet, Vevey and St-Gingolph very short
seiches are superimposed on the major, longitudinal seiches. In
the simulation results shown in Figure 70 a similar‘phenomenon

can be observed. The fact that the secondary fluctuations are

of smaller amplitude in Figure 70 than in Figure 32 is probably

a consecuence of the size of the grid selected for the simulation,
since obviously seiches with a wave length smaller than the mesh

size of the grid cannot be simulated.

Examination of amplitude changes in Figure 70 suggests that the
run with o = 0,9999999 may be slightly unstable, since towards
the end of the simulation it appears that the amplitudes increase
slightly, even allowing fof "beating". A conclusive statement,
however, cannot be made since the simulation does not last long

enough.

In conclusion, the‘”smoothed—irregular” grid model, retaining
the advantages of an irregulaf grid but smoothed according to
the principles outlined in § 5.6.1, is able .to simulate seiches
as they are observed in nature. Even if discrepancies remain,
the basic principles of seiche motions are well preserved by the
- model, bearing in mind that the model output depends to a large
degree on the precision with which the grid represents the na-
tural lake.
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5.6.3 Comparison of spectra from observed and simulated water

In this paragraph, results of spectral analysis applied to the
water level fluctuations shown in Figure 32 (observed water level
elevations) and in Figure 70 (simulated water level elevations)
will be discussed. Since the meteorological conditions which gener-
ated the oscillations shown in Figure 32 are not known, no absolute

comparison of amplitudes of peaks in spectra for Figure 32 and of

.amplitudes of peaks in spectra for Figure 70 can be made. However,

the frequencies of peaks in these spectra are comparable. The de-

gree of agreement 1is a test of the model simulations.

As described in textbooks concerned with data analysis (see for
example Bloomfield, 1976), the input for spectral analysis is

a digitized '"time series" sambled at equal intervals, At, yield-
ing n discrete points. The information content of spectra is
strongly influenced by the number of points, n, and by the samp-
ling interval, At. In Figure 71, the behaviour of constant in-
terval sampling of various sine-functions is demonstrated. It
can be seen in Figure 7la-c, that as long as the period is much
greater than 2At, the frequency of the sine-function 1s well de-
termined by the series of discrete points at which the sine-
function has been sampled. The highest frequency that can be
observed (Figure 7le-f) is the Nyquist frequency, i.e.,

1 cycle/2At (Bloomfield, 1976). As can be seen in Figure 71h-i,
frequencies higher than the Nyquist frequency will appear as
very low frequencies when sampled at At. This phenomenon is
known as '"aliasing". If possible, the sampling rate should
therefore be chosen such that aliasing cannot occur. If however
this is not possible, all freQuencies higher than the Nyquist
frequency should be removed before the signal is recorded by
appropriate instrumental or numerical filtrdtion (Mortimer and
Fee, 1976; Bloomfield, 1976). The phenomenon of "beating'" as
mentioned earlier, which occurs at frequencies close to the

Nyquist frequency can be observed in Figure 71d and 71g.
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nvestigating the importance of aliasing in the present si-
uation, it should be noted that the time step, At, of the si
mulation results shown in Figure 70 is 30 seconds, resulting

n a Nyquist ffequency of 1 cycle/min. Due to the fact that in
a mathematical simulation with a time step, At, the maximum
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frequency that can be produced is exactly that of the Nyquist
frequency, the problem of aliasing does not exist in the spec-
tral analysis of outputs from mathematical models as long as

the time step, At, of the spectral analysis is smaller, or, at

>
the 1limit, equal to the time step of the mathematical simulatilon.
In the case of the observations shown in Figure 32, the period
of 1 minute correéponding to the Nyquist frequency corresponds
to 0,5 mm in its original size (1 hour = 3 cm). Visual in-
spection of Figure 32 (in its original size) showed that.no—
where are there fluctuations with a period less than 0,5 mm.
Consequentiy, neither 1n the analysis of the simulated data,
nor in the analysis of the observations will aliasing occur if

a time step of At = 30 seconds is used in the spectral analysis.

—— - - = —— - o ek e an e e e = e e - - - - mm T - ——

In order to perform a numerical spectral analysis, a series of .
discrete numbers representing the phenomenon to be analysed is
required. In the case of the simulation results, this require-

ment 1is automatically fulfilled if the model output is speci-

fied to be digital. The observations shown in Figure 32 however

had to be digitized first. The traces shown in Figure 32 were
thus digitized with the aid of a coordinatograph of the Service
fédéral des eaux, Berne, whereby each point of change of curva-
ture was digitized resulting in about 1300 points per trace.
The digitized data were then drawn by the plotter of the com-
puter of the EPFL as shown in Figure 72. Comparing Figures 32
and 72 one may observe the excellent agreement between the two
figures. While drawing the traces shown in Figure 72, least
square trend lines were also computed and drawn. Following
Mortimer and Fee (1976) trends and means were then removed from
each data set as a next step. Finally, values every 30 seconds
(corresponding to 0,25 mm on the trace in its original size)
were computed by linear interpolation between all points of
change of curvature resulting in the traces shown in Figure 73.

It should be noted that Figures 32, 72 and 73 have all been re-



produced on the same scale.

In order to perform spectral‘analyéis a program SPECTR was de-
veloped by the author using a subroutine FFT (Fast Fourier
Transform) given by Kunt and Coulon (1974). While the FFT algo-
rithm is very fast when compared with coﬁventional Fourier ana-
lysis, one disadvantage is however that the total number of

points used for analysis must be equal to a power of 2.

Using a time step of At = 30 sec in the present analysis, fre-

quencies will be meaningful only between O and 1 cycle/minute.

131.

Spectra were thus computed for this range, i.e., O - 1440 cycles/

day. From these spectra it was found that frequencies higher
than about 150 cycles/day contain negligible enefgy. This can
be seen in Figure 74, where two such spectra are shown as an
example. Consequently, all further spectra were restricted to
the range of O - 150 cycles/day. Spectra were computed for all
stations that are shown on both, Figures 32 and 70, i.e., Ge-
neva, Coppet, St-Prex, Vevey, St-Gingolph and Thonon. From Fi-
gure 30 it can be seen that this selection covers the entire
border of the Léman. Also computed were spectra for the obser-

vations of Les Grangettes. It has been stated that the quality

of a spectrum depends on the number of points that are available

for analysis. For. comparison it is thus desirable to use spectra

that have been calculated from the same number of points. Con-

sidering the number of points available for analysis, it should

be noted that the digitized 18 hour observations shown in Fi-

gure 73 consist of 2160 points each. On the other hand, the 2

day simulations shown in Figuré 70 consist of 5760 points each.

Furthermore, the first hour of the simulations is not a free

oscillation since it is during this time that the wind blows

and creates the subsequent oscillations. Spectra were thus cal-

culated for the observations of the first 2048 (i.e., 211) points

resulting in the time between 11 February 1950, 15 hours and

12 February 1950, 8 hours 3 minutes. For the simulations, two
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2048 poin; spéctra were computed each time: the first, for the
time between © hours and 23 hours 3 minutes and the second,

for the time between 1 day O hours and 1 day 17 hours 3 mi-
nutes. In this way the first of the two 2048 point spectra
started only 5 hours after cessation of the wind, thus guarantee-
ing analysis of free oscillations. As will be seen, the two
2048 point spectra of the simulations were by no means iden-
tical. Finally, 4096 (i.e., 212) point spectra for the time
period between O days 6 hours and 1 day 16 hours 7 minutes

were computed to obtain more of the information contained in
the simulations shown in Figure 70. These spectraAare shown in
Figure 75 whereby each column shows the spectra of one station.
The topmost spectrum is always that of the observations, fol-
lowed by the two 2048 point spectra of the simulations and,

at the bottom, by the 4096 ?oint spectra of the simulations.
The scales used in the spectra were always the same. The
arraﬁgement of the spectra in columns for each station is for

easy comparison of the freqdency peaks;ﬁ

It has been mentioned in § 5.6.2 that the observed seiches

shown in Figure 32 and the simulated seiches shown in Figure

70 have similar amplitudes leading to the assumption that the
observed seiches were probably created by a wind of the same

order of magnitude, 1i.e., 75 km/h, as the one used for the simu-
lations of the seiches. Comparing the 2048 point spectra of the ob-
servations with the 2048 point sﬁectra of the simulations shown in
Figure 75, one finds that here too, the amplitudes are, in general,
- within the same order of magnitude, thus confirming the earlier
statement. In practically all spectra, the highest peak is found

at a frequency of about 19,6 cycles/day (i.e., a period of 73,5 min-
utesj. In the following discussion, frequencies are always in cy-

cles/day with the period in minutes indicated in parentheses.

Considering first in more detail the spectra of Geneva, one
finds that the observations contain three principal frequencies:
19,6 (73,5), 39,2 (36,7) and 48,0 (30,0). The first two fre-
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Figure 75: continued
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‘quencies also appear very well in the spectra of the simulations.
The third observed frequency however seems to be less well si-
mulated. In the spectra of the simulations for Geneva one finds,
on the other hand, another prominent spectral peak near 106,7
(13,5) which does not exist on the spectrum of the Geneva ob-

servations.

The spectrum of the observations at Coppet shows two of the
Geneva-observation frequencies, i.e., 19,6 (73,5) and 48,0
(30,0). The 39,2 (36,7) frequency of the Geneva observations no
longer occurs at Coppet. In the simulation spectra for Coppet
the above two frequencies 19,6 (73,5) and 48,0 (30,0) can also

be distinguished even though other frequencies appear as well.

In the spectra of St-Prex and Vevey, the 19,6 (73,5) frequency
appears again in all spectra, i.e., for the observations and
for the simulations. The 39,2 (36,7) frequency peak, although
distinguishable in the spectra for the observations, is much
more prominent in the spectra for the simulations. Again, a
series of higher frequencies appear in the simulation spectra
that do not clearly correspond to peaks in the observation

spectra.

In the spectra of the St-Gingolph and Thonon observations, the
same frequencies as at Geneva can be distinguished: 19,6 (73,5),
39,2 (36,7) and 48,0 (30,0). At the Thonon observation spectra‘
a frequency peak near 138,5 (10,4) can also be noted. All these
peaks can be found in the spectra for the simulations, although
again, the simulation spectra display a series of further spec-

tral peaks not visible in the observation spectra.

In § 4.3 it has been stated that the observations of Les Gran-
gettes seem to display characteristics which are very different
when compared with all other observations. The Service fé&déral
des eaux (1954) attributes this to some interaction with the
mouth of the Rhone. In Figure 76, a spectrum of the observations

at Les Grangettes is shown. There it can be seen that even
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though the principal frequencies of 19,6 (73,5), 39,2 (36,7)
and 48,0 (30,0) afe well defined, a large number of other im-
portant peaks can be distinguished, confirming the unusual
behaviour of this station. Earlier simulations showed that .
the behaviour at Les Grangettes is very similar to that of
St-Gingolph which is to be expected since, in the present mo-
del no river month of the Rhone is included. In view of this
obsérﬁation, no special spectral analysis for the simulations

at Les Grangettes has been performed.

FREQUENCE (CYCLES/JOUR]) %10+t
.00 2,00 400 6,00 8,00 10.00 12,00 14.00

i i i - 1

0.20

ANALYSE SPECTRALE D"UN SCALAIRE
LES GRANGETTES (OBSERVATION)

PERIODE ANALYSEE: 11/2 /50, 15:0 - 12/2 /50 ,8:3
PRS DE TEMPS EN SEC: 30 ' )
NOMBRE DE DONNEES ANALYSEES: 2048

1

1

0.16
I
0.16

T

T

1
T

0.12
0.12

I

DENSITE SPECTRALE =10!
UTOB )
DENSITE SPECTRALE =10°

0.08

0.04
b
T T

0.04

]

0.00
0.00

0.00 2.00 4f00 thﬂ 8i00 16.00 15.00
FREQUENCE (CYCLES/JOUR) %10+

LI L I 1 I

J
14.00

Figure 76: Spectrum for observations at Les Grangettes

Concluding, it can be stated that the present model simulates
satisfactorily the first three order fluctuations in the Lé&man
whereby the frequency of 19,6 cycles/day of the first order
oscillations corresponds well with earlier theoretical work

and observations yielding periods of about 73,5-74,5 minutes.
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The second and third order oscillations identified in the

spectra of the observations also agree well in frequency with
those of the simulations even though their agreement with earlier
work might be less good. Higher order fluctuations visible in

the simulation spectra do not readily correspond to observed
frequencies and are probably due to the choice of time step

in the simulations in conjunction with the mesh-characteristics
of the irregular finite-difference grid used for the geometric

representation of the Léman.

6. Summary and conclusions

A three-dimensional mathematical médel for simulation of un-
steady currents and water level fluctuations in a homogeneous
lake has been developed. Applying linearized, hydrodynamic .
equations, simulation can be performed for vertically-integrated
velocity fields or in a lake that has been subdivided into hori-
zontal layers. The numerical solution is achieved using the
Thacker irregular-grid.finite—difference scheme, thus combining
the advantages of a smooth geometrical representation associated
with finite element methods with the fast numerical execution
associated with classical finite difference schemes. Also de-
veloped were a series of programs and routines providing gra-
phical output in the form of analog traces of water level ele-
vations and currents, in the form of three-dimensional snapshot-
like images of the entire lake water surface and the entire ve-
"locity vector field and in the form of animated, computer-drawn
films sho&ing the changes of the entire moving water surface and

of its associated velocity vector field.

The operation of the above programs and procedures has been de-
monstrated first using a completely irregular grid of 46 points
representing a hypothetical test lake. Execution of the model in
a one- and a three-layer formulation demonstrated that the si-
mulation results for both- formulations are very similar. From

these runs it was also found that the system is unstable unless
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a smoothing procedure resulting in a strong damping of all mo-
tions 1is introduced. Another result from these runs was that
the response of a lake to wind shear stress is quasi-immediate,
a fact that could be confirmed by data collected in the Léman
by LHYDREP (Graf et al; 1979). '

After a literature review on earlier work on water level fluc-

tuations in the Léman, a coarse, irregular grid consisting of
only 52 points was established. Using this grid, it was found
that water .level elevations of the Léman observed during 2; days
could be well simulated with a wind shear stress coefficient of
Cy = 0,003. Similarly, simulated period, position of node, and
ratio of elevations at the extremities of the basin for uni-
nodal seiches, agreed well with earlier observations and with
other theoretical work. Those simulations also disclosed that
the intersection of the equilibrium water surface and the water
surface produced during times of wind set-up, i.e., the wind
forced phase, does not coincide with the node of the subsequent
free oscillation, i.e., the uninodal longitudinal seiche. Pre-

viously published observations confirm this simulation result.

However, because of the strong damping required to stabilize
the system, simulation with the coarse irregular grid was not
able to reproduce satisfactorily the long persistence (small
damping) of the observed seiches. Since it is known from the
literature that conventional finite difference schemes do not
exhibit this problem, various grid configurations were investi-
gated; and it was found that instabilities are largely asso-
ciated with the irregularities of a completely irregular grid.
Using regular grids with quadratic- and regular-hexagonal mesh,
stability was achieved with only slight émoothing and instabi-
lities occurred only if smoothing was totally eliminated. Using
grids with flat and irregular bottoms, it was also discovered
that dlcrote seiches ex1st only if the bottom geometry of a

lake is irregular.
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Finally, a "smoothed-irregular" grid consisting of 152 points
was constructed to fit the Léman basin such that each interior

grid point, i.e., each point not situated on the lake boundary,

was centrally located with respect to all its surrounding points.

This grid behaved identically to the above regular grids. Since
excessive smoothing is no longer necessary with this grid, it
was possible to simulate seiches of long duration for stations
situated around the Léman basin. The simulations satisfactorily
reproduced the periods, amplitudes, and much of the detailed
structure observed in real Lé&man seiches (see in particular
Figures 70 and 75).

In conclusion, it can be stated that the irregular finite dif-
ference model satisfactorily permits simulation of water surface
elevations. Because of the '"transparent' mathematical structure
of this model further features may be easily introduced, for
example: non-linear terms; spatially variable wind stress; eddy
viscosity varying with velocity; and density stratification.
Such additions to the model however should only be made if

really justified, since they also require more time for executio

Appendix*

Derivation of equation 28

In this appendix equation 28 will be derived unter the assumptio
that all velocities have been integrated over the entire depth -
of the lake, that the eddy viscosity is zero and that the ve-
locities associated with the Coriolis parameter are, in the fi-
nite difference approximation, replaced by the means of the past

and the future time levels. Equations 8, 9 and 12 become thus:

* This appendix based on a derivation by W.C. Thacker (personal
communication, 1979) has been prepared by the author with the
support of Y. Depeursinge and Y. Jaccard of the Department of
Mathematics of the EPFL.

n.

n



1472.

% + gD L ftv = 0O
ot - 2" Bx

oV oH
‘8_t+gD'8';+fU-C
oH , 9oU | oV _
ot "ax "oy °

(A1)

In finite differences and using a '"'leap-frog" scheme, equations

Al become, with the above assumptions

1 n+k Un—% ngn _ £ n+ks ' n-%

—A—t— { - ) 4 gD(ax E(V + V ) =0
1 n+ n-% 9H. n f n+k n-%
xS (v \4 ) o+ gD(ay) + 2(U + U ) =0
1 n+l n U V. nt+ds

sc B TH) G ay’ =0

(A2)

In a lake of infinite size and constant depth, which is repre-

sented by a uniform mesh, it can be assumed that
of equations A2 the variables U, V and H vary in

time, like
.
expli(kx - wt)]

with the amplitudes RU’ RV and RH. In expression

wave vector with the components kX and k_ in the

in the solution

space and 1in

(A3)
A3, K is a
x and y di-

rections respectively and w is the frequency of a wave.

Evaluating the individual terms of equations A2 with the aid of

expression A3 one finds:

> > :
Un+% - RUel{kx - w{t+At/2)] - RUe1(kx - wt)e—lwAt/z

5 i[Kx - w(t-At/2)) L (kx LAt /2
n- _ o Gilkx - w(t- 1 RUel( X - wt)e+1w t/

9]

and
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1 n+y  n-% U 1(RX - wt) -iwAt/2  +iwAt/2
At(U - U y = e e (e e )
eZl - -Z1
or with sin z = _e
21

+x n-% RU i(kx ; wt) ’ t
iz(un -u ) = KE e [- 2i sin @%—1 (24)
Similarly
1 3 5 Ry ikx - ot At

n+ n- ikx ~w . . wat.
At(V -v 9 = e © [- 2i sin 3 ] (A5)

The terms associated with the Coriolis parameter can be evaluated

as follows:

fR

H . .

g{un+% + Un—%) _ _39 e1(kx - wt)(e—lwAt/Z . e+1wAt/2)
,ezi + -zi

oY with cos z = 5 <

s 5 i (Kx - ot At
ST "7 = £R, et kKX = WB) s 35—] (A6)
Similarly
n+t n-3 | i(]_z—> - wt) wAt .-

—(V . 2 + Vv )y = va e X w [cos “E—] v (A7)

n+1

The analysis of %?(H - Hn) may be done as follows:

L_(Hn+l _ Hn)

> >
ifkx - w(t + At)] i(kx - wt)
At e -~ e

{ ]

Y
At
R . 2> »
H e1(kx uut)[e iwht -1

H i(kx - wt) -iwAt/2 -iwAt/2 +iwAt/2
e e [e - e 1

+iwAt/2
e )

H ei[i? - Wit + At/2)]  iwde/2

Thus
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R > ‘
n+l n H ei[kx - w(t+At/2) ]

= ‘A"E' [- 2i sin SUAF“] (A8)

2

In order to evaluate the derivatives of equations A2 with re-

spect to the x and y directions, the grid to be used must be

known. If one assumes a rectangular grid with a mesh width of

Ax and Ay respectively, these terms can be evaluated, whereby
n _. . X+Ax X-AxX.n

(3H/3x)" will be approximated by (H - H Y /248x and

noting that K; = kxx + kyy, as follows:

ilk (x+40%) + k v - wt] ilk (x-Ax) + k y - wt]
X Y X b

| x+hAx _‘Hx—Ax)n ) RH(e . - e
( 2Ax% . B . 20x
R ilk x + kv - wt] ik Ax -ik Ax
_ B X y g fe X _ . X ]
2A% .

B
R ilkx - wt]

= © ' [i sin(kxAx)J
or
, _)+ } . : .
(ggjn - ioR el[kx - wt (a9)
9x H
where
1 .
o = — sin (k Ax) (A1O)
Ax X
Similarly
. >
t%g)n - igr el[kx wt] (A1l)
b% H
where
B = = sin (k_Ay) | : 2
Ay y \'g : (A12)

The velocity gradilents become respectively
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(_z)n+% - igr oilRX - w(t + At/2)]
oy \'
Assigning

_>+
ei[kx - wt]

¢(n) =
and
.)-+
ei[kx - wlt + At/2)]

o(n + %) =
equations A2 become with equations A4-Al4

2i wAt

d(n)[- RU(KE sin ——) + Ry(gbia) - R (f gbs
21 . wAt ) ) ‘

¢(n)l- RV(ZE sin —3—) + RH(ngB) + RU(f cos

¢(n + LYyl- R (gi sin QAE) + RU(iu) + Rv(iB)]

H At 2

wht
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{A13)

(Al4)
= 0 (A15)
= 0

The system of equations Al5 has a solution if and only if the

determinant of the matrix of its coefficients vanishes:

- gi-51n QAE -~ f cos QéE Dia
A 2 2 g
wit 2i . wht
f cos > " At sin 5 ghif
ia iB J 2L gy 98
At © 2

Evaluating the above determinant gives

2 WAt

2 . wht , 2 2 2
-— —— —— + D + + 3
(At sin > ) gDh(a B<) f cos 5
and with sin’z + cos?z = 1
2 2

It

cos‘z 1 - sin“z
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2 . whto, 2 2 2 .2 WAt
(At si 5 ) gb(a” + B°) £°(1 - sin —5—6 =0

In an unsteady solution w # O and thus

., wAt  gD(0? + B?) + f£2
sSin =

2 4 . g2
At?

(Al6)
A stable solution of equations A2 corresponds to a solution of
equation Al6 that is real. This is the case if the square of

the sine-function, on the left hand side of equation Al6 varies
between zero and unity:

gb(a? + B%) + f2<

0 < A 1
7 + f2
At?
QT
. . , .
gD(? + B2%) + £2 < Tt £2 (al7)

It should be noted that in eqhation Al7 the Coriolis term va-
. nishes, thus resulting in

| . 4
o gp@® + 8% < poy (Al®)

Assuming a quadratic grid with A = Ax = Ay one obtains from
equations AlO and AlZ

2 2_1 .2 < 2
a® + B? = Zf’[s}n (kxA) + sin (kyA)] (r19)

. To determine the upper limit at which equation Al8 is still

: satisfied;_the maximum value of equation Al9 must be found.
' Since the maximum value of the sine-function is unity,
2

2 2 -
@ + 8 Ymax = A2

'With this equation Al8 becomes
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b 2 < 4 .
g A2 ® AE?

At . (20)

V2
S-———.

Yoo
It should be noted that equation A20 is valid for a quadratic
grid of mesh width A and that it has been derived for the system

of equations A2 with the assumptions stated at the beginning of

this paragraph.

I£f a scheme such as

1 n+l n-1 3H. n f n+l n-1
"2—A—'t*(U - U ) +gD(ax) - 2(V + Vv ) =0
1 n+l n-1 9H. n f n+l n-1
2At(V -V ) + gD(By) + 2(U + U ) =0
1 n+l n-1 U V. n

e @ TE O Grryy =0

would have been used the result would have been

1

V2 /gD

At < A

a result which is clearly more limiting than that of equation
A20.

From the considerations so far it can be seen that up to equa-
tion Al8 the geometry of the regular grid has been of no further
consequence. Thus for any other regular grid the analysis will,
with the exception of equations AlO and Al2, be the same. The
factors o and B, being associated with’the form and the resolu-
tion of the finite-difference grid, occur only in spatial de-
rivatives. As has been stated in § 2.4.2, these derivatives are,

in the present irregulaf—grid finite-difference model, given by
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df N N

PRI FUCERS PR AL RSP SRR (44)
i=1 i=1

df N N

PR PRI FUR R AL VIS FUPERS FUD (45)
i=1 i=1

Figure Al:

Point P surrounded
by points a-f in

a regular triangu-
lar grid of
spacing A

o
X

For a point P, surrounded by a regular triangular grid as shown

in Figure Al, equations 44 and 45 become respectively.

£ - £ £ .- £ £f_ - f

9
55 - %{4 xa - xd - xb - xC * xf - xe] ' o (A21)
a a b c £ e :
f -~ £ £f - £
3 1
§£==5-[ >_f,. ¢ =2, (A22)
y Y, T Y. Y, T Y, ,

Neglecting for simplicity, in expression A3 the term wt, the

functions fa - ff of equations A21 and AZ2 are given by:



1[kx(x + A + kyy]

f =fe

ta B
ifk (x + %) + k (y +'/—;A)]

f =f e X Y

° 5
ifk (x —%) + k (Y+_‘;‘A)]

fc=fe x 4

i[kx(x - A) + kyy]

fd=fe
Cilk (x-é)+k(y-—/§-ﬁ)]
X 2 2
f =f e
e
ilk (x+é)+k(y—-‘/—§ﬂ)]
X 2 Y 2
ff=fe

3¢ £ 1(kxx + kyy) 4 ik A —1kXA
&- = E e - [EZ(Q e )
ik -'/— A ik ~A— -ik é . =ik Q‘ A ik
1 y 2 x 2 x 2 1 y 2 - X
+qe (e - e ) + 3 e (e
and
L (K %)
i X zY
24 =L e X {41 sin(k A) + 41 sin(k -A-) cos (k /—3A)]
dx  6A X X 2 y 2

In analogy to equation AlO, a, becomes

A

_2 n b 5
o, = 33 [sin(k_A) + sin (kx o) cosk A ]
or with sin z = 2 sin g— cos g-

X A KA k_A x /3
a =-2—-[2sin——x—~cos—)§—+sin X cos L A]
A 34 2 2 2 2
kA k A k V3

a =Lsin—5—(2 cos —— + cos —L—A)
T 2 2 2

Equation A22 becomes similarly

149.

> (A23)

(n24)
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of c itk x + k y) ik %- ik EiA -ik §§£
5§-= e * Y [e * (e Y e Y )+
2v30 : :
-1kx %— ik giﬂ‘ ~ik %EA
e e ¥ -e 7 )]
3¢ . ik 1) k A k v3A
3o = e [4i cos X sin y2 1
¥ /3
and again
k A k V/3A
B, = 2 (cos X sin L) (A25)
A 2 . 2 / .

V34

Substituting equations AZ4 and A25 into equation Al8 one ob-

tains
piy -2, : : : (A26)
9b AT Y S T |
where
k4 kA k V34
- L cipn 2 s 2
Y = [3 sin —5 (2 cos —— + cos ~* )1° +
k A k V30
[— (cos —— sin )12

/i 2 2
The maximum value of y can be determined numerically
Y =1,376981137
max

with Ynax equation AZ26 yields

A
< 1,704378316 , " (28)

/gD

At

In an analysis for finite difference equations where the Co-
riolis term is associated with the future time level only

(equations 29-30), the f term no longer cancels as in equation

Al7 and the final result gives a time step at least as large



as that given by equation 28.

Concluding, it may be stated that there are two "varieties" of
instabilities in the present model. The first variety of in-
stability is created by the irregularity of a grid, the second
is due to exceeding a maximum time step as given by equation
28 for a regular grid. Reasonably strong damping of the system
"however allows to stabilize the first type instability even
though the grid is "irregular'. This damping has little physi-
cal meaning and is of such an intensity that simulation of na-

tural seiches as observed in the Léman becomes impossible. In

§ 5.5 it has been shown that this strong instability disappears

to a very large degree when a "regular" grid is used. In §s
5.6 it was seen that an "irregular" grid behaves similarly to
a regular grid if all interior points of the grid are selected
such that they are located in the center of the points sur-
rounding them. Only for such a "smoothed-irregular" grid may
the condition imposed by equation 28 be assumed to be a valid
criterion for the choice of an upper limit of the time step,
At, as a function of a particular grid. Thus, the time step
used in § 5.6.2 of the present dissertation was already aboﬁt
one third of the one imposed as a maximum by equation 28. The
criterion for this choice of time step was the intention to
produce a smooth running animated film. In an irregular grid
the time step must generally be seletted to be much smaller
than the one indicated by equation Z8. In that case the time

step must be the smaller the less smoothing is being done.

System of units

In the present dissertation, all equations are dimensionally
homogeneous. Thus, any consistent system of units may be
applied. The system used herein is the SI system, where the
force is expressed in Newtons. Thus, according to Newton's

second law,

151.
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N = kg m/s2
N and kg m/s2 can be used interchangeably.

In the following list of the major variables used in this work,
the dimensions of some variables are indicated in terms of
both sides of the above equation to permit an easy control

over the dimensions in the equations of this dissertation.

List of symbols

dimensions
Ap: surface area associated with point P [mz]
B : length or width of lake [m]
Cyt bottom shear stress coefficient (-1
.t wind (top) shear stress coefficient ) [-]
D : depth of water : [m]
f : Coriolis parameter or [1/s]
general function ‘ [ 1
g acceleration of gravity [m/sz]
H : water surface elevation - [m]
subscript of surrounding point (-1
j o subscript of layer _ A . [-]
K : wave vector as defined for equation A3 [m]
L : thickness of layer : o [m]
M : number of layers | [-1
number of points Pi’ surrounding a point, P = [-]
n : point ip time-in a sgrie§ of discrete
points 1n time or point 1n space : [-]
P : point number [-]
p :  pressure ' [kg/m 52][N/m2]
R : wave amplitudes as defined for | ’
equation A3 [m, m/s]
S : length between successive léke '
‘ cross-sections [m]
T : period of a seiche [s]

time _ - [s]
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dimensions
wind velocity in X direction -[m/s]
volume transport per unit width in 5
x direction (m~/s]
mean Velociﬁy in x direction [m/s]
water velocity in x direction fm/s]
component of vector Gt in x direction [m/s]
wind velocity in y direction [m/s]
wind velocity vector in general direction [m/s]
lake volume associated with a point P [ms]
volgme transport per unit width in 2
y direction [m~/s]
mean velocity in y direction {m/s]
water velocity in y direction [m/s]
component of vector §t in y direction {m/s]
water velocity vector in general direction (m/s]
vector v projected onto boundary tangent [m/s]
water velocity in the z direction [m/s]
distance from origin towards east {m]
distance from origin towards north [m]
distance from origin upwards (m]
weighting factor for a-mean [-1
angle of boundary tangent 1]
angle of wind or current direction [°]
horizontal eddy viscosity [kg/ms][Ns/mzl
vertical eddy viscosity [kg/mS][Ns/mz]
density of water [kg/msl[st/m4]
density of air [kg/mS][st/m4]
shear stress in the x direction [N/mz]
shear stress in the y direction [N/mz]
shear stress vector in general direction [N/mz]
shear stress per unit mass of water [mz/sz]

wave frequency as defined for equation A3

[1/s]
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