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Abstract
The recent advance of large language models (LLMs) demonstrates that these large-
scale foundation models achieve remarkable capabilities across a wide range of
language tasks and domains. The success of the statistical learning approach chal-
lenges our understanding of traditional symbolic and logical reasoning. The first part
of this paper summarizes several works concerning the progress of monotonicity rea-
soning through neural networks and deep learning. We demonstrate different methods
for solving themonotonicity reasoning task using neural and symbolic approaches and
also discuss their advantages and limitations. The second part of this paper focuses
on analyzing the capability of large-scale general-purpose language models to reason
with monotonicity.

Keywords Monotonicity · Natural language inference · Neural language model ·
Neural symbolic inference

1 Introduction

Foundation models are large-scale language models that contain a large number of
parameters and are pretrained on massive amounts of text data, often on hundreds of
millions or even billions of words. The pretraining and large-scale parameters allow
them to generate high-quality human-like responses in a wide range of tasks and appli-
cations that NLP researchers previously thought required language understanding,
such as question-answering, dialogue generation, and mathematical reasoning Bom-
masani et al. (2022). Recently released large language models, such as Open-AI’s
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GPT-3 (Brown et al., 2020), Google’s FLAN-T5 Wei et al. (2021), and Facebook’s
LLaMA (Touvron et al., 2023), are some of the most well-known foundation models
that are dominating the field of natural language processing. They achieve human-level
performance on various language tasks and have the ability to follow human-defined
instructions. However, it is still unclear whether these large foundation models have
the ability to perform complex logical reasoning comparable to human skills. Thus,
our motivation is to uncover the ability and limitations of neural foundation models in
monotonicity reasoning and investigate how we can approach logical reasoning in the
age of neural foundationmodels.We focus our discussionmainly on themonotonicity-
based Natural Language Inference task.

Natural Language Inference (NLI), also known as recognizing textual entailment
(RTE), is one of the important benchmark tasks for natural language understanding.
Many other language tasks can benefit from NLI, such as question answering, text
summarization, and machine reading comprehension. The goal of NLI is to determine
whether a given premise P semantically entails a given hypothesis H (Dagan et al.,
2013). Consider the following example:

• P: An Irishman won the Nobel Prize for literature.

• H: An Irishman won the Nobel Prize.

The hypothesis can be inferred from the premise, and therefore the premise entails the
hypothesis. To arrive at a correct determination, an NLI model often needs to make
different inferences, including various types of lexical and logical inferences. In this
paper, we are concerned with monotonicity reasoning, a type of logical inference that
is based on word or phrase replacement Hu et al. (2019). Below is an example of
monotonicity reasoning:

1. (a) All students ↓ carry a MacBook ↑.
(b) All students carry a laptop.

(c) All new students carry a MacBook.

2. (a) Not All new students ↑ carry a laptop.

(b) Not All students carry a laptop.

A phrase in upward entailment context (↑) can allow inference from (1a) to (1b), where
a more general concept laptop replaces the more specific MacBook. A downward
entailing phrase (↓) allows an inference from (1a) to (1c), where a more specific
context new students replaces the word students. The direction of the monotonicity
can be reversed by adding a downward entailing phrase like “Not"; thus, (2a) entails
(2b).

In this paper, we provide an in-depth discussion on monotonicity reasoning in the
age of neural foundation models in the aspects of methodology and analysis. First,
we investigate whether incorporating both advanced neural network mechanisms, like
attention with structural sentence knowledge based on the linguistic principle of com-
positionality, can achieve accurate and robust monotonicity reasoning in the form of
NLI. We propose an AttentiveTreeNet that contains a Tree-LSTM encoder with an
attention mechanism and a multi-hop self-attention aggregator for NLI classification.
We evaluate AttentiveTreeNet on the MED Yanaka et al. (2019) benchmark and show
that it significantly outperforms a high-quality foundation model BERT Devlin et al.
(2019).
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Next, we propose a symbolic reasoning system that performs monotonicity rea-
soning based on polarity marks and incorporates neural language models to handle
syntactic variations in the data. Our proposed system, called NeuralLog, achieve state-
of-the-art performance on the MED benchmark that significantly outperforms prior
neural network models. The advantage of NeuralLog is its ability to perform step-by-
step reasoning based on human-defined symbolic logic rules while resolving syntactic
variations using neural languagemodels, whichmakes its reasoningmuchmore robust
and generalizable than prior logic reasoning systems.

In the last part, we benchmark pretrainedmodels fine-tuned onmassive task-specific
training data (with parameter sizes ≤ 11 billion) and large-scale language models
(with parameter sizes ≥ 11 billion) on monotonicity reasoning through instruction-
based zero-shot learning and in-context-based few-shot learning. Our objective is to
assess whether these large foundation models have the ability to emulate logical rea-
soning since they have shown impressive performance on various linguistic tasks and
applications. Our evaluation shows that current large language models still fail to
perform logical reasoning well. Large language models only achieve random perfor-
mance despite instructions and few-shot examples on the monotonicity test set from
the CURRICULUM benchmark Chen and Gao (2022), which is a curated mixture
of the MED Yanaka et al. (2019) and Semantic Fragments Richardson et al. (2019)
datasets.

Overall, we show that although large-scale foundation models are dominating the
field of natural languageprocessingbymasteringmany tasks and applications, they still
cannot emulate logical reasoning like monotonicity inference. Meanwhile, symbolic
reasoning systems that incorporate neural language models can achieve state-of-the-
art performance that is interpretable and robust. A subset of this work was previously
published as Chen (2021) and Chen et al. (2021).

2 Attentive Tree Structured Network

2.1 Preliminaries

In this section, we propose a tree-structured long-short-term memory (LSTM) net-
work in which the syntactic information of a sentence is encoded, and the alignment
between the premise-hypothesis pair is calculated through a self-attentionmechanism.
A standard sequential LSTM (Wang & Jiang, 2016) network only permits sequential
information propagation. However, the linguistic principle of compositionality states
that an expression’s meaning is derived from the meanings of its parts and of the
way they are syntactically combined (Partee, 2007). A tree-structured LSTM network
allows each LSTM unit to be able to incorporate information from multiple children’s
units. This takes advantage of the fact that sentences are syntactically formed bottom-
up tree structures.
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2.2 Method

Tree-LSTM Encoder
The main architecture builds from the Child-Sum Tree-LSTMs (Tai et al., 2015),
where the computation of a hidden state is conditioned on both the current input
and the hidden states of an arbitrary subset of children nodes. This property allows
the recursive computation of non-leaf nodes’ relation representations by composing
children relations,which can be viewed as natural logic for neuralmodels (MacCartney
& Manning, 2009; Zhao et al., 2016). The computation flow in an LSTM cell is as
follows:

h̃ = �1≤k≤nhk,

i = σ(W (i)x +U (i)h̃ + b(i)),

o = σ(W (o)x +U (o)h̃ + b(o)),

u = tanh(W (u)x +U (u)h̃ + b(u)),

fk = σ(W ( f )x +U ( f )hk + b( f )),

c = i � u + �1<n fk � ck,

h = o � tanh(c),

where k is the number of children of the current node, and h̃ is the sum of the hidden
states from the current node’s children. The forget gate fk controls the amount of
memory being passed from the kth child. The input gate i controls the amount of
internal input u being updated, and the output gate o controls the degree of exposure
of thememory. Theσ is the sigmoid activation function,� is the element-wise product,
and W and U are trainable weights to be learned.

Attention Mechanism
We propose incorporating the attention mechanism Zhou et al. (2016) in the LSTM
network. Attention considers contextual relevance by assigning higher weights to
children that are more relevant to the context. We apply a soft-attention layer, which
receives a set of hidden states {h1, h2, ..., hn} and avector representation s of a sentence
computed from a layer of sequential LSTM. The attention layer assigns a weight α

for each hidden state and computes the context vector g as a weighted sum:

mk = tanh(W (m)hk +U (m)s),

αk = ew�mk

∑n
j=1 e

w�m j
,

g =
∑

1≤k≤n

αkhk .

The hidden state for the next cell is then computed via a transformation h̃ =
tanh(W (a)g + b(a)).
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Self-Attention Aggregator
We encode the premise and hypothesis using the attentive encoder, concatenate the
hidden states into a pair of matrices Hp and Hh , and passed to a self-attentive
aggregator. To aggregate, we first apply a multi-hop self-attention mechanism (Lin
et al., 2017). Performing multiple hops of attention helps the model to get multi-
ple attention focusing on different sentence parts since multiple components form
the sentence context. Given a matrix H , we perform multiple hops of attention to
compute an annotation matrix A, consisting of the weight vector from each hop. A
is calculated from a 2-layer multi-layer perceptron (MLP) and a softmax function:
A = softmax(Ws2tanh(Ws1H�)). The annotation matrix is multiplied by the hidden
states H to obtain a context matrix: M = AH . With a pair of context matrices Mp

and Mh , we compute the outputs as:

Fp = tanh(Mp × W f ), Fh = tanh(Mh × W f ). (1)

To aggregate Fp and Fh , we follow a generic NLI training scheme Conneau et al.
(2017) to include three matching methods: (I) concatenation, (ii) absolute distance,
and (iii) element-wise product. Results from the three methods are then concatenated:
Fr = [Fp; Fh; ‖Fp − Fh‖; Fp � Fh] as the factor of semantic relation between the
two sentences. An MLP layer works as the classifier which predicts the label using
the factor.

2.3 Evaluation

Datasets
We evaluate our proposed method on the Monotonicity Entailment Dataset (MED)
Yanaka et al. (2019). MED is a high-quality benchmark that aims to examine models’
ability to performmonotonicity reasoning. MED covers various linguistic phenomena
such as lexical knowledge, conjunction, disjunction, conditional, and negative polarity
items. The dataset contains 5382 premise-hypothesis pairs, including 1820 examples
for upward inference, 3270 for downward inference, and 292 neutral examples.

Setup and Baselines
Initially, we used the HELP dataset Yanaka et al. (2019) to train our model. HELP
is a dataset for learning entailment with lexical and logical phenomena. It embodies
a combination of lexical and logical inferences focusing on monotonicity. Next, we
trained our model with the Multi-Genre NLI Corpus (MNLI) dataset Williams et al.
(2018), which covers a wide range of genres of spoken and written language. The
majority of the training examples in that dataset are upward monotone. To provide
more balanced training data, we combined a subset of the MNLI dataset with the
HELP dataset to reduce the effect of many downward monotone examples in the
HELP dataset. Due to limited computation resources at the time of training, we only
randomly sampled a subset of the MNLI dataset to reduce the training time period.
We call this combined training data HELP+SubMNLI. We removed the contradicting
examples from the MNLI dataset since the test dataset MED, and the training dataset
HELP do not contain the label Contradiction.
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Table 1 Accuracy of our model and other state-of-art NLI models evaluated on MED

Model Train Data Up Down None All

BiMPM (Wang et al., 2017) SNLI 53.5 57.6 27.4 54.6

ESIM (Chen et al., 2017) SNLI 71.1 45.2 41.8 53.8

DeComp (Parikh et al., 2016) SNLI 66.1 42.1 64.4 51.4

BERT-base (Devlin et al., 2019) MNLI 82.7 22.8 52.7 44.7

BERT-base (Devlin et al., 2019) HELP+MNLI 76.0 70.3 59.9 71.6

AttnTreeNet (ours) MNLI 54.7 60.4 37.8 58.6

AttnTreeNet (ours) HELP 55.7 72.6 57.9 66.0

AttnTreeNet (ours) HELP+SubMNLI 81.4 74.5 53.8 75.7

Bold indicates the highest accuracy in the table for each column

Training
To train our model, we used Stanford’s pre-trained 300-D Glove 840B vectors (Pen-
nington et al., 2014) to initialize the word embeddings. The Stanford Dependency
Parser (Chen & Manning, 2014) was used to parse each sentence in the dataset. The
model is trained with the Adam optimizer (Kingma & Ba, 2014), which is compu-
tationally efficient and helps a model to converge to an optimal result quickly. A
standard learning rate for Adam, 0.001, is also used. Dropout with a standard rate of
0.5 is applied to the feed-forward layer in the self-attention aggregator and the classi-
fier to reduce the over-fitting of the model. For the number of hops of self-attention,
we used the default 15 hops. The metric for evaluation is accuracy based. The system
is implemented using a common deep learning framework, PyTorch, and is trained on
a T4 GPU for 20 epochs.

2.4 Results

2.4.1 MED Performance

Table 1 shows our method’s performance compared against common NLI methods
on the Monotonicity Entailment Dataset (MED). Our model achieves an overall accu-
racy of 75.7% and outperforms all other models, including the pre-trained language
model BERT, which previously showed SOTA performance on NLI tasks. On down-
ward monotonicity reasoning, which is more difficult than upward, our method shows
significant improvement in performance over the baselines, with 4.5% higher than
the BERT model. Interestingly, our model achieves better performance on downward
inference even when trained with HELP or MNLI alone (compared to baselines with
similar training data). This shows a structural advantage of ourmodel architecture over
the baselines. On upward monotonicity reasoning, our model is only slightly behind
the BERT model (1.3% apart) but still outperforms the other baselines with a large
margin (10.3% to the best non-BERT baseline). Note that augmenting HELP with a
subset of MNLI improves the performance on upward monotone (+25.7%), showing
that training additionally on some general NLI examples helps the model to learn the
upward inference. On examples without monotonicity inference, our method does not
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Table 2 This table shows the accuracy of ablation tests trained on HELP and HELP+SubMNLI and tested
on MED. Three ablation tests were performed: (i) Remove self-attentive aggregator (–Self-attention), (ii)
Replace Tree-LSTM with a regular sequential LSTM (–Tree-LSTM)

Model Training Data Upward Downward None All

AttnTreeNet HELP 55.7 72.6 57.9 66.0

–Self-attention HELP 65.1 67.1 53.7 65.7

–Tree-LSTM HELP 36.6 65.5 94.8 49.5

AttnTreeNet HELP+SubMNLI 81.4 74.5 53.8 75.7

–Self-attention HELP+SubMNLI 70.5 66.9 85.6 69.1

–Tree-LSTM HELP+SubMNLI 54.7 60.4 37.8 58.6

Bold indicates the highest accuracy in the table for each column

perform as well as the examples with monotonicity. This suggests that while achieving
high performance on monotonicity reasoning, our method loses some ability to reason
with the general NLI problems. Overall, we show that our attentive tree-based network
achieves the highest performance among the baselines on monotonicity reasoning.

2.4.2 Ablation Test

To further analyze each component’s contribution to the model performance onmono-
tonicity reasoning, we conduct several ablation tests. We first do an ablation test
on the self-attentive aggregator by building the feature vector for classification right
after the Tree-LSTM encoder. As Table 2 (–aggregator) shows, models trained on
HELP+SubMNLI show a significant performance drop (6.6%) with a 76% drop in
downward inference and a 10.9% drop in upward inference. The performance drop
suggests that the self-attentive aggregator is an important component of the model
for monotonicity reasoning. For the second ablation test, we replace the Tree-LSTM
encoder with a standard LSTM encoder. Note that this results in a larger performance
drop in upward inference (26.7%) and downward inference (14.1%). This demon-
strates that replacing the Tree-LSTM with a standard one has a significant negative
impact on the model’s reasoning ability for monotonicity. Thus, Tree-LSTM is also
a major component of our proposed model. Overall, the removal of the Tree-LSTM
encoder affected the model’s performance the most. Thus, we conclude that the Tree-
LSTM encoder contributes the most to the model’s performance on monotonicity
reasoning.

3 Neural-Symbolic Reasoning

3.1 Preliminary

Evaluation results for the Attentive Tree Network show that providing and enhancing
structural knowledge of sentences is an effectiveway to improve neuralmodels’mono-
tonicity reasoning ability. However, directly embedding symbolic logical information
into a neuralmodel is difficult. A better approachwould be building a symbolic reason-
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ing system incorporating neural modules into its inference process for better and more
robust reasoning performance. Previously, several symbolic reasoning systems forNLI
have been proposed Abzianidze (2017); Martínez-Gómez et al. (2017); Yanaka et al.
(2018); Hu et al. (2020) to solve theNLI task based on symbolic rules and semantic for-
malism. These systems show high precision on complex inferences involving difficult
linguistic phenomena and present logical and explainable reasoning processes. How-
ever, these systems show several limitations, such as lacking background knowledge
and the inability to handle sentences with syntactic variations. On the other hand,
new pre-trained language models are becoming more robust and accurate through
improved pre-training objectives and data., enabling them to handle diverse and large
test data robustly. However, several experiments show that DL models lack general-
ization ability, adopt fallible syntactic heuristics, and show exploitation of annotation
artifacts Glockner et al. (2018); McCoy et al. (2019); Gururangan et al. (2018). We
propose joining the strengths of these two types of systems into a hybrid reasoning
system that can perform monotonicity reasoning.

3.2 Method

Our system contains four components: (1) a polarity annotator, (2) three sentence
inference modules, and (3) a search engine. Figure1 shows a diagram of the full
system.

3.2.1 Polarity Annotator

To perform robust and accurate monotonicity reasoning, the system needs the anno-
tations of monotonicity information on the given premises. To annotate monotonicity
information, we utilize Udep2Mono Chen and Gao (2021), a polarity annotator that
determines the monotonicity polarity of all constituents on a universal dependency
tree. The annotator first parses the premise into a binarized universal dependency tree
and then conducts polarization by recursively marking polarity on each tree node. The
polarity marks include monotone (↑), antitone (↓), and no monotonicity information
(=) polarities. An annotated example would be Every↑ healthy ↓ person ↓ plays↑
sports↑. Where the monotone tokens are tagged with ↑ and antitone tokens are tagged
with ↓.

3.2.2 Search Engine

Next, the polarized parse tree is passed to the search engine. A beam search algorithm
searches for the optimal inference path from a premise to a hypothesis. During an
inference step, we rank the generated sentences with a distance function and select
the sentence with the minimum distance to proceed:

s� = argmin
s∈S

dist(s,H), (2)
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Fig. 1 Overview system diagram of NeuralLog, including (1) the polarity annotator, (2) the three inference
modules, and (3) the beam search engine

where H is the hypothesis, S is a set of intermediate premises generated from the three
inference modules, and s is the optimal intermediate premise to continue the search
that yields the minimal distance to the hypothesis. Here we formulate the distance
function as the Euclidean Distance between the sentence embeddings of an interme-
diate premise and the hypothesis. The search space is generated from three inference
modules: lexical, phrasal, and syntactic variation. In practice, we expand our search
space on the top-k intermediate premises instead of the optimal ones. The system
returns Entail if an inference path is found. Otherwise, the premise and hypothe-
sis would be categorized as Non-Entail, where the controller will further search for
counter-example signatures to differentiate between Contradict and Neutral. In this
paper, we only analyze the system’s performance on the MED dataset (2-way classi-
fication: Entail and Non-Entail) and hence omit the details on how the system detects
contradiction signatures.

3.2.3 Inference Generation

Lexical Monotonicity Inference
Lexical inference module performs word replacement on key tokens, including nouns,
verbs, numbers, and quantifiers, based on monotonicity information. The system uses
lexical knowledge bases, including WordNet Miller (1995) and ConceptNet Liu and
Singh (2004). From the knowledge bases, we extract four sets of words: hypernyms,
hyponyms, synonyms, and antonyms. Logically, if a word has a monotone polarity
(↑), it can be replaced by its hypernyms. For example, swim ≤ move; then swim can
be replaced with move, where ≤ means that the left-hand-side word is a type of the
right-hand-side word. If a word has an antitone polarity (↓), it can be replaced by
its hyponyms. For example, flower ≥ rose. Then, flower can be replaced with rose,
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where ≥ means that the right-hand-side word is a type of the left-hand-side word.
We filter out irrelevant words from the knowledge bases that do not appear in the
hypothesis. Additionally, we handcraft knowledge relations for words like quantifiers
and prepositions that do not have sufficient taxonomies from knowledge bases. Some
handcrafted relations that hold in general include: all = every = each ≤ most ≤ many
≤ several ≤ some = a, up ⊥ down, where = means that the two words are equivalent
relations.

Phrasal Monotonicity Inference
Phrasal replacements are for phrase-level monotonicity inference. For example, with
a polarized sentence A ↑ woman↑ who↑ is↑ beautiful↑ is↑ walking↑ in↑ the↑ rain=,
the monotone mark ↑ onwoman allows an upward inference:woman�woman who is
beautiful, in which the relative clause who is beautiful is deleted. The system follows
a set of phrasal monotonicity inference rules. For upward monotonicity inference,
modifiers of a word are deleted. For downward monotonicity inference, modifiers are
inserted into a word. The algorithm traverses down a polarized UD parse tree, deletes
the modifier sub-tree if a node is monotone (↑), and inserts a new sub-tree if a node is
antitone (↓). To insert newmodifiers, the algorithm extracts a list of potential modifiers
associated with a node from a modifier dictionary. The modifier dictionary is derived
from the hypothesis and contains word-modifier pairs for each dependency relation.
Below is an example of a modifier dictionary from There are no beautiful flowers that
open at night:

• Obl: [head: open, mod: at night]
• Amod: [head: flowers, mod: beautiful]
• Acl:relcl: [head: flowers, mod: that open at night]

Syntactic Variation Inference
We categorize linguistic changes between a premise and a hypothesis that cannot
be inferred from monotonicity information as syntactic variations. For example, a
change from red rose to a rose which is red is a syntactic variation. Many logical
systems rely on handcrafted rules and manual transformation to enable the system to
perform syntactic variations. However, without accurate alignments between the two
sentences, thesemethods are not robust enough and, thus, difficult to scale up for wide-
coverage input. The recent development of pretrained transformer-based language
models brings state-of-art performance on multiple benchmarks for Natural Language
Understanding (NLU), including the task of paraphrase detection Devlin et al. (2019);
Lan et al. (2020); Liu et al. (2020), which exemplifies phrasal knowledge of syntactic
variation. We propose a method that incorporates transformer-based language models
to handle syntactic variations robustly. Our method first decomposes both the premise
and the hypothesis into chunks of phrases using a sentence chunker and then calculates
the likelihood of each pair of chunks being a paraphrase using a transformer model.

Sequence Chunking
To obtain phrase-level chunks from a sentence, we build a sequence chunker, which
relies on the sentence’s universal dependency information. Instead of breaking down a
sentence, our chunker composes word tokens recursively to form meaningful chunks.
First, we construct a sentence representation graph of a premise from the controller.
A sentence representation graph is defined as G = 〈V, E〉, where V = Vm ∪ Vc is
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the set of modifiers (Vm) and content words (Vc), and E is the set of directed edges.
To generate the chunk for a content word in Vc, we arrange its modifiers, which are
nodes it points to, together with the content word by their word orders in the original
sentence to form a word chain, for example, in The woman in a pink dress is dancing.
The edges from dress to in, a, pink with the edge from woman to dress can be drawn.
Chunks in a pink dress and the woman in a pink dress will be generated for dress and
woman, respectively.

Monolingual Phrase Alignment
Given a set of chunks from a generated sentence and from the hypothesis, the system
computes an alignment score for each pair of chunks to select the syntactic variations.
Formally, we define Cs as the set of chunks from a generated sentence and Ch as the
set of chunks from the hypothesis. We build the Cartesian product from Cs and Ch ,
denoted Cs × Ch . For each chunk pair (cs , ch) ∈ Cs × Ch , we compute an alignment
score α:

α〈cs,ch〉 = p(y | 〈cs, ch〉)

where y | 〈cs, ch〉 = Softmax(ALBERT(〈cs, ch〉)). If α > 0.85 (determined by a grid
search of 5 values), the system records this pair of phrases as a syntactic variation. To
calculate the alignment score, we use an ALBERT Lan et al. (2020) model, fine-tuned
on the Microsoft Research Paraphrase Corpus Dolan and Brockett (2005). We first
pass a chunk pair to ALBERT to obtain its logits. Then we apply a softmax function
to the logits to get the final probability.

3.3 Evaluation

3.3.1 Experiment Setup

ForUniversalDependencyparsing,we followUdep2Mono’s frameworkChenandGao
(2021) and use a neural parsingmodel fromStanford’s StanzaQi et al. (2020)with 90.0
LASZeman et al. (2018) evaluation score.We select theBERT-largemodel pre-trained
on STS-B Cer et al. (2017) from Sentence-BERT Reimers and Gurevych (2019).1

For ALBERT, we used an ALBERT-base model pretrained on the MRPC corpus.
We evaluate our proposed reasoning system, NeuralLog, on the MED dataset for
monotonicity reasoning. We compare our method with multiple deep-learning-based
baselines. Here, DeComp and ESIM are trained on SNLI, and BERT is fine-tuned with
MultiNLI. The BERT+model is a BERTmodel fine-tuned on a combined training data
with the HELP dataset, Yanaka et al. (2019), a set of augmentations for monotonicity
reasoning, and the MultiNLI training set. Both models were tested in Yanaka et al.
(2019). We also compare against the Attentive Tree Net we proposed in the first part to
see if the neural-symbolic inference is a better choice than dedicated neural architecture
and training data.

1 Note that there are newembeddings that aremore robust and accurate than the oneweused.We recommend
using the up-to-date embeddings.

123



60 Z. Chen and Q. Gao

Table 3 Results comparing
model compared to state-of-art
NLI models evaluated on MED.
Up, Down, and All stand for the
accuracy of upward inference,
downward inference, and the
overall dataset

Model Up Down All

DeComp (Parikh et al., 2016) 71.1 45.2 51.4

ESIM (Chen et al., 2017) 66.1 42.1 53.8

BERT (Devlin et al., 2019) 82.7 22.8 44.7

BERT+ (Yanaka et al., 2019) 76.0 70.3 71.6

AttnTreeNet (ours) 81.4 74.5 75.7

NeuralLog (ours) 91.4 93.9 93.4

Bold indicates the highest accuracy in the table for each column

3.3.2 Results

As Table 3 shows, our system (NeuralLog) outperforms all the neural model baselines
in terms of accuracy by a significant margin (48.7% maximum increase and 21.8%
minimum increase). Compared to a prior neural-symbolic system, BERT+, our system
performs much better both on the upward (15.4%) and downward (23.6%) inference.
Compared to theAttentive Tree-structuredNet formonotonicity reasoning, our neural-
symbolic system still shows better performance with a significant margin of increase
(� 17.7%). This result highlights the point that using dedicated training data and
neural architectures formonotonicity reasoning is not as effective as a neural-symbolic
system that utilizes neural modules for intermediate reasoning. The good performance
on MED validates our system’s ability on accurate and robust monotonicity-based
inferences.

4 Large-scale FoundationModel

4.1 Preliminary

In the field of natural language processing (NLP), the use of large language models
(LLMs) has significantly revolutionized how people approach reasoning and inference
on language. It has been established that the effectiveness and efficiency of these
models in various NLP applications can be improved by increasing their size, such
as by increasing their training resources, the number of model parameters, and so
on Wei et al. (2022). Self-supervised pre-training gives large-scale language models
the ability to learn downstream tasks given no example or only a few input–output
paired examples without optimization. Recent research shows emergent interest in
uncovering the underlying logic of the aforementioned mysterious capacity of LLMs
by empirical and theoretical approaches Rubin et al. (2021); Xie et al. (2021); Min
et al. (2022); Ye and Durrett (2022). However, the current analysis of these LLMs
still cannot answer if the unpredictable phenomena of emergent abilities of LLMs
allow them to acquire the ability to simulate symbolic logic in natural language. In
this section, we make an effort to benchmark various LLMs’ reasoning ability on
monotonicity to gain some insights into the limitation of current LLMs.
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4.2 Method

Zero-Shot Learning
Many studies show that large-scale language models exhibit zero-shot learning ability
Kojima et al. (2022). The models can solve various NLP tasks by simply conditioning
the instructions describing the task. We start our experiments on monotonicity reason-
ing using the setting of zero-shot learning. Specifically, we give themodel a prompt Liu
et al. (2021) in the format of Instruction: 〈Instruction〉 Context: 〈Context〉 Question:
〈Question〉 Answer: 〈Answer〉. The model then generates the 〈Answer〉 tokens for the
given problem by conditioning on this prompt. In zero-shot learning, the model cannot
rely on any demonstrations but its parametric knowledge that is acquired during the
pre-training stage, which is triggered by the prompt.

In-Context Learning
In-context learning for large language models is formulated as a text-generation prob-
lem. The generation is conditioned on a given prompt p which consists of the input
problem x and k examples of input–output pairs:

pLLM(y | p) =
T∏

t=1

p(yt | p, y<t), (3)

where the prompt p contains several examples and the question to be answered: p =
{x1, y1, ..., xk, yk, x}, and LLM is a large language model that can generate text in
an auto-regressive way. According to Xie et al. (2021), the in-context learning ability
of LLMs could be interpreted as an implicit Bayesian inference gained from the auto-
regressive next-token generation task in the pre-training. The given input text, prompt
p, provides evidence of posterior distribution over task-related latent concepts c to
infer the corresponding label y:

p(y | p) =
∫

c
p(y | c, p)p(c | p)d(c). (4)

In-context learning allows one to adapt LLMs to a different domain and downstream
tasks without any fine-tuning. Because of its effectiveness and efficiency, we desire to
investigate LLMs’ monotonicity reasoning capacity.

4.3 Evaluation

Setup
The evaluation focuses on assessing large language models’ reasoning ability with
respect to monotonicity. We evaluate both the zero-shot learning setting and the few-
shot in-context learning setting.When designing the prompt, we follow previous work
on prompt-based multi-task learning Sanh et al. (2021) and build a Natural-Language-
Inference-styled prompt. We include detailed instructions for the task and its label
space to inject domain-specific understanding into models. We use the monotonicity
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reasoning test set from the CURRICULUM benchmark Chen and Gao (2022), a large-
scale reasoning benchmark for evaluating broad-coverage linguistic phenomena. The
monotonicity portion of the CURRICULUM benchmark integrates the MED dataset,
the Semantic Fragments test sets Richardson et al. (2019), and 500 additional gold
annotated monotonicity reasoning sentence pairs that are manually annotated and
curated by human writers. Overall, this test set provides high-quality data, challenging
problems, and analysis of powerful contextualized embedding languagemodels. Thus,
this test set allows us to conduct a more in-depth evaluation of modern large-scale
language models. For in-context learning, we provide 4-shot, 8-shot, and 16-shot of
examples to LLMs, respectively. For instance, in a 4-shot setting, 4 examples are
randomly sampled from the training set for each label and concatenated to the prompt
as a prefix. Each setting is evaluated 3 times, and the in-context examples are fixed
every round to avoid the potential bias from example selection. We report the average
performance across the 3 runs.

Baselines
For model selection, we pick LLMs with strong zero-shot learning abilities. The
first type of models we select are LLMs that are continue fine-tuned in multi-task
or instruction-tuning settings. We first report the baseline performance of the current
SOTA NLI models, including RoBERTa Liu et al. (2019) and DeBERTa He et al.
(2021). These two models are pre-trained bidirectional language models based on
transformers and have shown impressive performance on NLI. These two models are
fine-tuned on a mixture of common NLI training sets, including SNLI Bowman et al.
(2015), MNLI Williams et al. (2018), FEVER Thorne et al. (2018), and ANLI Nie
et al. (2020). We select FLAN-T5 Wei et al. (2021) as the instruction-tuned model.
FLAN-T5 is a T5 Text2Text model trained using an instruction-based fine-tuning pro-
cedure on a collection of data sources with various instruction template types. FLAN
with scaled parameters and training instructions shows strong zero-shot and few-shot
learning abilities, outperforming prior public checkpoints. The second model type is
LLMs, with a large parameter size (175 billion) showing the incredible ability for
in-context learning Chung et al. (2022). We select the popular GPT-3 models from
OpenAI. GPT-3 Brown et al. (2020) is a state-of-the-art auto-regressive language gen-
eration model. With 175 billion parameters and massive pre-training text data, it is
currently one of the largest andmost powerful languagemodels in existence, capable of
a wide range of natural language processing tasks. We include the original pre-trained
GPT-3 model (text-davinci-001) and the GPT3.5 (text-davinci-003) model Ouyang
et al. (2022), a version of the InstructGPT fine-tuned using reinforcement learning
with reward models trained from human feedback (RLHF). GPT3.5 is much better at
following the human intent in the instruction than the pre-trained version Ouyang et
al. (2022).

4.4 Results

Table 4 shows the evaluation results for these models. Both GPT-3 and GPT−3.5
achieve only random performance(50%). GPT3.5 outperforms GPT3 by about 6% in
every setting, but the performance is still far from proficiency in monotonicity reason-
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Table 4 Evaluation results for large language models (LLMs) on CURRICULUM’s monotonicity test set.
Here M refers to million and B refers to billion for the number of parameters

Model # Parameters 0-shot 4-shot 8-shot 16-shot

Random Baseline – 50.0 – – –

RoBERTa-large-SMFA Liu et al. (2019) 355M 50.8 – – –

DeBERTa-large-SMFA He et al. (2021) 435M 51.1 – – –

FLAN-T5-XXL Wei et al. (2021) 11B 58.7 – – -

GPT3 (text-davinci-001) Brown et al. (2020) 175B 48.3 51.9 51.8 51.6

GPT3.5 (text-davinci-003) Ouyang et al. (2022) 175B 56.9 57.3 57.9 58.7

ing. These low performances raise the question of whether LLMs’ can emulate logical
reasoning expressed in natural language. Interestingly, instruction tuning with RLHF
Ouyang et al. (2022) does not help the model substantially improve its understanding
of logical inference, as shown in the overall low accuracy fromGPT−3.5. On the other
hand, compared to GPT-3, whose performance seems irrelevant with respect to the
number of in-context examples, GPT3.5 shows consistent improvements as we give
the model more examples, although such increases are still marginal. GPT−3.5’s per-
formance gain from in-context learning is only trivial (0.4%). The results show that the
in-context examples give the model certain levels of domain-specific task knowledge
but fail to help the model fully learn the ability to perform monotonicity reasoning.
GPT-3’s poor performance in the zero-shot setting and performance fluctuation among
different in-context learning settings suggest that the model only learns the shallow
structure knowledge about the task rather than the implicit reasoning skill. Regarding
smaller instruction-tuned models, Flan-T5 outperforms GPT-3 and is comparable to
GPT−3.5 in the 16-shot setting. However, its performance is still near random, sug-
gesting that it understands the task better due to many instruction-fine-tuning tasks but
still fails to learn the logical reasoning rules from the instructions. For smaller models,
both RoBERTa and DeBERTa show near-random performances. Their lack of knowl-
edge of monotonicity reasoning is expected as Chen and Gao (2022) showed that
pretrained transformer-based models may not encode much monotonicity informa-
tion during their pre-training process. Nevertheless, even fine-tuning with commonly
used NLI training data still fails to benefit models’ performance on monotonicity rea-
soning. Such results lead to concerns about the learning quality of the models and the
lack of logical reasoning samples in these common NLI datasets. Overall, we show
that large languagemodels still require amajor effort to improve their reasoning ability
on logic.

5 Conclusions

In this paper, we provide an in-depth discussion of monotonicity reasoning in the age
of neural foundation models. To summarize, we first propose the AttentiveTreeNet
to investigate the effectiveness of incorporating structural knowledge and linguistic
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principles into neural architectures on monotonicity reasoning. Next, we propose a
hybrid reasoning framework that utilizes both symbolic reasoning modules built from
human-defined logical rules and neural language models to solve monotonicity NLI
problems. For the third part, we analyze several popular and powerful large foundation
models on monotonicity reasoning to verify if the ability to emulate logical reason-
ing has emerged in these massive neural models. Our evaluation focus on the MED
benchmark and the CURRICULUM benchmark’s monotonicity section. Our analysis
shows that injecting structural knowledge into advanced neural networks can largely
improve the original network’s performance onmonotonicity inference. However, per-
forming reasoning jointly using symbolic and neural modules can further master the
monotonicity reasoning task and achieve state-of-the-art performance while maintain-
ing high interpretability. We show that large language models are far from mastering
the skill of logical reasoning. Although popular models like InstructGPT can make
powerful generations and predictions for various linguistic tasks and applications,
they can only achieve a random performance on monotonicity reasoning. Overall, our
work reveals the limitation of current large foundation models and sheds light on the
new direction of approaching logical reasoning through neural-symbolic inference.
For future work, it would be exciting to see symbolic reasoning systems built on top
of large language models for complex logical reasoning tasks.
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