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Abstract
Most realistic kinetic calculations for tokamak plasmas are now required to incorporate the
effect of partially ionized high-Z elements arising either from uncontrolled influxes of metallic
impurities, such as tungsten in high input power regimes or from mitigation of runaway
electrons generated after possible major disruptions by massive gas injection. The usual
electron–ion Fokker–Planck collision operator must therefore be modified, because all plasma
atoms are not entirely ionized, as is the case for light elements. This represents a challenge, in
order to perform fast but also accurate calculations, regardless of the type of element present in
the plasma, but also their local levels of ionization while covering a wide range of electron
energies in a consistent way, from a few keV to tens of MeV in plasmas whose electron
temperature may itself vary from 10 eV to several keV. In this context, a unified description of
the atomic models is proposed, based on a multi-Yukawa representation of the electrostatic
potential calibrated against results obtained by advanced quantum calculations. Besides the
possibility to improve the description of inner and outer atomic shells in the determination of
the atomic form factor, this model allows one to derive analytical formulations for both elastic
and inelastic scattering, which can then be easily incorporated in kinetic calculations. The
impact of the number of exponentials in the description of the atomic potential is discussed, and
a comparison with simple and advanced atomic models is also performed.

Keywords: atomic physics, Fokker–Planck equation, elastic and inelastic scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

The use of tungsten (W) as the plasma-facing material in
present-day experimental fusion devices, such as WEST [1],
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EAST [2] and the International Thermonuclear Experimental
Reactor (ITER) that is currently being constructed [3], has
raised the question of the impact of partially ionized high-Z
impurities on the performance of hot plasmas. For example,
the ability to efficiently drive the toroidal plasma current by
radio-frequency (RF) electromagnetic waves may be reduced
by an enhanced electron pitch-angle scattering and electron-
ion slowing-down due to tungsten, thus limiting the capabil-
ity of control for improved plasma performance [4]. In stand-
ard tokamak fusion plasmas, the usual electron temperature
Te is supposed to be in the range between 1 and 10keV, so
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Figure 1. Relative fraction of different screened ion charges for
tungsten at different plasma electron temperatures using the
OPEN-ADAS database [5].

that most of the low-Z impurities are fully ionized over a
large volume, except possibly in the outermost regions near the
separatrix. Conversely, high-Z elements remain partially ion-
ized everywhere, even in the core of the plasma, and the nuc-
leus charge Zs of the species smay still be partially screened by
many bound electrons. For the tungsten element whose atomic
number is Zs = 74, the mean screened ion charge is Z0,s ≃ 42
in a plasma whose electron temperature is Te = 3keV accord-
ing to the OPEN-ADAS database, as shown in figure 1, so that
Ns ≃ 32 electrons are still bound [5]. Even at Te = 10keV, as
expected in ITER plasmas, Ns is still large for the tungsten
element, in the order of twenty4.

The role played by the screening of partially ionized high-
Z elements has first been considered in order to accurately
describe the dynamics of runaway electrons in very cold post-
disruptive plasmas, and also to investigate the possibility to
mitigate them by massive gas injection of high-Z elements up
to argon. It is shown that the dynamics in momentum space
of the non-thermal electrons can be notably modified com-
pared to the traditional picture because of the partial screening,
with a significant impact on the critical electric field (Hastie–
Connor) beyond which electrons may run away [6–8]. This
original work, implemented in the CODE code dedicated to
runaway electron physics in almost zero-temperature post-
disruptive plasmas [9], was later extended to standard toka-
mak regimes in the LUKE solver of the 3D linearized bounce-
averaged relativistic electron Fokker–Planck equation [10].
This allows us to describe the consequences of uncontrolled
impurity influxes of high-Zmetallic elements, such as tungsten

4 The mean screened ion charge is defined as Z0,s =
∑

i f0,s,iZ0,s,i where f0,s,i
is the local fraction of all ionization states Z0,s,i. By definition,

∑
i f0,s,i = 1,

Z0,s,i ∈ {0,Zs}. The number of bound electrons is Ns,i = Zs − Z0,s,i and the
mean value is Ns =

∑
i f0,s,iNs,i.

on RF current drive, for example [4]. More recently, kinetic
calculations have been carried out, showing that RF current
driven by the lower hybrid wave is moderately lowered despite
a strong thermal collapse ascribed to an uncontrolled accumu-
lation of tungsten in the plasma core of WEST tokamak [11].
In both studies, a standard Yukawa potential (single exponen-
tial) was used in the LUKE code.

Even if the atomic processes that must be described in the
CODE and LUKE kinetics codes are rather similar, some dif-
ferences specific to hot plasmas must be investigated. Indeed,
while the atomic physics of argon and elements with lower
Zs values has been thoroughly studied by quantum non-
relativistic codes describing the ground-state and mean excita-
tion energies for different ionization states [12–15], the know-
ledge of atomic properties for metallic elements with higher
Zs values, and in particular for tungsten, is much more sparse.
This is a consequence of the relativistic effects and the res-
ulting complex orbital coupling, which must be fully incor-
porated in quantum calculations, making them considerably
more difficult. Indeed, by combining the virial theorem with
the quantum uncertainty principle, relativistic effects become
significant when the relativistic Lorentz factor γs signific-
antly exceeds unity, where γ2

s = (αZs)
2
+ 1, and α is the usual

fine structure constant. While for argon, relativistic correc-
tions are negligible since γAr

s ≃ 1.0086, they become more
significant for tungsten, as γWs ≃ 1.136. If the ground state
may be obtained for the field-free tungsten element using the
density functional theory (DFT) or the multi-configuration
Dirac–Hartree–Fock (MCDHF) approaches5 implemented in
the GAUSSIAN and GRASP codes, respectively [12, 13],6 the
mean excitation energies for all ionization states that play
an important role in the inelastic electron–ion scattering pro-
cesses are still not available. In much the same way, while
screening effects on bremsstrahlung by runaway electronsmay
be reasonably described using a standard angular-averaged
formula in the first Born approximation [18], such an approx-
imation cannot be considered for less energetic electrons res-
onantly accelerated by RF waves, for example, since the angu-
lar cone of emission is much larger [19]. Therefore, in order
to continuously cover the range of kinetic energies from a few
keV to several tens of MeV photons, a fully numerical integra-
tion over the electron emission angle of the cross-section dif-
ferential in photon energy and in photon and electron emission
angles must be carried out, which represents a considerable
numerical task.

In this context, the accurate incorporation of atomic phys-
ics in kinetic codes, while keeping computational effort at a

5 In tokamak plasmas, the mean distance d= n−1/3 between particles, where
n is the plasma density, is always much greater than the atomic radius in the
approximate range between Bohr radius a0 and 4× a0 for neutral atoms and
less for corresponding ions. Therefore, for all elements and regardless of their
states, they can always be considered as in vacuum or field-free, which con-
siderably simplifies ground-state calculations. This is not the case in inertial
fusion plasmas [16].
6 The FAC code based on the modified multiconfigurational Dirac–Hartree–
Fock–Slater (MC-DHFS) proceduremay also be an interesting alternative tool
[17].
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reasonable level, is a serious challenge, especially for describ-
ing inelastic scattering. A similar effort should concern the
screening effects on bremsstrahlung, a major moment of the
non-thermal distribution function for diagnosing fast elec-
tron dynamics. The use of analytical formulas based on
simple parameterized models is consequently a more suitable
approach, with absolute calibration against results obtained by
advanced numerical quantum codes. However, simple atomic
models usually have limited applicability, which prevents the
systematic and consistent use of all quantities that must be
modified to take into account the atomic physics. While the
well-known Thomas–Fermi model [20] and its approximate
formulations [21, 22] are well suited for neutral or weakly ion-
ized atoms, they usually give less accurate results when the
number Ns of bound electrons is small compared to Zs. The
charge density of the inner shell is usually better described
by a Yukawa electrostatic potential [23], which itself is not
relevant for neutral or weakly ionized atoms. This is because
the charge density fall-off is generally too sharp at large dis-
tances from the nucleus compared to DFT or MCDHF cal-
culations. However, the Yukawa atomic model is widely used
for bremsstrahlung studies even if the target atom is neutral
or weakly ionized, since this physics process usually involves
deep electronic shells to calculate the radiation emission [24–
28]. Consequently, a unified and accurate description of the
atomic electrostatic potential that can be used either for kin-
etic calculations or for bremsstrahlung without a significant
degradation of the numerical performance of the kinetic code,
whatever the plasma conditions (cold or hot) and the type of
element, is of great interest.

The purpose of this paper is therefore to propose a gen-
eral and global approach for incorporating atomic physics in
Fokker–Planck electron solvers, allowing existing codes to be
easily and robustly updated for realistic simulations, whatever
the consequences on fast electron dynamics, which will be the
object of a separate study.

This objective is addressed by expressing the atomic elec-
trostatic potential as a series of Yukawa potentials. There is
a consequent trade-off between keeping codes fast and accur-
ate over a wide range of electron kinetic energies, regardless of
the ionization state of the elements, and with a reasonably cor-
rect description of the physics involving both outer and inner
electron shells. This approach has already been successfully
considered for modeling results of Hartree–Fock–Slater calcu-
lations for neutral elements only, from hydrogen to uranium,
using up to three exponentials [29]. In addition, it was suc-
cessfully applied for deriving an analytical formula for the
bremsstrahlung with screening effects, valid from the clas-
sical to the fully relativistic limits [30, 31]. The modeling here
considered, the so-called multi-Yukawa (MY), is basically an
extension of Moliere’s approach initially used to describe the
Thomas–Fermi potential of neutral elements as a linear com-
bination of three exponentials [32]. The great advantage of
this method is the possibility to obtain easily analytical deriv-
ations for many physical quantities of interest in the first Born
approximation due to the simple analytical expression of the
Fourier transform of an exponential function in the calculation

of the atomic form factor, assuming a spherical symmetry for
the density of bound electrons in the ground state [29].

In section 2, the MY atomic model is introduced, and the
calibration procedure is explained in detail for an arbitrary
number of exponentials. Comparison with DFT and MCDHF
calculations is presented. In Fokker–Planck calculations, the
electron-ion collision operator is described by a friction vec-
tor and a diffusion tensor resulting from elastic and inelastic
collisions. In the presence of partially ionized high-Z ele-
ments, inelastic electron-ion collisions must also be taken
into account, since free electrons in the plasma may lose part
of their kinetic energy by either atomic excitation or ioniz-
ation. The latter process may have a critical impact on the
early build-up of electron avalanches, which play a major role
in the dynamics of the runaway electron population in post-
disruptive plasmas [33]. The incorporation of atomic phys-
ics in the Fokker–Planck collision operator is first detailed in
section 3, for both elastic and inelastic processes. The screen-
ing function describing the impact of partially ionized atoms
on elastic Coulomb collisions is derived in section 4, using the
MY atomic model. The inelastic electron–ion collisions are
then considered in section 5, with the approximate approach
based on Bethe’s formula for electron energy losses per unit
length [34, 35]. In this case, the atomic physics is described
by the mean excitation energy of the ground state, which can
be calculated by several methods. This quantity can be derived
from a non-relativistic variational quantum approach, but also
with the classical local plasma approximation (LPA), both
using the MY atomic model [36, 37]. Conclusions are given
in section 6.

Although the impact of the screening on bremsstrahlung
can be described with the same atomic form factor as that
used for the Mott relativistic cross-section, this problem will
be addressed in a separate paper.

2. Atomic model

2.1. Radial distribution of charge in the ground state and form
factor

Kinetic calculations with partially ionized high-Z atoms
require an atomic model that accurately describes the spa-
tial distribution of bound electrons ρZ0,s (r) in the ground
state, regardless of the type of atom and its level of ion-
ization, where r is the distance to the nucleus. Indeed,
excited states are transient and their lifetimes are generally
much shorter than the mean time between two collisions
in standard tokamak plasmas7. By definition,

´
V ρZ0,sdr=

Ns = Zs−Z0,s where V is the volume of reference charac-
terizing the ion size, Ns is the number of bound electrons,
Z0,s is the screened ion charge and Zs is the atomic num-
ber. The screening effects are determined by evaluating the
form factor FZ0,s (q)≡

´
V exp(−iq · r/h̄)ρZ0,sdr, where q is

7 This condition may be marginally fulfilled in very cold post-disruptive
plasmas.
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the usual recoil momentum in Coulomb collisions. Since
the kinetic energy is conserved in the elastic scattering pro-
cess and assuming that small-angle scattering predomin-
ates, |q| ≃ 2 |p|sin(θ/2), with p being the incoming elec-
tron momentum and θ the deflection angle. Here, q= pf−pi,
where pi[f] = h̄ki[f], while ki[f] are the wave vectors associated
with the spinless wavefunctions |i [f]⟩= exp

(
iki[f] · r

)
/
√
V of

the incoming |i⟩ and outgoing electron |f⟩, respectively, both
being considered as plane waves (first Born approximation)8.
Based on Fermi’s golden rule, the relativistic Mott cross-
section that describes Coulomb collisions in kinetic calcu-
lations must be modified according to the simple rule Zs →
Zs−FZ0,s (q) in order to account for the partial atomic screen-
ing. For low-energy electrons, since lim∥q∥→0FZ0,s (q) = Ns,
the ion is fully screened, i.e. Zs → Z0,s = Zs−Ns, while con-
versely, for very energetic electrons, it is fully stripped, since
lim∥q∥→∞FZ0,s (q) = 0.9 Within this framework, the form
factor FZ0,s (q) is simply the Fourier transform of the spatial
distribution of the bound electrons, whose determination is the
starting point for investigating the effect of atomic screening
in Fokker–Planck calculations.

2.2. Description of the MY electrostatic potential description

For the approximate formulation of the Thomas–Fermi atomic
model, as derived by Kirillov et al [22], but also for a Yukawa
electrostatic potential (single exponential), the form factor
may be expressed analytically in the same way according to
the formula FZ0,s (q) = Ns/

(
1+

(
qaZ0,s/2

)m)
, where āZ0,s ≡

2aZ0,s/α following the notation used in [7], and q= q/(mec)
with q= ∥q∥. Here, aZ0,s may be considered as an effect-
ive radius of the ion of charge Z0,s which depends on the
chosen atomic model, α is the fine structure constant, c is the
speed of light and me is the electron rest mass. While m=

3/2 with aZ0,s = 3N2/3
s /(4Zs) for the approximate Thomas–

Fermi model [22],m= 2 and aZ0,s = λ−1
Z0,s for the Yukawa elec-

trostatic potential, where λ−1
Z0,s is a characteristic screening

length, its value being usually determined by a best fit of res-
ults obtained with advanced atomic calculations using DHFS
(Dirac–Hartree–Fock–Slater) codes [24–28].10

The cloud of bound electrons is assumed to be spheric-
ally symmetric around the nucleus, an approximation which
turns out to be reasonably well satisfied for most ground
states here considered. Indeed, the level of spherical sym-
metry can be evaluated from the matrix elements of the
quadrupole moment of the rank-two tensor, directly obtained
from DFT calculations [39], which essentially measures the
deviation of the charge distribution ρZ0,s (r) from spherical

8 The volume V is chosen so that ⟨i | i⟩= ⟨f | f⟩= 1, a condition necessary to
have a probabilistic interpretation of the wave functions.
9 The procedure is general and may be applied to all cross-sections derived
within the first Born approximation as for bremsstrahlung.
10 For a neutral atom of atomic number Zs and if the Thomas–Fermi model
is used, λ0,s ≡ λZ0,s=0 = b−1

s = 4
[
9π2/2

]−1/3 Z1/3s a−1
0 ≃ 1.13Z1/3s a−1

0 , a
value frequently found in the literature [38]. Here, bs is the atomic radius in
the Thomas–Fermi model.

Figure 2. Deviation of the bound electron density of from spherical
symmetry as estimated by the parameter ∆Θ for all the screened
charges of tungsten, from DFT calculations using the GAUSSIAN
code [12]. When ∆Θ= 0, the cloud of bound electrons is
spherically symmetric around the nucleus.∆Θ is very small for all
nobel gas-like electronic configurations.

symmetry. It is evaluated by a global parameter, ∆Θ=
|(max(XX,YY,ZZ)−min(XX,YY,ZZ))/max(XX,YY,ZZ)|,
where the diagonal elements of the tensor are XX, YY and
ZZ. According to this simple definition, ∆Θ= 0 corres-
ponds to a perfect spherical symmetry for which all diag-
onal elements are identical. It turns out that this parameter
progressively increases with the ionization level, as shown
in figure 2. It is always much lower than 0.15 for Z0,s ⩽ 40,
and very small for all noble gas-like electronic configura-
tions, regardless of the Z0,s value. Above Z0,s = 40, some
electronic configurations exhibit larger departure from spher-
ical symmetry, but they concern primarily a few values
for Z0,s ⩾ 56, which will hardly ever be found in tokamak
plasmas.

For both approximate atomic models, calculations of the
screening effects on elastic scattering in kinetic calculations
can be fully performed analytically [7]. However, the deriva-
tion of the bremsstrahlung cross-section differential in photon
energy and angle with partial screening effects, which requires
an angular integration over the deflection angle of the scattered
electron [18], cannot be carried out fully analytically withm=
3/2. An explicit analytical formulation can only be obtained
with m= 2, as demonstrated for the case of a neutral atom
[30, 40]. Therefore, with the constraint of performing fast and
accurate kinetics, but also bremsstrahlung calculations, based
on analytical formulas within a unified atomic model, the use
of the Yukawa electrostatic potential is unambiguously more
appropriate. In order to keep its technical advantages without
the intrinsic limitations of neutral or weakly ionized atoms,
the simplest approach is to consider, instead, a generalized
Yukawa potential, here named MY, which can be expressed
as a series of exponentials:
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4πϵ0rUZ0,s (r) =−Z0,s−
∑
i

AZ0,s,i exp
(
−λZ0,s,ir

)
, (1)

each of which accurately describes the charge distribution
around the nucleus, either close to or far from it. From the
Poisson’s equation △UZ0,s =∇2UZ0,s =−ρZ0,s/ϵ0, the radial
normalized distribution of bound electrons is,

ρZ0,s (r) =
Zs−Z0,s
4πr

∑
i

λ
2
Z0,s,iAZ0,s,i exp

(
−λZ0,s,ir

)
, (2)

where the density ρZ0,s (r) = ρZ0,s (r)a
3
0 is in atomic units,

λZ0,s,i ≡ λZ0,s,ia0 and AZ0,s,i = AZ0,s,i/(Zs−Z0,s), λZ0,s,i being
the inverse of the normalized characteristic length and AZ0,s,i
the weight of the ith Yukawa exponential, respectively. Here,
r≡ r/a0, where a0 is the classical Bohr radius. The corres-
ponding form factor is therefore,

FZ0,s (q) = (Zs−Z0,s)
∑
i

AZ0,s,i

1+
(
qaZ0,s,i/2

)2 , (3)

where aZ0,s,i ≡ 2λ
−1
Z0,s,i/α. By definition

∑
iAZ0,s,i = 1, which

guarantees that FZ0,s (0) = Zs−Z0,s = Ns.
This approach has long been considered appropriate to

describe the Thomas–Fermi atomic potential byMoliere using
three exponentials [32]. The correspondence between coeffi-
cients (Bi,βi) found in the literature and

(
AZ0,s,i ,λZ0,s,i

)
is given

in appendix A. This method has also been used to fit the dens-
ity of bound electrons calculated by a DHFS code for neut-
ral atoms only, whose Zs value ranges from 1 (hydrogen) to
92 (uranium) [29]. For most elements above argon, approx-
imately three exponentials are necessary to accurately repro-
duce the radial distribution of charges when ionization is weak.
Naturally, the analytical density given by equation (2) can only
partially reproduce the oscillations of the DHFS linear dens-
ity 4πr2ρZ0,s (r) associated with different inner shell contribu-
tions. However, the approximate form factor FZ0,s (q̄) given by
equation (3) remains very close to the numerical value determ-
ined from DHFS calculations, as core oscillations of the linear
density have a small spatial weight, which validates the overall
procedure.

2.3. Absolute model calibration

In the present study, the method used in [29] is generalized
to all ionization states of any type of element. In this case,
the effective number of exponentials used in (2) and (3) is
determined by the possibility of finding a full set of positive
λZ0,s,ivalues. For some elements with an atomic number larger
than tungsten, such as gold (Zs = 79), up to four exponentials
can be found using the calibration procedure, but for lower
Zs values, the number of exponentials usually never exceeds
three, as found for tungsten. The determination of AZ0,s,i and
λZ0,s,i cannot be performed using a conventional least-squares
fit method because of the non-linearity of the problem and
the existence of many local minima in the function to be
minimized [29].

The method is consequently based on a technique of
moments, which guarantees the uniqueness of the solution
under strict conditions, if it exists. However, the solution may
not correspond to the best adjustment of the numerical atomic
density. Nevertheless, as shown by the rather good agree-
ment with quantum calculations, it is likely very close to it,
by construction. The approach considered here ensures that
the elastic Born cross-sections practically coincide with those
derived from DFT or MCDHF calculations because the error
on the form factor is rather small, as this term is an integral of
the bound electron density.

The coefficients
(
AZ0,s,i ,λZ0,s,i

)
of the MY description are

determined from the condition ⟨rl⟩= ⟨rl⟩num, with
〈
rl
〉num

being the moment of order l calculated numerically from the
density of bound electrons ρnumZ0,s (r) obtained using advanced
atomic quantum codes. Here, from the MY density given by
equation (2),〈
rl
〉
=
∑
i

λ
−l
Z0,s,iAZ0,s,iΓ(l+ 2) = (l+ 1)!

∑
i

λ
−l
Z0,s,iAZ0,s,i (4)

where Γ(z) is the Gamma function. Defining Rl ≡
⟨rl⟩/(l+ 1)!, a set of 2l equations depending upon the number
of parameters

(
AZ0,s,i ,λZ0,s,i

)
to be determined is obtained,

Rl =
∑
i

AZ0,s,iλ
−l
Z0,s,i (5)

and
(
AZ0,s,i ,λZ0,s,i

)
are calculated by solving the equationRl =

Rnum
l , where

Rnum
l =

〈
rl
〉num

(l+ 1)!
=

1
(l+ 1)!

4π
(Zs−Z0,s)

ˆ ∞

0
rl+2ρNZ0,s (r)dr

(6)

the number l being an integer greater than −1.
For a fit with a single Yukawa potential, only two terms

remain, and since
∑

iAZ0,s,i = 1, it can be deduced that
AZ0,s,1 = 1 and λZ0,s,1 =RN

−1. For two exponentials, four
equations with four unknowns must be considered. By group-
ing the equations,

λZ0,s,1 +λZ0,s,2 =
Rnum

1 −Rnum
−1 Rnum

2

(Rnum
1 )

2 −Rnum
2

, (7)

λZ0,s,1λZ0,s,2 =
1−Rnum

−1 Rnum
1

(Rnum
1 )

2 −Rnum
2

, (8)

and the values λ are therefore solutions of the quadratic
equation,(

(Rnum
1 )

2 −Rnum
2

)
λ
2 −
(
Rnum

1 −Rnum
−1 Rnum

2

)
λ

+
(
1−Rnum

−1 Rnum
1

)
= 0. (9)

If both roots are real and positive, they correspond to(
λZ0,s,1 ,λZ0,s,2

)
, respectively, so that

AZ0,s,1 =
Rnum

−1 −λZ0,s,2

λZ0,s,1 −λZ0,s,2
, (10)
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and AZ0,s,2 = 1−AZ0,s,1 , otherwise, a single exponential must
be considered for the modelization. In this case, there is some
loss of accuracy in the modeling of the bound electron density,
but it has a moderate impact on the form factor, regarding its
definition given by equation (3). This is an intrinsic limitation
of this method, despite its robustness, highlighting that not all
bound electron density profiles may be described by a series
of multiple exponentials. This arises principally for highly ion-
ized atoms because the highest moments Rnum

l are too small
compared to the lowest ones. The weight of ρNZ0,s (r) at large
r is therefore unable to identify a single exponential from this
method. In this case, it is worth noting that standard non-linear
techniques usually do not converge.

The procedure may be extended to three exponentials, and
all λ values must be real and positive solutions of the poly-

nomial equation λ
3 −X1λ

2
+X2λ−X3 = 0 to ensure that the

atomic potential may be well described by aMY potential with
the use of three exponentials. Otherwise, two exponentials
must be considered in the modeling procedure, thus removing
useless moments associated with three exponentials. Defining
the vector X from coefficients {X1,X2,X3} of the polynomial
equation in λ,

X=

 X1
X2
X3

=

 λZ0,s,1 +λZ0,s,2 +λZ0,s,3

λZ0,s,1λZ0,s,2 +λZ0,s,2λZ0,s,3 +λZ0,s,1λZ0,s,3

λZ0,s,1λZ0,s,2λZ0,s,3

 ,
(11)

the coefficients AZ0,s,i are determined from the matrix relation
A= N−1MX, where parameters AZ0,s,i are components of the
vector,

A=

 AZ0,s,1
AZ0,s,2
AZ0,s,3

 , (12)

with

M=

 1 −Rnum
1 Rnum

2

Rnum
1 −Rnum

2 Rnum
3

Rnum
2 −Rnum

3 Rnum
4

 , (13)

and

N=

 λZ0,s,1 λZ0,s,2 λZ0,s,3
1 1 1

λ
−1
Z0,s,1 λ

−1
Z0,s,2 λ

−1
Z0,s,3

 . (14)

Formally, it is possible to easily extend this method by
recurrence to any number of exponentials. The dimensions of
X,N andMmust be adjusted according to the number of expo-
nentials, as well as the degree of the polynomial equation in
λ to be solved, its coefficients being determined by expand-
ing the product

∏
i

(
λ−λZ0,s,i

)
. In the numerical implement-

ation of the method of moments, the possibility of finding
up to four exponentials has been considered. However, a lar-
ger number of exponentials is rarely found, only for a few

Figure 3. Density of bound electrons for all ionization states of
tungsten calculated by the DFT method using the GAUSSIAN code
[12]. Upper red line corresponds to neutral atoms. Details of the
simulations are given in appendix B.

low ionization states of elements heavier than tungsten, such
as gold. For tungsten, the maximum number of exponentials
never exceeds three, regardless of its ionization state. As dis-
cussed previously, if no solution is found for a given set of
multiple exponentials, a solution is sought for a number of
exponentials decremented by one unity, and the procedure is
repeated until a set of positive and real λ values is found. The
case with a single exponential corresponding to the standard
Yukawa potential is the ultimate solution if a MY potential
cannot be found numerically.

2.4. Comparisons between MY model and quantum
relativistic calculations

Numerical calculations of the radial profiles of the bound elec-
trons have been performed for most of the elements that can be
found in a plasma, regardless of their ionization states, using
GAUSSIAN and GRASP codes, respectively [12, 13]. They
are all implemented in the LUKE suite of codes for studies
of the atomic physics of fast electron dynamics in magnet-
ized plasmas [10]. Details about the parameters used for the
simulations with GAUSSIAN and GRASP codes are given in
appendix B. In figure 3, the radial profiles of the density of
bound electrons for all ionization states of tungsten calculated
using the GAUSSIAN code are displayed. For low ionization
states, the density clearly exhibits several bumps, which cor-
respond approximately to the principal quantum numbers n of
the atomic orbitals. Excellent agreement is found between the
results of the two codes for all ionization states, as shown for
the neutral tungsten atoms and the ionsW10+,W42+ andW56+

in figure 4. Consequently, numerical densities of reference
ρNZ0,s (r) given by one or the other of the two codes can be used

indifferently for determining the coefficients
(
AZ0,s,i ,λZ0,s,i

)
of

the MY description.
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Figure 4. Comparison between radial densities of bound electrons
for neutral tungsten W0 and ionized states W+10, W+42 and W+56,
as calculated by the GAUSSIAN (DFT method, red lines) and
GRASP (MCDHF method, blue symbols) codes. Excellent
agreement in found between the two quantum relativistic codes.
Details of the simulations are given in appendix B.

In the literature, a comparison between DFT and the simple
atomicmodels frequently used in publications has been carried
out. Here, the radial dependencies of the density of bound elec-
trons are evaluated for neutral tungsten and the ionW42+ using
the Thomas–Fermi model as well as the standard Yukawa
one (single exponential). For the latter, two inverse screen-
ing lengths have been considered: λB0,s ≃ 0.9Z0.42s a−1

0 from a fit
of the Herman–Skillman potentials determined by solving the
DHFS equations [38] and λTF

0,s = b−1
s ≃ 1.13Z1/3s a−1

0 , where
bs is the reference length in the Thomas–Fermi model. As
shown in figure 5, a good quantitative agreement is observed
between DFT and the Thomas–Fermi model for neutral tung-
sten, as expected from the theory, while the agreement is poor
with the standard Yukawa model, regardless of the inverse
screening length. Conversely, the agreement forW42+ between
DFT and the standard Yukawa model is better than with
the Thomas–Fermi model. This highlights the fact that none
of the simple models have a wide range of applications for
accurately describing the atomic physics in kinetic and radi-
ation calculations since the types of elements in the plasma
may change with operating conditions, while their ionization
states can also vary considerably with the temperature of the
plasma.

Using results obtained with the DFT model, the set of
coefficients

(
AZ0,s,i ,λZ0,s,i

)
has been determined for up to four

exponentials, but for elements lighter than gold, the max-
imum number of exponentials never exceeds three, as for
tungsten. The full list of all ionization states of tungsten is
given as a reference in table 1. For very weakly ionized states,
Z0,s ⩽ 5, three exponentials are found by the numerical pro-
cedure, because of the different slopes in the radial density, as
shown in figure 3, while the number of exponentials is usually

Figure 5. Comparison between densities of bound electrons for
neutral tungsten W0 (upper plot) and the ionized state W+42 (lower
plot) as calculated by GAUSSIAN (DFT method, red line) and
simple atomic models: Thomas–Fermi (blue dotted line), Yukawa
with the inverse screening length λB0,s ≃ 0.9Z0.42s a−1

0 [38] (blue
dotted-dashed line) and Yukawa with the inverse screening length
λTF
0,s ≃ 1.13Z1/3s a−1

0 [24, 27, 38, 41, 42] (blue dashed line). Details
of the simulation for the DFT calculation are given in appendix B.

lower for larger Z0,s values since the decrease in the radial
density from the nucleus becomes more regular and generally
steeper. A comparison of the impact of the number of expo-
nentials on the density profile for neutral tungsten is shown in
figure 6.

With the use of three exponentials, an excellent quantitative
agreement is found between ρNZ0,s (r) determined by DFT and
the approximate MY description ρZ0,s (r) at almost all radii.
With a reduced number of exponentials, the agreement tends
to deteriorate and is poor for a single exponential correspond-
ing to the standard Yukawa description. It is interesting to
note that Molière’s description of the Thomas–Fermi model

7
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Table 1. MY coefficients (3 exponentials) for the different ionization states of tungsten, based on DFT calculations done with the
GAUSSIAN code for the density of [12]. Note that AW,3 = 1−AW,2 −AW,1 by definition and in the case of two exponentials,
AW,1 +AW,2 = 1.

Z0 AW,1 AW,2 λW,1 λW,2 λW,3

0 0.0964 0.7058 40.7776 4.7464 1.2612
1 0.1129 0.6490 36.2792 4.8617 1.5970
2 0.1134 0.5416 35.9580 5.4016 2.1100
3 0.0872 0.4628 42.7872 6.4409 2.4903
4 0.0447 0.3844 66.8955 8.5866 2.8794
5 0.2404 0.7595 22.7136 3.4038 —
6 0.2001 0.7998 25.9976 3.6903 —
7 0.1916 0.8084 27.0553 3.8056 —
8 0.1691 0.8309 29.603 11 4.0558 —
9 0.1540 0.8460 31.8430 4.2397 —
10 0.1336 0.8673 35.4275 4.4711 1.8417
11 0.1321 0.8786 36.0567 4.5467 2.7534
12 0.0781 0.9219 53.8146 5.0492 —
13 0.0735 0.9265 56.8908 5.1789 —
14 0.0703 0.9297 59.4299 5.3019 —
15 0.0683 0.9317 61.3319 5.4187 —
16 0.0464 0.9536 84.5389 5.7162 —
17 0.0217 0.9783 65.8142 6.0570 —
18 0.0195 0.9805 84.0652 6.1945 —
19 0.0181 0.9819 98.7309 6.3284 —
20 0.0173 0.9827 208.1839 6.4596 —
21 0.0172 0.9828 211.7881 6.5890 —
22 0.0179 0.9821 205.6840 6.7123 —
23 0.0191 0.9809 195.1947 6.8342 —
24 0.0208 0.9791 181.9760 6.9551 —
25 0.0232 0.9768 166.6728 7.0732 —
26 0.0260 0.9740 152.0133 7.1919 —
27 0.0293 0.9707 138.2625 7.3109 —
28 0.03330 0.9667 125.1738 7.4282 —
29 0.0371 0.9629 115.1210 7.5611 —
30 0.0409 0.9591 106.6938 7.7017 —
31 0.0449 0.9551 99.6147 7.8511 —
32 0.0488 0.9511 93.6306 8.0104 —
33 0.0529 0.9471 88.4122 8.1797 —
34 0.0569 0.9431 84.1192 8.3633 —
35 0.0603 0.9397 80.8589 8.5669 —
36 0.0634 0.9366 78.2547 8.7894 —
37 0.0657 0.9342 76.5450 9.0381 —
38 0.0668 0.9332 75.9433 9.3208 —
39 0.067 23 0.9328 75.6537 9.6390 —
40 0.097 35 1.0166 58.6355 9.3206 6.8896
41 0.078 58 0.9464 67.6093 10.1206 6.1217
42 0.058 95 0.9532 82.4553 10.8159 6.0350
43 0.040 67 1.0524 108.3990 11.2870 8.6963
44 0.072 09 −0.3479 83.3834 21.2223 13.5253
45 1 — 16.3046 — —
46 1 — 16.7547 — —
47 1 — 17.1551 — —
48 1 — 17.5828 — —
49 1 — 18.0408 — —
50 1 — 18.5337 — —
51 1 — 19.0654 — —
52 1 — 19.6402 — —
53 1 — 20.2658 — —
54 1 — 20.9494 — —

(Continued.)
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Table 1. (Continued.)

Z0 AW,1 AW,2 λW,1 λW,2 λW,3

55 1 — 21.7004 — —
56 0.014 99 0.9850 383.7327 17.0332 —
57 0.032 14 0.9679 203.7360 17.4369 —
58 0.053 57 0.9464 139.5996 17.9070 —
59 0.080 41 0.9196 106.6274 18.4671 —
60 0.1128 0.8872 87.0463 19.1924 —
61 0.1501 0.8499 74.3800 20.1958 —
62 0.1813 0.8187 67.0734 21.8502 0.0069
63 0.05 328 0.9327 113.6346 27.6518 12.2918
64 1 — 34.3729 — —
65 1 — 36.1418 — —
66 1 — 38.3347 — —
67 1 — 41.1288 — —
68 1 — 44.8359 — —
69 0.03 841 0.9616 333.5709 38.6642 —
70 0.1713 0.8287 152.9629 38.0016 —
71 0.5829 0.4171 94.1997 34.8665 —
72 −0.1893 1.1893 311.7230 127.7285 —
73 −0.2028 1.2028 305.1938 128.8713 —

Figure 6. Atomic density for neutral tungsten element, Z0,s = 0,
calculated from DFT (red full line) using the GAUSSIAN code [12]
and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted
dashed line) and three exponentials (pink dashed line) [29].
Moliere’s solution, as given in appendix A is also displayed (black
full line) [32].

is also in very good agreement with the DFT results, which
is consistent with the results shown in figure 5. Even if the
radial dependence of the density of the nucleus is well repro-
duced, in the core of the atom, oscillations of the linear density
4πr2ρnumZ0,s (r) cannot bewell reproduced by a series of exponen-
tials, as shown in figure 7. This intrinsic limitation has already
been observed in [29], where the same approach is considered
but with another reference atomic model (DHFS). However,
since the discrepancy occurs for r< 0.5, its impact on the

Figure 7. Atomic linear density 4πr2ρZ0,s (r) for neutral tungsten
element, Z0,s = 0, calculated from DFT (red full line) using the
GAUSSIAN code [12] and approximated using the method of
moments with a single exponential (blue dashed line), two
exponentials (green dotted dashed line) and three exponentials (pink
dashed line) [29]. Moliere’s solution, as given in appendix A is also
displayed (black full line) [32].

form factor remains small, as displayed in figure 8, when the
normalized recoil momentum q̄ is less than 0.1. Knowing that
most of the Coulomb collisions occur principally for very low
q̄ values corresponding to the first Born approximation, the
MYdescription is therefore remarkably robust for veryweakly
ionized atoms.

For higher ionization states, the advantage of the MY
description is that it remains accurate for describing both the
density and the form factor. An example is given in figure 9 for
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Figure 8. Atomic form factor for neutral tungsten element,
Z0,s = 0, calculated from DFT (red full line) using the GAUSSIAN
code [12] and approximated using the method of moments with a
single exponential (blue dashed line), two exponentials (green
dotted dashed line) and three exponentials (pink dashed line) [29].
Moliere’s solution, as given in appendix A is also displayed (black
full line) [32]. Only the three exponentials case is very close to the
DFT solution when q⩾ 0.08.

Figure 9. Atomic density for charged tungsten element, Z0,s = 42,
calculated from DFT (red full line) using the GAUSSIAN code [12]
and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted
dashed line) and three exponentials (pink dashed line) [29].

W42+. In this case, the agreement is very good for both two
and three exponentials, while the standard Yukawa descrip-
tion with a single exponential has rather poor agreement with
the radial dependence of the density determined by DFT.
However, as expected, the discrepancy is less pronounced
compared to the case of neutral atoms due to the small remain-
ing bumps in the radial density. For the neutral atom case, the
small oscillations of the numerical linear density 4πr2ρnumZ0,s (r)
are not well reproduced by the series of exponentials, as shown

Figure 10. Atomic linear density 4πr2ρZ0,s (r) for charged tungsten
element, Z0,s = 42, calculated from DFT (red full line) using the
GAUSSIAN code [12] and approximated using the method of
moments with a single exponential (blue dashed line), two
exponentials (green dotted dashed line) and three exponentials (pink
dashed line) [29].

Figure 11. Atomic form factor for charged tungsten element,
Z0,s = 42, calculated from DFT (red full line) using the GAUSSIAN
code [12] and approximated using the method of moments with a
single exponential (blue dashed line), two exponentials (green
dotted dashed line) and three exponentials (pink dashed line) [29].
Only the three exponentials case is very close to the DFT solution
when q⩾ 0.08.

in figure 10, but the departure from ρnumZ0,s (r) has again a very
small impact on the form factor (see figure 11).

In table 2, the set of values
(
AZ0,s,i ,λZ0,s,i

)
obtained for the

neutral tungsten from the DFT and DHFS methods are given
for comparison [29]. The coefficients of Moliére’s method are
also reported [32]. Even if the methodology is similar to the
one detailed in [29], the coefficients for the three exponen-
tials case exhibit a quite significant difference. Nevertheless,
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Table 2. The coefficients
(
λZ0,s,i ,AZ0,s,i

)
for the neutral tungsten, as

determined by Molière’s method of the Thomas–Fermi model [32],
by the DHFS method from [32] and by DFT using the GAUSSIAN
code as the density of [12]. All methods use three exponentials.

Method Molière (Thomas–Fermi) DHFS (3 exp.) DFT (3 exp.)

λW,1 28.4633 28.6330 40.7776
λW,2 5.6926 4.2426 4.7464
λW,3 1.4231 1.2340 1.2612
AW,1 0.1 0.15 0.0964
AW,2 0.55 0.6871 0.7058
AW,3 0.35 0.1629 0.1978

Figure 12. Coefficient of determination R2 as a function of all
screened ion charges Z0,s for tungsten to illustrate how well MY
reproduces the results of DFT calculated by the GAUSSIAN code
[12]: red circles (single exponential), blue crosses (two
exponentials) and green x-marks (three exponentials). When points
exactly overlap in the figure, this means that despite the method
seeking three exponentials, only solutions with two or one
exponentials are found.

as shown in figure 13, the approximate MY linear densities
remain fairly close to the values obtained by DFT, even if not
all the oscillations can be well reproduced. The differences
between the coefficients result from their large sensitivity due
to small changes, illustrating the ill-conditioned nature of the
problem here addressed. This justifies a posteriori the chosen
method, compared to a standard least-squares fit procedure
that cannot converge when multiple close solutions exist [43].
In figure 12, the usual coefficient of determination R2 is dis-
played for all the ionization states of tungsten to illustrate how
well the MY reproduces the results of DFT for the atomic
density11. The fact that R2 > 0.44 regardless of the number of
exponentials indicates that theMY is an appropriate simplified

11 The coefficient of determination is calculated according to the standard
formula R2 = 1− SSres/SStot where SSres =

∑
j(ρ

num
Z0,s

(rj)− ρZ0,s (rj))
2 is the

residual sum of squares and SStot =
∑

j(ρ
num
Z0,s

(rj)−⟨ρnumZ0,s
⟩)2 is the total sum

of squares. The sum is performed on all radial locations rj. Here, ⟨ρnumZ0,s
⟩=

Figure 13. Linear density (lower plot) 4πr2ρZ0,s (r) for gold ion,
Z0,s = 1, calculated from DFT (red full line) using the GAUSSIAN
code [12] and approximated using the method of moments with the
use of atomic linear density 4πr2ρZ0,s (r) for charged gold element,
Z0,s = 1, calculated from DFT (red full line) using the GAUSSIAN
code [12] and approximated using the method of moments with a
single exponential (blue dashed line), two exponentials (green
dotted dashed line), three exponentials (pink dashed line) and four
exponentials (cyan full line).

atomic model for describing quantum code outputs. As expec-
ted, with a single exponential, R2 gradually increases up to
unity for the hydrogen-like atom, indicating that the standard
Yukawa model is more appropriate for highly ionized atoms.
This also illustrates the limits of this model for very weakly
ionized atoms, which justifies the need for theMY description.
Conversely, for up to three exponentials, R2 always remains
higher than 0.8, and often close to unity even for neutral or
weakly ionized atoms. Between Z0,s = 45 and Z0,s = 55, as
well as in the interval Z0,s = 64− 68 , the method of moments
is not able to identify a set of two or three exponentials because
the density ρZ0,s (r) fall-off with the distance from the nucleus
has a nearly single exponential dependence. In this case, the
R2 coefficient is lower, as shown in figure 12, and the density
of bound electrons is therefore less accurately described com-
pared to other ionization states. Nevertheless, detailed calcu-
lations have shown that the impact on the atomic form factor
still remainsmoderate. The fact thatR2 ⩾ 0.7 indicates that the
MYmodel remains well consistent with the results of DFT and
the MCDHF codes, even for these more difficult cases.

In order to illustrate the capability of the method to identify
a best fit with more than three exponentials, the case of the
weakly ionized gold atom Au1+ is shown in figure 13. Some
differences can be seen in the inner part of the bound electron
density between three and four exponentials, especially when

(1/Ngridpoint)
∑

j ρ
num
Z0,s

(rj) is the mean of the calculated bound electron dens-

ity. With this definition, 0 ⩽ R2 ⩽ 1 if the model is consistent with numerical
data. Zero indicates a very poor agreement, and if R2 = 1, the agreement is
perfect.
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Figure 14. Relative evolution of the square of the inverse
normalized screening length as a function of the normalized ion
charge. Red circles: numerical value from the MY description of the
atomic potential with a single exponential; blue dashed line:
approximate Thomas–Fermi model from Kirillov et al [22]; green
dotted dashed line: φs(x) = (1− xns+1)/(1− x) from a fit of the
Hartree–Fock–Slater potential [26, 28]; magenta dotted line:
modified formulation φs(x) = (1− xns+1)/(1− x)3/2 of the fit of
the Hartree–Fock–Slater (HFS) atomic potential.

r< 0.5, but they have no impact on the atomic form factor.
The coefficient of determination increases from R2 = 0.4223
for a single exponential to R2 = 0.6597 for two exponentials,
R2 = 0.8546 for three and finally toR2 = 0.9646 for four expo-
nentials, indicating that the MY solution with the highest pos-
sible number of exponentials gives a better agreement with
DFT and MCDHF calculations.

Although the Yukawa model fails to provide an accur-
ate description of quantum relativistic calculations, except
for rather highly stripped atoms, it is interesting to evalu-
ate, with the procedure here detailed, the ratio λ2

Z0,s/λ
2
0,s =

φs (x) describing the relative change of the screening
length with the normalized ionization state, i.e. x= Z0,s/Zs.
For the approximate Thomas–Fermi model derived by
Kirillov et al [22], φs (x) = (1− x)−4/3, while from a
fit of DHFS calculations, a heuristic dependency of the
form φs (x) =

(
1− xns+1

)
/(1− x) was guessed with ns =

Zs (1/3− 0.0020×Zs) [26, 28]. As shown in figure 14,
λ2
Z0,s/λ

2
0,s is an increasing function of Z0,s/Zs whose order of

magnitude is reasonably well reproduced by the approximate
Thomas–Fermi model. If the heuristic dependence in [26, 28]
is far from the numerical calculations based onDFT, it is found
that a modified formulation φs (x) = (1− xns+1)/(1− x)3/2

gives a much better agreement. This improvement is valid
for all elements, whatever Zs is, in particular for light ele-
ments. Nevertheless, it should not hide the fact that the
Yukawa model with a single exponential is not appro-
priate for describing the density of bound electrons for
weakly ionized elements, even if the variation of the relat-
ive quantity λ2

Z0,s/λ
2
0,s with Z0,s/Zs can be reasonably well

reproduced.

3. Generalized electron–ion collision operator

3.1. Elastic scattering

In kinetic calculations, the Coulomb collision oper-
ator may be expressed formally as dfe/dt|coll ≡∑

s

∑
Z0,s

Ce,Z0,s

(
fe, fZ0,s

)
+Ce,e ( fe, fe) where Ce,Z0,s

(
fe, fZ0,s

)
describes the interactions between the momentum distribution
function fe (t,x,p) of test electrons and the momentum distri-
bution function fZ0,s (t,x,ps) of atoms of species s with an ion-
ization state Z0,s, while Ce,e ( fe, fe) is the linearized electron–
electron collision operator12 [10]. Here, all ionization states
present in the plasma must be considered, with Z0,s ranging
from zero for the neutral atom to Zs for the fully stripped one.
The density nZ0,s (t,x) =

´
fZ0,s (t,x,ps)d

3ps of ions with a net
charge Z0,s at the spatial location x results from the local
balance between ionization and recombination processes,
assuming in general that fZ0,s is a Maxwellian distribution.
The relative fraction of partially ionized atoms is given by
the ratio nZ0,s (t,x)/ns (t,x), where ns (t,x) =

∑
Z0,s

nZ0,s (t,x)
may be obtained by considering a local collisional-radiative
equilibrium, as for the OPEN-ADAS database in the LUKE
code [5, 10].

The incorporation of the partial screening effects for elastic
scattering in kinetic calculations requires that we re-express
the friction vector and diffusion tensor AZ0,s and DZ0,s of the
Fokker–Planck formulation of the collision operator, assum-
ing that small angle scattering still predominates for Coulomb
collisions, which remains a good assumption even in the pres-
ence of high-Z impurities [7],

Ce,Z0,s

(
fe, fZ0,s

)
≃−∇p

(
AZ0,s fe (t,x,p)

)
+∇p∇p

(
DZ0,s fe (t,x,p)

)
,

(15)
with

AZ0,s =
1
∆t

ˆ
d△pPZ0,s

∆t (x,△p,p)△p, (16)

and

DZ0,s =
1
2

1
∆t

ˆ
d△pPZ0,s

∆t (x,△p,p)△p△pT, (17)

12 The Fokker–Planck collision operator used here describes electron dynam-
ics in plasmas whose temperatures range from a few eV to several keV. Test
electrons may be classical or relativistic when the Belaiev–Budker e− e col-
lision operator is considered. When the distortion of the distribution func-
tion from a Maxwellian represents a small fraction of the electron popula-
tion, it is possible to linearize the electron−electron collision operator and
by construction the Maxwellian is an eigenfunction of it. To account for self-
collisions between fast electrons and the thermal bulk is particularly import-
ant for an accurate quantitative estimate of the rf-driven or Ohmic current
source [44, 45]. It is an integral term usually determined to conserve particles
and momentum, but not energy. Therefore, the electron temperature of the
plasma must be a given parameter (by transport code for example), which
is assumed to change slowly at the scale of the collision time. The full self-
consistency between the bulk electron temperature and the fast electron energy
losses may be obtained, but always requires the use of an external transport
code. Therefore, the possible radiative cooling of the bulk electrons must be
a part of the transport code, but not of the Fokker–Planck calculations them-
selves, due to the linearization. If the time scales of radiative cooling of the
bulk electrons and collisions are similar, the time ordering will fail, and the
whole approach should be revisited.
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where PZ0,s
∆t is the transition probability describing the fact

that an electron is at phase space point (x,p) and time t,
given that it was at point (x−△x,p−△p) at time t−∆t,
due to a collision with a partially ionized atom. By definition,´
d△pPZ0,s

∆t (x,△p,p) = 1, which states that all electrons are
taken into account, irrespective of the initial phase space loca-
tion (x−△x,p−△p). Here,△pT is the transposed vector of
△p, with△p= p−ps, for all ps values and all scattering dir-
ections with respect to p directions, where ps is the momentum
of the ion of net charge Z0,s. Since the transition probabil-
ity is proportional to the product of the elementary cross-
section dσe,Z0,s (p) with the density of targets per unit surface
us∆tfZ0,s (t,x,ps), where us is the relative velocity before the
scattering process between the test electron and the atoms of
species s with a net ionization state Z0,s, the friction vector is,

AZ0,s =

ˆ
d3psfZ0,s (t,x,ps)

ˆ
dΩ

dσe,Z0,s
dΩ

us△p, (18)

while the diffusion tensor is,

DZ0,s =
1
2

ˆ
d3psfZ0,s (t,x,ps)

ˆ
dΩ

dσe,Z0,s
dΩ

us△p△pT. (19)

Here, the Møller relative velocity us normalized to the
speed of light c is given by the relation,

us = |us|=

√
(v− vs)

2 − (v× vs)
2

1− v · vs
, (20)

where v= p/γe is the electron (or test particle) velocity13

and vs = psme/mZ0,s is the ion velocity of mass ms,Z0,s ≃ ms

since me is much less than the ion nucleus mass ms. Here,
ps = ps/(mec) and p= p/(mec). However, since |vs| ≪ |v|,
because of the large difference in mass between me and ms,
the relative velocity may be simplified and us ≃ |v− vs|, even
for run-away electrons. Indeed, in tokamak plasmas, for an ion
temperature of 5.11keV, vths ≃ 2× 10−3 for hydrogen and ten
times less for tungsten. Møller corrections to us are therefore
always negligible since the energy of these electrons cannot
exceed 30MeV, because of synchrotron radiation losses [47].

The fully screened relativistic Mott cross-section of colli-
sion between an electron and an ion of charge Z2s,0 is,

dσe,Z0,s
dΩ

= Z20,s
r2e
4

(
1− x2

)
p2 + 1

p4x4
, (21)

where x= sin(θ/2), with θ being the usual deflection angle
of the electron and re the classical electron radius. Spin and
relativistic corrections are negligible in the non-relativistic
limit, and when p2 ≪ 1, the Mott cross-section merges with
the usual Rutherford expression [48, 49]. Since p= γβ, where
β = v=

√
1− 1/γ2 and γ is the Lorentz factor, for 200keV

13 The Møller relative velocity, which is the numerator term in equation (20),
must be corrected by (1− v · vs)−1 in order to guarantee that the interaction
rate is unchanged by a Galilean transformation [46].

slide-away electrons, p2 ≃ 0.93, while for 20MeV run-away
electrons, p2 ≃ 1610.

Knowing that |△p|= 2 |p|sin(θ/2) and that the angular
integral is taken over

´
dΩ=

´ xmax

xmin
sinθdθ

´ 2π
0 dϕ, where ϕ is

the azimuthal angle in the center of the mass frame, the fully
screened friction vector AZ0,s and diffusion tensor DZ0,s are,

AZ0,s =−Υ

ˆ
d3vsfZs (t,x,vs)

ûs
u2s

ˆ xmax

xmin

dx

(
1− x2

)
p2 + 1

x
Z20,s,

(22)
and

DZ0,s =
1
2
Υ

ˆ
d3vsfZ0,s (t,x,vs)

1
us

(I− ûsûs)

×
ˆ xmax

xmin

dx

(
1− x2

)
p2 + 1

x

(
1− x2

)
Z20,s, (23)

where Υ= 4π r2ec, while x[min]max = (1+ b
2
[max]min)

−1/2, with

b= b/b90 being the normalized impact parameter of the
Coulomb collision, with respect to the perpendicular deflec-
tion impact parameter b90 = reZ20,sβ

−2. Here, the electron
velocity normalized to the speed of light is linked to the
Lorentz factor by the relation γ = (1−β2)−1/2. The values
of b[max]min are discussed in appendix C. In equation (23), the
term (I− ûsûs) is the usual perpendicular collision operator.

Since both definite integrals
´ xmax

xmin
. . .dx/x in equations (22)

and (23) give the same value, one obtains,

ˆ xmax

xmin

. . .
dx
x

≃ γ2
ˆ xmax

xmin

dx
x

=
(
p2 + 1

)
ln

bmax√
1+ b

2
min

, (24)

where lnΛe,Zs,0 = ln(bmax/

√
1+ b

2
min) is the Coulomb log-

arithm. Therefore, taking xmin = 1/Λe,Z0,s and xmax = 1,
equations (22) and (23) may be approximated by,

AZ0,s ≃−Υ

ˆ
d3vsfZ0,s (t,x,vs)

ûs
u2s

(
p2 + 1

)ˆ 1

1/Λe,Z0,s

Z20,s
dx
x
,

(25)
and

DZ0,s ≃
1
2
Υ

ˆ
d3vsfZ0,s (t,x,vs)

1
us

(I− ûsûs)
(
p2 + 1

)
×
ˆ 1

1/Λe,Z0,s

Z20,s
dx
x
. (26)

The calculation of the Coulomb logarithm lnΛe,Z0,s is dis-
cussed in appendix C.

The partial screening is taken into account by replacing

Z20,s →
∣∣Zs−FZ0,s (q)

∣∣2 in equations (25) and (26), where q=
2psin(θ/2) = 2px, and following the definition in [7], the
Fokker–Planck screening function gZ0,s (p) is defined as,

ˆ 1

1/Λe,Z0,s

∣∣Zs−FZ0,s (q)
∣∣2 dx
x

≡ Z20,s lnΛe,Z0,s + gZ0,s (p) , (27)
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or

gZ0,s (p) =
ˆ 1

1/Λe,Z0,s

(∣∣Zs−FZ0,s (q)
∣∣2 −Z20,s

) dx
x
, (28)

since

Z20,s

ˆ 1

1/Λe,Z0,s

dx
x

= Z20,s lnΛe,Z0,s . (29)

The formulation (28) guarantees that
´ 1
1/Λe,Z0,s

|Zs−FZ0,s

(q)|2dx/x= Z20,s lnΛe,Z0,s for weakly energetic electrons, while
conversely, for very energetic ones, it is Z2s lnΛe,Zs . However,
as pointed out in [7], partial screening cannot be described in
a strict Fokker–Planck sense other than in the complete and
no screening limits. In order to maintain dominant screen-
ing terms and avoid unphysical behavior for partial screen-
ing, only terms to the lowest order in x must be considered,
which allows q to be significant for large electron energies,
and consequently take the full form of FZ0,s (q). The corres-
ponding Fokker–Planck operator is then equivalent to the first
Legendre mode of the Boltzmann operator at non-relativistic
energies, and differs by a factor of order 1/ lnΛe,Z0,s in the
ultra-relativistic limit.

In the limit of an almost zero ion temperature, as
in the post-disruptive regime in tokamaks, fZ0,s (t,x,vs)≃
nZ0,s (t,x)δ (vs)/

(
4πv2s

)
where δ (vs) is the Dirac function,

thus assuming that ions are at rest. In this case, the integ-
ration over vs may be performed analytically, and expres-
sions in [7] may be retrieved. However, the implementation
of the screening effects in kinetic codes for studying standard
regimes like in the LUKE code is slightly different, because
of the finite ion temperature, which requires that AZ0,s and
DZ0,s be expressed in terms of Rosenbluth potentials, allow-
ing a convenient conservative formulation of the collision
operator. Knowing that ∇v (1/us) = ∂ (1/us)/∂v=−ûs/u2s ,
∇vus = ûs and ∇v∇vu= (I− ûsûs)/us, the integral

´
d3vs

may be permuted with the derivatives ∂/∂v, and the term(
p2 + 1

)[´ 1
1/Λe,Z0,s

∣∣Zs−FZ0,s (q)
∣∣2 dx/x] itself, which is inde-

pendent of us, so,

AZ0,s ≃−Υ
(
p2 + 1

)[ˆ 1

1/Λe,Z0,s

∣∣Zs−FZ0,s (q)
∣∣2 dx
x

]

× ∂

∂v
HZ0,s (t,x,v) , (30)

where

HZ0,s (t,x,v) =
ˆ

d3vsfZ0,s (t,x,vs)
1
us
, (31)

while

DZ0,s ≃
1
2
Υ
(
p2 + 1

)[ˆ 1

1/Λe,Z0,s

∣∣Zs−FZ0,s (q)
∣∣2 dx
x

]

× ∂

∂v̄
∂

∂v̄
GZ0,s (t,x,v) , (32)

with

GZ0,s (t,x, v̄) =
ˆ

d3vsfZ0,s (t,x,vs)us. (33)

In the coordinate system (p, ξ,φ) used by the LUKE
Fokker–Planck solver in momentum space [50], where ξ is
the cosine of the pitch-angle, the expression of the collision
operator in terms of the divergence of the electron flux in
momentum space∇p ·Scollp ( fe) is,

Scollp =−Dcoll
pp

∂fe
∂p

+

√
1− ξ2

p
Dcoll
pξ

∂fe
∂ξ

+Fcoll
p fe, (34)

Scollξ =−Dcoll
ξ p

∂fe
∂p

+

√
1− ξ2

p
Dcoll

ξξ

∂fe
∂ξ

+Fcoll
ξ fe, (35)

assuming a local axisymmetric plasma. By symmetry, Dcoll
pξ =

Dcoll
ξ p = Fcoll

ξ = 0. The contribution of elastic electron–ion col-
lisions to the non-zero diffusion and friction terms Dcoll

pp

and Fcoll
p , which describes momentum exchange between

particles, is always very small compared to the one of the
electron–electron collisions, because of the very large dif-
ference in mass between electrons and ions, and may there-
fore be neglected. The single large non-zero term arising
from electron–ion collision is Dcoll

ξξ , which is proportional to
Z20,s lnΛe,Z0,s . Consequently, introducing the partial screening
in kinetic calculations requires simply to make the transforma-
tion Z20,s lnΛe,Z0,s → Z20,s lnΛe,Z0,s + gZ0,s (p) for the pitch-angle
diffusion Dcoll

ξξ , with a careful account for the Coulomb logar-
ithm lnΛe,Zs,0 with Z0,s, as discussed in appendix C. Here,D

coll
ξξ

incorporates the contribution of all ion species present in the
plasma and their respective ionization states.

3.2. Inelastic scattering

In the presence of partially ionized high-Z atoms in the plasma,
energetic electrons may lose a part of their kinetic energy by
interacting with the bound electrons of a partially ionized atom
whichconsequently jumps into a transient excited state. The
slowing-down process, which is taken into account by Fokker–
Planck calculations, is therefore the sum of multiple terms, the
usual one from e− e collisions, described in the LUKE kin-
etic code by the relativistic Belaiev–Budker collision operator
[10, 51], the Abraham–Lorentz–Dirac reaction force for very
energetic electrons arising from synchrotron radiation losses
[47] and the new one from e− i excitation. The latter can be
deduced from Bethe’s stopping-power formula describing the
losses of energy dE per unit length dx [35, 52]:

−dE
dx

∣∣∣∣
Z0,s

= 4πr2enZ0,s (Zs−Z0,s)
mec2

β2

[
lnBZ0,s −β2

]
, (36)

with

BZ0,s =

√
2γβ

√
γ− 1〈

h̄ωZ0,s
〉
/mec2

, (37)
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where
〈
h̄ωZ0,s

〉
is the mean excitation energy for the ion of net

charge Z0,s. Since the energy loss over a distance △x is equi-
valent to the work of an effective drag force Fexcitation

p (p) over
that distance, its expression in Fokker–Planck calculations in
simply,

Fexcitation
p (p) =−

∑
s

∑
Z0,s

dE
dx

∣∣∣∣
Z0,s

. (38)

The validity of the Bethe slowing down formula holds prin-
cipally for fast electrons, whose kinetic energy E is much lar-
ger than the mean excitation energy

〈
h̄ωZ0,s

〉
. In this case, the

logarithm term always predominates over the small spin cor-
rections given by the −β2 term or possible very small addi-
tional terms. For electrons whose kinetic energy becomes low
compared to the mean excitation energy, the Bethe formula
indicates that the stopping power tends to decrease. Within
this limit, the dominant inelastic term comes from e− e col-
lisions, as the Bethe formula goes to zero. Unfortunately, the
Bethe formula may reverse sign, a non-physical effect that is
an intrinsic limitation of the Bethe approach. This problem
was identified in [7] and bypassed by performing an inter-
polation. In this case, lnBZ0,s in equation (36) is replaced by
ln(1+BnBZ0,s)/nB , with nB an integer that is chosen heuristic-
ally to be 5. When BZ0,s ≫ 1, ln(1+BnBZ0,s)/nB ≃ lnBZ0,s , and
the Bethe formula is well retrieved. The Bethe-like expression
guarantees that in the limit p= γβ → 0, ln(1+BnBZ0,s)/nB−β2

is always positive and smoothly becomes very small. The exact
value of ln(1+BnBZ0,s)/nB−β2 is not critical since the domin-
ant inelastic term is from e− e collisions. Another approach,
is also to enforce inelastic collisions from the excitation of
high-Z elements to zero, when lnBZ0,s −β2 becomes negat-
ive14. Both methods are equivalent numerically.

Regarding the formulation of the Fokker–Planck solver in
the LUKE code, as shown in equations (34) and (35) in [10,
47, 50], the drag force Fexcitation

p (p), as given by equation (38),
may be readily incorporated in Fcoll

p .

4. Fokker–Planck screening function

From the definition of the Fokker–Planck screening function
given by equation (28), and making the change of variable y=
q̂/x= 2p/α, where p= p/(mec), gZ0,s (p)may be expressed as
the sum of two terms gZ0,s,1 (p) and gZ0,s,2 (p) where,

gZ0,s,1 (p) = 2Zs

ˆ y

y/Λ

(
Ns−FZ0,s (q̂)

) dq̂
q̂
, (39)

and

gZ0,s,2 (p) =
ˆ y

y/Λ

(
F2
Z0,s (q̂)−N2

s

) dq̂
q̂
. (40)

Here, Λ≡ ΛZ0,s , in order to simplify notations.

14 For low-energy electrons, γ ≃ 1+β2/2, so that
√
γ− 1≃ β/

√
2. Within

this limit, BZ0,s ≃ 2E/
⟨
h̄ωZ0,s

⟩
. The term lnBZ0,s −β2 becomes negative if

lnBZ0,s < β2, which leads to a transcendental equation in E for determining
this threshold.

The form factor given by equation (3) may be recast in the
simple form,

FZ0,s (q̂) = Ns
∑
i

A0,s,i

1+
(
q̂aZ0,s,i

)2 , (41)

since aZ0,s,i = αāZ0,s,i/2 and αq̂= q̄. Therefore,

gZ0,s,1 (p̄) = 2Zs

ˆ y

y/Λ

(
Ns−Ns

∑
i

A0,s,i

1+
(
q̂aZ0,s,i

)2
)

dq̂
q̂
,

(42)
or

gZ0,s,1 (p̄) = Zs (Zs−Z0,s)
∑
i

A0,s,i ln
(
1+

(
p̄āZ0,s,i

)2)
, (43)

assuming that the condition 2paZ0,s,i/(αΛ) = paZ0,s,i/Λ≪ 1
holds. This is always valid in tokamak plasmas since the
Debye sphere has numerous particles.

In much the same way,

gZ0,s,2 (p̄) = +N2
s

∑
i

A
2
0,s,ig̃Z0,s,2,i (p̄)

+N2
s

∑
i

∑
j̸=i

A0,s,iA0,s,jg̃Z0,s,2,i,j (p̄) , (44)

where

g̃Z0,s,2,i (p̄) =
ˆ y

y/Λ

1−
(
1+

(
q̂aZ0,s,i

)2)2(
1+

(
q̂aZ0,s,i

)2)2 dq̂
q̂
, (45)

and

g̃Z0,s,2,i,j (p̄) =
ˆ y

y/Λ

1−
(
1+

(
q̂aZ0,s,i

)2)(
1+

(
q̂aZ0,s,j

)2)(
1+

(
q̂aZ0,s,i

)2)(
1+

(
q̂aZ0,s,j

)2) dq̂
q̂
,

(46)
which can be integrated analytically so that,

g̃Z0,s,2,i (p̄) =−1
2

(
p̄āZ0,s,i

)2
1+

(
p̄āZ0,s,i

)2 − 1
2
ln
(
1+

(
p̄āZ0,s,i

)2)
,

(47)

while

g̃Z0,s,2,i,j,2 (p̄)

=−
1
4
ln
∣∣∣1+ p2

(
a2Z0,s,i + a2Z0,s,j

)
+ p4a2Z0,s,ia

2
Z0,s,j

∣∣∣
+
a2Z0,s,i + a2Z0,s,j

2
√

∆

ln
∣∣∣∣∣∣
4a2Z0,s,ia

2
Z0,s,jp

2 + 2
(
a2Z0,s,i + a2Z0,s,j

)
−
√

∆

4a2Z0,s,ia
2
Z0,s,jp

2 + 2
(
a2Z0,s,i + a2Z0,s,j

)
+
√

∆

∣∣∣∣∣∣
− ln

∣∣∣∣∣∣
2
(
a2Z0,s,i + a2Z0,s,j

)
−
√

∆

2
(
a2Z0,s,i + a2Z0,s,j

)
+
√

∆

∣∣∣∣∣∣
 , (48)
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with √
∆= 2

∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣ . (49)

Gathering all terms,

gZ0,s (p̄) = Zs (Zs− Z0,s)
∑
i

A0,s,i ln
(
1+

(
p̄āZ0,s,i

)2)− (Zs− Z0,s)
2

2

×
∑
i

A
2
0,s,i

( (
p̄āZ0,s,i

)2
1+

(
p̄āZ0,s,i

)2 + ln
(
1+

(
p̄āZ0,s,i

)2))
+ 2(Zs− Z0,s)

2
∑
i

∑
j>i

A0,s,iA0,s,jg̃Z0,s,2,i,j (p̄) , (50)

with

g̃Z0,s,2,i,j (p̄)

=−1
2

a2Z0,s,i + a2Z0,s,j
a2Z0,s,j − a2Z0,s,i

ln

∣∣∣∣∣1+ p̄2a2Z0,s,j
1+ p̄2a2Z0,s,i

∣∣∣∣∣
− 1

4
ln
∣∣∣1+ p2

(
a2Z0,s,i + a2Z0,s,j

)
+ p4a2Z0,s,ia

2
Z0,s,j

∣∣∣
+

a2Z0,s,i + a2Z0,s,j

4
∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣
×

ln
∣∣∣∣∣∣
2a2Z0,s,ia

2
Z0,s,jp

2 +
(
a2Z0,s,i + a2Z0,s,j

)
−
∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣
2a2Z0,s,ia

2
Z0,s,jp

2 +
(
a2Z0,s,i + a2Z0,s,j

)
+
∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣
∣∣∣∣∣∣

− ln

∣∣∣∣∣∣
(
a2Z0,s,i + a2Z0,s,j

)
−
∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣(
a2Z0,s,i + a2Z0,s,j

)
+
∣∣∣a2Z0,s,i − a2Z0,s,j

∣∣∣
∣∣∣∣∣∣
 , (51)

and, as expected, limp̄→0 gZ0,s (p̄) = 0 is verified regardless of
the element and its ionization state Z0,s,.

In the case of a single exponential corresponding to the
standard Yukawa atomic potential, equation (50) simplifies to
the usual form:

gZ0,s =
1
n

[(
Z2s −Z20,s

)
ln
(
1+

(
p̄āZ0,s,1

)n)
− (Zs−Z0,s)

2

(
p̄āZ0,s,1

)n
1+

(
p̄āZ0,s,1

)n
]
, (52)

where n= 2, since A0,s,1 = 1, while g̃Z0,s,2,i,j (p̄) = 0 by defini-
tion. Using the Thomas–Fermi–Kirillov model [22], n= 3/2,
and equation (6) in [6] is well retrieved. The difference is gen-
erally small for tungsten, a few percent, between the MY and
Thomas–Fermi–Kirillov models.

The analytical expression of gZ0,s (p̄) may be easily imple-
mented in Fokker–Planck solvers, allowing fast and accurate
kinetic calculations, whatever p̄ and the type of elements and
their level of ionization. As shown in figure 15, gZ0,s (p̄) from
equation (50) for neutral tungsten with the use of three expo-
nentials is very close to the numerical estimate gnumZ0,s (p̄) dir-
ectly obtained in the limit p̄≫ 1, from DFT calculations using
results of the GAUSSIAN code. The formula is,

Figure 15. Normalized Fokker–Planck screening function for the
neutral tungsten element, Z0,s = 0, as a function of the normalized
momentum p= p/(mec), calculated from DFT results (red circles)
using the GAUSSIAN code [12] for ρ̄numZ0,s and equation (53) and
approximated using the method of moments (multi-Yukawa) given
by equation (50) with a single exponential (blue dashed line), two
exponentials (green dotted dashed line) and three exponentials (pink
dashed line).

gnumZ0,s (p̄) =
(
Z2s −Z20,s

)
(ln(2p̄/α)+ γEM − 1)+ 2ZsNsÎ1,Z0,s

+N2
s

(
1
2
− Î2,Z0,s

)
, (53)

where

Î1,Z0,s ≡
4π
Ns

ˆ ∞

0
ρ̄numZ0,s (r̄1) r̄

2
1 ln r̄1dr̄1, (54)

with

Î2,Z0,s =
4π2

N2
s

ˆ ∞

0
ρ̄numZ0,s (r̄1) Ĵ2,Z0,s (r̄1) r̄1dr̄1, (55)

and

Ĵ2,Z0,s (r̄1) =
ˆ ∞

0
ρ̄numZ0,s (r̄2) r̄2dr̄2

(
(r̄1 + r̄2)

2 ln(r̄1 + r̄2)

−(r̄1 − r̄2)
2 ln |̄r1 − r̄2|

)
, (56)

from [7], γEM being the Euler–Mascheroni constant [53].
Since equation (53) is derived in the limit p̄≫ 1, it is con-

sequently not valid at low p̄, and gnumZ0,s (p̄) does not converge
towards zero when p̄⩽ 0.5, as shown in figure 16 for the
neutral atom of tungsten. When the number of exponentials
is reduced, gZ0,s (p̄) is always lower than g

N
Z0,s (p̄). The relat-

ive error is about 13% at p̄= 1 for a single exponential. This
tendency is similar for an ionized atom, as shown forW42+ in
figure 17. In this case, only two exponentials are necessary
to accurately reproduce the atomic potential. For ionization
states ranging between W45+ and W55+, where only a single
exponential can be found by the MY procedure described
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Figure 16. Normalized Fokker–Planck screening function for the
neutral tungsten element, Z0,s = 0, as a function of the normalized
momentum p= p/(mec) between p= [0,1] calculated from DFT
results (red circles) using the GAUSSIAN code [12] for ρ̄numZ0,s and
equation (53) and approximated using the method of moments
(multi-Yukawa) given by equation (50) with a single exponential
(blue dashed line), two exponentials (green dotted dashed line) and
three exponentials (pink dashed line). When p< 0.4, the numerical
value of the normalized Fokker–Planck screening function falls off
more rapidly than the MY expression with the use of three
exponentials, and does not converge towards zero for p≈ 0, as
expected from theory.

in section 2, the relative deviation of gZ0,s (p̄) from gnumZ0,s (p̄)
remains small whatever the p̄ value, in the order of a few per-
cent, even if the coefficient of determination R2, shown in
figure 12, is lower. This results from the fact that gZ0,s (p̄) is
itself an integral, which smooths out possible errors.

5. Mean excitation energy

The mean excitation energy
〈
h̄ωZ0,s

〉
is the key para-

meter to describe enhanced slowing down of the elec-
trons by transferring energy to partially ionized high-Z ele-
ments in a hot plasma. It is formally defined as

〈
h̄ωZ0,s

〉
=

(1/Z0,s)
∑

ik fik ln(h̄ωik), where f ik is the dipole oscillator
strength of the transition ωik for the atomic system between
quantum states |i⟩ and |k⟩, according to Bethe’s theory [34,
54]. Its determination from first principles calculations is a
considerable challenge, so except for elements that do not
require relativistic corrections,

〈
h̄ωZ0,s

〉
is generally obtained

from empirical laws constrained by measurements for neut-
ral atoms only [55–58]. Recent advanced calculations carried
out by a non-relativistic multi-configurational self-consistent
field (MCSCF) code have allowed us to estimate

〈
h̄ωZ0,s

〉
for

all ionization states of the elements lighter than argon Zs ⩽ 18
[14, 15, 59]. Although this result represents considerable pro-
gress, the accurate determination of

〈
h̄ωZ0,s

〉
for many higher-

Z elements, such as tungsten, is still missing, which makes it
difficult to study the impact of inelastic processes by electron–
ion interaction in a hot plasma. In this context, several simple

Figure 17. Normalized Fokker–Planck screening function for the
charged tungsten element, Z0,s = 42, as a function of the normalized
momentum p= p/(mec), calculated from DFT results (red circles)
using the GAUSSIAN code [12] for ρ̄numZ0,s and equation (53) and
approximated using the method of moments (multi-Yukawa) given
by equation (50) with a single exponential (blue dashed line), two
exponentials (green dotted dashed line) and three exponentials (pink
dashed line).

models have been introduced to compare their impact on kin-
etic calculations.

In general, MCSCF calculations show that
〈
h̄ωZ0,s

〉
has an

exponential-like dependence with Z0,s, which can be easily
determined within the two limits, i.e. for the neutral atom and
for the hydrogen-like atom characterized by a single valence
electron. For low-Z neutral elements,

〈
h̄ωZ0,s

〉
has a rather

complex structure, while it becomes almost proportional to
Zs for Zs > 18, i.e. h̄

〈
ωZ0,s

〉
≃ 10Zs eV, this being known as

the Bloch relation [55]. For Zs < 18,
〈
h̄ωZ0,s

〉
oscillates with

Zs and tends to increase up to approximately 50% as its value
decreases. The Zs dependence of

〈
h̄ωZ0,s

〉
for neutral atoms can

be well described by a statistical approach to the energy loss
process, known as the LPA [37, 55]. In the other limit corres-
ponding to a single bound electron,

〈
h̄ωZ0,s

〉
= Z2s IH eV, where

IH = 14.9916eV is obtained from non-relativistic quantum
calculations [14, 60]. Consequently,

〈
h̄ωZ0,s

〉
may be approx-

imated by the simple heuristic relation,

ln
〈
h̄ωZ0,s

〉
≃ ln

(
IH
10
Zs

)
Z0,s
Zs− 1

+ ln(10Zs) , (57)

where Z0,s is the charge of the fully screened ion, and h̄ωZ0,s is
expressed in eV units. This relation can be considered as an
upper bound of

〈
h̄ωZ0,s

〉
, since electron–electron correlations

tend to reduce the mean excitation energy [14]. This method
has been used to quantify the impact of tungsten on the tor-
oidal plasma current driven by RF waves at the lower hybrid
frequency in tokamaks [4].

It is shown that for argon, in figure 18, the exponen-
tial interpolation given by equation (57) is in good agree-
ment for both weakly and highly ionized states compared
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Figure 18. Variation of the logarithm of the mean excitation energy
in eV units for argon, as a function of the level of ionization. Black
dotted dashed line: exponential interpolation determined from
neutral atom and hydrogen-like ion according to equation (57);
green circles: numerical results from the MCSCF quantum code
[14]; blue dashed line: LPA model from equation (59) with
γLPA =

√
2 using the MY atomic model with the use of three

exponentials calibrated against DFT calculations (GAUSSIAN code)
[37]; red full line: variational quantum model from equation (62)
using the MY atomic model with the use of three exponentials
calibrated against DFT calculations (GAUSSIAN code) [36]; black
star: mean excitation energy for the neutral atom from the NIST
database [62].

to MCSCF calculations [14]. In between, results obtained
with the MCSCF code are lower, especially in the inter-
val Z0,s = [10− 15]. However, the difference never exceeds a
factor two.

More refined approaches may be considered, taking into
account the density of bound charges calculated in the ground-
state. Indeed, since excited states are transient with a char-
acteristic time that is generally much smaller than the mean
collision time, elements in the plasma are principally in a
ground-state from which atom transitions must be considered
to evaluate

〈
h̄ωZ0,s

〉
. Two models are interesting for this pur-

pose, the LPA approach [37], dedicated principally to very
weakly ionized atoms and a variational quantum description
[36]. Although restricted to non-relativistic elements, the lat-
ter may be an interesting alternative even for high-Z ele-
ments, as it is expected to be valid within a larger range
of Z0,s values. For both approaches, the MY description of
the density of bound electrons may be used, allowing a uni-
fied description of the atomic physics in kinetic calculations,
not only for elastic Coulomb collisions but also for inelastic
processes.

5.1. LPA

The LPA has been widely used to calculate the mean excita-
tion energies of neutral atoms [55]. The LPA formula can be
extended to any ionization state, according to the relation,

ln
〈
h̄ωZ0,s

〉
=

4π
Ns

ˆ ∞

0
r2ρZ0,s (r) ln

(
γLPA

√
4πα2mec

2
√

ρZ0,s (r)
)
dr.

(58)

The LPA formula gives generally poor results when the
ionization state is high and a fewer number of electrons remain
bound, because of the basic difficulties encountered when
one tries to derive this scheme from first principles, i.e. start-
ing with the standard definition of the oscillator strength in
terms of dipole matrix elements and carrying out a system-
atic deduction [61]. In particular, the choice of γLPA is rather
arbitrary, and its value, from heuristic arguments, is generally
set at

√
2. Incorporating equation (2) into equation (58) with

γLPA =
√
2,

ln
〈
h̄ωZ0,s

〉
=
∑
i

λ
2
Z0,s,iAZ0,s,i

ˆ ∞

0
rexp

(
−λZ0,s,i r

)
× ln

√
2α2mec2

√
Zs −Z0,s

r

∑
j

λ
2
Z0,s,jAZ0,s,i exp

(
−λZ0,s,j r

)dr.

(59)

As shown for argon in figure 18, which is the highest-Z ele-
ment for which advanced numerical quantum calculations are
available [14], a good quantitative agreement is found between
LPA calculations using equation (59) and MCSCF ones for
the neutral atom. The value from the NIST database is also
consistent with the LPA level [62]. As the ion charge Z0,s
is increasing, the departure from the results of the numerical
quantum calculations is more and more pronounced, and with
the LPA, the limit for the hydrogen-like ion is never recovered,
indicating that the model fails completely in this regime. For
the case of tungsten, the lack of quantum calculations prevents
an accurate comparison as for argon. Nevertheless, the depar-
ture from the hydrogen-like limit is also very large, while for
the neutral atom, the agreement between the value given by
the NIST database and the estimate from the Bloch relation is
very good, as shown in figure 19.

5.2. Variational quantum description

A non-relativistic variational quantum model to calculate the
mean excitation energy, initially derived for inertial fusion
experiments, is an interesting approach to obtain a more
accurate estimate

〈
h̄ωZ0,s

〉
as a function of Z0,s. According

to [36], the mean excitation energy of the ground state is
given by the relation ln

〈
h̄ωZ0,s

〉
= 1

2 lnS(1)/S(−1) where
S(−1) = 2mea20

〈
r2
〉
/
(
3h̄2
)
and S(1) = 4K0/3. The functions

S are moments of the strength distribution of oscillators [54],
which may be expressed as a function of K0, the averaged
kinetic energy of the cloud of bound electrons, and

〈
r2
〉
=

(4π/Ns)
´∞
0 r4ρZ0,s (r)dr or

〈
r2
〉
= 6R2 from equation (6).

Therefore,

〈
h̄ωZ0,s

〉2
= 2

K0〈
r2
〉α2mec

2, (60)
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Figure 19. Variation of the logarithm of the mean excitation energy
in eV units for tungsten, as a function of the level of ionization.
Black dotted dashed line: exponential interpolation determined from
neutral atom and hydrogen-like ion according to equation (57); blue
dashed line: LPA model from equation (59) with γLPA =

√
2 using

the MY atomic model with the use of three exponentials calibrated
against DFT calculations (GAUSSIAN code) [37]; red full line:
variational quantum model from equation (62) using the MY atomic
model with the use of three exponentials calibrated against DFT
calculations (GAUSSIAN code) [36]; black star: mean excitation
energy for the neutral atom from the NIST database [62].

where α2mec2 ≃ 27.21eV, which is about twice the Rydberg
unit of energy. The calculation of K0 is performed using the
virial theorem, 2K0 ≃−

〈
UZ0,s

〉
, where UZ0,s is the atomic

potential related to the density of bound charge ρZ0,sby the
Poisson’s equation, as given by equation (1), using the MY
description. Therefore, since,

〈
UZ0,s

〉
=−Zs−Ns

4πϵ0a0

∑
i

λZ0,s,iAZ0,s,i

− Ns
4πϵ0a0

(
1
2

∑
i

A
2
Z0,s,iλZ0,s,i

+
∑
i

∑
j̸=i

AZ0,s,iAZ0,s,j
λ
2
Z0,s,i

λZ0,s,i +λZ0,s,j

 , (61)

one obtains,

〈
h̄ωZ0,s

〉
=

α2mec2√
6
∑

iλ
−2
Z0,s,iAZ0,s,i

×

[
(Zs−Ns)

∑
i

λZ0,s,iAZ0,s,i +Ns

(∑
i

A
2
Z0,s,i

λZ0,s,i
2

+
∑
i

∑
j ̸=i

AZ0,s,iAZ0,s,j
λ
2
Z0,s,i

λZ0,s,i +λZ0,s,j

1/2

, (62)

by reporting equation (61) in the expression equation (60). In
equation (62), parameters (A0,s,i,λZ0,s,i) are those obtained from
the method of moments discussed in section 2.3.

For a single exponential, equation (62) simplifies

to
〈
h̄ωZ0,s

〉
= α2mec2

√
λ
3
Z0,s,1Ns/12, and for neutral atoms,

i.e. when Ns = Zs,
〈
h̄ωZ0,s

〉
= 9.44Zs eV, considering the

Thomas–Fermi model for which λ̄Z0,s,1 = 1.13Z1/3s , as defined
in section 2.2. Using a similar approach based on an approx-
imate description of the Thomas–Fermi model [21], the same
value is found, as shown in [36]. Both relations are very
close to the heuristic Bloch relation, which can also be well
reproduced by the LPA model [55]. Another approximate
description of the Thomas–Fermi model given in [22] gives〈
h̄ωZ0,s

〉
≃ 12.10Zs eV, about 12% larger than the value given by

the exact Thomas–Fermi model, but still close to the Bloch
relation [55].

As shown for argon in figure 18, the quantitative agree-
ment between the non-relativistic variational quantum model
and the results of the MCSCF code is good, especially above
Z0,s = 8. The analytical model has the correct dependency up
to the hydrogen-like atom, which is an important assessment
of the method. With the MY description of the atomic poten-
tial, small departures are observed at low Z0,s, even if it never
exceeds 20% approximately for the neutral atom. This discrep-
ancy arises from the large sensitivity of

〈
h̄ωZ0,s

〉
to the atomic

model in this limit. Indeed, when
〈
h̄ωZ0,s

〉
is calculated using

the approximate Thomas–Fermi atomic models instead of the
MY one, the agreement with the Bloch relation for neutral
atoms is much better, within 5%.

When applied to the case of tungsten, as displayed in
figure 19, ⟨h̄ωZ0,s⟩ exhibits globally a consistent agreement with
the expected limits for a neutral atom and an almost fully
stripped one. For argon, the agreement is less accurate near
Z0,s = 0, with a similar relative error. Conversely, the LPA
model,

〈
h̄ωZ0,s

〉
has a correct variation with Z0,s when its value

is close to Zs, making the variational quantum descriptionmore
appropriate, even if relativistic effects are not considered.

From estimates of
〈
h̄ωZ0,s

〉
using the LPA and the variational

quantum descriptions, both using theMY atomicmodel for the
ground-state, there is a trade-off for an accurate estimate of〈
h̄ωZ0,s

〉
whatever Z0,s would be to consider the largest of the

values given by both models. This approach would allow us
to accurately describe atomic physics in kinetic calculations,
either for a cold plasma such as after a major disruption or
for a standard hot magnetized plasma expected during regular
tokamak operation. This option is considered in the 3D linear-
ized relativistic bounce-averaged Fokker–Planck code LUKE
to study both the physics of post-disruptive runaway and slide-
away RF-driven electrons [10, 47].

6. Conclusion

The incorporation of atomic physics in kinetic calculations is
becoming mandatory in order to study the impact of high-Z
elements in fusion plasmas. The MY approach for describ-
ing the atomic potential, regardless of the ionization state, is
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particularly convenient to obtain consistent analytical solu-
tions for both elastic and inelastic scattering processes that
occur in a plasma. This allows fast and accurate kinetic cal-
culations while the full atomic physics can be incorporated,
over a very wide range of plasma regimes and electron kinetic
energies. With this approximate and accurate atomic model,
the dynamics of electrons in a plasma can be studied from
the runaway energy range (a few tens of MeV) in very cold
post-disruptive plasmas to slide-away electrons in hot plasmas
without changing the atomic model depending upon the stud-
ied physics.

The great advantages of the method proposed here are its
robustness and flexibility. Indeed, the calibration procedure
against advanced numerical atomic codes is rigorous and the
parameters defining the MY atomic potential are unique, as
their identification does not rely on a non-linear least-squares
fit procedure, which is inappropriate for the non-linear prob-
lem here addressed. The method, initially restricted to neut-
ral atoms, has been extended here to any ionization state of
any type of element, making it universal. While it was ini-
tially developed for up to three exponentials, it has been exten-
ded to an arbitrary number of them. However, for all the ele-
ments with an atomic number less than 74 (tungsten), the
method does not find more than three exponentials, regardless
of their ionization states. This method is also flexible since the
impact of most advanced atomic simulations can be investig-
ated without changing the structure of the kinetic code, but just
by modifying the coefficients of the MY potential. Although
simple, the method allows for having a more realistic descrip-
tion of atomic physics compared to simplified atomic mod-
els, such as the well-known Thomas–Fermi model and all its
approximate representations.

The study presented here has been restricted to microscopic
collision processes for kinetic calculations. However, it can be
extended to other physical quantities, in particular, those that
are derived in the first Born approximation, as already shown
for the bremsstrahlung of fast electrons on neutral atoms,
where partial screening effects may also be important. It is
likely that this method can be extended to many more pro-
cesses, such as ionization and knock-on collisions by ener-
getic electrons (beyond Fokker–Planck approximation), open-
ing the possibility of a unified and rigorous description of most
of the atomic physics in kinetic descriptions of plasmas.
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Appendix A. Moliere’s model

FromMoliere’s description of the Thomas–Fermi model [32],
the atomic charge density may be expressed as ρMZ0,s (̂r) =
(Zs− Z0,s)

∑
β2
i Bi exp(−βir̂)/

(
4πr̂b3s

)
with βi and Bi independ-

ent of the atomic number Zs, where the distance r to the nuc-
leus is normalized to the Thomas–Fermi atomic characteristic
length bs, i.e. ř= r/bs. The conversion to atomic units may
easily be obtained, i.e. βiř→ βi (r/a0)(a0/bs)≡ λ

M
Z0,s,ir so that

λ
M
Z0,s,i = βia0/bs = βi/b̄s = βiZ

1/3
s /αTF or βi = b̄sλ

M
Z0,s,i where b̄s =

αTFZ−1/3
s and αTF =

[
9π2/2

]1/3
/4≃ 0.885. In much the same

way, β2
i Bi/(̌rb

3
s ) = (λ

M
Z0,s,i)

2Bi/(ra30) and A
M
Z0,s,i = Bi.

Therefore, for tungsten (Z= 74), since Z1/3s = 4.1983
while B1 = 0.1, B2 = 0.55, B3 = 0.35, and β1 = 6.0, β2 = 1.20,
β3 = 0.30 from [32], coefficients which are used in plots
for figures 6, 13 and 8 are

(
λW−M
1 ,AW−M

1

)
= (28.4633,0.1),(

λW−M
2 ,AW−M

2

)
= (5.6926,0.55) and

(
λW−M
3 ,AW−M

3

)
=

(1.4231,0.35). Comparisons with values for a three exponen-
tials representation of the atomic density obtained with DHFS
and DFT models are given in table 2.

Appendix B. Quantum simulations

B.1. GAUSSIAN code

DFT is a computational quantum mechanics modelling
method used in physics, chemistry and materials science to
investigate the electronic structure, principally the ground
state, of many-body systems, in particular atoms. Using this
theory, the properties of a many-electron system can be
determined by using functionals, i.e. functions of another func-
tion, which is the spatially dependent electron density in this
case.

DFT is the method of reference in order to calculate the
number density of bound electrons averaged over a solid angle
as a function of the radius for all ionization states of any
atom. There are many tools dedicated to DFT calculations, and
among them, the commercial code GAUSSIAN is one of [12].
Version g09 has been used for the calculations described in
the present paper. Regarding the simplicity of the atomic con-
figuration in a tokamak plasma, i.e. field-free atoms, results
obtained with this tool are likely independent of the code ver-
sion. The excellent agreement with the results obtained with
the latest version of theGRASP code described in appendix B.2
validates this assumption.

The settings of the DFT calculations can be summar-
ized as follows: the atomic model PBE1PBE describing the
hybrid-exchange correlation functional is chosen. The basis
set on which the solution is determined may be internal to
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the GAUSSIAN code (6-311G, cc-pVDZ or AUG-cc-pVDZ,
AUG- standing for augmented), as for most atoms that do
not require relativistic quantum calculations (up to Krypton
approximately). It may also be external to the GAUSSIAN code,
like the natural orbital-relativistic correlation consistent basis
set ANO-RCC, when quantum relativistic calculations must
be performed (accessible from the www.basissetexchange.org
website) [63]. In the latter, the calculations are performed by
solving the Douglas–Kroll–Hess second-order scalar relativ-
istic Hamiltonian for the Dirac equation, instead of solving
the usual Schrödinger equation. More advanced details may
be obtained from the online GAUSSIAN code documentation
accessible from the https://gaussian.com website.

In the calculations, the spin multiplicity requires special
care. It may be obtained from Hund’s rules for low-Z ele-
ments, but is usually obtained from the NIST database (https://
physics.nist.gov/asd) [62]. It is important to note that for six
ionization states of tungsten ranging from W49+ to W50+, no
spin multiplicity is given likely because of the energy close-
ness of the different shells due to strong spin–orbit coupling.
Therefore, these ions require a specific treatment to perform
GAUSSIAN calculations.

Once GAUSSIAN calculations are carried out, results are
post-processed using the Multiwfn program that can be down-
loaded from the https://sobereva.com/multiwfn website [64].

B.2. GRASP code

MCDHF calculations have been done with the General
Relativistic Atomic Structure Package (GRASP), version 2018
[13, 65]. The FORTRAN 95 code can be downloaded from the
website https://github.com/compas/grasp and easily compiled.
Specific scripts have been written from the documentation,
using predefined ion configurations [1]: He (1s(2) = 2 elec-
trons; [2]: Ne ([He]+ 2s(2)2p(6)= 10 electrons; [3]: Ar ([Ne]
+ 3s(2)3p(6)= 18 electrons; [4]: Kr ([Ar]+ 3d(10)4s(2)4p(6)
= 36 electrons; [5]: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 elec-
trons; [6]: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons,
in order to minimize duration and memory requirements for
the calculations. This is especially important for weakly ion-
ized high-Z elements, such as tungsten. Once the radial wave-
functions have been calculated, the atomic density of bound
electrons is determined using the dedicated module RDENSITY,
which can be downloaded from the CPC Library and compiled
like all other modules of the GRASP code [66].

Appendix C. Coulomb logarithm

The Coulomb logarithm lnΛe,Zs,0 = ln(bmax/

√
1+ b

2
min) from

equation (24) may be explicitly evaluated, taking into account
the plasma conditions, the type of element and its net charge.
Since the Coulomb potential is screened at a distance larger
than the Debye length λD, the upper limit is bmax = λD/b90.
For multispecies plasmas, λD → λe−i

D ≃ λeD (1+ ZeffTe/Ti)
−1/2,

where λeD is the usual electron Debye length, and Zeff =∑
s

∑
Z0,s

nZ0,sZ
2
0,s/ne is the effective charge, knowing that

∑
s

∑
Z0,s

nZ0,s (t,x)Z0,s = ne from electroneutrality. In most kin-
etic calculations it is usually assumed that all ion species have
the same temperature T i whatever their net charge.

The value of bmin depends of the ratio bq/b90 where bq
is deduced from the uncertainty principle. If bq/b90 ≫ 1,
quantum effects predominate and lnΛq

e,Z0,s
≃ ln(λD/bq), other-

wise the classical limit corresponding to bmin = 0 can be taken,
and lnΛc

e,Zs,0 ≃ ln(λD/b90) [67, 68]. Consequently, lnΛq
e,Z0,s

is less than lnΛc
e,Z0,s . The quantum limit may be determ-

ined from the uncertainty principle △p△x> h̄/2 where the
momentum increment is approximated by △p= µsus, µs =

mems/(me +ms) being the reduced mass between colliding
particles. Therefore, assuming △x≃ bq, the impact parameter
is bq ≈ h̄/(2µsus) or bq ≈ (λC/4π)(me/µs)/us, where λC is the
Compton length. The ratio bmin = bq/b90 = us/(2Z0,sα) since
b90 = re

(
Z0,s/u

2
s

)
(me/µs) for Coulomb collisions and λC/re =

2π/α. A rough estimate of the smooth transition between
classical and quantum limits may be obtained by averaging
ūs over the electron and ion distribution functions. In this
case, the square root of the mean square velocity is ⟨⟨ūs⟩⟩ ≃√

3Te where Te = Te/
(
mec2

)
and the normalized plasma tem-

perature threshold above which quantum effects are signi-
ficant is Tqe,Z0,s = 4Zs,0α2/3. For Z0,s = 1, Tqe,Z0,s = 36eV, so that
the quantum limit must always be taken under standard
tokamak plasma conditions with isotopes of hydrogen. For
Z0,s = 42, corresponding to the net ionization of tungsten at
Te = 3keV, then Tqe,Z0,s is much larger, Tqe,Z0,s = 64keV, and the
classical limit is conversely always valid in tokamak plas-
mas. Since me ≪ ms, µs ≃ me, and lnΛc

e,Z0,s ≃ lnλD/re + 2ln ūs−
lnZ0,s, while lnΛq

e,Z0,s
≃ lnλD/re + ln ūs+ ln(2α). If lnΛq

e,Z0,s
and

lnΛc
e,Z0,s are both heavily weighted by the ratio λD/re, the

regime dominated by quantum effects concerns principally
fast electrons for partially ionized high-Z elements whose kin-
etic energy is greater than Tqe,Z0,s . In the quantum limit, Λa

e,Z0,s

is independent of the ion net charge Z0,s.
In standard MKSA units, with λD = λeD, lnΛq

e,Zs,0
=

0.5lnTe [keV]− 0.5lnne
[
1020m−3]+ ln ūs+ 18.61 and the

thermal value is lnΛq−th
e,Z0,s

≃ lnTe [keV]− 0.5lnne
[
1020m−3]+

16.04. Using λe−i
D , the Coulomb logarithm must be reduced by

the term−0.5ln(1+ ZeffTe/Ti), and for a pure hydrogen plasma
with Te = Ti, lnΛq−th

e,Z0,s
≃ lnTe [keV]− 0.5lnne

[
1020m−3]+ 15.7, a

value very close to those found in the literature [67, 69].
Additional small differences may arise from the choice of
the averaged velocity. For relativistic electrons, ūs ≃ v̄, since
ions may be considered at rest, lnΛq−rel

e,Z0,s
≃ lnΛq−th

e,Z0,s
+ lnp−

0.5lnTe − 0.5ln3, as far as p>
√

3Te or Ec ≫ 3Te/2, where Ec
is the kinetic energy normalized to the electron rest mass
energy. Following [7], lnΛq

e,Z0,s
may be approximated by

lnΛq
e,Z0,s

≃ lnΛq−th
e,Z0,s

+ ln(1+(p/(
√

3Te))k)/kwith k= 5, in order
to have a smooth transition from the thermal limit of the
Coulomb logarithm.

Conversely to the quantum limit, lnΛc
e,Z0,s in the clas-

sical limit is weakly dependent on the ion charge Z0,s and is
more sensitive to Te, since ln(Λc

e,Z0,s/Λ
q
e,Z0,s

) = ln(ūs/(2αZ0,s)).
In MKSA units, lnΛc−th

e,Z0,s
= 1.5lnTe [keV]− 0.5lnne

[
1020m−3]−

lnZs,0 + 17.69 and lnΛc−rel
e,Z0,s

= lnΛc−th
e,Z0,s

+ 2lnp− lnTe − ln3. It
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can be also approximated by the expression lnΛc
e,Z0,s ≃

lnΛc−th
e,Z0,s

+ ln(1+
(
p2/
(
3Te
))k

)/k. The choice of the electron–
ion Coulomb logarithm, lnΛe,Z0,s

(
p,Te

)
, therefore depends on

the type of element s, its local ionization state Z0,s and the tem-
peratures Te and T i at the same location in the plasma.
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