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Nonlinear dynamics and Kerr frequency comb
formation in lattices of coupled microresonators
Aleksandr Tusnin 1,2✉, Alexey Tikan 1,2✉, Kenichi Komagata 1,3 & Tobias J. Kippenberg 1,2✉

Recently, substantial progress has been made in the understanding of microresonators fre-

quency combs based on dissipative Kerr solitons (DKSs). However, most of the studies have

focused on the single-resonator level. Coupled resonator systems can open new avenues in

dispersion engineering and exhibit unconventional four-wave mixing (FWM) pathways.

However, these systems still lack theoretical treatment. Here, starting from general con-

siderations for the N-(spatial) dimensional case, we derive a model for a one-dimensional

lattice of microresonators having the form of the two-dimensional Lugiato-Lefever equation

(LLE) with a complex dispersion surface. Two fundamentally different dynamical regimes can

be identified in this system: elliptic and hyperbolic. Considering both regimes, we investigate

Turing patterns, regularized wave collapse, and 2D (i.e., spatio-temporal) DKSs. Extending

the system to the Su-Schrieffer-Heeger model, we show that the edge-state dynamics can be

approximated by the conventional LLE and demonstrate the edge-bulk interactions initiated

by the edge-state DKS.
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Over the past decade, it has been shown that continuous
wave-driven Kerr nonlinear resonators host a variety of
coherent dissipative structures1,2. In the anomalous dis-

persion regime, they give rise to dissipative Kerr solitons (DKS)3,
while in the normal dispersion regime, platicons4,5, or interlocked
switching waves, have been generated. These coherent dissipative
structures give rise to a wide range of nonlinear dynamical phe-
nomena, ranging from breathers6,7 and soliton switching8 to
chaotic behavior9. Mathematically, in leading order, the dynamics
can be described by the 1D driven-dissipative nonlinear Schrö-
dinger equation (NLSE)10 known as the Lugiato-Lefever equation
(LLE)11,12, and extension thereof, e.g., to include multi-mode
dynamics or the Raman nonlinearity13. In this framework, a
variety of nonlinear phenomena have been observed4,5,14–18. On
the application side, in particular, the DKS formation process has
been utilized and has enabled photonic integrated
microresonator-based optical frequency comb generation with
applications ranging from coherent communications19 and neu-
romorphic computing20 to atomic clocks21.

Yet to date, almost all experimental and theoretical works on
‘dissipative structures’ in optically driven Kerr nonlinear reso-
nators (be it fiber22,23 or microresonator based) have focused on
the single resonator case, and only recently extended to the dimer
case24–26. The recent advances in ultra-low loss nonlinear inte-
grated platforms, particularly silicon nitride27,28, have dramati-
cally reduced the threshold for optical parametric oscillations and
concomitant dissipative structure generation — at and below the
milliwatt level. This indicates that large-scale arrays of coupled
Kerr nonlinear resonators that combine spatial and synthetic
frequency dimensions29 are within experimental reach — yet
their nonlinear dynamics under continuous-wave driving remain
largely unexplored, both theoretically and experimentally. Such
systems are expected to exhibit rich nonlinear dynamics and
novel 2D dissipative structures that have combined spatial and
temporal dimensions. Even the simple case of a photonic dimer
has demonstrated a variety of emergent nonlinear dynamics24,25

and phenomena such as soliton hopping and recurrent dispersive
waves. 1D and 2D lattices are particularly attractive as they allow
significantly more complex dispersion landscapes — opening
ways to engineer dispersion beyond the traditional approaches.
Therefore, chains of resonators are expected to provide a pathway
to octave-spanning DKS30, which is an enduring outstanding
challenge in the field. Such spectra are required for the self-
referencing of micro-combs31. Lattices of nonlinear resonators
also allow studying topological systems (e.g., the Su-Schrieffer-
Heeger (SSH) model or honeycomb lattices32,33), which over the
past decade have been extensively studied in the linear regime in
photonics. Nonlinear effects, and spatial solitons in particular,
have already been observed and studied in arrays of coupled
optical waveguides34–36. Crucially these nonlinear effects however
did not include parametric frequency conversion (i.e., parametric
oscillations), which is the underlying physical principle for soliton
microcombs. However, a first analysis of DKS formation was
carried out in37, where the authors studied Kerr nonlinear version
of the photonic 2D Haldane model made of coupled multi-mode
optical microresonators with anomalous dispersion that are
coupled via link resonators.

In this manuscript, we analyze dissipative structures in opti-
cally driven coupled chains of nonlinear resonators in the absence
and presence of the edge modes. First, we provide a general
description of nonlinear dynamics in an arbitrary N-dimensional
lattice of resonators and derive an effective (N+1)D coupled-
mode equation (Fig. 1a, b). Next, we study the 1D chain of
equally coupled resonators (see Fig. 1a), providing a leading order
model in the form of the 2D continuous-discrete LLE. This model
demonstrates a net difference in comparison with its lower

dimensional counterpart. In particular, we observe fundamentally
distinct nonlinear regimes attributed to the local dispersion
profile: elliptic and hyperbolic. Investigating Turing patterns and
chaotic states in this system, we observe a drastic difference
between the considered regimes that emerge due to the four-wave
mixing (FWM) pathways structure mimicking the gain lobes
profiles. Performing dynamical simulations, we show the effect of
regularized wave collapses and the emergence of solitons that are
inherently two-dimensional spatiotemporal mode-locked struc-
tures. Furthermore, we study a dimerized chain of coupled
resonators described by the simplest topological model, the SSH
model (Fig. 1c). We focus on the aspect of DKS generation in the
edge state that is localized in the middle of the photonic bandgap.
Specifically, we show that edge-state solitons, in the absence of
interactions with the bulk, can be approximated by the conven-
tional single-resonator DKS (Fig. 1d). However, for the experi-
mentally accessible set of parameters, the generated DKS in the
edge states can induce edge-to-bulk scattering and generation of
the dispersive waves that can strongly disturb soliton coherence
and shorten its existence range.

In this manuscript, we derive an effective (N+1)D coupled-
mode equation for the general case of nonlinear dynamics in an
arbitrary N-dimensional lattice of resonators (Fig. 1a, b), fol-
lowing by a detailed study of a 1D chain of equally coupled
resonators. We demonstrate that this systems has a 2D dispersion
surface that defines two fundamentally distinct nonlinear regimes:
elliptic and hyperbolic. In these regimes, we numerically inves-
tigate stable and chaotic dynamics. For the former, we study
coherent dissipative structures, such as Turing patterns and 2D
DKS that correspond to spatio-temporal mode-locking of the
optical modes in different resonators. In the latter, we compare
the chaos in both dynamical regimes and attribute the observed
difference to the presence of the regularized wave collapse in the
elliptic regime. We conclude by considering DKS generation in
the edge state of the SSH model (Fig. 1c). We demonstrate
nonlinearly induced edge-to-bulk scattering and generation of the
dispersive waves that can strongly disturb soliton coherence and
shorten its existence range, which can be deduced from single
resonator approximation (Fig. 1d).

Results
Coupled Lugiato-Lefever equations in lattices of resonators.
We start with a general description of a system of weakly coupled
(coupling rate≪ free spectral range (FSR)) identical optical
resonators that is shown to be governed by a set of linearly
coupled LLEs, which can be presented in matrix form as

∂

∂t
A ¼ D̂Aþ iM̂Aþ ig0jAj2Aþ F; ð1Þ

where vector A ¼ ½A0; :::;AN�1�T contains optical field envelopes
of each resonator as a function of the azimuthal angle in the co-
moving frame φ in the lattice, matrix

D̂ ¼ diag � κ0þκex;0
2 þ iδω0

� �
þ i D2

2
∂2

∂φ2

h
; :::;

:::;� κ0þκex;N�1

2 þ iδω0

� �
þ i D2

2
∂2

∂φ2

i

contains detuning (δω0), losses (κ0), dispersion of each resonator
(D2), and coupling to the bus waveguides (κex,ℓ). The coupling
between different rings is introduced in matrix M̂, the nonlinear

term jAj2A ¼ ½jA0j2A0; :::; jAN�1j2AN�1�T describes the con-
ventional Kerr nonlinearity with single photon Kerr frequency
shift g0, and F ¼ ½ ffiffiffiffiffiffiffiffiffi

κex;0
p sin;0; :::;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex;N�1

p sex;N�1�T represents the

pump. Usually, the coupling matrix M̂ is diagonalizable and
possesses a set of eigenvectors fVig and associated eigenvalues λi,
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so any state A can be represented on this basis as

A ¼ ∑
j
cjVj; ð2Þ

where coefficients cj ¼ hAjVji correspond to the amplitude of
the supermode Vj and 〈 ⋅ ∣ ⋅ 〉 indicates the scalar product.
Therefore, Eq. (1) can be rewritten for the amplitudes cj in the
basis of eigenvectors fVjg, where the linear part of the equation
will take a form of a matrix with eigenvalues λj on the diagonals
corresponding to the resonance frequencies of the collective
excitations. However, the nonlinear term will no longer be
diagonal on this basis. In the direct space, the nonlinear term
takes form

jAj2A ¼ ∑
j1;j2;j3

cj1cj2c
�
j3
Vj1

Vj2
V�

j3
:

Projecting this expression onto the state Vj, one obtains the
coupled-mode equations for the amplitudes cj

∂cj
∂t

¼ � κ0 þ κex
2

þ i δω0 � λj

� �� �
cj þ i

D2

2

∂2cj
∂φ2

þig0 ∑
j1;j2;j3

cj1cj2c
�
j3

Vj1
Vj2

V�
j3
jVj

D E
þ ~f j;

ð3Þ

where ~f j ¼ hFjVji is the projection of the pump on the eigenstate
Vj, the nonlinear term represents the conventional FWM process
with the conservation law dictated by the product
hVj1

Vj2
V�

j3
jVji. The eigenvalues λj, showing the dependence of

supermode frequency on supermode number, naturally start to
play a role of dispersion, similar to the conventional LLE in a
single resonator. In general, the eigenvalues λj are not equidis-
tantly separated, and the supermode dispersion can be introduced
similar to the integrated dispersion of a single resonator
DintðkÞ ¼ λk � λk0 � J1ðk� k0Þ, where J1 is the local FSR of the
spatial supermodes in the vicinity of k0. Depending on the system,
the supermode dispersion has the same dimensionality D as the
system’s band structure. Thus, the total hybridized dispersion
(including the chromatic dispersion) profile for photons in the
system has Dþ 1 dimensionality.

We note, however, that the key requirement for the validity of
the reasoning presented above is the diagonalizability of the
coupling matrix M which does not impose any restriction on the
dimensionality of the system.

Chains of coupled microresonators
Two-dimensional hybridized dispersion. We continue our analysis
by considering a system of the equally coupled chain of
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Fig. 1 Dispersion hybridization in lattices of resonators. a Chain of equally coupled resonators. Dispersion of the spatial supermodes results in a two-
dimensional hybridized surface. Blue asterisks represent the cosine band structure of a single mode for which integrated supermode dispersion at k= 4 is
presented in panel (b). b Integrated supermode dispersion of the edge state of the Haldane model compared to the dispersion of a chain of resonators.
Inset: numerically computed band structure for 21 × 21 resonators with phase flux in the unit cell π. c Schematics of the Su-Schrieffer-Heeger model and its
dispersion for a ten resonator chain. Each resonator mode from panel (d) hybridizes accordingly with the band structure, forming a total hybridized
dispersion profile with the bulk (green dots) and the edge parabolas. Here the red line schematically represents the edge state DKS. d Schematics of a
single Kerr microresonator and its chromatic dispersion. The red line represents the dissipative Kerr soliton (DKS).
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resonators. First, we explicitly write Eq. (1) in the case of constant
coupling in a chain

∂A‘

∂t
¼ � κex;‘ þ κ0

2
þ iδω0

� �
A‘ þ iJ A‘�1 þ A‘þ1

� �

þi
D2

2
∂2A‘

∂φ2
þ ig0jA‘j2A‘ þ

ffiffiffiffiffiffiffiffi
κex;‘

p
sin;‘e

iϕ‘ :

ð4Þ

For simplicity, in the case of constant couplings to the bus
waveguides κex,ℓ, we introduce normalized variables d2=D2/κ,
κ= κ0+ κex, ζ0= 2δω/κ, j= 2J/κ, f ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κexg0=κ

3
p

sin;‘e
iϕ‘ ,

Ψ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2g0=κ

p
A‘. In the normalized units, Eq. (4) reads

∂Ψ‘

∂τ
¼� 1þ iζ0

� �
Ψ‘ þ id2

∂2Ψ‘

∂φ2
þ ij Ψ‘�1 þ Ψ‘þ1

� �
þ ijΨ‘j2Ψ‘ þ f ‘:

ð5Þ

Further, we can readily diagonalize the linear part by taking the
Fourier transform

ψμk ¼
1

2π
ffiffiffiffi
N

p
Z

∑
N

‘¼1
Ψ‘e

2πið‘k=NþμφÞdφ; ð6Þ

where k is the supermode index and μ is the comb line index.
With the Kerr term, Eq. (5) transforms to

∂ψμk

∂τ
¼� ð1þ iζ0Þψμk � i d2μ

2 � 2j cos
2πk
N

	 

ψμk þ δμ0~f k

þ i
N

∑
k1; k2; k3
μ1μ2μ3

ψμ1k1
ψμ2k2

ψ�
μ3k3

δμ1þμ2�μ3�μδk1þk2�k3�k:

ð7Þ
In this form, we obtain the analytical expression for the hybri-
dized 2D dispersion surface

dintðμ; kÞ ¼ 2ðωμk � ω0 þ D1μÞ=κ ¼ d2μ
2 � 2j cosð2πk=NÞ: ð8Þ

In the case of anomalous group velocity dispersion (GVD) (d2 > 0,
Fig. 1d) of the individual resonator, this surface with parabolic
and cosine cross-sections is shown in Fig. 1a. Local dispersion
topography changes along the k axis, revealing different regions
with parabolic and saddle shapes. The pump term ~f k stands for
the projection of the pump on the k-th supermode

~f k ¼
1ffiffiffiffi
N

p ∑
N

‘¼1
f ‘e

2πi‘k=N : ð9Þ

Spatial eigenstates and pump projection on the chain. The
supermode dispersion (i.e., band structure) has regions of
anomalous and normal supermode group velocity dispersion

(sGVD). For a given supermode index k0, the linear term in the
Taylor series of the cosine gives the supermode FSR equal to
J1=2π ¼ 2J=N sinð2πk0=NÞ and the corresponding quadratic
term yields sGVD J2 ¼ 2Jð2π=NÞ2 cosð2πk0=NÞ for eq. (4).

The excitation of the individual supermode requires an
accurate pump projection on its spatial profile. In case of
imperfect projection of the pump, the number of the excited
modes will depend on the local density of states within the width
of the band. Moreover, the single-resonator pump scheme always
leads to the excitation of supermodes in pairs due to their two-
fold degeneracy, except for the modes from the very top and
bottom of the band. According to Eq. (9), if the resonator ℓ= 0 is
pumped, all the supermodes have a pump term with the
projection amplitude 1=

ffiffiffiffi
N

p
. With the increasing number of

resonators, a pumping scheme with a single resonator excitation
becomes less efficient, and more sophisticated schemes are
required. For simplicity of the further analysis, in the following
we focus on the ideal case of a single supermode excitation.
Accurate projection to the supermode with index k0 requires
accurate adjustment the relative phases of the pump lasers
according to

f ¼ f ð0Þ 1; e�2πik0=N ; e�4πik0=N ; :::; e�2ðN�1Þπik0=N
h i

; ð10Þ

where f ð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g0κexP=κ

3_ωN
p

is normalized pump for a single
resonator.

Modulation instability gain lobes. Further, we investigate the
stability of plane wave solutions ψ00. Considering the pump at
μ0= 0 and at the parabolic region k0= 0 (saddle point k0=N/2),
we investigate FWM processes between the pump mode and the
modes with indexes μ, k. Linearizing the system, we identify the
modes with positive parametric gain. Our analysis, similar to38,
shows that the modulationally unstable solutions form an ellipse
(hyperbola) in the μ− k space (k ≠ 0, μ ≠ 0).

d2μ
2 ± j2k

2 ¼ 4jψ00j4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψ00j4 � 1

q
� ðζ0 � 2jÞ; ð11Þ

here+ (− ) stands for the excitation of k− k0= 0 (k− k0=N/2).
An example of the modulation instability (MI) gain lobes [Eq.
(11)] is presented in Fig. 2a, b for both regions in case of d2= 0.04
and j2= ∣J2∣/κ= 1. Figure 2a reveals that the supermode corre-
sponding to the excitation of all the resonators in-phase (anom-
alous sGVD) is unstable against small perturbations with μ and k
indexes that form an ellipse. The width and height of the ellipse
are defined by pump power, d2, and j2 coefficients that corre-
spond to GVD and sGVD. In contrast, the state corresponding to
the excitation of the neighboring resonators in the opposite phase
(normal sGVD) is unstable against the perturbations with μ and k

Fig. 2 Modulation instability gain lobes in chains of coupled resonators. Hybridized dispersion profile shown as a surface in panel (a) for the elliptic and
(b) for the hyperbolic regions. Contour plots in the k− μ plane at Dint= 0 highlight the different local topographies that result in the elliptic (a) or
hyperbolic (b) modulation instability gain lobes depicted in red.
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forming a hyperbola (see Fig. 2b), showing that all the super-
modes can experience positive parametric gain.

Wave collapse. We continue with the simulation of the coupled
LLEs in Eq. (4) for 20 resonator chain and constant normalized
coupling j= 10 (j2= 1). To simulate the temporal dynamics, we
employ the step-adaptative Dormand-Prince Runge-Kutta
method of Order 8(5,3)39 and approximate the dispersion
operator by the second-order finite difference scheme. We
deliberately choose the pumping scheme allowing for exciting
only a given mode. To trigger the FWM processes, we numeri-
cally scan the resonance with a fixed pump power and track field
dynamics in all the resonators.

First, we focus on the investigation of the unstable behavior of
the system pumping the elliptic (k0= 0) and hyperbolic regions
(k0=N/2) with the pump fℓ= 2.35 and corresponding detunings
ζ0= 22.1 and ζ0=−17.0. In the former case, at a single resonator
level we observe the random appearance of the pulses in different
parts of the cavity and further their rapid compression, during
which the peak amplitude significantly exceeds (60 times) the
background level (cf. Fig. 3a). Computing the nonlinear
dispersion relation (NDR)24,40, we observe the high photon
occupancy of the pump region beneath the parabolas (cf. Fig. 3b),
which indicates the presence of 2D dissipative nonlinear
structures. Furthermore, all the hybridized parabolas are
populated by the photons, meaning that supermodes from both
dispersion regions are excited (please also refer to the
Supplementary Movie 1 demonstrating resolved dynamics in
time of the field in all resonators and the corresponding 2D k− μ
spectrum). To further confirm it, we reconstruct the supermode
NDR (sNDR) for the 0th comb line (μ0= 0) for all resonators in
the following way

sNDRðΩ; μ0; kÞ ¼
1ffiffiffiffiffiffiffiffiffi
NtN

p ∑
‘;n

ψμ0‘
ðtÞeið2πk‘=N�ΩtnÞ; ð12Þ

where Ω is slow frequency, tn= Δtn with Δt= T/Nt time-step, T
is simulation time with Nt number of discretization points. The
result is shown in Fig. 3c. The whole cosine band structure is
populated, including the region of the normal dispersion. In the
opposite case, the spatiotemporal diagram (Fig. 3d) in hyperbolic
region does not demonstrate any extreme events, showing slow
(with respect to the elliptic case) incoherent dynamics

(cf. Supplementary Movie 2). Comparing the NDR (Fig. 3e) with
the elliptic case, we show less supermode occupancy. In the
vicinity of μ= 0, the normal sGVD suppresses the photon
transfer along the k axis. Nevertheless, the photon transfer to
other supermodes is stimulated with respect to eq. (11) that
depicts MI gain lobes position, resulting in the generation of
dispersive waves24,25. Reconstructing the supermode NDR
(Fig. 3f) for μ= 25 comb line [the average crossing position in
Fig. 3e], we observe the predominant population of the center of
the band.

We attribute this drastic difference in the chaotic dynamics to
the effect called wave collapse41,42 that plays an important role in
physics and leads to an effective mechanism of local energy
dissipation. Our system, in the long-wavelength limit, can be
modeled by 2D LLE with elliptic (∂2φφ þ ∂2θθ) or hyperbolic

(∂2φφ � ∂2θθ) dispersion (here θ stands for the continuous
coordinate along the circumference of the chain). Neglecting
the pump and damping terms, we obtain the conservative 2D
NLSE, which in the elliptic case can result in full compression of a
pulse to an infinitely small area concentrating there a finite
amount of energy43,44. Such pulse becomes ultra-broad in the
spectral domain, and even the presence of dissipation in 2D LLE
does not restrict this effect45. On the contrary, wave collapses do
not occur in the 2D focusing NLSE with hyperbolic dispersion44,
signifying that it is the dispersion curvature that is responsible for
the effect. Moreover, higher dispersion orders of the cosine limit
the pulse compression in the elliptic region, regularizing the
singularity46.

Coherent dissipative structures (Turing patterns and 2D dissipative
solitons). Turing patterns. As the different dispersion topo-
graphies result in completely different chaotic dynamics, the
Turing patterns in the elliptic and hyperbolic regions differ in
the same way. To observe the coherent structures, we first bring
the system to into an unstable state. Stimulating the incoherent
patterns, we further tune towards the monostable region
(ζk00 ¼ ζ0 � 2j<

ffiffiffi
3

p
,+ (− ) stands for k0= 0 (N/2)), pass through

breathers (e.g., Supplementary Movie 3 indicating distorted
breathing Turing pattern in the elliptic regime), and obtain stable
coherent structures in both regimes (Fig. 4). One can see that in
the elliptic regime at ∣fℓ∣= 1.05 and ζ0= 20.5, we observe the

Fig. 3 Numerical reconstruction of the nonlinear dispersion relation in the elliptic and hyperbolic regions in the unstable regime. Panels (a–c)
correspond to the elliptic region (k0= 0, d2 > 0, j2 > 0), panels (d–f) to the hyperbolic (k0= N/2, d2 > 0, j2 < 0). Spatiotemporal diagrams of unstable states
in 0th resonator are shown in (a) and (d); The corresponding nonlinear dispersion relation (NDR) in the elliptic region (b) demonstrates excitation of all
the optical and spatial modes, whereas the NDR in the hyperbolic region (e) reveals that photon transfer between the spatial supermodes is suppressed in
the vicinity of the pump mode μ= 0; The panels (c) and (f) represent the nonlinear supermode dispersion relation [Eq. (12)] of 0th comb line for the state
in (a) and 25th comb line for the state in (d).
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formation of a Turing pattern (Fig. 4a)47–49. On a single reso-
nator level, this corresponds to locked pulses (Fig. 4b) with a
typical comb spectrum shown in Fig. 4d. The corresponding 2D
k-μ spectral profile in Fig. 4c shows that the sidebands form a
disk, occupying the supermodes from both anomalous (∣k−
k0∣ < 5) and normal dispersion regimes. In the hyperbolic regime,
at ∣fℓ∣= 2.35 and ζ0=−20.3, we observe a train of pulses in each
resonator locked to each other (Fig. 4e, f). The corresponding 2D
spectral profile (Fig. 4g) forms a line in k-μ space, that qualita-
tively follows one of the asymptotes of the hyperbola that depicts
modulation instability gain lobes in Fig. 2b (also similar to50).
Comparing the comb spectra at the 1st resonator (Fig. 4d) with
the elliptic case (Fig. 4h), one can notice that the state at the
hyperbolic regime has a wider comb spectrum.

Spatiotemporal two-dimensional dissipative soliton. We also
generate a localized 2D dissipative solitons51 traveling along the
circumference of the chain, which we describe in the following.
To generate this spatiotemporal Kerr soliton (2D-DKS), we pump
the 4th supermode in the elliptic regime (blue asterisk at k= 4 in
Fig. 1b with ∣fℓ∣= 2.35 and ζ0= 10.92, so the local dispersion has
anomalous sGVD j2 ¼ jðπ=10Þ2 cos 2π=5 ¼ 0:30 in addition to
the non-zero supermode FSR j1=2π ¼ 0:1j sin 2π=5 ¼ 0:95. The
obtained solution of the 2D-DKS corresponds to a continuously
re-circulating spatial discrete soliton (cf. Supplementary Movie 4)
that forms an ellipse with a fish-like tail in the spectral domain
(cf. Fig. 5a, b). Similar to Cherenkov radiation for conventional
DKS, the disk-shaped soliton crosses the hybridized dispersion in
the vicinity of the edge of the Brillouin zone (cf. Fig. 5c), resulting
in the intensive generation of the dispersive waves, forming the
fish-like spectrum, but presuming the soliton coherence. In the
leading order, such 2D soliton is described by 2D LLE, therefore
its approximate existence range can be inferred from51.

On the single resonator level, the optical field envelope
demonstrates breathing dynamics (Fig. 5d) due to the periodic
appearance of the pulse in every individual resonator constituting
the chain. Resolving the field envelope dynamics in time, one
detects the periodic appearance of optical pulses and adjacent

dispersive waves. Sampling this signal in time and computing the
overall Fourier transform gives the so-called super-resolution
spectrum shown in Fig. 5e. The periodic nature of the signal
reveals a typical comb spectrum, with the presence of a fine
spectral structure around each comb line, shown in the inset of
Fig. 5e. These subcombs appear due to the breathing dynamics and
emergence of the corresponding dispersive waves, and the number
of spatial modes does not define the number of these subcombs. In
fact, these subcombs correspond to just low-frequency breathing,
which is also present in the single resonator case in the breathing
regime15. The time-averaging of the signal yields a smooth spectral
profile (solid line in Fig. 5e), indicating the periodic nature of the
signal. Noteworthy, a similar (in terms of hybridized dispersion)
2D-DKS was observed in the edge state of the Haldane model37.
However, the soliton coherence of the observed structure suffered
from the presence of the bulk, which effect we investigate below
with an example of the edge states of the SSH model.

Edge state solitons of Su-Schreiffer-Heeger model as solitons in
a single resonator. We continue our analysis considering the case of
a chain with staggered couplings, namely the SSH model (Fig. 1c), in
which the band structure has bands with different dimensionality.
While the dynamics of the bulk should be close to the case described
above, the edge states are localized on the corners of the chain. The
corresponding eigenvalues λedge represent a 0D band. Thus, the
hybridized dispersion profile corresponds to a conventional inte-
grated dispersion of a single microresonator as shown in Fig. 1d. The
chain supports edge states in the case where inter-cell coupling Jinter is
bigger than intra-cell coupling Jintra (i.e., the topological phase shown
in Fig. 1c). In the limit Jintra→ 0 (a trivial edge state32), the first
resonator is completely decoupled from the chain, and its dynamics is
described by conventional LLE. With the finite ratio Jintra/Jinter < 1, the
formed band structure (see Fig. 1c) has upper and lower bulk regions
with eigenmodes in the middle of the gap that correspond to the edge
states52. With the chromatic dispersion taken into account, the
nonlinear interactions happen on the hybridized dispersion surface.
Due to the nontrivial topology, the hybridized dispersion of the bulk
has a form of a two-dimensional surface, while the edge states have a

Fig. 4 Coherent dissipative structures in a driven nonlinear photonic ring lattice. Panels (a–d) correspond to the elliptic region (k0= 0, d2 > 0, j2 > 0),
and panels (e–h) correspond to the hyperbolic (k0=N/2, d2 > 0, j2 < 0). Spatiotemporal profiles of the mode-locked structures are shown in panels (a, e)
with the corresponding field profile on a single resonator level in panels (b, f). The 2D spectral profiles of the states (a) and (e) obtained via Eq. (6) are
presented in (c) and (g), respectively. The spectral profile in elliptic regime (c) forms a disk, whereas the spectrum of the pattern in hyperbolic regime (g)
tends to align one of the asymptotes of the hyperbola depicting modulation instability gain. The Fourier spectra of the states (b) and (f) are presented in
(d) and (h).
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1D dispersion curve. To generate an edge soliton, one needs to pump
the edge state (c0 is the corresponding amplitude). Neglecting the
presence of the bulk states (cj≪ c0), according to Eq. (3), the gov-
erning equation takes the form of a simple LLE. This analogy helps
further to understand the soliton interaction with the bulk states.
Generation of the edge soliton corresponds to the formation of the
dispersionless line below the edge state parabola (schematically
shown in Fig. 1c). If the width of the bandgap is large enough
(effectively corresponds to the limit Jintra/Jinter→ 0, Jinter≫ κ), the
dynamics of the soliton will be similar to the single-resonator
dynamics, because the field will be still localized in the first ring.
However, if the soliton line crosses the lower bulk band, additional
photon transfer to the bulk modes will occur (a similar effect has
already been observed in the system of just two coupled resonators
considered in24). The photons scattered to the bulk will experience
now 2D dynamics and can drastically affect the soliton stability and
existence range.

To demonstrate this effect, we simulated an SSH chain of 10
resonators with typical parameters of Si3N4 photonic microcombs:
κ0/2π= 50MHz, D2/2π= 4.1MHz, Jinter/2π= 5GHz, D1/2π= 182
GHz, Jintra/2π= 1GHz under 100mW pump power (that corre-
sponds to the normalized pump f 2= 223 for the normalization) with
critically coupled (κex= κ0) first resonator. We excited the edge state
resonance in the conventional way, scanning the pump laser from
the blue- to red-detuned zone. We show the intracavity power in the
first (blue line) and second (red line) resonators as a function of
detuning in Fig. 6a along with the limit case of a decoupled single
resonator (black line). As one can clearly see, the power dynamics in
the first resonator generally has the same features as the decoupled
resonator, but the soliton existence range (δω≈ 27.2κ/2) is shortened
in the case of the SSH chain (δω ≈ 21.0κ/2). In fact, the power in the
second resonator reveals several resonance features with increased
detuning. Investigating the field and spectral profiles of the DKS
(detuning δω= 2π ⋅ 1.48 GHz= 14.8κ/2) itself in these resonators
(cf. Fig. 6b, c), one can see that the soliton has a smooth sech profile
in the first cavity, while there is a strong background modulation in
the second with the soliton amplitude 200 times smaller. The
reconstructed NDRs (Fig. 6d, e) reveal that the soliton, formed below
the edge parabola crosses the lower bulk modes that lead to the
generation of the dispersive waves in the second resonator, mixing
the edge and bulk states. While here we presented a case of moderate
edge-bulk interaction employing a single set of parameters used in
recent experiments 24,25,53, stronger interactions can occur for

spectrally broader solitons (smaller ratio D2/κ) or narrow bandgaps.
Nevertheless, our conclusions remain valid for a smaller gap size and
can be generalized for higher dimension topological lattices: due to
the presence of the other bands, the generated edge-state soliton (be
it DKS or 2D-DKS) induces edge-to-bulk scattering that influences
soliton stability and can result in its temporal decoherence. However,
it should be noted that according to the nonlinear term in Eq. (3),
rigorous estimation of the efficiency of the nonlinear interactions
between the edge and bulk states depends on the spatial overlap
between the eigenstates Vj. Thus, in order to quantitatively
characterize the scattering mechanism, one needs to compute the
eigenstates and the corresponding overlap, but this research is
beyond the scope of the current manuscript.

Conclusions
We theoretically described nonlinear interactions via four-wave
mixing (i.e. parametric oscillations) in lattices of driven photonic
microresonators. We showed the hybridization of the chromatic
dispersion with the N-spatial dimensional band structure gives rise to
an effective (N+1)-dimensional dispersion surface that governs the
FWM processes with the conservation law defined by the structure of
the lattice’s eigenfunctions. Further, we analytically and numerically
explored the nonlinear dynamics of the 1D band in a chain of equally
coupled resonators. We demonstrated that this system possesses a 2D
dispersion surface and can be described in the long wavelength limit
by the 2D LLE at its local extrema. Different parts of the dispersion
surface correspond to two fundamentally different regimes of
operation: elliptic and hyperbolic. This results in different local dis-
persion topography. Simulating the full set of coupled LLEs, we
demonstrated nonlinear effects inherent to 2D systems which include
Turing pattern formation, 2D spatial-temporal dissipative Kerr soli-
tons, and wave collapses in the chaotic state. Considering the SSH
model, we demonstrated that 0D bands that correspond to the edge
state can be approximated by the conventional 1D-LLE. However,
within the range of experimentally accessible parameters for state of
the art nonlinear integrated platforms that support generation suffi-
ciently broad DKS, the overlap of the generated edge-state DKS with
the bulk states can lead to the DKS-induced edge-bulk mixing and
consequently perturb the soliton stability. In summary, our theory
sheds light on nonlinear interactions in integrated photonic lattices
and will be helpful to guide future experimental investigations of
multi-mode systems with complex band structures, and highlight the

20

0

1 10 20
Resonator index

-10 -5 0 5 9

50

25

0

25

50

0 100
Time (units of ph)

0

50

100

Ro
un

dt
ri
p

|Ψ
|2   

(li
n.

 s
ca

le
)

a b

1st resonator

7.5 8.0

/2

5 /6

50

0

0 50

0
Time (units of ph)

Supermode index
d e

Comb index

Sp
ec

tr
um

 (
20

 d
B
/d

iv
)

Superresolution
spectrum
Averaged spectrum

1st resonator

-60 -40 -20 0 20 40 60

14.0 15.0

0

|Ψ|2  
(lin. scale)

| |2 (10 dB/div) Spectrum (20 dB/div)

Fig. 5 Localized 2D dissipative soliton in a chain of 20 resonators. Instantaneous field profile in the chain of resonators and the corresponding 2D spectral
profile in dB are shown in panels (a) and (b). Inset in (a) shows the roundtrip number of the soliton in time. c Schematics of the soliton as a dispersionless
structure (blue disk) beneath the hybridized dispersion surface (similar to Fig. 1a, spans over 1.25 of the Brillouin zone along k axis). Intersection between
the soliton disk and the dispersion defines the position of the dispersive waves taking the form of a `fish tail' in panel (b). d Field dynamics on a single
resonator level with an inset resolving one pulse. Color represents the amplitude in dB (see colorscale in panel a), the cross-sections of the inset are in
linear scale normalized on the average amplitude in the cavity. e The corresponding super-resolution and averaged spectrum.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01438-z ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:317 | https://doi.org/10.1038/s42005-023-01438-z | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


limitation of topological protection when it comes to the formation of
Kerr frequency combs in lattices.

Methods
Numerical simulations. The nonlinear dynamics in the chain of
20 coupled resonators is modeled using step-adaptative Dormand-
Prince Runge-Kutta method that is implemented in Python-based
library PyCORE https://github.com/ElKosto/PyCORe/tree/PyCORe
++ with included integrator from Numerical Recipes 3. The nor-
malized parameters of the simulated system in Eq. (5) are:
d2= 0.04, j= 10.00. The corresponding realistic Si3N4 parameters
are: κ0/2π= κex/2π= 50MHz, J/2π= 0.5 GHz, D2/2π= 4.1MHz,
FSR= 182 GHz.

Wave collapse. To observe the wave collapse in the elliptic
regime, we fix the detuning at ζ0= 22.1. Each resonator is
pumped with a power of fℓ= 2.35 with equal relative phases. To
reconstruct the incoherent dynamics in the hyperbolic regime, we
fix the detuning at ζ0=−17.0 and use the same pump power.
However, we alternate the phases of the pump by π to excite only
the supermode k=N/2. In both cases, we employ 1024 sampling
points to resolve the angular dynamics within each resonator and
20,000 sampling points to resolve the temporal dynamics.

Turing patterns. To excite the Turing patterns, we first induce
incoherent dynamics in the cavity and then tune the pump laser
from the blue to the red-detuned side of the resonance (i.e.,
decreasing ζ0). For the elliptic regime, we observe stable pulses at
fℓ= 1.05 and ζ0= 20.5, and for the hyperbolic regime at fℓ= 2.35
and ζ0=−20.3. We employ the Newton-Raphson method for
finding stationary solutions to verify the stability of such struc-
tures. Using the simulation data as an initial seed solution, we
then apply the gradient descent method to converge to the sta-
tionary solutions shown in Fig. 4.

2D spatio-temporal dissipative soliton. To observe the genera-
tion of the 2D soliton, we fix the pump power at ∣fℓ∣= 2.35 and
set the relative phase to 2π/5 to excite the 4th spatial supermode
in Fig. 1a. We set the laser detuning ζ0 such that the system is in a
chaotic state, then we gradually reduce the detuning value to
ζ0= 10.92, where we observe the formation of the soliton.

Edge state soliton in the Su-Schrieffer-Heeger model. We use
modified Eq. (5) to simulate the dynamics of the 10 resonator Su-
Schrieffer-Heeger (SSH) chain. To take into account the chain with
open boundary conditions, we consider 1st and 10th resonators
coupled only to one of its neighbors, but decoupled from each
other. The resonator parameters, such as κ0, κex, D2, and FSR, are
taken to be the same as for the closed chain. The inter-cell coupling
equals to Jinter/2π= 5 GHz, the intra-cell Jintra/2π= 1 GHz. The
chain consists of 10 resonators, and the bus waveguide is only
coupled to the first and last resonators. To excite the edge state, we
fix the pump power at 100 mW which is equivalent to f2= 22 in the
normalized units. The edge state resonance is located at ζ0 ≈ 0, and
we sweep the laser frequency from the blue to the red-detuned side
(increasing ζ0). The single-resonator transmission trace presented in
Fig. 6a is obtained using the standard Lugiato-Lefever equation (i.e.,
Eq. (5)) with zero coupling terms. The resonator and pump laser
parameters are chosen to be the same as for the excitation of the
edge state in the SSH model.

Data availability
All data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
Numerical codes used in this study are available from the corresponding author upon
reasonable request.
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