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ABSTRACT Identifying manipulated regions in images is a challenging task due to the existence
of very accurate image inpainting techniques leaving almost unnoticeable traces in tampered regions.
These image inpainting methods can be used for multiple purposes (e.g., removing objects, reconstructing
corrupted areas, eliminating various types of distortion, etc.) makes creating forensic detectors for image
manipulation an extremely difficult and time-consuming procedure. The aim of this paper is to localize
the tampered regions manipulated by image inpainting methods. To do this, we propose a novel CNN-
based deep learning model called IRL-Net which includes three main modules: Enhancement, Encoder, and
Decoder modules. To evaluate our method, three image inpainting methods have been used to reconstruct
the missed regions in two face and scene image datasets. We perform both qualitative and quantitative
evaluations on the generated datasets. Experimental results demonstrate that our method outperforms
previous learning-based manipulated region detection methods and generates realistic and semantically
plausible images. We also provide the implementation of the proposed approach to support reproducible
research via https://github.com/amiretefaghi/IRL-Net

INDEX TERMS Image Forensics, Image Inpainting, Image Manipulation Detection

I. INTRODUCTION

IMAGE manipulation has become very convenient and
ubiquitous nowadays due to the availability of some easy-

to-use tools like Adobe Photoshop. Some image manipula-
tion techniques can lead to misinterpretation, and thus mali-
cious use of the visual content, e.g.: moving some elements
from one region to another region (copy-move) [1]–[3], copy-
ing elements from one image and pasting them on another
image (splicing) [4]–[7], [51], and removal of unwanted
elements [8]. Some of these techniques leave very few traces
behind, making the detection of manipulated regions very
challenging. For instance, recent learning-based inpainting
methods attempt to semantically fill the corrupted region
based on the overall scene, and the missed region is con-

tinuously structured with uncorrupted regions. Particularly,
when the aim is to inpaint small missing regions, the outputs
of these methods visually look very realistic. Even recent
advances in inpainting methods show that they can fill large
missing areas with meaningful structures and objects that do
not exist anywhere else in the image [9].

Such advancements make the manipulation detection a
very challenging process [13], especially when the aim is not
only to discriminate manipulated images from the authentic
ones, but also to pinpoint tampered regions at the pixel level
[14]. Notably, different categories of GAN-based inpainting
methods [15] are trained using various sizes of masks which
enable them to predict small or large masked regions, leading
to, as shown in Fig. 1, inpainted images visually plausible
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(a) Original (b) Inpainted (c) Mask (d) Detected

FIGURE 1: Examples of the proposed IRL-Net method predict-
ing manipulated regions. The examples in the first two rows are
from Places2 [10] and the other two from CelebA [11] datasets
which are inpainted by the GC method [12] using the indicated
Mask (c), and then detected with our method (d).

with almost no manipulation traces left around or inside the
inpainted regions [16]. In this paper, we address tampering
localization by focusing on unveiling the tampering traces
left by inpainting methods.

Due to the widespread usage of deep learning in many
fields, the community of multimedia forensics has been in-
spired and driven to investigate if it is feasible to compel a
convolutional neural network (CNN) to learn manipulation
detection characteristics and record pixel value dependencies
caused by image tampering operations. The existing deep
learning-based methods can be classified into two main cate-
gories. First, the methods that benefit from a noise map of
the input image generated either by pre-defined high-pass
filters [17] or trainable counterparts [18], [19]. For instance,
the spatial-domain rich model (SRM) [17], a non-trainable
layer, has been proposed to capture the local dependency
changes caused by manipulation techniques. The output of
such layers is fed into a deep neural network (DNN), either
alone [19], [20] or together with the input RGB image [21]–
[23]. The approaches within the second category usually do
not use any special layer for detecting noise from the input
image. Instead, they utilize different network structures like
fully convolutional networks (FCN) [24], faster R-CNN [25],
and long short-term memory (LSTM) cells [26].

In this paper, we propose a novel method, named IRL-Net,
which uses the former approach where high-level features are

extracted from both the RGB image and a high-pass filtered
version of the RGB image. The extracted features from RGB
and high-pass filter can be concatenated together at different
stages for further processing. The concatenate stage of the
two feature branches is understudied and can be categorized
into three classes called early, middle, and late fusion [27].
In this paper, we will investigate different fusion strategies in
that regard, and our experiments show that the early fusion
model performs better than the other two fusion types.

We also perform end-to-end training to learn the most
discriminative features between manipulated and non-
manipulated regions through back-propagation using ground
truth labels and image mask information. To improve the
performance of detecting and localizing manipulated im-
age regions, different kinds of CNN-based approaches have
been presented to classify the image patch and pixel-wise
segmentation, and different inputs to the network are taken
into consideration. The proposed model achieves promising
results in patch classification, as well as in localizing manip-
ulated regions at pixel level. Our main contributions can be
summarized as:

• In this work, we propose a novel effective end-to-end
solution for localizing the manipulated regions gener-
ated by inpainting methods. Our DNN-based model,
called IRL-Net, benefits from the advantages of a new
proposed attention layer. The code for our proposed
method is available on GitHub1.

• We utilize two effective blocks called attention and up-
scaling to predict very high-quality outputs. The atten-
tion block is responsible to extract more informative
features and the upscaling block placed in the Decoder
module assists to generate a super-resolution with mini-
mum checkerboard artifact issues in the output.

• The required datasets for training and validation have
been generated using two publicly available datasets
called Places2 and CelebA. Moreover, to inpaint the
masked regions, three well-known and recently pro-
posed inpainting methods have been used.

II. RELATED WORKS
In this section, we first review recent works developed for
image inpainting and then present the methods that concern
the localization of inpainted areas.

A. IMAGE INPAINTING
The remarkable progress of DNNs provides the image in-
painting task with a great opportunity to produce very re-
alistic results, making it very arduous for human eyes to
recognize inpainted regions. These remarkable results have
made image inpainting to grow significantly in specific appli-
cation areas, e.g., face inpainting [28], and scene inpainting
[29]. Nowadays, image inpainting can assist in removing,
restoring, or reconstructing lost or corrupted part of the
image. Generally, existing inpainting models differ in terms

1https://github.com/amiretefaghi/IRL-Net
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of the network structure. For example, some methods follow
the coarse-to-fine technique [30], [31] to gradually refine the
generated images. The two consecutive stages (i.e., coarse
and fine) respectively learn the missing regions at the coarse
stage and further refine the whole image at the fine stage. Be-
sides the coarse-to-fine structure, another well-known struc-
ture called coarse-and-fine has the aim of extracting global
semantic information as well as multi-level local features in
parallel [30], [32].

B. LOCALIZING TAMPERED REGIONS
Detecting manipulated regions is a binary classification prob-
lem where the classifier should decide about each pixel:
tampered or not. Traditional DNN-based solutions have tried
to localize the pixels manipulated by inpainting methods
usually had poor performance, mainly because they used
the specific content of the image at hand as their main
information source instead of content-independent features.

More recently, some approaches have been proposed to
look for the footprint of tampered pixels in a residual space
not focusing on the specific content of the image but in-
terpreting that the tampered regions mostly differ from the
untouched parts in terms of their noise distribution. In order
to construct a noise map, methods are categorized into two
groups: non-trainable and trainable. In [19] the noise map
provided by high pass filters (pre-filtering) is fed to four
Residual blocks followed by upsampling modules to achieve
pixel-wise prediction. However, Bayar et al. [18] proposed
a constrained convolutional layer (called Bayar layer) that
adaptively learns to suppress the image’s content and learns
manipulation detection features. Several methods [21], [22],
[25], [45]–[47] were proposed to leverage both the noise map
and content of the image to reduce the risk of losing other
useful information in the original RGB view. Zhou et al.
[25] proposed a two-stream fast R-CNN for image manip-
ulation detection, the RGB image, and its noise counterpart
generated by the spatial rich model (SRM) [17]. One stream
extracts features to find tampering artifacts, and the other one
discovers noise discrepancies between the tampered region
and untouched parts. The Manipulation Tracing Network
(ManTra-Net) [22] uses not only the RGB view but also
two noise counterparts: SRM [17] and Bayar layer [18].
ManTra-Net decomposes to a feature extraction part followed
by a LSTM based detection module. The Spatial Pyramid
Attention Network (SPAN) [21], similar to ManTra-Net [22],
leveraged SRM [17], Bayar layer [18], and RGB view for its
feature extraction module’s fed. The Image Inpainting De-
tection Network (IID-Net) [8] leveraged the incorporation of
the SRM layer, Pre-Filtering layer [19], and Bayar layer [18].
The fusion of three streams was fed to an extraction block de-
signed by the Neural Architecture Search (NAS) algorithm,
followed by a decision block encompassing global and local
attention modules to reduce intra-class inconsistency.

On another front, edge-supervised approaches have been
recently presented in some related papers [23], [24], [33],
[48]–[50] aiming to trace various manipulation types. Meth-

ods that exploit edge-supervised techniques look for bound-
aries around tampered areas. Nevertheless, this strategy is
not practical to fulfill the purpose of localizing high-quality
inpainting methods whose boundaries are almost imper-
ceptible. For instance, Multi-View Multi-Scale Supervised
Networks (MVSS-Net) [23] exploits tampering boundary
artifacts by using an edge-supervised method alongside the
noise view of the input image and RGB view.

The methods combining the RGB stream and its noise
counterpart have a fusion part categorized into early, middle,
or late-stage fusion [27]. Accordingly, ManTra-Net [22],
SPAN [21], and IID-Net [8] have an early fusion part for
concatenating features of the two corresponding streams.
However, other methods [23], [25] proposed late fusion so
each stream provides deeper-layer features before concate-
nation. Notably, to the best of our knowledge, middle fusion
has not been studied for inpainting manipulation localization.

Due to the limited availability of implementations for other
methods, we conduct a comparative analysis between the
results of our proposed method and two recent alternatives,
namely MVSS-Net [23] and LDICN [19].

III. PROPOSED METHOD
The overview of our proposed method, including three main
modules named Enhancement, Encoder, and Decoder, is
shown in Fig. 2. The Enhancement module receives the
manipulated image and tries to enhance inpainting traces.
Then, the Encoder module, which is using a residual block,
is intended to extract high-level features that assist to dis-
criminate the manipulated region from the rest of the image.
Finally, the Decoder module generates a predicted inpainting
mask with the help of an Attention block and Pixel-Shuffle
upscaling blocks.

A. ENHANCEMENT MODULE
Generally, standard convolution layers learn features to rep-
resent the contents of input images rather than extracting
the required features for detecting the traces left behind by
inpainting methods. Notably, the majority of these traces are
hidden in local noise distributions, and usually RGB channels
are not sufficient to deal with all types of manipulation traces.
Considering this, with the aim of suppressing ineffective
content of the input image and more significantly capturing
the inpainting traces, a special predesigned layer called Bayar
[18] has been used. Therefore, we adopt the Bayar layer as
one of the early layers of the Enhancement module to learn
low-level prediction residual features to detect the inpainting
traces. The Bayar layer reaches this goal by adding specific
constraints to the standard convolution layer in the following
way. Let W i

b represent the ith channel (for RGB input image
i = 1, 2, 3) channel of the weights Wb in the Bayar layer. The
following the constraints are enforced on each channel of Wb

before each training iteration:{
W i

b (0, 0) = 1∑
m,n̸=0 W

i
b (m,n) = 1

i = 1, 2, 3 (1)
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FIGURE 2: Overview of our proposed inpainted region localization Network (IRL-Net) architecture including three main modules
called Enhancement, Encoder, and Decoder.

FIGURE 3: Different version of Residual blocks a) The original
version of Residual block b) The last Relu block has been
removed c) Batch Normalization block removed and SE Block
added.

where W i
b (0, 0) indicates the center of ith channel of the

weights Wb in the Bayar layer. Then, we concatenate the
extracted features by the Bayar and convolution layers and
feed them to a Multi-Scale Convolution (MSC) block. As the
scale of generated noise (manipulated traces) by inpainting
methods vary, introducing multi-scale feature extraction can
help to learn more robust convolutional filters, and thus more
informative features will be extracted. The MSC block has
three convolution layers with the size of x×3×3, x×5×5,
and x× 7× 7, where x is the number of filters in each layer.
Finally, we concatenate the output of each layer and transmit
it to the next module (i.e., the Encoder module).

B. ENCODER MODULE

To extract high-level features, an Encoder module, including
four residual units each of which is filled with residual layers,
has been placed after the Enhancement module. Using the
residual architecture [34] to avoid vanishing/exploding gradi-
ents, the Encoder module can assist to extract more abstract
features. As shown in Fig. 3 (a), a residual block is a stack
of layers set in a way that the output of a layer is taken and
added to another layer deeper in the block. The non-linearity
is then applied after adding it together with the output of the
corresponding layer in the main path. This bypass connection
is known as shortcut or the skip connection.

1) SE-RESIDUAL BLOCK

An effective residual block called SE-Residual proposed by
[35] has been used to prevent: a) decreasing the flexibility
of the network for extracting features, and b) increasing the
number of feature maps leading to numerically unsuitability
during the training phase. Here, the SE-Residual block has
been used besides the two original [34] and SRResNet [36]
residual blocks. In the SE-Residual block, the batch nor-
malization layers are removed to provide various flexibility
ranges for extracting features, as Nah et al. [37]. Moreover,
instead of increasing the number of convolution layers or
feature maps to improve the performance, this SE-Residual
unit improves the representational power of the network by
enabling it to perform dynamic channel-wise feature recal-
ibration. As shown in Fig. 4, as part of this process, the
block squeezes each input channel into a single numerical
value using Global Average Pooling. The second step of
this block is to extract information from the input by two
Fully-Connected layers (FC). The first FC layer exploits the
ReLU activation function and reduces the output channel
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FIGURE 4: Squeeze and Excitation Block

complexity. A sigmoid activation function is used in the
second FC layer, which gives each channel a smooth gating
function. In the end, the block weights each feature map of
the input according to its channels: the "excitation".

C. DECODER MODULE
To map the learned high-level features extracted by the
Encoder module into low-level discriminative information,
the Decoder module has been placed as the last module of
our proposed method. The output of the Decoder module
is a mask image (black and white image) showing the ma-
nipulated region by white pixels (positive class) and pristine
regions by black pixels (negative class). The Decoder module
receives high-level features at lower-scale in comparison to
low-level mask images, therefore it should upscale features to
generate an appropriate mask image. This upscaling process
is performed by a PixelShuffle block (described in the next
section) as shown in Fig. 2. During this process, misclassified
pixels may be generated in the mask image, due to the
ineffectiveness of convolutional neural networks in modeling
long-term feature correlations. To track this problem, many
attention blocks have been proposed and used recently in the
decision phase of networks. In this line of work, we designed
an attention block and use it in the decoder to generate the
mask image in an accurate way. This attention block aims
to reduce the number of misclassified pixels through a very
effective technique: using knowledge of the Encoder module
to assist the Decoder module to build an appropriate features
map. The attention map is directly computed on the decoder
and encoder features. After obtaining the attention scores, we
use these to compute attention on decoder features, as shown
in Fig. 5.

1) UPSCALING BLOCK
A special upscaling block called PixelShuffle has been used
to construct a high-accurate output (mask image). The tradi-
tional upscaling usually starts with some kind of interpolation
(e.g., bilinear) which usually leads to checkerboard artifact
issues. To reduce those artifacts Shi et al. [38] introduced
PixelShuffle which is an operation used in super-resolution

FIGURE 5: Attention Block

models to implement efficient sub-pixel convolutions with a
stride of 1/r. Specifically, PixelShuffle rearranges elements
in a tensor of shape (None, W , H , C × r2) to a tensor of
shape (None, W × r, H × r, C). As shown in Fig. 2, we
have used one PixelShuffle operation for ×2 upscaling and
two PixelShuffle operations for ×4 upscaling.

2) ATTENTION BLOCK
This attention block is inspired by self-attention, hence,
this attention block has three variables known as
Query/Key/Value. Queries are a set of vectors you want to
calculate attention for. Keys are a set of vectors you want
to calculate attention against. Dot product multiplication
gives you a set of weights (also vectors) indicating how
attended each query is against Keys. Based on our purpose
and this definition, we use features of the Encoder module
as query and futures of the Decoder module as key. Under
this condition, the attention block uses the knowledge of the
Encoder module to assist the Decoder module to build an
appropriate features map. As shown in Fig. 5, the features of
the Decoder module (X) and Encoder module (f) are fed into
1 × 1 convolution layers, and the outputs are then reshaped
to the feature maps Q and K, respectively:

Q = Frt(Wqf) (2)

K = Frt(WkX) (3)

where Fr is the reshape function to convert the height and
width dimensions of the feature map into one dimension
while Frt is the Fr followed by a transpose operation. Then,
the spatial attention of each location is defined as follows:

Ai,j =
exp(KiQj)∑N
i=1 exp(KiQj)

(4)

where each element Ai,j
s of the spatial attention map As

represents the correlation extent between the ith position
and the jth position to model the long-range dependency.
Simultaneously, X is also fed into a 1 × 1 convolution layer
to generate a feature map, which is then reshaped. A matrix
multiplication operation between V and As is performed and
then the result is reshaped back to RW×H×C for generating
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the attended feature map Xs as follows:

Xs = V As (5)

Finally, we multiply Xs by a scale factor α and add with
the input feature map X to generate the final output of the
attention block as follows:

O = αXs +X (6)

where α is a learnable parameter and is initialized with
0. By introducing α, the network starts from learning cor-
relations around local regions, and then extends to learn the
long-range dependency between different regions across the
feature map.

Notably, in typical spatial attention, Queries and Keys
are derived from the same feature map within a module.
However, this paper’s mechanism separates Queries from
the Encoder module’s feature map and Keys/Values from
the Decoder module’s feature map. This innovative method
captures alignment and correlation between Encoder knowl-
edge and Decoder predictions. A strong correlation results
in a higher dot product, prompting the Decoder to extract
more information from corresponding positions in its feature
map. This introduces knowledge infusion from the Encoder,
enhancing the Decoder’s decision-making. Aligned Query
and Key positions emphasize relevant Encoder knowledge,
aiding accurate feature map construction. This unique spatial
attention acts as a bridge, fostering collaboration between
Encoder and Decoder through alignment-based learning.

D. LOSS FUNCTIONS
The proposed model is trained in a supervised manner. In the
training process, we have used two types of loss functions:
a) Fused Focal (FF) loss, and b) Dice loss. With the aim of
having an end-to-end training process, we define the total loss
L as:

L = LFused + LDice (7)

1) FUSED FOCAL LOSS
Using FF loss, the class imbalance is mitigated (the areas that
have been inpainted are often small when compared with the
entire image). A FF loss function [39], [40] addresses class
imbalance during training in tasks like object detection. The
FF loss focuses on learning on hard misclassified examples
by applying a modulating term to the cross-entropy loss.
This is a dynamically scaled cross-entropy loss, in which
the scaling factor becomes zero as confidence in the correct
class increases. In a nutshell, this factor automatically down-
weights the contribution of easy examples during training
in order to focus the model on problems of difficulty more
rapidly. However, in most of the inpainting-based forgeries,
the inpainted areas are relatively smaller than the pristine
ones, resulting in a class imbalance. As a consequence,
the trained model tends to classify the samples as pristine
more often. In order to address this issue, we propose to
incorporate the FF loss into the binary cross-entropy loss,

creating a FF loss function. A α-balanced variant of the FF
loss is typically defined as follows:

LFused = −
n∑
i

α(1− M̂i)
λMi log M̂i

+(1− α)M̂i
λ
(1−Mi) log(1− M̂i)

(8)

Where M̂i and Mi are predicted output and grand-truth
respectively, and n is the size of output vector. In particular,
λ, is a focusing parameter that can smoothly adjust how
easily examples are down-weighted. Clearly, when λ = 0,
the focal loss is the same as the cross-entropy loss, and as
λ increases, so does the impact of the modulating factor. We
evaluate different choices of λ ∈ (1, 2, 3), and empirically
find that λ = 2 works best in the experiments. In addition, α
is the weight assigned to the rare class for further adjusting
imbalanced classes. We hence set α = 0.75 to balance the rare
class.

2) DICE LOSS
Dice loss [41] is widely used in medical image segmenta-
tion tasks to address the data imbalance problem. It only
addresses the imbalance problem between foreground and
background but overlooks another imbalance factors between
easy and hard examples.

LDice = 1−
2
∑H×W

i M̂i ·Mi∑H×W
i M̂i

2
+
∑H×W

i M2
i

(9)

IV. EXPERIMENTS AND DISCUSSION
In this section, we first introduce the experimental settings,
then evaluate our proposed method on newly generated
datasets based on Places2 [10] and CelebA [11]. We compare
the results of our proposed method with two other recent
methods called MVSS-Net [23] and LDICN [19]. For quan-
titatively measuring the performance difference among the
methods, we utilize several statistical metrics. Finally, we
report an ablation study on the effects of the residual block
and the attention block in our proposed method.

A. TRAINING SETTING
We train the networks using the Adam optimizer with an
initial learning rate of 1e−4. All of our experiments are run
with a Nvidia Tesla P100 GPU.

B. DATASETS
We prepared the training and test data by exploiting Places
[10] and CelebA [11] datasets. We used three different deep
inpainting approaches, approaches including GC [12], CA
[42], and EC [43] to generate inpainted images on the two
mentioned datasets. For each of the two mentioned datasets,
we randomly selected (without replacement) 50K and 10K
images to create training and test subsets, respectively. For
inpainting images, mask generation is an important factor. To
simulate more diverse and complex real-world scenarios, we
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Original Inpainted MVSS-Net LDICN Ours GT

FIGURE 6: Quality comparison among our method and other
methods on CelebA. The second column of each row shows the
inpainted image using the mask in the last column (Ground
Truth, GT), which is detected using the two reference methods
(MVSS-Net and LDICN) and Ours.

Original Inpainted MVSS-Net LDICN Ours GT

FIGURE 7: Quality comparison among our method and other
methods on Places. The second column of each row shows
theinpainted image using the mask in the last column (Ground
Truth, GT), which is detected using the two reference methods
(MVSS-Net and LDICN) and Ours.
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TABLE 1: Quantitative results over Places2 dataset for IRL-Net
and other compared methods (LDICN, MVSS-Net). The best
result of each column is boldfaced.

Method Inpainting
Method mIoU F1

score Precision Recall

LDICN 85.87 83.77 96.50 74.01
MVSS-Net GC 43.40 1.56 19.09 0.82

Ours 90.62 92.86 98.89 87.76
LDICN 89.09 86.28 98.31 76.87

MVSS-Net CA 43.61 2.94 26.19 1.56
Ours 91.76 93.72 99.59 88.51

LDICN 85.26 83.41 96.07 73.70
MVSS-Net EC 43.38 2.98 20.85 1.60

Ours 90.20 92.39 98.20 87.23

TABLE 2: Quantitative results over CelebA dataset for IRL-Net
and other compared methods (LDICN, MVSS-Net). The best
result of each column is boldfaced.

Method Inpainting
Method mIoU F1

score Precision Recall

LDICN 85.87 83.77 96.50 74.01
MVSS-Net GC 43.42 1.65 21.37 00.85

Ours 90.77 92.82 98.68 87.62
LDICN 88.63 86.01 98.02 76.62

MVSS-Net CA 43.40 2.21 37.06 1.14
Ours 91.87 93.81 99.68 88.58

LDICN 76.76 73.60 89.96 62.28
MVSS-Net EC 43.33 2.08 19.14 1.10

Ours 87.50 89.44 95.91 83.79

utilize the irregular mask setting in GC with arbitrary shapes
and random locations for both training and testing. We
underscore that this approach enables us to attain masks with
diverse shapes and positions, thereby promoting variability
in both our training and testing stages. Hence, our generated
datasets contain tuples of the inpainted image and generated
mask. (See Figs. 6 for example masks.).

C. EVALUATION METRICS
Four commonly used pixel-wise classification metrics, in-
cluding Recall, Precision, mean Intersection over Union
(mIoU), and F1-score, are adopted to evaluate the perfor-
mance. The metrics are calculated on each image indepen-
dently, and the mean values obtained over all images are
reported in the following experiments. The mIoU metric is
preferred since it is not affected by imbalanced classes. The
Precision metric demonstrates how many instances that have
been predicted true are really true. Meanwhile, Recall shows
how many true positive instances are predicted correctly. F1-
score is also used to combine the Precision and Recall metrics
into a single metric.

D. COMPARISON WITH PREVIOUS WORK
In this section, we compare our proposed method with two
state-of-the-art methods. However, for a fair comparison, we

consider two main criteria to choose an appropriate state-
of-the-art: a) Pre-trained models released by paper authors,
and b) Source code publicly available. Accordingly, we have
chosen MVSS-Net [23] and LDICN [19] for a fair compar-
ison. MVSS-Net [23] was pre-trained on the CASIAv2 and
DEFACTO datasets. We trained LDICN [19] again using the
code provided by the authors on our datasets.
Therefore, we have two detection networks (LDICN [19] and
MVSS-Net [23]), six training datasets created using three
inpainting methods (GC [12], CA [42], and EC [43]), and two
testing datasets (Places2 [10] and CelebA [11]). All of our
experiments are run separately for Places2 and CelebA. The
performance of the two reference detection networks and our
proposed detection network are shown in Table 1 and Table 2.

1) QUANTITATIVE PERFORMANCE EVALUATION
As shown in Table 1 and Table 2, our proposed method
outperforms existing methods by a large margin in all test
scenarios. In the following, we will provide a detailed analy-
sis of these results.
The detection results are reasonably good for LDICN (re-
trained on our datasets), but anyway worse than the ones ob-
tained by our proposed ILR-Net. On the other hand, MVSS-
Net is pre-trained on CASIAv2 and is reported to have a
very good performance on that dataset, but its performance
drops drastically here on our inpainting methods and datasets.
Such poor generalizability indicates that MVSS-Net tends
to overfit focusing on the artifacts of a particular inpainting
method and fails to consider the common characteristics of
different inpainting techniques. This is a common problem
in image manipulation detection, the lack of generalization
capabilities [16]. As discussed before, this generalization can
be improved by properly exploiting the noise information
contained in real versus inpainted contents. This also indi-
cates that noise patterns are indeed a reliable cue for detecting
inpainted regions.

2) QUALITATIVE PERFORMANCE EVALUATION
Using visuals, we present a qualitative comparison of the de-
tected masks. Figs. 6 and 7 illustrate examples of LDICN and
MVSS-Net using Places2 and CelebA. LDICN and MVSS-
Net, however, cannot accurately identify the inpainted re-
gions, especially when they are complex. Our proposed
method achieves very good results on test samples of differ-
ent inpainting methods.

E. FUSION EXPERIMENT
Our proposed method uses two kinds of information: noise-
based information and RGB-based information, correspond-

TABLE 3: Comparison of three fusion techniques.

Architecture mIoU F1-score Recall Precision
early-fusion 90.62 92.86 87.76 98.89

middle-fusion 89.95 92.71 88.08 97.85
late-fusion 90.14 92.55 87.59 98.12
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(a) Middle fusion architecture (b) Late fusion architecture

FIGURE 8: The proposed middle and late fusion architectures

ing respectively to the Bayar and Convolution layers in Fig.
2 right after the input image. It is important to combine and
fuse this information at a specific stage in order to carry
out further processing. Note that, in Fig. 2, that fusion is
implemented in the Enhancement module via a concatenation
operation in a kind of early fusion. Here, we analyze other
architectures for combining the RGB and noise information.
For this purpose, we consider three types of fusion: early
fusion, middle fusion, and late fusion. We used early fusion
in our proposed method represented in Fig. 2 combining
the mentioned information right after the first layer. For
middle fusion (see Fig. 8 (a)), more information is extracted
from the noise-based and RGB-based channels. Thus, in
the Enhancement stage, we have two branches that extract
information separately, and at the end of the Enhancement
stage, we combine the extracted information. For late-fusion
(see Fig. 8 (b)), we use two independent branches based on
RGB and noise information all throughout the Enhancement
and Encoder stages. In this case, we place the fusion function
(again feature concatenation) after the Encoder stage. Table 3
shows the measured quantitative results for the three fusion
methods. As can be observed, the early-fusion technique
outperforms the other two fusion methods.

F. ABLATION STUDY: RESIDUAL AND ATTENTION
UNITS
In this section, we quantitatively analyze the impact of the
proposed SE-Residual and Attention blocks in our model. As
shown in Table 4, each of the two components in IRL-Net
contributes in different ways to its performance. By com-
paring the statistical results presented in Table 4 with those

TABLE 4: Impact of SE-Residual and Attention blocks on
performance.

Architecture mIoU F1-score Recall Precision
w BN 89.49 92.62 88.29 97.39

w/o BN 89.80 92.23 87.20 97.88
w/o BN w SE 90.12 92.15 86.71 98.31
w Attention 90.62 92.86 87.76 98.89

of previous residual blocks, our suggested residual block
extracts the necessary information quite well. The attention
block combines asymmetrically two separate feature embed-
dings of the same dimension, in contrast, the self-attention
input is a single feature embedding. The quantitative results
demonstrate the advantages of the attention block.

V. CONCLUSION
To improve the performance of detecting and localizing
manipulated image regions, this paper has proposed a novel
method, named IRL-Net (Inpainted Region Localization Net-
work). The proposed method uses high-level features ex-
tracted from both the RGB image and a high-pass filtered
version of the RGB image concatenated at some stage for fur-
ther processing. It also performs end-to-end training to learn
the discriminative features between manipulated and non-
manipulated regions through back-propagation using ground
truth and masked image. IRL-Net consists of two important
feature designs: a) a new Residual block based on Squeeze-
and-Excitation, and b) an Attention block combines the two
feature embeddings according to their information. IRL-Net
achieves promising results in localizing manipulated regions
at pixel level on testing datasets. Future work includes an-
alyzing and improving the generalization capabilities spe-
cially against unseen manipulations [16], [44], and further
exploration of more sophisticate fusion architectures [27]
combining image contents and noise elements.
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