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Abstract. Despite the non-convex optimization landscape, over-parametrized
shallow networks are able to achieve global convergence under gradient des-
cent. The picture can be radically different for narrow networks, which tend
to get stuck in badly-generalizing local minima. Here we investigate the cross-
over between these two regimes in the high-dimensional setting, and in particu-
lar investigate the connection between the so-called mean-field/hydrodynamic

∗This article is an updated version of: Veiga R, Stephan L, Loureiro B, Krzakala F and Zdeborová L 2022 Phase
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regime and the seminal approach of Saad & Solla. Focusing on the case of
Gaussian data, we study the interplay between the learning rate, the time scale,
and the number of hidden units in the high-dimensional dynamics of stochastic
gradient descent (SGD). Our work builds on a deterministic description of SGD
in high-dimensions from statistical physics, which we extend and for which we
provide rigorous convergence rates.

Keywords: learning theory, machine learning, phase diagrams

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Discussion, special cases, and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1. Saad & Solla scaling κ= δ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2. Perfect learning for κ= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3. Bad learning for κ= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4. Large hidden layer: κ> 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Appendix A. Deterministic scaling limit of stochastic processes . . . . . . . . 16

A.1. Preliminaries: bounding the q jj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2. Assumption A.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3. Assumption A.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.4. √-Lipschitz property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendix B. A lemma on ODE perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendix C. Expectations over the local fields . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.1. Population risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2. ODE contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.3. From gradient flow to local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Appendix D. Initial conditions and symmetric teacher . . . . . . . . . . . . . . . . . 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

https://doi.org/10.1088/1742-5468/ad01b1 2

https://doi.org/10.1088/1742-5468/ad01b1


Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

J.S
tat.

M
ech.(2023)

114008

1. Introduction

Descent-based algorithms such as stochastic gradient descent (SGD) and its variants
are the workhorse of modern machine learning. They are simple to implement, efficient
to run and most importantly: they work well in practice. A detailed understanding
of the performance of SGD is a major topic in machine learning. Quite recently, sig-
nificant progress was achieved in the context of learning in shallow neural networks.
In a series of works, it was shown that the optimization of wide two-layer neural net-
works can be mapped to a convex problem in the space of probability distributions over
the weights [1–4]. This remarkable result implies global convergence of two-layer net-
works towards perfect learning provided that the number of hidden neurons is large, the
learning rate is sufficiently small and enough data is at disposition. This line of work is
commonly referred to as the mean-field or the hydrodynamic limit of neural networks.
Mathematically, these works showed that one could describe the entire dynamics using
a partial differential equation (PDE) in d dimensions.

In a different, and older, line of work one-pass SGD for two-layer neural networks
with a finite number p of hidden units, synthetic Gaussian input data and teacher-
generated labels has been widely studied starting with the seminal work of [5]. These
works consider the limit of high-dimensional data and show, in particular, that the
stochastic process driven by gradient updates converge to a set of p2 deterministic
ordinary differential equations (ODEs) as the input dimension d→∞ and the learning
rate is proportional to 1/d. The validity of these ODEs in this limit was proven by [6].
However, the picture drawn from the analysis of these ODEs is slightly different from
the mean-field/hydrodynamic picture: in this case SGD can get stuck for long time in
minima associated to no specialization of the hidden units to the teacher hidden units,
and even when it converges to specializing minima, it fails to perfectly learn (i.e. to
achieve zero population risk). In fact, in this analysis, the interplay between the limit
of the learning rate going to zero and d→∞ appeared to be fundamental.

One should naturally wonder about the link between these two sets of works with,
on the one hand a d -dimensional PDE (with large p), and on the other a p2-dimensional
ODE (with large d). In this work we aim to build a bridge between these two approaches
for studying one-pass SGD.

Our starting point is the framework from [5], which we build upon and expand to a
much broader range of choices of learning rate, time scales, and hidden layer width. This
allows us to provide a sharp characterization of the performance of SGD for two-layer
neural networks in high-dimensions. We show it depends on the precise way in which
the limit is taken, and in particular on how the quantity of data, the hidden layer width,
and the learning rate scale as d→∞. For different choices of scaling, we can observe
scenarios such as perfect learning, imperfect learning with an unavoidable error, or even
no learning at all.

As a consequence of our analysis, we provide a phase diagram (see figure 1(a))
describing the possible scenarios arising in the high-dimensional setting. Our main
contributions are as follows:

C1 We rigorously show that the dynamics of SGD can be captured by a set of determ-
inistic ODEs, considerably extending the proof of [6] to accommodate for general time
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Figure 1. Phase diagram (left) and typical behavior of the ODE in each regions
(right).

scalings defined by an arbitrary learning rate, and a general range of hidden layer width.
We provide much finer non-asymptotic guarantees which are crucial for our subsequent
analysis.

C2 From the analysis of the ODEs, we derive a phase diagram of SGD for two-layer
neural networks in the high-dimensional input layer limit d→∞. In particular, scaling
both the learning rate γ and hidden layer width p with the input dimension d as

γ ∝ d−δ , (1a)

p∝ dκ , (1b)

we identify four different learning regimes, which are summarized in figure 1(a):

• Perfect learning (green region, κ >−δ): we show that perfect learning (zero popu-
lation risk) can be asymptotically achieved with n∼ d1+κ+δ samples even for tasks
with additive noise.

• Plateau (blue line κ=−δ): learning reaches a plateau related to the noise strength.
The point κ= δ = 0 goes back to the classical work of [5].

• Bad learning (orange region −1
2 < κ+ δ < 0): here the noise dominates the learning

process.

• No ODEs (red region κ+ δ <−1
2): the stochastic process associated to SGD is not

guaranteed to converge to a set of deterministic ODEs. This region is thus outside
the scope of our analysis.

To better illustrate this phase diagram we present in figure 1(b) solution of the ODEs
in all three regimes.

Relation to previous work – Deterministic dynamical descriptions of one-pass
stochastic gradient descent in high-dimensions have a long tradition in the statistical
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physics community, starting with single- and two-layer neural networks with few hid-
den units [7–11]. The seminal work by [5] overcame previous limitations by constructing
a set of deterministic ODEs for two-layer networks with any finite number of hidden
units, paving the way for a series of important contributions [6, 12–14]. This line of
work corresponds to the κ= δ = 0 case of figure 1(a). One of our goals is to generalize
this picture beyond fixed hidden layer size and learning rate.

A more recent line of work investigating the dynamics of SGD is the so-called mean-
field limit [1–4, 15], which connects the SGD dynamics of large-width two-layer neural
networks to a diffusion equation in the hidden layer weight density. In particular, [15]
provide non-asymptotic convergence bounds for sufficiently small learning rates, cor-
responding to the green region of figure 1(a) (with p→∞). The mean-field approach
computes the empirical distribution (in Rd) of the hidden layer weights, while we focus
on the macroscopic overlaps between the teacher and student weights.

Reproducibility A code is provided at https://github.com/rodsveiga/phdiag sgd.

2. Setting

Consider a supervised learning regression task. The data set is composed of n pairs
(xν ,yν)ν∈[n] ∈ Rd+1 identically and independently sampled from P(x,y). The probability
P(x) is assumed to be known and P(y|x) is modeled by a two layer neural network called
the teacher. Given a feature vector xν ∈ Rd, the respective label yν ∈ R is defined as the
output of a network with k hidden units, fixed weights W ∗ ∈ Rk×d and an activation
function σ : R→ R:

yν = f (xν ,W ∗)+
√
∆ζν , (2)

where

f (xν ,W ∗) =
1

k

k∑
r=1

σ

(
w∗⊤
r xν√
d

)
=

1

k

k∑
r=1

σ (λ∗ν
r ) , (3)

with w∗
r ≡ [W ∗]r ∈ Rd as the rth row of the matrix W ∗ and λ∗ν

r ≡ w∗⊤
r xν√
d

∈ R as the rth

component of the teacher local field vector λ∗ν ∈ Rk. The parameter ∆⩾ 0 controls the
strength of additive label noise: ζν ∼ P(ζν) such that Eζ∼P(ζ)[ζ] = 0 and Eζ∼P(ζ)[ζ

2] = 1.
Given a new sample x∼ P(x) outside the training data, the goal is to obtain an

estimation f̂(x) for the respective label y. The error is quantified by a loss function

L(y, f̂(x,Θ)), where Θ is an arbitrary set of parameters to be learned from data.
In this manuscript we are interested in the problem of estimating W ∗ with another

two-layer neural network with the same activation function, which we will refer to as
the student. The student network has p hidden units and a matrix of weights W ∈ Rp×d

to be learned from the data. Given a feature vector x∼ P(x) the student prediction for
the respective label is given as

f̂ (x,W ) =
1

p

p∑
j=1

σ

(
w⊤
j x√
d

)
=

1

p

p∑
j=1

σ
(
λνj
)
, (4)
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where wj ≡ [W ]j ∈ Rd is the j th row of the matrix W and λj ≡
w⊤
j x
√
d

∈ R is defined as

j th component of the student local field vector λ ∈ Rp.

One-pass gradient descent – Typically, one minimizes the empirical risk over the
full data set. Instead, learning with one-pass gradient descent minimizes directly the
population risk :

R(W ,W ∗)≡ Ex,y∼P(x,y)

[
L
(
f (x,W ∗) , f̂ (x,W )

)]
. (5)

Given a single sample (xν ,yν) the weights are updated sequentially by the gradient
descent rule:

wν+1
j =wν

j − γ∇wj
L
(
yν , f̂ (xν ,W )

)
, (6)

with ν ∈ [n] and j ∈ [p]. The parameter γ > 0 is the learning rate. Despite being a
simplification with respect to batch learning, one-pass gradient descent is an amenable
surrogate for the theoretical analysis of non-convex optimization, since at each step the
gradient is computed with a fresh data sample, which is equivalent to performing SGD
directly on the population risk.

In particular, in this manuscript we assume realizability p⩾ k, and focus our analysis
on the square loss L(y, ŷ) = 1

2(y− ŷ)2, leading to

wν+1
j =wν

j +
γ

p
√
d
σ ′ (λνj )Eνxν , (7)

where

Eν ≡ 1

k

k∑
r=1

σ (λ∗ν
r )− 1

p

p∑
l=1

σ (λνl )+
√
∆ζν (8)

with population risk given by

R(W ,W ∗) =
1

2
Ex,y∼P(x,y)

[(
f̂ (x,W )− f (x,W ∗)

)2]
. (9)

Therefore, from the above expression we can see that to monitor the population risk
along the learning dynamics it is sufficient to track the joint distribution of the local
fields (λ,λ∗). For Gaussian data P(x) =N (x|0,1), one can replace the expectation
Ex,y∼P(x,y)[·] by Eλ,λ∗∼N (λ,λ∗|0,Ω)[·] and fully describe the dynamics through the following
sufficient statistics, known in the statistical physics literature as macroscopic variables:

Qν ≡ Ex,y∼P(x,y)
[
λνλν⊤

]
=

1

d
W ν⊤W ν , (10a)

M ν ≡ Ex,y∼P(x,y)
[
λνλ∗ν⊤]= 1

d
W ν⊤W ∗ , (10b)

P ≡ Ex,y∼P(x,y)
[
λ∗νλ∗ν⊤]= 1

d
W ∗⊤W ∗ (10c)

https://doi.org/10.1088/1742-5468/ad01b1 6
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with matrix elements, called order parameters in the statistical physics literature,
denoted by qνjl ≡ [Qν ]jl, m

ν
jr ≡ [M ν ]jr and ρrs ≡ [P ]rs. The macroscopic state of the

system at the learning step ν is given by the overlap matrix Ων ∈ R(p+k)×(p+k):

Ων =

[
Qν M ν

M ν⊤ P

]
, (11)

and the population risk is completely determined by the macroscopic state:

R(Ω) =
1

2
Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ)

[(
f̂ (λ)− f (λ∗)

)2]
. (12)

The training dynamics (6) defines a discrete-time stochastic process for the evolution
of the overlap matrix{

Ων ∈ R(p+k)×(p+k) ,ν ∈ [n]
}
, (13)

with P fixed and Qν and M ν updated as:

qν+1
jl − qνjl =

γ

pd

(
Eνj λνl + Eνl λνj

)︸ ︷︷ ︸
learning

+
γ2‖x‖2

p2d2
Eνj Eνl︸ ︷︷ ︸
variance

, (14a)

mν+1
jr −mν

jr =
γ

pd
Eνj λ∗ν

r︸ ︷︷ ︸
learning

, (14b)

with ν ∈ [n], j , l ∈ [p], r ∈ [k] and Eνj ≡ σ ′(λνj )Eν . In what follows, we will make the

concentration assumption ‖x‖2 = d; this will be justified in the proof of theorem 3.1.
We emphasize in (14) the specific role played by each term in the right hand-side.

The ‘learning’ terms are the fundamental ones, that actually drive the learning of the
teacher by the student. We show in appendix C.3 that these ‘learning’ terms are identical
to those obtained in the gradient flow approximation of SGD, whose performance is the
topic of many works [1–4]. Those are precisely the terms that draw the population risk
towards zero. However, in our setting there is an additional variance term (so that this
flow approximation is incomplete) that corresponds to the fluctuations of L(x,W ,W ∗)
around its expected value R(W ,W ∗). In particular, this is where the effects of the
noise ζ can be felt. These terms were sometimes denoted as (I 2) and (I 4) in [16]. We
shall see that the additional ‘variance’ term is the one responsible for the plateau in
the critical (blue) region of figure 1(a), while its contribution vanishes in the perfect
learning (green) region.

Additionally, albeit our work particularizes to Gaussian input data, we believe our
conclusion, and the phase diagram discussed in figure 1(a), to hold beyond this restricted
case. Indeed, while the Gaussian assumption is crucial to reach a particular set of
ODEs and their analytic expression, the approach can be applied to more complex data
distribution, as long as one can track the sufficient statistics required to have a closed
set of equations. For instance, [17] obtained very similar equations for an arbitrary
mixture of Gaussians—that would obey the same scaling analysis as ours—while [18–
20] proved that many complex distributions behave as Gaussians in high-dimensional

https://doi.org/10.1088/1742-5468/ad01b1 7
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setting, including, e.g. realistic GAN-generated data. We thus expect our conclusions
to be robust in this respect.

3. Main results

Although t0 = ν/d seems to be the most natural time scaling in the high-dimensional
limit d→∞, if γ and p are allowed to vary with d the right-hand side (RHS) of
equation (14) can diverge and render the ODE approximation obsolete. Instead, for
a given time scaling δt, we can rewrite equation (14) as

qν+1
jl − qνjl
δt

=
γ

pdδt

(
Eνj λνl + Eνl λνj

)
+

γ2

p2dδt
Eνj Eνl , (15a)

mν+1
jr −mν

jr

δt
=

γ

pdδt
Eνj λ∗ν

r . (15b)

In theorem 3.1 we prove that as d→∞, Ων converges to the solution of the ODE:

d

dt
Ω̄(t) = ψ

(
Ω̄(t)

)
, (16)

where ψ : R(p+k)×(p+k) → R(p+k)×(p+k) is the expected value of the RHS of equation (15),
provided that this solution stays bounded. This enhances the result of [6] by providing
convergence rates to the ODEs encompassing all scalings adopted hereafter:

Theorem 3.1 (Deterministic scaling limit of stochastic processes). Let τ ∈ R be the continuous time
horizon and δt= δt(d) be a time scaling factor such that the following assumptions
hold:

1. the time scaling δt satisfies for some constant c,

δt⩾ cmax
(
γ

pd
,
γ2

p2d

)
(17)

2. the activation function σ is L-Lipschitz,

3. the function ψ : R(p+k)×(p+k) → R(p+k)×(p+k) is L′-Lipschitz.

Then, there exists a constant C> 0 (depending on c,L,L ′) such that for any
0⩽ ν ⩽ bτ/δtc, the following inequality holds:

E ‖Ων − Ω̄(νδt)‖∞ ⩽ eCτ log(p)
√
δt . (18)

Our proof is based on techniques introduced in [21] (namely, their Lemma 2) which
studies a different problem with related proof techniques. The proof involves decompos-
ing Ων+1 as

Ων+1 =Ων + δt ψ (Ων)+
(
Ων+1−Ων − δtψ (Ων)

)
, (19)

https://doi.org/10.1088/1742-5468/ad01b1 8
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where the two first terms can be considered as a deterministic discrete process, and
the last term is a martingale increment. The main challenge lies in showing that the
martingale contribution stays bounded throughout the considered time period.

Although the method is similar to [6], there are a number of differences between the
two approaches. First, our proof fixes a number of holes in [6], in particular bounding
qνjj by a sufficiently slowly diverging function of ν. Additionally, the techniques used in
this paper yield a dependency in p that is nearly negligible, while the previous methods
imply bounds that are much too coarse for our needs.

The function ψ can be computed explicitly for various choices of σ, which allows to
check assumption (3) directly. We provide in appendix C the necessary computations
for σ(x) = erf(x/

√
2); those for the ReLU unit can be found in [22]. It can be checked

that in the ReLU case, the function ψ is not Lipschitz around the matrices Ω satisfying

Ωjl =
√
ΩjjΩll

for some j 6= l. However, in every case we have a weaker square-root-Lipschitz property:
there exists C ∈ R such that

‖ψ (Ω)−ψ (Ω ′)‖⩽ C
∥∥∥√Ω−

√
Ω ′
∥∥∥

for any Ω,Ω ′. Since the square root function is Lipschitz whenever the eigenvalues of Ω
are bounded away from zero (see e.g. [23]), assumption (3) is implied by the condition

Ων � ϵIp+k ;

however, this assumption is much stronger, and becomes unrealistic in the specialization
phase (as well as when p� d).

Theorem 3.1 allows us to safely navigate through figure 1(a) by keeping track of
convergence rates of the discrete process to a set ODEs. The interplay between learning
rate and hidden layer width defines the time scaling δt and the trade-off between the
linear contribution on Ej and the quadratic one, playing a central role on whether the
network achieves perfect learning or not. Specifically, consider the following learning
rate and hidden layer width scaling with d :

γ =
γ0
dδ
, (20a)

p= p0d
κ , (20b)

where γ0 ∈ R+ and p0 ∈ N are constants. The exponent δ ∈ R can be either greater or
smaller than zero, while κ ∈ R+. Replacing these scalings on equation (14), we find:

qν+1
jl − qνjl =

1

d1+κ+δ
(
Eνj λνl + Eνl λνj

)︸ ︷︷ ︸
learning

+
1

d1+2(κ+δ)
Eνj Eνl︸ ︷︷ ︸
noise

, (21a)

mν+1
jr −mν

jr =
1

d1+κ+δ
Eνj λ∗ν

r︸ ︷︷ ︸
learning

, (21b)

where we have chosen γ0 = p0 without loss of generality.
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Since the distribution of the label noise P(ζ) is such that Eζ∼P(ζ)[ζ] = 0, the linear
contribution in Ej is noiseless in the high-dimensional limit d→∞, and therefore we will
refer to it as the learning term. The noise enters in the equations through the variance
computed on the quadratic contribution EjEl, which we will refer to as the noise term;
intuitively, it is a high-dimensional variance correction which hinders learning. In order
to satisfy (17), we shall take

δt= max
(

1

d1+κ+δ
,

1

d1+2(κ+δ)

)
. (22)

When κ+ δ 6= 0, this implies that either the learning term or the noise term scale like
a negative power of d, and is negligible with respect to the other term. It is then easy
to check that at a finite time horizon τ , the resulting ODEs behave as if the negligible
term was not present. We refer to theorem B.1 in the appendix for a quantitative proof
of this phenomenon. Let us now describe the different regimes depicted in figure 1(a).

Blue line (plateau) – When γ and p are scaled such that κ=−δ, equation (21)
converge to

dqjl
dt0

= Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλl+ Elλj] +Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [EjEl] , (23a)

dmjr

dt0
= Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλ∗

r] , (23b)

with δt0 ≡ 1/d. This regime is an extension of [5] for which κ= δ = 0. The convergence
rate to the ODEs scales with d−1/2 log(d), and the phenomenology we observe for κ= δ =
0 is consistent with previous works studying the setting κ= δ = 0; namely the existence
of an asymptotic plateau proportional to the noise level. For instance, the asymptotic
population risk R∞ is known to be proportional to γ∆ [6] when κ= δ = 0 and the
dynamics is driven by a rescaled version of equation (23). Since the noise term does not
vanish under this scaling, perfect learning to zero population risk is not possible. There
is always an asymptotic plateau related to the noise level ∆, and the learning rate γ.

Green region (perfect learning) – If κ >−δ we can define the time scaling δtκ+δ ≡
1/d1+κ+δ. By theorem 3.1, equation (21) converge to the following deterministic set of
ODEs:

dqjl
dtκ+δ

= Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλl+ Elλj] +O
(Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [EjEl]

dκ+δ

)
, (24a)

dmjr

dtκ+δ
= Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλ∗

r] , (24b)

at a rate proportional to d−(1+κ+δ)/2 log(d), where we have highlighted that the noise
term vanishes with d−(κ+δ). Hence, as long as κ >−δ the noise does not play any role
on the dynamics. This setting could be understood by taking an effect learning rate
γeff ∝ d−κ−δ on R∞ ∝ γ∆, which leads to zero population risk, i.e. perfect learning, in
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the high dimensional limit d→∞. We validate this claim by a finite size analysis in the
next section.

As discussed, the time scaling determines the number of data samples required to
complete one learning step on the continuous scale. The bigger κ+ δ, the more attenu-
ated the noise term, thus the closer to perfect learning. The trade-off is that the bigger
κ+ δ, the larger the number of samples needed is, since n= τd1+κ+δ. Given a realizable
learning task, one would thus rather choose the parameters to attain the perfect learning
region, but being as close as possible to the plateau line for not increasing too much the
needed number of samples. We remark that [15] provides an alternative deterministic
approximation in this regime, with non-asymptotic bounds, whenever p� 1; this is the
so-called mean-field approximation, with known convergence guarantees [2].

Orange region (bad learning) – We now step in the unusual situation where the
learning rate grows faster with d than the hidden layer width: κ <−δ. In this case,
by (22) the noise term dominates over the dynamics. Defining the time scaling δt2(κ+δ) ≡
1/d1+2(κ+δ), we have

dqjl
dt2(κ+δ)

= Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [EjEl] +O
(Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλl+ Elλj]

d−(κ+δ)

)
, (25a)

dmjr

dt2(κ+δ)
=O

(Eλ,λ∗∼N (λ,λ∗|0,Ω) [Ejλ∗
r]

d−(κ+δ)

)
. (25b)

According to theorem 3.1 the convergence rate of equations (21)–(25) scales with
d−(1/2+κ+δ) log(d). Therefore the existence of the noisy ODEs above is circumscribed to
the region

−1

2
< κ+ δ < 0 , (26)

and presents a convergence trade-off absent in the other regimes: the faster one of
the contributions of equation (21) goes to zero, the worse is the convergence rate. In
the present case, the more the learning term is attenuated, i.e. the more negative is
κ+ δ, the worse the dynamics is described by equation (25). Although the weights are
updated, the correlation between the teacher and the student weights parametrized by
the overlap matrix M remains fixed on its initial value M 0, which is a fixed point of the
dynamics under this scaling. Unsurprisingly, this leads to poor generalization capacity.

Red region (no ODEs) – If κ+ δ <−1
2 , the stochastic process driven by the weight

dynamics does not converge to deterministic ODEs under the assumptions of theorem
3.1. We are then not able to state any claim about this regime.

Initialization and convergence – There are two additional features worth
commenting on the high-dimensional dynamics and its connection to the mean-
field/hydrodynamic approach, regarding initialization and the specialization transition.

In the ODE approach we discuss here, we always observe a first plateau where the
teacher-student overlaps are all the same. This means all the hidden layer neurons
learned the same linear separator. At this point, the two-layer network is essentially
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linear. This is called a unspecialized network in [5, 16]. In fact, this is a perfectly
normal phenomenon, as with few samples even the Bayes-optimal solution would be
unspecialized [24]. Only by running the dynamics long enough the student hidden neur-
ons start to specialize, each of them learning a different sub-function so that the two-layer
network can learn the non-trivial teacher.

Let us make two comments on this phenomenon: (i) while the ‘linear’ learning in the
unspecialized regime may remind the reader of the linear learning in the lazy regime
[25, 26] of neural nets, the two phenomena are completely different. In lazy training,
the learning is linear because weights change very little, so that the effective network
is a linear approximation of the initial one. Here, instead, the weights are changing
considerably, but each hidden neuron learns essentially the same function. (ii) If the
ODEs are initialized with weights uncorrelated with the teacher, then the unspecialized
regime is a fixed point of the ODEs: the student thus never specializes, at any time.
Strikingly, such condition arises as well in the analysis of mean-field equations (see
e.g. theorem 2 in [27] that discusses the need to have spread initial conditions with a
non-zero overlap with the teacher) to guarantee global convergence.

This raises the question about the precise dependence of the learning on the initial-
ization condition in the high-dimensional regime, where a random start gets a vanish-
ing (1/

√
d) overlap. This is a challenging problem that only recently has been studied

(though in a simpler setting) in [28–30] who showed it yields an additional log(d) time-
dependence. Generalizing these results for high-dimensional two-layer nets is an open
question which we leave for future work.

4. Discussion, special cases, and simulations

To illustrate the phase diagram of figure 1(a), we present now several special cases for
which we can perform simulations or numerically solve the set of ODEs. Henceforth,
we take σ(x)=erf(x/

√
2), for which the expectations of the ODEs and of the popula-

tion risk, equation (12), can be calculated analytically [5]. The explicit expressions are
presented in appendix C. Teacher weights are such that ρrs = δrs. The initial student
weights are chosen such that the dimension d can be varied without changing the ini-
tial conditions Q0, M 0, P and consequently the initial population risk R0. A detailed
discussion can be found in appendix D.

4.1. Saad & Solla scaling κ = δ = 0

We start by recalling the well-known setting characterized by the point κ= δ = 0. The
convergence of the stochastic process for fixed learning rate and hidden layer width to
equation (23) was first obtained heuristically by [5]. In figure 2 we recall this classical
result by plotting the population risk dynamics for different noise levels. Dots represent
simulations, while solid lines are obtained by integration of the ODEs, equation (23).

Learning is characterized by two phases after the initial decay. The first is the unspe-
cialized plateau where all the teacher-student overlaps are approximately the same:
mjr ≈m. Waiting long enough, the dynamics reaches the specialization phase, where
the student neurons start to specialize, i.e. their overlaps with one of the teacher neurons
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Figure 2. Population risk dynamics for κ= δ = 0 (Saad & Solla scaling) : p0 = 8,
k =4, ρrs = δrs. Activation: σ(x) = erf(x/

√
2). Data distribution: P(x) =N (x|0,1).

Dots represent simulations (d =1000), while solid lines are obtained by integration
of the ODEs given by equation (23).

increase and consequently the population risk decreases. This specialization is discussed
extensively in [5]. If ∆ = 0, the population risk goes asymptotically to zero. Instead, if
∆ 6= 0, the specialization phase presents a second plateau related to the noise ∆.

The asymptotic population risk R∞ related to the second plateau is proportional to
γ∆ [6] in the high-dimensional limit d→∞ with p finite. As mentioned in the previous
section, the expectation over EjEl in equation (23a) prevents one from obtaining zero
population risk for a noisy teacher.

4.2. Perfect learning for κ= 0

In this section we study the line κ=0 with δ > 0 of figure 1(a), for which equation (24)
with κ=0 hold. We show that perfect learning can be asymptotically achieved in the
realizable setting for any finite hidden layer width p= p0. Keeping δ and ∆ fixed, we
have done simulations increasing the input layer dimension d. In figure 3(a) we set
δ = 1/2, ∆ = 10−3 and vary the input layer dimension. The bigger d is, the closer we
are to the ODE-derived noiseless result.

Gathering the asymptotic population risk from simulations for varying d and ∆ we
perform a finite-size analysis to study the dependence of R∞ with d. This shows that
the noise term goes to zero under this setting. In figure 3(b) we plot R∞ versus d from
simulations (dots) for different noise levels. We fit lines under the log–log scale showing
that R∞ ∝ d−δ, as expected. Figure 4 draws the same conclusion for δ = 1/4.

As already stated, the interplay between the exponents directly affects the time
scale. We end this subsection by graphically illustrating this fact through simulations.
Setting the noise to ∆ = 10−3 we compare the cases δ = 0,1/4,3/8,1/2 in figure 5(a).
All simulations are rendered on the scale δt0 = 1/d to illustrate the trade-off between
asymptotic performance and training time.

4.3. Bad learning for κ= 0

We now quickly discuss the uncommon case of γ growing with d within the orange
region. In figure 5(b) we compare simulations varying d with the solution of the ODEs
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Figure 3. Network parameters: p0 = 8, k =4, ρrs = δrs. Activation function: σ(x) =
erf(x/

√
2). Data distribution: P(x) =N (x|0,1) .

Figure 4. Network parameters: p0 = 8, k =4, ρrs = δrs. Activation function: σ(x) =
erf(x/

√
2). Data distribution: P(x) =N (x|0,1) .

given by equation (25). Both lead to poor results compared to the green and blue
regions. Moreover, this regime presents strong finite-size effects, making it harder to
observe the asymptotic ODEs at small sizes. However, the trend as d increases is very
clear from the simulations. As discussed in section 3, the more the learning term is
attenuated on the ODEs, the worse they describe the dynamics.

4.4. Large hidden layer: κ> 0

Finishing our voyage through figure 1(a) with examples, we briefly discuss the case
where both input and hidden layer widths are large. Although theorem 3.1 provides
non-asymptotic guarantees for κ> 0, the number of coupled ODEs grows quadratically
with p, making the task of solving them rather challenging. Thus, we present simulations
that illustrate the regions of figure 1(a). Fixing d =100 we show in figure 6 learning
curves for different values of κ and δ. The colors are chosen to match their respective
regions in the phase diagram.
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Figure 5. Network parameters p0 = 8, k =4, ρrs = δrs. Noise level ∆ = 10−3.
Activation: σ(x) = erf(x/

√
2). Data distribution: P(x) =N (x|0,1) .

Figure 6. Simulations across different regions of figure 1(a). Networks paramet-
ers d =100, p= dκ, γ = d−δ, k =4, ρrs = δrs. Noise: ∆ = 10−3. Activation function:
σ(x) = erf(x/

√
2). Data distribution: P(x) =N (x|0,1). Time scaling: ϑ= κ+ δ for

green and blue and ϑ= 2(κ+ δ) for orange. The colors match figure 1(a).

Due to the relatively small sizes used in figure 6, the green dots seem to decrease
towards perfect learning, even when δ < 0, provided that κ is large enough, as is pre-
dicted by the phase diagram in figure 1(a). Moreover, since d is not large enough, when
the parameters are within the orange region the finite-size effects actually dominates,
similarly to figure 5(b). The learning contribution still plays a role and the asymptotic
population risk is similar to the case κ= δ = 0. Within the red region, which is out of
scope of our theory, the simulation gets stuck on a plateau with larger population risk.

5. Conclusion

Building up on classical statistical physics approaches and extending them to a broad
range of learning rate, time scales, and hidden layer width, we rendered a sharp charac-
terization of the performance of SGD for two-layer neural networks in high-dimensions.
Our phase diagram describes the possible learning scenarios, characterizing learn-
ing regimes which had not been addressed by previous classical works using ODEs.
Crucially, our key conclusions do not rely on an explicit solution, as our theory allows
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the characterization of the learning dynamics without solving the system of ODEs. The
introduction of scaling factors is non-trivial and has deep implications. Our generalized
description enlightens the trade-off between learning rate and hidden layer width, which
has also been crucial in the mean-field theories.
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Appendix A. Deterministic scaling limit of stochastic processes

In order to show the deterministic scaling of online SGD under a proper chosen time
scale, we will make use of a convergence result by [21, 31], which is adapted below in
theorem A.1.

Theorem A.1 (Deterministic scaling limit of stochastic processes). Consider a d-dimension discrete
time stochastic process sequence, {Ων ; ν = 0,1,2, . . ., [Sτ ]}S=1,2,... for some τ > 0. The
increment Ων+1−Ων is assumed to be decomposable into three parts,

Ων+1−Ων =
1

S
ψ (Ων)+Λν +Γν , (A.1)

such that

Assumption A.1.1. The process Λ̃
ν ≡

∑ν
ν ′=0Λ

ν ′
is a martingale and E‖Λν‖2 ⩽ C(τ)2/S1+ϵ1

for some ϵ1 > 0.

Assumption A.1.2. E‖Γν‖⩽ C(τ)/S1+ϵ2 for some ϵ2 > 0.

Assumption A.1.3. The function ψ (Ω) is Lipschitz, i.e, ‖ψ (Ω)−ψ (Ω̃)‖⩽ C‖Ω− Ω̃‖ for

any Ω and Ω̃.

Let Ω(t), with 0⩽ t⩽ τ , be a continuous stochastic process such that Ω(t) =Ων

with ν = [St]. Define the deterministic ODE

d

dt
Ω̄(t) = ψ

(
Ω̄(t)

)
, (A.2)

with Ω̄(0) = Ω̄0.
Then, if assumptions A.1.1–A.1.3 hold and assuming E‖Ω0− Ω̄0‖<C/Sϵ3 for some

ϵ3 > 0 then we have for any finite S :

E‖Ων − Ω̄
( ν
S

)
‖⩽ C (τ)ecτS−min{ 1

2
ϵ1,ϵ2,ϵ3} , (A.3)

where Ω̄(·) is the solution of equation(A.2).
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Proof. The reader interested in the proof is referred to the supplementary materials of
[21, 31].

Although the theorem was not originally proven in the p→∞ setting, a glance at
its proof shows that it still holds upon replacing C(τ) by C(p,τ) in assumptions A.1.1
and A.1.2, as well as equation (A.3). We choose ‖·‖ to be the L∞ norm, since it suits
better the p→∞ scaling. The S in theorem A.1 corresponds to 1/δt, where δt is defined
in theorem 3.1.

Following [21], we define for j, l ∈ [p]

Ψjl (Ω;x) =
γ

pdδt

(
Eνj λνl + Eνl λνj

)
+

γ2

p2dδt
Eνj Eνl ,

and

ψjl (Ω) = Ex∼N (x|0,1) [Ψjl (Ω;x)] .

The functions Ψ,ψ are similarly defined on [p]× [p+1,p+ k]. With that, we write

Ων+1−Ων =
1

S
ψ (Ω)+

1

S
(Ψ(Ων ;x)−ψ (Ων))︸ ︷︷ ︸

Λν

+Γν ,

where for j, l ∈ [p]

Γνjl =
γ2

p2d2
(
‖x‖22− d

)
Eνj Eνl .

The main obstacle to bounding Λν and Γν is the fact that the q jj can a priori diverge
to infinity. Our first task is therefore to show that this does not happen; as a proxy we
show a subGaussian-like moment bound:

E
[(
qνjj
)t]⩽ (C (τ)+

ct

S

)t
.

Equipped with the above bound, controlling E‖Λν‖2 and E‖Γν‖ becomes fairly easy.
All proof details are in the below sections.

A.1. Preliminaries: bounding the q jj

Since σ is L-Lipschitz, we have by the Cauchy–Schwarz inequality

(Eν)2 ⩽ 3L2

k

k∑
r=1

(λ∗
r)

2+
3L2

p

p∑
j=1

(λj)
2+3∆ζ2 ≡ Φν . (A.4)

Define

sν = EΦ ν =
3L2

k

k∑
r=1

ρrr+
3L2

p

p∑
j=1

qνjj +3∆.
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Assumption (1) in theorem 3.1 implies that

|qν+1
jj − qνjj|⩽

1

S

(
c1
(
λνj
)2

+ c2 (Eν)2
)

where c1, c2 are absolute constants. Summing those inequalities yield

|sν+1− sν |⩽ c3
S
Φν ,

and finally

Eν
[
sν+1

]
⩽ sν

(
1+

c3
S

)
⩽ sνec3/S.

As a result, we have for any 0⩽ ν ⩽ Sτ

E [sν ]⩽ c4e
c3τ . (A.5)

For simplicity, let qν denote any of the qνjj. We have, for all t⩾ 0,

(
qν+1

)t− (qν)t = t(qν)t−1 (qν+1− qν
)
+O

(
t2

S2

)
,

where the remainder term has bounded expectation. Again, we write∣∣∣(qν+1
)t− (qν)t

∣∣∣⩽ t(qν)t−1 1

S

(
c1 (Eν)2+ c2 (λ

ν
i )

2
)
+
c5t

2

S2
.

By assumption (3), the qνii are bounded from below by a constant, hence

Eν
[(
qν+1

)t]⩽ (qν)t
(
1+

c6t

S

)
+O

(
c5t

2

S2

)
.

This implies that for any t⩾ 0 and 0⩽ ν ⩽ Sτ ,

E
[
(qν)t

]
⩽
(
c7+

c5t
2

S

)
ec6τ ⩽

(
C (τ)+

c5t

S

)t
. (A.6)

A.2. Assumption A.1.1

We have for all i, j ∈ [p+ k],(
Ων+1
ij −Eν

[
Ων+1
ij

])2 ⩽ 2
((

Ων+1
ij −Ων

ij

)2
+
(
Ων
ij −Eν

[
Ων+1
ij

])2)
.

As a consequence,

E‖Λν‖2 ⩽ 4max
i,j

(
Ων+1
ij −Ων

ij

)2
.
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Now, by definition,

(
qν+1
ij − qνij

)2 ⩽ L

S2

(
c1 (Eν)2+ c2|Eν |(|λi|+ |λj|)

)2
⩽ L

S2

(
c3 (Eν)4+ c4

(
max
ℓ
λνℓ

)4
)
.

The term in (Eν)4 is bounded by the same techniques as the last section. For the second
term,

Eν

[(
max
ℓ
λℓ

)4
]
⩽ c5 log(p)2

(
max
ℓ
qνℓℓ

)4

,

and we can write for any t⩾ 0

max
ℓ

(qνℓℓ)
4 ⩽

(∑
ℓ

(qνℓℓ)
t

)4/t

.

By Jensen’s inequality, for t⩾ 4

E

[(
max
ℓ
qνℓℓ

)4
]
⩽
(∑

ℓ

E[(qνℓℓ)
t

)4/t

⩽ p4/t
(
C (τ)+

c6t

S

)4

,

using (A.6). Choosing t= 4 log(p)� S shows that

E
[
max
i,j

(
qν+1
ij − qνij

)2]⩽ C (τ) log(p)2

S2
.

A similar bound holds for the m ij , and hence

E‖Λν‖2 ⩽ c5 log(p)2

S2
,

which implies assumption A.1.1 with ϵ1 = 1 and C(p,τ) = C ′(τ) log(p).

A.3. Assumption A.1.2

Since σ is Lipschitz, for any i, j ∈ [p]

Eνi Eνj ⩽ L2 (Eν)2 .

Hence,

E [‖Γν‖∞]⩽ L2γ2

d2p2
E
[(
‖x‖22− d

)
Φν
]

⩽ L2γ2

d2p2

(
1

2
√
d
E
[(
‖x‖22− d

)2]
+

√
d

2
E
[
(Eν)4

])
.
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The first expectation is the variance of a χ2
d random variable, which is equal to 2d, and

the second expectation is bounded by the same methods as the above sections. The
term in brackets is therefore bounded by c1

√
d, and

E [‖Γν‖∞]⩽ c2
γ2

d3/2p2
.

Finally, since for any y > 0 we have y2 ⩽ max(y,y2)3/2, letting y = γ/p we find

E [‖Γν‖∞]⩽ c2max
(
γ

pd
,
γ2

p2d

)3/2

⩽ c3 (δt)
3/2 ,

hence assumption A.1.2 is true with ϵ2 = 1/2.

A.4. √-Lipschitz property

Let Ω,Ω ′ ∈ R(p+k)×(p+k), we can write the (i, j ) coefficient of ψ(Ω) as fij(
√
Ω), where

f : R(p+k)×(p+k) → R
A 7→ Ex∼N (0,Ip+k) [gij (Ax)] .

The same arguments as above show that the function f is Lipschitz, and hence for some
constant L′′ we have

‖ψ (Ω)−ψ (Ω ′)‖⩽ L ′ ′‖
√
Ω−

√
Ω ′‖.

Appendix B. A lemma on ODE perturbation

In this section, we prove a proposition that bounds the difference between an ODE
solution and a perturbed version, for a bounded time t.

Theorem B.1. Let f,g : Rn → Rn be two L-Lipschitz functions, and consider the following
differential equations in Rn:

dx

dt
= f (x)+ ϵg (x) ,

dy

dt
= f (y) ,

where ϵ> 0, and with the initial condition x(0) = y(0) . Then, if τ > 0 is fixed, we
have

‖x(t)−y (t)‖2 ⩽ cϵeLτ

for any 0⩽ t⩽ τ , with c a constant independent from ϵ,τ .

Before proving this proposition, we begin with a small lemma:
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Lemma B.2. Let a,b > 0, and z : R+ → R+ a function satisfying

dz

dt
= az+ b

√
z

with z(0) = 0. Then, for some constant c> 0, we have

z (t)⩽ c
b2eat

a2
for all t⩾ 0.

Proof. Upon considering the function a2z(t/a)/b2 instead, we can assume that a= b= 1.
Then, we have

dz

dt
⩽ max(z,1)+max

(√
z,1
)
,

and the RHS is an increasing function. Hence, if z̃ is a solution of

dz̃

dt
= max(z,1)+max

(√
z̃,1
)
,

with z̃(0) = 0, then z(t)⩽ z̃(t) for all t⩾ 0. Since the RHS of the above equation is
Lipschitz everywhere, we can apply the Picard–Lindelöf theorem, and check that the
unique solution to this equation is

z̃ (t) =

{
2t if t⩽ 1

2

(c1e
t− c2)

2
otherwise

,

where c1 and c2 are ad hoc constants. The lemma then follows from adjusting the
constant c as needed.

We are now in a position to show theorem B.1:

Proof. Assume for simplicity that x(0) = y(0) = 0. We begin by bounding x(t); we have

d‖x‖2

dt
= 2x⊤dx

dt
⩽ 2‖x‖ ‖f (x)+ ϵg (x)‖ .

By the Lipschitz condition,

‖f (x)+ ϵg (x)‖⩽ ‖f (0)+ ϵg (0)‖+ L

2
‖x‖ ,

so that

d‖x‖2

dt
⩽ L‖x‖2+2‖f (0)+ ϵg (0)‖ ‖x‖ .

Applying lemma B.2 and taking square roots on each side,

‖x(t)‖⩽ c
‖f (0)+ ϵg (0)‖

L
eLt/2 ⩽ c

‖f (0)+ ϵg (0)‖
L

eLτ/2 , (B.1)
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for any 0⩽ t⩽ τ . Now, similarly,

d‖x−y‖2

dt
⩽ 2‖x−y‖

∥∥∥∥d(x−y)

dt

∥∥∥∥
⩽ 2‖x−y‖ ‖f (x)− f (y)+ ϵg (x)‖
⩽ L‖x−y‖2+2ϵ‖g (x)‖ ‖x−y‖

⩽ L‖x−y‖2+ ϵ
(
‖g (0)‖+ c‖f (0)+ ϵg (0)‖eLτ/2

)
‖x−y‖ ,

having used (B.1) on the last line. This is again the setting of lemma B.2, which gives

‖x−y‖⩽ c1ϵe
Lτ/2 e

Lt/2

L
⩽ c2ϵe

Lτ .

Appendix C. Expectations over the local fields

In this appendix we present the explicit expressions from the expectations of the local
fields used to compute the population risk and the ODE terms.

C.1. Population risk

We write the population risk (12) as

R(Ω) = Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ)

[(
f̂ (λ)− f (λ∗)

)2]
=Rt (P )+Rs (Q)+Rst (P ,Q,M) , (C.1)

with

Rt ≡ Eλ∗∼N (λ∗|0,P )

[
f (λ∗)2

]
=

1

k2

k∑
r,s=1

Eλ∗∼N (λ∗|0,P ) [σ (λ
∗
r)σ (λ

∗
s)] (C.2a)

Rs ≡ Eλ∼N (λ|0,Q)

[
f̂ (λ)2

]
=

1

p2

k∑
j,l=1

Eλ∼N (λ|0,Q) [σ (λj)σ (λl)] , (C.2b)

Rst ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
f̂ (λ)f (λ∗)

]
=− 2

pk

p∑
j=1

k∑
r=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ (λj)σ (λ
∗
r)] .

(C.2c)

Define the vector λαβ ≡
(
λα,λβ

)⊤ ∈ R2, where the upper indices on the components
indicate they may refer to student or teacher local fields. Consider the covariance matrix
on the subspace spanned by λαβ:

Ωαβ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβ

(
λαβ

)⊤]
∈ R2×2 . (C.3)
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For σ(x) = erf(x/
√
2) the expectations in equation (C.2) are in general given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ (λα)σ

(
λβ
)]

=
1

π
arcsin

 Ωαβ
12√(

1+Ωαβ
11

)(
1+Ωαβ

22

)
 .(C.4)

where Ωαβ
jl ≡ (Ωαβ)jl is an element of the covariance matrix given by equation (C.3).

Explicitly, the population risk contributions are

Rt (P ) =
1

k2

k∑
r,s=1

1

π
arcsin

(
ρrs√

(1+ ρrr)(1+ ρss)

)
, (C.5a)

Rs (Q) =
1

p2

k∑
j,l=1

1

π
arcsin

(
qj l√

(1+ qj j)(1+ qll)

)
, (C.5b)

Rst (P ,Q,M) =− 2

pk

p∑
j=1

k∑
r=1

1

π
arcsin

(
mj r√

(1+ qj j)(1+ ρrr)

)
. (C.5c)

C.2. ODE contributions

From the update equations, we first consider the expectations linear in Ej:

Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [Ejλl] =
1

k

k∑
r ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)λlσ (λ

∗
r ′)]

− 1

p

p∑
l ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)λlσ (λl ′)] , (C.6a)

Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [Ejλ∗
r] =

1

k

k∑
r ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)λ

∗
rσ (λ

∗
r ′)]

− 1

p

p∑
l ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)λ

∗
rσ (λl ′)] . (C.6b)

Define the vector λαβγ ≡
(
λα,λβ,λγ

)⊤ ∈ R3, where the upper indices on the compon-
ents indicate they may refer to student or teacher local fields. Consider the covariance
matrix on the subspace spanned by λαβγ:

Ωαβγ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβγ

(
λαβγ

)⊤]
∈ R3×3 . (C.7)
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For σ(x) = erf(x/
√
2) the expectations in equation (C.6) are given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ ′ (λα)λβσ (λγ)

]
=

2

π

Ωαβγ
23

(
1+Ωαβγ

11

)
−Ωαβγ

12 Ωαβγ
13(

1+Ωαβγ
11

)√(
1+Ωαβγ

11

)(
1+Ωαβγ

33

)
−
(
Ωαβγ

13

)2 ,
(C.8)

where Ωαβγ
jl ≡ (Ωαβγ)jl is an element of the covariance matrix given by equation (C.7).

As examples, we write explicitly:

Ωjlr ′ =

 qjj qjl mj r ′

qjl qll mlr ′

mj r ′ mlr ′ ρr ′r ′

 , Ωj rr ′ =

 qjj mjr mj r ′

mjr ρrr ρrr ′
mj r ′ ρrr ′ ρr ′r ′

 . (C.9)

The quadratic contribution in Ej is given by

Eλ,λ∗∼N (λ,λ∗|0,Ω)Eζ∼P(ζ) [EjEl] =
1

k2

k∑
r,r ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)σ

′ (λl)σ (λ
∗
r)σ (λ

∗
r ′)]

+
1

p2

p∑
j ′,l ′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)σ

′ (λl)σ (λj ′)σ (λl ′)]

− 2

pk

p∑
l ′=1

k∑
r=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)σ

′ (λl)σ (λ
∗
r)σ (λl ′)]

+∆Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′ (λj)σ

′ (λl)] . (C.10)

The solution of the noise-dependent term can be constructed with the covariance
matrix (C.3) and is given by [6]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ ′ (λα)σ ′ (λβ)]= 2

π

1√
1+Ωαβ

11 +Ωαβ
22 +Ωαβ

11 Ω
αβ
22 −

(
Ωαβ

12

)2 . (C.11)

Similarly, one can define the vector λαβγδ ≡
(
λα,λβ,λγ,λδ

)⊤ ∈ R4 and write the cov-

ariance matrix on the subspace spanned by λαβγδ:

Ωαβγδ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβγδ

(
λαβγδ

)⊤]
∈ R4×4 . (C.12)

For σ(x) = erf(x/
√
2) the expectations in equation (C.10) are given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ ′ (λα)σ ′ (λβ)σ (λγ)σ (λδ)]= 4

π2

1√
Ω̄αβγδ

0

arcsin

 Ω̄αβγδ
1√

Ω̄αβγδ
2 Ω̄αβγδ

3

 ,

(C.13)
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with

Ω̄αβγδ
0 ≡

(
1+Ωαβγδ

11

)(
1+Ωαβγδ

22

)
−
(
Ωαβγδ

12

)2
, (C.14a)

Ω̄αβγδ
1 ≡ Ω̄αβγδ

0 Ωαβγδ
34 −Ωαβγδ

23 Ωαβγδ
24

(
1+Ωαβγδ

11

)
−Ωαβγδ

13 Ωαβγδ
14

(
1+Ωαβγδ

22

)
+Ωαβγδ

12 Ωαβγδ
13 Ωαβγδ

24 +Ωαβγδ
12 Ωαβγδ

14 Ωαβγδ
23 , (C.14b)

Ω̄αβγδ
2 ≡ Ω̄αβγδ

0

(
1+Ωαβγδ

44

)
−
(
Ωαβγδ

24

)2(
1+Ωαβγδ

11

)
−
(
Ωαβγδ

13

)2(
1+Ωαβγδ

22

)
+2Ωαβγδ

12 Ωαβγδ
13 Ωαβγδ

23 , (C.14c)

Ω̄αβγδ
3 ≡ Ω̄αβγδ

0

(
1+Ωαβγδ

44

)
−
(
Ωαβγδ

24

)2(
1+Ωαβγδ

11

)
−
(
Ωαβγδ

14

)2(
1+Ωαβγδ

22

)
+2Ωαβγδ

12 Ωαβγδ
14 Ωαβγδ

24 . (C.14d)

C.3. From gradient flow to local fields

Consider the gradient flow approximation

dwj

dt
=−∇wj

R(W ,W ∗)

=− 1

p
√
d
Ex∼N (x|0,1) [xσ

′ (λj)E ] .

Now, since for any x⊤y, we have

d
(
x⊤y

)
dt

= x⊤dy

dt
+y⊤dx

dt
,

we find

dqjl
dt

=− 1

pd
Ex∼N (x|0,1) [(σ

′ (λj)λl+σ ′ (λl)λj)E ] .

Recalling the definition Ej = σ ′(λj)E , the terms present inside the expectation are
exactly those in the learning term of equation (14).

Appendix D. Initial conditions and symmetric teacher

In this work we have constructed teacher matrices W ∗ ∈ Rk×d in order to have

ρrs =
w∗⊤
r w∗

s

d
= δrs , (D.1)

where w∗
r ≡ [W ∗]r ∈ Rd is the r -th row of the matrix W ∗. We have started by sampling

k vectors of dimension d uniformly on a ball of radius
√
d. Then we constructed an

orthonormal basis using singular value decomposition.
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The initial student weights W 0 ∈ Rp×d were taken as

W 0 =AW ∗ , (D.2)

with each row of A ∈ Rp×k sampled uniformly on a ball of radius one. We acknowledge
choosing initial student weights as linear combinations of the teacher can be artificial
and shrinks the first plateau, but our focus on this work was the specialization phase.
Nevertheless, this choice and equation (D.1) are particularly suitable to theoretical
analysis. Once k and p are fixed, the dimension d can be varied without changing Q0,
M 0 and P , thereby removing any influence of different initial conditions for different
d and providing the reader better visualization on the learning curves. To clarify this
point, consider the j th row w0

j ≡ [W 0]j ∈ Rd of W 0:

w0
j =

k∑
r=1

ajrw
∗
r , (D.3)

with ajr ≡ [A]jr. Using equation (D.1) one can write

q0jl =
w0⊤
j w0

l

d
=

k∑
r,r ′=1

ajraj r ′
w∗⊤
r w∗

r ′

d︸ ︷︷ ︸
=δrr ′

=
k∑
r=1

ajralr . (D.4)

Similarly,

m0
jr =

w0⊤
j w∗

r

d
= ajr . (D.5)

Thus once A is fixed, the input dimension d can be varied without affecting the initial
conditions. We chose to sample aj ≡ [A]j ∈ Rk on a ball of radius one both to introduce
some randomness on the initialization and to keep the initial parameters bounded by
one.

We stress that we use these initial conditions to make the data comparable for
varying dimension d in the numerical illustrations. Our conclusions do not depend
on this particular choice of initial conditions. If one simply takes random initializa-
tion wj ∼N (wj|0,1) for each j, the full picture we have presented in this manuscript
remains unchanged. In figure 7 we present an example of curves within the blue region
(see section 3 for the characterization of this regime) with unconstrained Gaussian ini-
tialization. Dots represent simulations, while solid lines are obtained by integration of
the ODEs given by equation (23), with initial conditions adjusted to match simulations.

Although varying the initial population risk with d slightly changes the exact posi-
tion where the specialization transition starts, the particular initial conditions adopted
in this work do not affect whether the specialization transition takes place or not, com-
paring to unconstrained Gaussian initialization.
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Figure 7. Population risk dynamics for κ= δ = 0 (Saad & Solla scaling) : p0 = 8,
k =4, ρrs = δrs. Initialization: wj ∼N (wj |0,1) for j = 1, . . .,p0. Activation func-

tion: σ(x) = erf(x/
√
2). Data distribution: P(x) =N (x|0,1). Dots represent sim-

ulations, while solid lines are obtained by integration of the ODEs given by
equation (23), with initial conditions adjusted to match simulations. Observe the
difference on the initialization for different d.
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