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Abstract 

In smart cities, ensuring road safety and optimizing transportation efficiency heavily relies on streamlined road condi-
tion monitoring. The application of Artificial Intelligence (AI) has notably enhanced the capability to detect road sur-
faces effectively. This study presents a novel approach to road condition monitoring in smart cities through the devel-
opment of an acoustic data processing and analysis module. It focuses on four types of road conditions: smooth, 
slippery, grassy, and rough roads. To assess road conditions, a microphone integrated road surface detector unit 
is designed to collect audio signals, and an ultrasonic module is used to observe the road depth information. The 
whole hardware unit is installed in the wheel rim of the vehicles. The data collected from the road surfaces are then 
analyzed using machine learning algorithms, such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), 
and Random Forest (RF). The results demonstrate the effectiveness of the proposed method in accurately identify-
ing different road conditions. From these results, it was observed that the MLP provides better accuracy of 98.98% 
in assessing road conditions. The study provides valuable insights into the development of a more efficient and reli-
able road condition monitoring system for delivering secure transportation services in smart cities.
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1 Introduction
Road condition monitoring plays a crucial role in ensur-
ing road safety and enhancing transportation efficiency 
in the context of smart cities. Timely detection and accu-
rate assessment of road conditions is essential for the 
provision of safe and sustainable transportation services, 
effective infrastructure management, and optimized 
resource allocation. In recent years, advancements in 
Artificial Intelligence (AI) and Machine Learning (ML) 
have provided new opportunities for enhancing smart 

city systems, including transport infrastructure (Bibri 
et  al. 2023a, b). This involves improving road condition 
monitoring systems, enabling more efficient mainte-
nance, and enhancing overall road safety. The integration 
of AI and ML algorithms in these systems enables the 
analysis of large volumes of data collected from various 
sources, such as sensors, cameras, and mobile devices. 
These algorithms can effectively process, analyze, and 
interpret complex data patterns, allowing for real time 
identification of road defects, pavement deterioration, 
and other hazards. By leveraging AI and ML capabilities, 
road condition monitoring systems can provide valuable 
insights for decision making processes, enabling proac-
tive maintenance strategies, optimized resource alloca-
tion, and timely interventions to enhance road safety and 
sustainability.

Road safety remains a crucial concern for developing 
countries, significantly influencing their development 
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and exerting a substantial impact on public health, con-
sequently affecting global mortality and injury rates. 
According to the World Health Organization, low- and 
middle-income nations account for 93% of global road 
fatalities, as reported by Verma et al. (2022). Every year, 
more than 1.3 million people die prematurely due to vehi-
cle collisions, and an additional 20 to 50 million people 
sustain non-fatal injuries, which may lead to long-term 
disabilities. The safety of road users is heavily influenced 
by the design and infrastructure of the roads. Therefore, 
when designing roads, the safety of all road users should 
be taken into consideration, including road design prac-
tices to ensure the safety of all road users.as highlighted 
by Zheng et al. (2021).

Adverse weather conditions and high traffic volume 
may often result in suboptimal road conditions. Such 
weather related hazards include rough surfaces, potholes, 
slippery roads caused by rain, and uneven pavement in 
construction zones, all of which are significant causes of 
vehicle crashes (Omar and Mahdjoubi 2022). Addition-
ally, poorly maintained roads pose a significant risk to 
drivers and are a leading contributor to vehicle collisions 
(Oviedo-Trespalacios et al. 2019).

Given the prevalence of traffic collisions caused by 
damaged road surfaces, a reliable and robust road surface 
detector is essential in such a scenario. Implementation 
of such road surface detectors needs to be configured 
to collect data on the current state of the roads, such as 
whether they are dry or wet, and transmit the informa-
tion to both the driver and relevant authorities, as noted 
by Alonso et  al. (2014). One critical application of road 
surface detectors is in detecting and classifying road 
cracks based on a large volume of acoustic data collected 
from road surfaces, using  ML algorithms. Based on the 
collected data, authorities can take appropriate action to 
repair the roads. In addition to detecting excellent or bad 

road conditions, road surface detectors can also classify 
road surfaces as rough, smooth, slippery, and so on, help-
ing drivers prevent vehicle collisions and save lives (Basa-
varaju et al. 2019).

Numerous datasets, including those available on Kag-
gle and Ravdess, can be leveraged for road surface detec-
tion (Al-refai et  al. 2022; Farooq et  al. 2020). Various 
classifiers can also be used for classification purposes. 
Input for classification can come from a range of sources, 
such as images from a camera, ultrasonic sensor read-
ings, or acoustic data from sound sensors. Compared to 
other forms of input, auditory data offers several advan-
tages in terms of its inherent capability to contain more 
information in less audio duration, higher efficiency, and 
ease of collection. Moreover, as Li et  al. (2015) pointed 
out, the sound sensors employed for audio signal collec-
tion are both efficient and inexpensive, making them easy 
to maintain. Table  1 provides an overview of different 
sensors used in road condition monitoring and the corre-
sponding signal processing techniques applied to extract 
meaningful information from the acquired data.

There are various new technologies utilized for detect-
ing road surfaces, such as image processing and acoustic 
signal processing. In image processing, a camera is used 
to capture images of the road, which are then analyzed 
using comparison algorithms like Convolutional Neu-
ral Network (CNN) (Fan et  al. 2019), Fully Connected 
Neural Network (FCN) (Chun and Ryu 2019), and Sup-
port Vector Machine (SVM) (Cao et  al. 2020), among 
others, to classify the road into different categories. On 
the other hand, in acoustic signal processing, audio sig-
nals are collected, preprocessed, and transformed into 
spectrograms and Mel spectrograms, and then analyzed 
using comparison algorithms to classify the road sur-
face into various categories. Each algorithm has its own 
inherent level of accuracy characteristics and it can be 

Table 1 Comprehensive analysis of various sensors and the signal processing techniques

Sensors Signal Processing Description Strengths Limitations

Camera Image Processing Utilizes visual data captured 
by cameras

High resolution images 
for analysis

Limited performance in low light 
conditions

Microphone Acoustic Signal Processing Analyzes audio signals from road 
surfaces

Real-time monitoring Susceptible to background noise 
and interference

GPS Position Tracking Determines location and move-
ment of the vehicle

Accurate geolocation data May experience signal loss 
in urban canyons

Accelerometer Motion Sensor Measures vehicle Acceleration 
and movement

Provides dynamic motion data Sensitiveto vibrations and may 
require calibration

Gyroscope Motion Sensor Measures angular velocity 
and orientation of the vehicle

Offers rotational motion data Prone to drift and noise over time

Ultrasonic Sensor Distance Measurement Uses sound waves to measure 
distances from obstacles

Non-contact distance sensing Limited range and accuracy 
at longer distances

Infrared Sensor Object Detection Detects objects based on infra-
red radiation

Works in low light conditions Dependent on line of sight 
for accurate detection
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improved by using ensemble learning techniques. Gen-
erally, a number of AI models and techniques have been 
applied to transport and traffic management in the field 
of smart cities (see Bibri et al. (2023); (Bibri 2023); (Nis-
hant et  al. 2020) for the synthesis of many such stud-
ies), especially ML and Deep Learning (DL) based on 
ANN, kNN, CNN, RF, Decision trees (DT), SVM, linear 
regression, time series models, and others. The same 
applies to road condition monitoring for different pur-
poses (Al-refai et al. 2022; Almannaa et al. 2023; Ferjani 
and Alsaif 2022)).

Based on the aforementioned studies, the key observa-
tion is that none of the existing works have focused on pro-
viding a hardware-based solution for the challenges faced 
by drivers across various road conditions. Here we high-
light the core contributions are summarized as follows:

• A novel approach for road condition monitoring in 
smart cities through the use of an acoustic data pro-
cessing module.

• Integrated microphone and an ultrasonic module with 
the road surface detector unit for collecting audio sig-
nals and for observing road depth information.

• Identification and assessment of both the road con-
dition (smooth, slippery, grassy, and rough) and the 
depth of the crack in the roads.

• Use of ML algorithms such as MLP, SVM, RF, and 
kNN for analyzing the collected data from various 
road surfaces.

The purpose of this segment is to explain the overview 
of the different sections used in this paper. Section  1, 
gives the outline of the need for a road surface detector 
due to the prevailing road conditions. In Sect. 3, related 
works have been studied in order to improvise the model 
and accuracy of the classified results. The audio collec-
tion, preprocessing, training of the dataset by converting 
to Mel spectrogram, and providing notification about 
the road conditions to the authorities concerned are 
explained in Sect.  4. The components of the model are 
explained under Sect.  4.1, Architecture. The observed 
results in Sect. 4.2 are the classified output of the model. 
The classification includes rough roads, smooth roads, 
slippery roads, and grassy roads. Finally, the advantages, 
disadvantages, and overview of the output are discussed 
in Sect. 4.2.1. Figure 1 illustrates the order of steps in the 
proposed methodology for road classification based on 
the audio signals obtained from the hardware module 
mounted on vehicles based on various road conditions.

A sequence of stages in the proposed data processing 
phase for classification of the audio Signals acquired 
from the Vehicle Mounted hardware module.

2  Conceptual definitions
Smart cities are urban environments that leverage 
advanced technologies, especially IoT, data analytics, 
and AI to enhance the quality of life for citizens, improve 
resource management, and promote sustainability. These 
cities use digital technologies and interconnected systems 

Fig. 1 The sequence of stages in the proposed data processing phase for classification of the audio signals acquired from the vehicle mounted 
hardware module
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to collect and analyze data, enabling informed decision-
making, efficient service delivery, and improved  urban 
infrastructure, especially transportation, thanks to urban 
intelligence functions (Bibri 2020; Bibri and Krogstie 
2020). For example, the application of AI and ML in road 
condition monitoring underscores the development of 
smart cities, where data-driven  technologies contribute 
to safer, more efficient urban transportation networks 
and infrastructure.

AI is often referred to as the simulation of human intel-
ligent behavior through the creation of computers or 
machines capable of such emulation. In this study, AI is 
defined as "any device/system that perceives its environ-
ment and takes actions for its goals" (Poole, Mackworth, 
and Goebel 1998). Essentially, artificially intelligent 
machines can learn by acquiring information from their 
environment (Russell and Norvig 2016), improve their 
performance through experiential knowledge, and tackle 
complex  tasks akin to human problem solving. Accord-
ingly, AI empowers systems in smart cities to learn from 
data and adapt their  behavior to new information. ML 
is a subset of AI that focuses on enabling computers to 
learn and improve from experience without being explic-
itly programmed. Mitchell (1997) defines it as “a com-
puter program learning from experience ‘E’ with respect 
to some class of tasks ‘T’ and performance measure 
‘P,’ if its performance at tasks in ‘T’ as measured by ‘P,’ 
improves with experience ‘E.’” ML involves the develop-
ment of algorithms that allow machines to analyze and 
interpret data, recognize patterns, make predictions, and 
take actions based on the patterns identified. ML algo-
rithms utilize statistical techniques to  iteratively learn 
from data and improve their performance over time. 
ML encompasses various techniques, including super-
vised  learning (where models learn from labeled exam-
ples), unsupervised learning (where models find patterns 
in unlabeled data),  and reinforcement learning (where 
models learn through interaction with an environment 
and feedback mechanisms).

Concerning AI and ML techniques, they encompasses 
Artificial Neural Networks (ANN), Multilayer Perceptron 
(MLP), Support  Vector Machines (SVM), Linear Regres-
sion (LR), Decision Trees (DT), Random Forests (RF), 
K-Nearest Neighbour (KNN),  Adaptive Neuro-Fuzzy 
Inference System (ANFIS), Batch-Normalization (BN), 
Convolutional Neural Networks (CNN), Deep Neural Net-
works (DNN), and Genetic Algorithms (GA).

The integration of AI and ML in road condition 
monitoring has advanced road condition monitoring 
in smart cities in terms of  assessing the state of road 
surfaces, identifying defects, and addressing mainte-
nance needs promptly. Traditional methods of  road 
condition monitoring often require manual inspections 

and periodic assessments, which can be time-consum-
ing and less  accurate. AI and ML technologies enable 
automated and real-time analysis of road conditions 
using data from various sources  (Kafrawy et  al. 2021). 
As exemplified and documented throughout this study, 
AI and ML algorithms can identify anomalies,  predict 
deterioration patterns, and assess the need for repairs. 
AI and ML provide several advantages in road condi-
tion  monitoring within smart cities, including real-
time monitoring, accuracy in identifying road defects, 
predictive maintenance,  efficiency of condition assess-
ment, and cost savings on emergency repairs and road 
infrastructure management.

3  Related works and challenges
This section covers various studies that have explored 
the use of different machine-learning techniques for 
road condition classification based on acoustic data, as 
well as the different types of sensors used for data col-
lection. Also, this section aims to highlight the gaps and 
limitations of previous research and provide a founda-
tion for the proposed methodology. Table 2 shows the 
summary of key inferences and challenges observed 
from recent popular works. After reviewing the exist-
ing literature related to road condition monitoring 
using audio signals, the techniques used, their advan-
tages, and their limitations were analyzed. One such 
study presented in (Gagliardi et al. 2022), collected raw 
audio signals from the wheel-road interaction, which 
were converted into Mel spectrograms. The authors 
utilized the CNN algorithm for the real-time classifi-
cation of different road types. The information about 
the prevailing road conditions was transferred to road 
authorities via Bluetooth communication. Two mod-
els of CNN architecture, the original and quantized, 
were employed, achieving an accuracy of 93% and 90%, 
respectively. However, this model was found to be less 
effective in changing light conditions and environmen-
tal noise. Further, it was suggested to development of a 
smartphone application and a web platform that con-
tains essential information such as road location.

In (Yuan et al. 2020), the authors propose a method for 
road damage detection using edge and cloud comput-
ing. They first collected videos of various road scenes, 
which were converted into images. The road damage 
was then detected using a road segmentation algorithm, 
combining edge and cloud computing. Here, Gray-level 
co-occurrence matrix features were used for classifica-
tion in edge computing. Moreover, real-time road infor-
mation is provided to drivers, resulting in highly accurate 
and fast damage detection with warnings to drivers using 
that road. It was observed that such methods require lim-
ited labor with reduced time and cost. However, it is not 
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suitable for huge road networks as it needs massive stor-
age and high computational power. To address this issue, 
a lightweight model can be incorporated, and new learn-
ing techniques can be used in the future for better per-
formance with limited data.

In accordance with (Zhao et al. 2022), the TLD frame-
work is employed to detect post disaster road damage 
by acquiring aerial images and using the spoke wheel 
operator for generating an initial road template. The TLD 
framework is utilized to identify and rectify damaged 
roads based on color invariance, thereby providing signif-
icant potential for road damage detection in emergency 
response and rescue operations following disasters. How-
ever, obtaining pre-disaster remote sensing imagery in 
rural areas is a challenge due to data source mismatch. 
This approach can be adapted for assessing the level of 
road damage.

The authors in (Guo et  al. 2021) proposed a method 
to detect road cracks using RGB images by refining the 
original image gradient. They employed FCN and CNN 
as deep learning techniques for road surface classifica-
tion. The model achieved good generalization of various 
features of cracks and could be applied to smaller images 
than previous methods. However, it has default weight-
ings and lacks automation. To address these issues, the 
authors proposed on developing an adaptive trainer 
mechanism to control the weighting of loss in each out-
put and a validator for automation.

The study in (Zhang et al. 2021) presents the use of an 
IMU sensor for detecting defects on road surfaces. To 
do this, vibration data is collected using sensors, and a 
database is constructed for data storage. Different ML 
techniques such as RF, SVM, Light Gradient Boosting 

Machines (LightGBM), and FCNN are applied for dam-
age detection. Additionally, the Extended Kalman Fil-
tering (EKF) algorithm can be utilized to classify road 
types. The FCNN technique is used to process the vibra-
tion data from the IMU sensor, which yields highly pre-
cise detection of defects. Future enhancements include 
joint detection using both camera and IMU sensors and 
extending its use to different vehicles. The results indi-
cate that the FCNN used in this study performs the best, 
while RF exhibits the poorest performance.

According to Alhussan et  al. (2022), the classifica-
tion of potholes and plain roads is explained in their 
study. Image data are collected, augmented, and fea-
tures are extracted for further classification using vari-
ous algorithms. This model uses Adaptive Mutation and 
Dipper-Throated Optimization (AMDTO) for feature 
selection and optimization of the RF classifier. The pro-
posed AMDTO Algorithm uses ML techniques such as 
genetic algorithms, Binary PSDTO Algorithm, and Opti-
mized SMOTE Algorithm. The potholes are identified 
from the images obtained and the algorithms are used 
to perform respective tasks based on AMDTO and RF. 
The proposed method achieves an accuracy of 99.795%, 
which outperforms other approaches such as WOA + RF 
with 97.5%, GWO + RF with 98.6%, and PSO + RF with 
98.1%. However, this model has a major drawback of hav-
ing an expensive setup cost. The authors in (Wei et  al. 
2020) proposed a method for automatic road extraction 
from aerial and satellite images, which involves boost-
ing segmentation, multiple starting points tracing, and 
fusion. To perform this task, they employed ML tech-
niques such as ANN, SVM, and maximum likelihood 
in conjunction with DL technology using FCNN and 

Table 2 Summary of inferences and challenges from recent popular related works

Ref Year Application Method Inferences Challenges

Yuan et al. (2020) 2021 Road surface detection Edge and cloud computing Image processing is used 
for classification

Not compatible for huge 
volume of road networks

Zhang et al. (2021) 2022 Road surface defect detec-
tion

RF, SVM, FCNN Vibration data from IMUI 
sensor used for data 
used for data processing 
with FCNN

RF shows worst performance

Alhussan et al. (2022) 2022 Pothole and plain road clas-
sification

PSDTO, SMOTE, AMDTO Potholes identified using 
the images collected 
and tasks performed 
by the algorithms

Expensive setup cost

Abdelrauf al (2022) 2022 Real-time weather- related 
route advisory to drivers

SVM, Naive Bayes, Decision 
Trees, RF

Rain and road surface detec-
tion using CCTV cameras 
with a pre – trained Vision 
Transformer model

Limited access to CCTV 
camera images

Zhao et al. (2022) 2022 Road surface anomaly 
detection

SVM, CNN Hough Transform is used 
for the detection of flaws 
in the road surface using 
image processing

Impact on the vibration sig-
nals due to the temperature 
and the vehicle speed
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CNN. The results showed that the FCNN outperformed 
the CNN by 7% and 40% for the connectivity and com-
pleteness indicators, respectively. However, the model’s 
performance can be further improved by using a semi-
supervised learning approach that requires fewer train-
ing samples for road surface and centerline detection and 
regularization of road networks. One major limitation of 
such models are the availability of high-quality labels.

According to the study by Nakashima et al. (2020), road 
surface detection can be performed using the reflection 
intensity of an ultrasonic sensor. The intensity variations 
of these reflections are used to analyze the road surface.

Pattern recognition, regression analysis, and classifica-
tion are done using the SVM algorithm. They calculate 
the average of the reflection intensity from the horizontal 
axis and the standard deviation of the reflection inten-
sity from the vertical axis for accuracy improvement by 
reducing the overlaps. However, even though the system 
has a longer measurement time it is useful for visually 
impaired people, elderly people, and vehicles.

The detection of potholes is accomplished through 
Road Surface Modeling and Disparity Transformation 
as explained in (Fan et al. 2019). This technique utilizes 
a 3D road surface dataset for detection. The accuracy of 
pothole detection is achieved by comparing actual and 
modeled disparity maps. The algorithm employed is a 
novel disparity transformation algorithm and a dispar-
ity map modeling algorithm. Otsu’s thresholding method 
is used to extract the undamaged road surfaces from 
the transformed disparity map. The pothole detection 
system relies on robust stereo vision with morphologi-
cal filters used to reduce image noise. The method pro-
duces an accuracy of approximately 98.7% and an overall 
pixel-level accuracy of 99.6%. However, the parameters 
used for pothole detection are not applicable to all cases. 
Future research could segment the reconstructed road 
surfaces into groups of localized planes through a seg-
mentation algorithm.

In their paper (Abdelraouf et al. 2022), Abdelraouf et al. 
propose a real-time route advisory system that takes into 
account weather conditions. They use a self-created data-
set from roadside CCTV cameras and employ various 
ML algorithms, including SVM, RF, kNN, Naive Bayes, 
and Decision Trees, based on both vision-based method-
ology and sequence-to-sequence technique. The model 
detects road surface conditions on freeways using traf-
fic CCTV cameras and pretrained Vision Transformer 
models. The performance of the Vision Transformer is 
boosted by 5.61% and 5.97% for rain and road conditions, 
respectively, resulting in an overall F1-score of 96.71% 
and 98.07%. However, a limitation of the study is the 
limited number of sequential segments available due to 
restricted access to adjacent CCTV camera images. The 

authors suggest that the model could be improved by 
testing it on a larger scale.

The Edge Sensing Module and Attention Module, using 
the RoadNet benchmark, have multiple applications 
including vehicle navigation, urban planning, intelligent 
transportation systems, and geographic information 
systems, as stated in (Liu et  al. 2022). These modules 
improve the perception of road edges by reinforcing 
perception with the AM guide of the network. The ESM 
and AM are combined to create an encoder-decoder 
structure for road surface detection. This technique is 
supported by a cascaded automatic road detection net-
work, called CasEANet, based on ESM and AM. This 
method employs a CNN. CasEANet helps solve the issue 
of unsmooth edges in detecting road conditions. The F1 
score, overall accuracy, and balanced error rates of the 
CasEANet are 0.946, 98.6%, and 0.0219, respectively, 
which outperform other state-of-the-art models. The 
drawback is that the method relies on manual annota-
tion, which is time-consuming and requires more labor. 
To mitigate this, the method can be further developed 
into automated and accurate road detection techniques.

The Cascaded Multi-Task Road Extraction Network 
was discussed in (Lu et al. 2022) for extracting road sur-
face, centerline, and edges. The authors used the Deep- 
Globe road dataset and a large-scale road dataset, the 
LSCC dataset for this purpose. The authors formed the 
cascade multitask framework by connecting road sur-
face segmentation (SS), centerline extraction (CE), and 
edge detection (ED). The LinkNet50 algorithm was used 
to perform these tasks. The authors employed the meth-
odology of very high-resolution (VHR) remote sensing 
imagery, topology-aware learning, and hard example 
mining (HEM) technology. The proposed framework’s 
superiority was ensured by the average path length simi-
larity (APLS) road topology metric, which exhibited the 
best performance. The main drawback of this model 
is that the road extraction task is very challenging, and 
there are numerous road discontinuities. However, 
advanced methods can be used to enhance the actual 
application requirements.

The authors of the paper referenced as (Chen et  al. 
2022) developed an IoT-based system for road icing 
detection and prediction. The system uses time-series 
data and employs a model classification approach based 
on adversarial networks. The proposed deep neural net-
work model, Trans-CGAN, comprises two main compo-
nents, i.e., imbalanced data classification and time-series 
prediction. The model employs Long Range Radio (LoRa) 
and Long Short-Term Memory (LSTM) techniques. 
The Trans-CGAN model outperforms other exist-
ing models in road icing detection. The system can be 
installed in multiple locations to gather more extensive 



Page 7 of 17Jagatheesaperumal et al. Computational Urban Science            (2023) 3:28  

road condition data, thereby enhancing the model’s 
adaptability.

The detection of road potholes in real-time 
using”crowdsourcing” images and GNSS positioning 
from citizens can be accomplished through vibration 
assessment, machine vision analysis, and laser scanning 
techniques. The combination of fast reflectometry and 
vibration-based methods, along with spatiotemporal tra-
jectory fusion, enables real-time sensing of road potholes. 
In the article by Chen et al. (2022), a model is proposed 
that utilizes this approach to achieve real-time ground 
correction with a high spatial and temporal resolution, 
providing a useful strategy for road pothole detection. 
Additionally, the Beidou Grid Code can be implemented 
to optimize the cost, power consumption, and computa-
tional pressure of the geospatial observation system.

The work by Wei et  al. (2021). proposes a Scribble-
Based Weakly Supervised Deep Learning method for 
road surface extraction from remote sensing images 
using centerline detection. The method is applied to the 
Cheng dataset, Wuhan dataset, and DeepGlobe dataset 
using weakly supervised learning, road label propaga-
tion algorithm, and scribble annotations. The geophysical 
image processing methodology reduces the requirement 
for training data. The proposed ScRoadExtractor outper-
forms classic scribble-supervised segmentation methods 
by 20%, but there is noise due to the limited capacity of 
the graph cut method. In another similar work by Doring 
et al. (2021), a Capacitive Sensor System is used for the 
wetness quantification of road surfaces using capacitive 
sensor data. Learning algorithms and optimization crite-
ria are used to classify road surfaces into eight classes. A 
feature selection algorithm based on a 2 × 4 planar capac-
itive transducer array using nearest neighbor methods 
is employed. The feature average wheel speed improves 
classifier performance significantly, with the classifier 
achieving a BAC of 0.93 and the binary version yield-
ing a BAC of 0.998. However, the method is not suitable 
for high-wheel- speed vehicles. In the future, the feature 
selection algorithm can be modified to make it compat-
ible with high-speed vehicles.

In Zhao et  al.’s (2022) study, Distributed Fiber Optic 
Sensing (DFOS) was utilized to detect road surface 
anomalies through image capture. The process involved 
data collection, Hough transforms, image preparation 
for training, and classification using both SVM and CNN 
methods. The model relied on image processing, Hough 
transforms, and ML. DFOS signals were processed to 
estimate vehicle speed and detect road surface anoma-
lies, and the study showed that using DFOS signals is 
feasible for monitoring road surface anomalies. The CNN 
method was found to outperform LBP and SVM meth-
ods in terms of accuracy. However, one major drawback 

is that vibration signals may be affected by temperature 
and vehicle speed. To improve the performance of this 
technology, it can be combined with sliding window 
technology.

Liu et al. (2018) discuss the analysis of road networks 
in complex urban scenes using very high-resolution 
(VHR) remotely sensed images. The authors utilize a 
multitask CNN-RoadNet to predict road surfaces, edges, 
and centerlines from VHR remote sensing images. The 
paper covers various techniques such as the supervision 
method, loss function, user interaction, bilinear blend-
ing, and training configuration. To handle large VHR 
images that cannot be holistically trained or tested with 
finite-GPU resources, the techniques of cropping and 
bilinear blending approach are employed. Additionally, 
the proposed user interaction operation effectively elimi-
nates shadows and occlusions along the road regions. 
This technology can be used in real-world map applica-
tions. However, complexity issues in the dataset can be 
addressed by extracting road topology information from 
predicted maps.

Pan et  al. (2018) discuss the use of unmanned aerial 
vehicle (UAV) multispectral imagery to detect potholes 
and cracks in asphalt pavement. The process involves 
image acquisition and segmentation, preparation of sam-
ple data sets and feature selection, and the application 
of SVM, ANN, and RF algorithms with multi resolution 
segmentation methodology. The condition of asphalt 
pavement is monitored using a flexible UAV platform 
equipped with multispectral remote sensors. The study 
reports an overall accuracy of 98.3% for the classification 
of potholes, cracks, and non-distressed pavements using 
UAV MSI. However, due to spatial resolution limitations, 
the UAV pavement images used in the study cannot cap-
ture cracks with a width of 13.54 mm. To further evalu-
ate the performance of these models and parameters in 
detecting potholes and cracks, more UAV pavement 
images of various types of roads are needed.

Daraghmi et  al. (2020). propose a road surface evalu-
ation and indexing technique based on crowdsourcing. 
The authors use vertical acceleration power spectral den-
sity to detect road surface roughness and employ blind 
source separation by the least mean square method to 
collect and transmit signals, which are then processed to 
extract useful information. The majority of voting algo-
rithms such as energy-based, weight-based, and score-
based methods are used to rank roads, and roughness is 
indexed by the vibration index. This technology provides 
accurate, efficient, and cost-effective methods for detect-
ing road surface roughness, even on well-paved roads. 
The proposed model can be expanded to other countries 
and the vibration index can be examined under different 
road conditions in the future.
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Table 3 provides a comparative analysis of the proposed 
scheme with existing schemes along with the literature 
gaps present in the state-of-the-art schemes.

4  Acoustic processing and analysis
This section provides an overview of the proposed 
approach and the techniques used for preprocessing, fea-
ture extraction, and classification of the audio signals. It 
also discusses the ML algorithms used for classification 
and the evaluation metrics used to assess the performance 
of the proposed approach. The first step in processing 
acoustic data is converting it into a usable format. Next, 
the necessary features are extracted from the converted 
data. These features are then fed into an appropriate 
machine-learning algorithm, and the resulting classifica-
tion output is obtained.

4.1  Data set
The input data for the proposed model is derived from 
audio signals. The audio signals from various sources 
were collected in real-time and different types of road 
surfaces were recorded. The collected audio signals were 
then converted into the Waveform Audio File (WAV) 
format. Subsequently, these audio signals were classified 
into four different classes: smooth road, rough road, slip-
pery road, and grassy road. The classified audio signals 
were then stored in separate folders for future use, and 
each folder contains a significant amount of data. These 
datasets serve as input data for further processing.

4.2  Audio preprocessing
Audio signal processing is an essential component in 
the capture, enhancement, storage, and transfer of audio 
content. This process involves converting audio signals 
between analog and digital formats, adjusting frequency 
ranges, reducing unwanted noise, adding effects, and 
accomplishing other objectives. Figure  2 refers to the 
audio preprocessing techniques, such as Normalization, 
Trimming, Padding, and Noise Reduction, which are uti-
lized in this study. Subsequently, they were applied over 
the chosen dataset as illustrated in the Fig. 3 observed for 
sample audio acquired from a road surface.

4.2.1  Normalization
Audio normalization refers to the process of applying a 
constant amount of gain to an audio recording to adjust 
the amplitude to a desired level. This technique is com-
monly used in audio production to ensure that the overall 
loudness of a track is consistent and optimized for differ-
ent listening environments (Alonso et al. 2014). Normali-
zation does not affect the signal-to-noise ratio or relative 
dynamics of the recording because the same amount of 
boost is applied uniformly across the entire track.

The signal-to-noise ratio or relative dynamics of the 
audio recording are unaffected by audio normaliza-
tion. This is due to the consistent distribution of gain 
applied during normalizing throughout the whole track. 
As a result, the original dynamics are preserved and 
uncompromised sound quality is guaranteed. Both the 
audio signal and the background noise maintain their 

Table 3 Comparative analysis of proposed scheme with existing schemes

References Core application towards 
road condition

Description of Algorithm Performance optimization 
indicators

Literature gaps 

(Astrand et al. 2020) Underground road condition Rao Blackwellized extended 
particle filter and Kalman 
filter

Large neighborhood search Only underground mine dataset 
is used 

Rajput et al. 2022) Infers rough and damaged 
road segments

Unsupervised learning Bus trajectory processing Only trip records four routes are 
used for analysis 

Cui et al. 2019) Condition monitoring authen-
tication

Certificateless aggregate 
sign cryption scheme

Mutual authentication, 
untraceability, and anonymity

Fog computing and VANETs are 
not widely deployed 

Cabral et al. 2019) Paved and unpaved roads 
classification

Smartphone inertial sensors Perceptual linear prediction 
coefficients

Feature extraction from speech 
signals not directly reflects road 
conditions 

Jahan et al. 2022) Paved and unpaved roads 
classification

Blackbox module Road data logger No clear indication of road clas-
sifications 

Kortmann et al. 2019) Surface profile assessment On-board vehicle sensors Assess the frequency 
and slope of the signal due 
to inertia

Lacks acoustic processing 
modules 

Boucetta et al. 2021) Road deterioration notification Deep learning framework Accuracy, edge weights, sever-
ity index

Classifies crack types alone 
not the road conditions

Proposed scheme Acoustic data analysis to clas-
sify rough, smooth, grassy, 
and slippery roads

MLP, SVM, RF, and KNN Accuracy, crack depth, 
and web alert
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proportional amplitudes. Being non-destructive, it ena-
bles modifications and reversibility as necessary and does 
not change the actual audio data. Audio normalization 
is essential for maintaining constant volume levels for 
diverse audio signals acquired from multiple road seg-
ments during road condition monitoring. The accuracy 
and dependability of the road condition categorization 
are ultimately improved by this method, which pre-
vents abrupt changes in loudness and enables a seamless 
transition between the audio parts. Additionally, audio 
normalization maintains audio fidelity by avoiding any 
clipping or distortion brought on by excessive volume 
levels, which enhances the experience of monitoring the 
state of the roads in general.

4.2.2  Trimming
Trimming is a common audio editing technique that 
involves removing a portion of the audio at the beginning 
or end of a file. This process is important for improving 
the flow and pacing of the audio content and ensuring 
that it starts and ends smoothly. Additionally, trimming 
can be used to remove unwanted noise or silence from 
the audio signal, which can enhance its clarity and overall 
quality (Das et al. 2022).

In the context of road surface analysis, audio trimming 
can be used to remove unwanted noise or silence from 
the recorded vehicle sounds before processing the signal. 
This can help to improve the accuracy and reliability of 
the analysis by reducing the impact of external factors 
that may affect the signal. Furthermore, trimming can be 
combined with other audio processing techniques such 
as filtering and normalization to further enhance the 
quality of the audio signal and improve the accuracy of 
the road surface analysis.

4.2.3  Padding
The process of extending trimmed audio is known 
as audio padding. Audio padding is used to ensure 
that all audio signals are of equal length, which is an 
essential requirement for many audio analysis appli-
cations. In this process, the audio sample is repeated 
multiple times until the desired duration is achieved 
(Ahsan et al. 2019). Padding helps in avoiding any loss 
of information due to different lengths of audio sig-
nals and ensures that the analysis is consistent across 
all signals. This technique is widely used in various 
audio applications, including road surface analysis, to 
achieve accurate and reliable results.

Fig. 2 Audio preprocessing methods for the audio signals collected from the wheel-road interaction

Fig. 3 Audio preprocessing steps for the collected audio signals using the hardware setup
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4.2.4  Noise reduction
The process of noise reduction is vital in improving the 
quality of the audio signals obtained from road surfaces. 
It helps to eliminate unwanted sounds such as back-
ground noise, wind noise, and other sources of noise that 
may interfere with the analysis of the road surface signals. 
By removing these noises, it becomes easier to detect 
and analyze the road surface anomalies such as potholes 
and cracks. The noise reduction process involves vari-
ous techniques such as filtering and equalization, which 
help to suppress or eliminate unwanted sounds from the 
recorded audio signals (Guo et al. 2020). This ultimately 
leads to a more accurate and reliable analysis of the road 
surface conditions, which is crucial for ensuring safe and 
efficient driving.

4.3  Feature extraction
To begin with, the dataset is filtered to contain only WAV 
format data to ensure consistency. The transformation of 
the dataset is done using Fast Fourier Transform, which 
is faster and more efficient, converting the time domain 
representation to the frequency domain representation. 
The next step is to create a spectrogram of the frequency 
domain signal to analyze the features present. The spec-
trogram provides a visual representation of the signal 
strength. The spectrogram is then converted to a Mel 
Spectrogram by utilizing the Mel scale. The Mel scale 
filters the audio signals, which are time-windowed, to 
highlight the relevant features. By using this technique, a 
clearer representation of the road surface conditions can 
be obtained from the audio signals. Additionally, the Mel 
Spectrogram can be further analyzed using deep learning 
techniques to classify and identify specific types of road 
surface conditions.

4.4  Machine learning algorithms
The classification of road types is performed using four 
different machine-learning algorithms. These algo-
rithms take the feature extracted from the audio signal 
as input and classify the road surfaces into four types. 
The algorithms employed include MLP, SVM, RF, and 
kNN. The MLP is a widely used algorithm for parallel 
distributed processing, computational neuroscience, 
and supervised learning. SVM is a supervised ML tech-
nique that is used for classification and regression. RF 
is another supervised ML algorithm that is commonly 
employed in classification and regression problems. 
KNN, on the other hand, is a supervised learning clas-
sifier that uses proximity to make predictions about the 
grouping of a single data point.

The choice of MLP, SVM, RF, and k-NN algorithms 
have proven successful in managing challenging clas-
sification problems and they are frequently employed. 

Their appropriateness for assessing road conditions is 
supported by prior investigations and benchmarking tri-
als (Kafrawy et al. 2021). Their adaptability in collecting 
various patterns and features in acoustic data acquired 
from the road surfaces is in line with the dataset’s nature. 
Initial tests verified their effectiveness on the chosen 
dataset, hence validating their choice. It follows that the 
selection of MLP, SVM, RF, and KNN creates a solid 
foundation for the road condition monitoring framework 
and contributes to accurate and trustworthy classifica-
tion findings.

4.5  Classification output
The classifier gets the extracted features of the audio sig-
nals as the input by applying the aforementioned algo-
rithms. The road surfaces are classified into four types: 
rough road, smooth road, slippery road, and grassy road 
according to the conditions applied to the audio signals. 
This classification output further leads to measuring the 
depth of the crack if the road is detected as rough.

Optimizing the performance of ML models requires 
parameter adjustment. Each of the models utilized in our 
study—MLP, SVM, RF, and KNN—has had its param-
eters carefully tuned. We were able to pinpoint the ideal 
settings that optimize the prediction power of the mod-
els by methodically examining various combinations of 
hyperparameters. The methods section of the details on 
the precise parameter values utilized for each model. By 
ensuring transparency and reproducibility, we make it 
possible to carry out similar tests and confirm the effi-
cacy of our strategy.

5  Experimental setup
The hardware components necessary for data collection 
and transmission to the cloud are crucial, and their sys-
tematic workflow is outlined here. This section discusses 
the essential hardware requirements for data collection 
and transmission to the cloud. Additionally, the system-
atic workflow of the surface detection system for iden-
tifying the type of road surface on which the vehicle is 
traveling is described.

As illustrated in Fig. 4, the surface detection system iden-
tifies the type of road surface on which the vehicle is mov-
ing. To accomplish this, the open-source microcontroller 
Arduino UNO is employed because it is low-cost, flexible, 
and simple to program. Ultrasonic sensors, sound sensors, 
and GPS modules are connected to the microcontroller to 
gather data for subsequent processing. The ESP8266 Wi-Fi 
module is used to transmit the collected data to the cloud 
for further processing of the audio signal. In the cloud, 
the gathered data is collected and saved in a database as a 
reference for real-time classification. The outcome is then 
presented to road authorities for inspection. To collect 
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data for further processing, the open-source microcon-
troller, Arduino UNO, is used to interface with ultrasonic 
sensors, sound sensors, and GPS modules. The collected 
data is then transmitted to the cloud using the ESP8266 
Wi-Fi module for further processing of the audio signal. 
The corresponding hardware setup of the deployed system 
is shown in Fig. 5.

In the cloud, the collected data is stored in a database 
for future reference, which can be used as a reference in 
real-time for classification. The result is then displayed 
to the road authorities. The proposed model enables the 
road authorities to be notified of the road condition, based 
on the type of road surface observed, and take necessary 
actions accordingly. The road surface classification is per-
formed using the specified algorithms, and the output is 
sent to the authorities through the cloud. With the help of 
this model, the road authorities can obtain updates on the 
road surface and take timely actions to resolve the prob-
lem, without the need for human intervention. This can 
lead to efficient and effective road maintenance, result-
ing in safer and smoother transportation for the public. 
Additionally, the implementation of such a system raises 
concerns about hardware requirements for real-time 
road surface analysis. This necessitates the selection of 
the appropriate microcontroller, sensors, and modules to 

ensure reliable data collection and transmission. Further-
more, the system’s efficiency can be improved by opti-
mizing the hardware’s power consumption to extend its 
lifespan. Finally, the hardware’s durability and stability in 
harsh weather conditions must be considered to ensure 
the system’s continuous operation.

6  Evaluation results and discussion
This section provides a detailed analysis of the experi-
mental results and a discussion of the findings. The 
results are compared with the state-of-the-art methods 
to show the effectiveness of the proposed approach.

The results of each stage of the model are presented 
and discussed in this section. The collected audio signal is 
in WAV format and is normalized as shown in Fig. 3a. To 
enhance the signal features, the normalized audio is mul-
tiplied by a gain. The trimmed audio signal is obtained by 
removing the silence in the signal, as shown in Fig.  3b, 
which sharpens the audio signal. In order to maintain 
signals in the same time limit, padding is performed, as 
depicted in Fig.  3c. The audio signal is repeated during 
padding instead of adding zeroes to make it more effec-
tive and efficient. The noise-reduced signal is illustrated 
in Fig. 3d, where the external noise in the audio signal is 
eliminated using a noise reduction method to prevent the 

Fig. 4 Functional blocks in the road surface identification system, showcasing the integration of core hardware modules



Page 12 of 17Jagatheesaperumal et al. Computational Urban Science            (2023) 3:28 

information in the audio signal from being corrupted by 
unwanted noise.

Figures  6a, 7a, 8a, and 9a show the audio signals col-
lected from rough, smooth, slippery, and grassy roads, 
respectively. For each audio signal, its corresponding 
spectrogram is shown in Figs. 6b, 7b, 8b, and 9b, which is 
then converted into Mel spectrogram by applying the Mel 
scale and shown in Figs. 6c, 7c, 8c, and 9c, respectively.

The detector model is fixed on the vehicle’s rim to 
monitor and observe the condition of road surfaces. An 
ultrasonic sensor is used to measure the depth of any 
detected cracks in centimeters. Placed in the rim of the 

vehicle integrated with the microcontroller module, the 
sensor measures both the depth of the crack and the 
rim’s radius. If the depth is significant, a message is sent 
to the road authorities. The detector’s results are out-
lined below: Fig. 10a shows the surface where the detec-
tor was tested, and it indicates the result identified as a 
smooth surface. Figure  10b displays the readings of the 
ultrasonic and sound sensors on the LCD screen. This 
result can also be viewed on the cloud platform as shown 
in Fig. 10c through the transmission of information using 
a Wi-Fi module. Similarly, Fig.  11a shows the surface 
where the detector detected as a slippery surface, and the 

Fig. 5 Hardware setup deployed in the vehicles for assessing various road conditions

Fig. 6 Rough road surface analysis extracted from the collected audio signal
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Fig. 7 Smooth road surface analysis extracted from the collected audio signal

Fig. 8 Slippery road surface analysis extracted from the collected audio signal

Fig. 9 Grassy road surface analysis extracted from the collected audio signal

Fig. 10 Smooth road output obtained from the classification result



Page 14 of 17Jagatheesaperumal et al. Computational Urban Science            (2023) 3:28 

corresponding readings of the ultrasonic and sound sen-
sors, along with the type of road condition, are displayed 
on the LCD screen (Fig. 11b). This result is also transmit-
ted to the cloud platform as shown in Fig. 11c. Figure 12a 
displays the surface that was detected as a grassy road, 
and the readings of the ultrasonic and sound sensors are 
shown on the LCD screen (Fig. 12b). The results are also 
transmitted to the cloud platform as shown in Fig.  12c. 
Figure 13a shows the surface where the detector detected 
a rough surface. The output on the LCD screen (Fig. 13b) 
displays the readings of the ultrasonic and sound sen-
sors along with the depth of the crack. This result is also 
transmitted to the cloud platform (Fig. 13c) using a Wi-Fi 
module. If the detected surface is a rough road and the 
crack depth is maximum, an alert message is sent to the 
road authorities to take timely action.

The performance of four ML algorithms in determin-
ing crack depth from acoustic signals are compared in 
Table 4. Accuracy, precision, recall, F1-score, area under 
the ROC curve (AUC), mean absolute error (MAE), and 
root mean square error (RMSE) are some of the valida-
tion criteria. The maximum accuracy, precision, recall, 
F1-score, and AUC are displayed by the RF-based tech-
nique, suggesting superior performance in crack depth 
detection. The RF-based technique also exhibits the low-
est MAE and RMSE, suggesting that it can make predic-
tions that are more accurate. The MLP-based technique, 
in contrast, performs admirably, with high accuracy and 
AUC, whereas SVM and KNN exhibit marginally worse 
performance. The RF-based strategy seems to be the 
most promising for crack depth identification, based on 
the observed results.

Fig. 11 Slippery road output obtained from the classification result

Fig. 12 Grassy road output obtained from the classification result

Fig. 13 Rough road output obtained from the classification result



Page 15 of 17Jagatheesaperumal et al. Computational Urban Science            (2023) 3:28  

The confusion matrices of four algorithms and their 
corresponding accuracies are presented in this section. 
Figure 14a shows the confusion matrix of the MLP algo-
rithm, which achieves an accuracy of 98.98%. The SVM 
algorithm has an accuracy of 89.80%, and its confusion 

matrix is shown in Fig. 14b. The confusion matrix for the 
RF algorithm, which has an accuracy of 97.96%, is pre-
sented in Fig. 14c. Lastly, Fig. 14d displays the confusion 
matrix of the KNN algorithm, which achieves an accu-
racy of 96.94%. Based on the comparison of these four 
algorithms, MLP outperforms the others with the high-
est accuracy. Table 5 describes the accuracy variation in 
testing and training data size for all four algorithm types: 
MLP, SVM, RF, and KNN. Four combinations of size 
variation have been tried and among all, it is proved that 
MLP produces better results in all the combinations.

7  Conclusion
This paper presents a novel approach for road condition 
monitoring in smart cities using an acoustic data pro-
cessing module integrated with the vehicle wheel rim. By 
collecting audio signals and road depth information using 

Table 4 Comparison of crack depth detection using Acoustic 
signals with different ML algorithms

Validation Parameters MLP SVM RF KNN

Accuracy 0.85 0.81 0.88 0.79

Precision 0.87 0.83 0.89 0.81

Recall 0.83 0.79 0.87 0.77

F1-score 0.85 0.80 0.88 0.78

Area Under ROC Curve (AUC) 0.92 0.87 0.94 0.85

Mean Absolute Error (MAE) 0.045 0.052 0.040 0.056

Root Mean Square Error (RMSE) 0.067 0.075 0.062 0.078

Fig. 14 Confusion matrix of various algorithms for assessing the performance
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an ultrasonic module, the road surface is classified into 
four types: smooth, slippery, grassy, and rough roads. ML 
algorithms such as MLP, SVM, RF, and KNN were used 
to classify the road surfaces, with MLP providing the best 
accuracy of 98.98%. Compared to conventional meth-
ods, this model is more cost-effective, accurate, and less 
labor-intensive. If the road is classified as rough and has 
a maximum depth of the crack, an alert message is sent 
to the concerned road authorities, along with the location 
of the damaged road. This helps authorities take timely 
actions to resolve the problem, potentially saving many 
lives from vehicle crashes caused by damaged roads. In 
the future, this model could enable smart city plans using 
vehicle-to-vehicle communication, allowing approaching 
vehicles to be informed about damaged roads and to take 
alternative routes if necessary.
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