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Abstract

Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form

factors due to the slow velocity of acoustic waves, and are already used in applications ranging

from timing to wireless filters. Over the past decade, novel ways in which mechanical systems

can be quantum controlled have been developed, based on either coupling to electromagnetic

cavities in quantum optomechanics or superconducting qubits. The former route has utilized

the coupling to electromagnetic cavities both in the optical and microwave domains, and

enabled to reach a regime where the quantum nature of the optomechanical interaction

becomes relevant. This allowed numerous advances such as optomechanical ground state

cooling, quantum transduction, or entanglement of macroscopic mechanical resonators.

An enduring challenge in constructing such hybrid systems is the dichotomy of engineered

coupling to an auxiliary degree of freedom, while being mechanically well isolated from the

environment, that is, low quantum decoherence. In this thesis, we show how to overcome

this challenge by introducing a superconducting circuit optomechanical platform with an

ultra-low quantum decoherence rate. This enabled us to reach 0.07 quanta motional ground

state occupation and realize mechanical squeezing of -2.7 dB below zero-point fluctuation.

To directly measure the quantum-state lifetime, we observe the free evolution of the phase-

sensitive squeezed state for the first time, preserving its non-classical nature over milli-second

timescales, substantially longer than conventional superconducting qubits and on par with

ion traps.

Furthermore, our novel platform enables us to scale up optomechanical systems to arrays

and lattices, realizing non-trivial topological modes in such multimode systems. This has

been a long-lasting challenge in the field of optomechanics due to the stringent requirements

on identical individual optomechanical sites. We introduce a novel technique to exploit

optomechanical interaction and directly measure collective mode shapes in a large-scale

superconducting lattice and explore the physics of edge states in optomechanical strained-

graphene lattices. Such ultra-low quantum decoherence and reproducible platform not only

increases the fidelity of quantum control and measurement of macroscopic mechanical sys-

tems but may equally benefit interfacing with qubits, exploring emergent nonlinear dynamics
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Abstract

in complex optomechanical systems, and placing the system in a parameter regime suitable

for tests of quantum gravity. Particularly, the long mechanical quantum-state lifetime has

applications in quantum sensing and makes this platform a perfect candidate for quantum

storage elements in quantum computing and communication systems.

In the last part of this thesis, we report the first proof-of-concept cryogenic electro-optical

readout of a superconducting circuit using a lithium niobate modulator to reduce the heat

load and address the scaling challenge in future superconducting circuit-based quantum

computers. Although the noise level in the electro-optical readout chain is still substantially

higher than the conventional electronic methods, we discuss the requirements and envision

the parameter regimen that may lead to near-quantum limited optical readout in advanced

future platforms.

Key words:

Quantum optomechanics, Quantum electromechanical, superconducting circuits, Mechanical

squeezing, Topological lattices, Quantum decoherence, Cryogenic electro-optical readout

iv



Résumé

Les oscillateurs mécaniques peuvent présenter des modes avec une dissipation d’énergie

ultra-faible et des facteurs de forme compacts en raison de la vitesse lente des ondes acous-

tiques, et sont déjà utilisés dans des applications allant de la synchronisation aux filtres sans fil.

Au cours de la dernière décennie, de nouvelles méthodes de contrôle quantique des systèmes

mécaniques ont été développées, basées soit sur le couplage avec des cavités électromagné-

tiques en optomécanique quantique, soit sur des qubits supraconducteurs. La première voie a

utilisé le couplage avec des cavités électromagnétiques à la fois dans les domaines optique

et micro-onde, et a permis d’atteindre un régime où la nature quantique de l’interaction

optomécanique devient pertinente. Cela a permis de nombreuses avancées telles que le refroi-

dissement optomécanique à l’état fondamental, la transduction quantique ou l’intrication

de résonateurs mécaniques macroscopiques. Un défi persistant dans la construction de tels

systèmes hybrides est la dichotomie du couplage conçu à un degré de liberté auxiliaire, tout

en étant mécaniquement bien isolé de l’environnement, c’est-à-dire une faible décohérence

quantique. Dans cette thèse, nous montrons comment surmonter ce défi en introduisant une

plateforme optomécanique à base de circuit supraconducteur avec un taux de décohérence

quantique ultra-faible. Cela nous a permis d’atteindre une occupation de l’état fondamental de

mouvement de 0,07 quanta et de réaliser une compression mécanique de -2,7 dB en dessous

de la fluctuation du point zéro. Pour mesurer directement la durée de vie de l’état quantique,

nous observons pour la première fois l’évolution libre de l’état comprimé sensible à la phase,

en préservant sa nature non classique sur des échelles de temps de la milliseconde, nettement

plus longues que les qubits supraconducteurs conventionnels et de l’ordre des pièges à ions.

De plus, notre nouvelle plateforme nous permet d’étendre les systèmes optomécaniques

avec des grilles et des réseaux, en réalisant des modes topologiques non triviaux dans de tels

systèmes multimodes. Cela a été un défi de longue date dans le domaine de l’optomécanique

en raison des exigences strictes imposées par des sites optomécaniques individuels iden-

tiques. Nous introduisons une nouvelle technique pour exploiter l’interaction optomécanique

et mesurer directement les formes des modes collectifs dans un réseau supraconducteur à

grande échelle et explorer la physique des états de bord dans les réseaux optomécaniques de

graphène tendu. Cette décohérence quantique ultra-faible et cette plateforme reproductible

augmentent non seulement la fidélité du contrôle quantique et de la mesure des systèmes mé-

caniques macroscopiques, mais peuvent également bénéficier de l’interface avec des qubits,
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Résumé

explorer la dynamique non linéaire émergente dans les systèmes optomécaniques complexes

et placer le système dans un régime de paramètres adapté à tests de gravité quantique. En

particulier, la longue durée de vie de l’état quantique mécanique a des applications dans

la détection quantique et fait de cette plateforme un candidat parfait pour les éléments de

stockage quantique dans les systèmes d’informatique et de communication quantiques. Dans

la dernière partie de cette thèse, nous presentons la première preuve de concept de la lecture

électro-optique cryogénique d’un circuit supraconducteur en utilisant un modulateur au nio-

bate de lithium pour réduire la charge thermique et relever le défi de la mise à l’échelle dans les

futurs ordinateurs quantiques basés sur des circuits supraconducteurs. Bien que le niveau de

bruit dans la chaîne de lecture électro-optique soit encore nettement supérieur aux méthodes

électroniques conventionnelles, nous discutons des exigences et envisageons le régime de

paramètres qui pourrait conduire à une lecture optique quasiment limitée quantiquement

dans les futures platesformes avancées.

Mots clefs :

Optomécanique quantique, Électromécanique quantique, Circuits supraconducteurs, Com-

pression mécanique, Réseaux topologiques, Décohérence quantique, Lecture électro-optique

par cryogénique
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Zusammenfassung

Mechanische Oszillatoren können aufgrund der langsamen Geschwindigkeit akustischer

Wellen Modi mit extrem geringem Energieverlust und kompakten Formfaktoren aufweisen

und werden bereits für Anwendungen von der Zeitmessung bis hin zu Radiofrequenzfiltern für

drahtlose Kommunikation eingesetzt. Im letzten Jahrzehnt wurden neuartige Wege zur Kon-

trolle mechanischer Systeme im Quantenregime entwickelt, die entweder auf der Kopplung an

elektromagnetische Resonatoren in der Quantenoptomechanik oder supraleitenden Qubits in

der Quantenelektromechanik basieren. Der erstere Weg nutzte die Kopplung an Resonatoren

sowohl im optischen als auch im Mikrowellenbereich und ermöglichte es, einen Bereich zu

erreichen, in dem die Quantennatur der optomechanischen Wechselwirkung relevant wird.

Dies ermöglichte zahlreiche Fortschritte wie optomechanische Kühlung makroskopischer

mechanischer Resonatoren in den quantenmechanischen Grundzustand, die Quantentrans-

duktion oder die Verschränkung mechanischer Schwingungen.

Eine dauerhafte Herausforderung beim Aufbau solcher Hybridsysteme ist die Dichotomie

der technischen Kopplung an einen Hilfsfreiheitsgrad bei gleichzeitiger mechanischer guter

Isolierung von der Umgebung, d. h. geringer Quantendekohärenz. In dieser Arbeit zeigen

wir, wie diese Herausforderung durch die Einführung einer optomechanischen Plattform mit

supraleitenden Schaltkreisen und einer extrem niedrigen Quantendekohärenzrate bewältigt

werden kann. Dies ermöglichte es uns, eine Quantengrundzustandsbesetzung der Schwin-

gung von 0,07 Phononen zu erreichen und eine mechanische Kompression von -2,7 dB unter

der Nullpunktschwankung zu realisieren. Um die Lebensdauer eines Quantenzustands direkt

zu messen, beobachten wir zum ersten Mal die freie Entwicklung des phasenempfindlichen

gequetschten Zustands, der seine nichtklassische Natur über Zeitskalen im Millisekunden-

bereich beibehält, wesentlich länger als bei herkömmlichen supraleitenden Qubits und auf

Augenhöhe mit Ionenfallen.

Darüber hinaus ermöglicht uns unsere neuartige Plattform, optomechanische Systeme auf

Arrays und Gitter zu skalieren und so nicht-triviale topologische Modi in solchen Multimode-

Systemen zu realisieren. Aufgrund der strengen Anforderungen an identische einzelne opto-

mechanische Standorte stellt dies seit langem eine Herausforderung im Bereich der Optome-
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Zusammenfassung

chanik dar. Wir stellen eine neuartige Technik vor, um optomechanische Wechselwirkungen zu

nutzen und kollektive Modenformen in einem großen supraleitenden Gitter direkt zu messen,

und erforschen die Physik von Randzuständen in optomechanischen Gittern aus gespanntem

Graphen.

Eine solche ultraniedrige Quantendekohärenz und reproduzierbare Plattform erhöht nicht

nur die Genauigkeit der Quantenkontrolle und -messung makroskopischer mechanischer

Systeme, sondern kann auch von Nutzen sein für die Anbindung von Qubits, die Erforschung

neuer nichtlinearer Dynamiken in komplexen optomechanischen Systemen und die Plat-

zierung des Systems in einem geeigneten Parameterbereich Tests der Quantengravitation.

Insbesondere die lange Lebensdauer mechanischer Quantenzustände findet Anwendung in

der Quantensensorik und macht diese Plattform zu einem perfekten Kandidaten für Quanten-

speicherelemente in Quantencomputer- und Kommunikationssystemen.

Im letzten Teil dieser Arbeit berichten wir zum Ersten mal eine kryogene elektrooptische Aus-

lesung eines supraleitenden Schaltkreises unter Verwendung eines Lithiumniobat-Modulators

um die Wärmebelastung zu reduzieren und die Skalierungsherausforderung in zukünftigen

Quantencomputern auf der Basis supraleitender Schaltkreise zu bewältigen. Obwohl der

Rauschpegel in der elektrooptischen Auslesekette immer noch wesentlich höher ist als bei

herkömmlichen elektronischen Methoden, diskutieren wir die Anforderungen und stellen uns

das Parameterschema vor, das zu einer nahezu quantenbegrenzten optischen Auslesung in

fortschrittlichen zukünftigen Plattformen führen könnte.

Schlüsselwörter:

Quantenoptomechanik, Quantenelektromechanik, supraleitende Schaltkreise, mechanisches

Quetschen, topologische Gitter, Quantendekohärenz, elektrooptische Auslesung durch Kryo-

technik
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1 Introduction

The light-matter interaction has always been a substantial question for scientists for hundreds

of years. It has been vastly studied both within the classical framework of electromagnetic

fields and the quantum mechanical description of light interacting with a medium. Although

the effect of materials on electromagnetic waves such as absorption, scattering, refraction,

and nonlinearities had been deeply understood in the 18th and 19th centuries, the action

of light on materials, specifically mechanical objects had only been explored in the middle

of the 20th century. Scientists explained the momentum transfer from light to mechanical

objects (Beth, 1936) and the first experiments showing laser trapping (Ashkin, 1997) and

laser cooling of atoms (Hänsch and Schawlow, 1975; Wineland and Itano, 1979) have realized

in the 1970s. Shortly afterward, the field of laser cooling and trapped ions flourished and

resulted in several applications in modern physics and technologies. Concurrently, scientists

considered the effect of electromagnetic radiation pressure on macroscopic objects - mainly

suspended mirrors of a cavity for the purpose of interferometric gravitational wave detection-

and explored the dynamical back-action of light (Cohadon, Heidmann, and Pinard, 1999),

measurement-induced noises (Braginsky, Borisovich, and Khalili, 1995), and quantum limits

of optomechanical detection (Braginskii and A. B. Manukin, 1977) in such systems.

Mechanical oscillators can exhibit modes with ultra-low mechanical dissipation and compact

form factors due to the slow velocity of acoustic waves, and are already used in applications

ranging from timing to wireless filters. Over the past two decades, quantum control of me-

chanical systems has been firmly established, after atoms, molecules, and ions in the first

wave of quantum technologies development and superconducting circuits in the second wave.

The quantum control has been in particular catalyzed by cavity optomechanics (Aspelmeyer,

T. J. Kippenberg, and Marquardt, 2014), that uses radiation pressure coupling of mechanical

oscillators to electromagnetic cavities. This coupling, already predicted in 1970 by Braginsky (V.

Braginski and A. Manukin, 1967) in the context of gravitational wave detection, has today been

established in a host of micro- and nano-scale optomechanical systems. Laser cooling and

gravitational wave interferometric detectors may be considered the two ancestors of the field

of cavity optomechanics, which substantially improved our understanding of the quantum
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nature of mesoscopic mechanical objects by controlling them via electromagnetic radiation

pressure both in the optical and microwave domains. Cavity optomechanics emerged in the

1990s first by the theoretical works showing optomechanical feedback cooling (Mancini, Vitali,

and Tombesi, 1998), nonclassical mechanical state generation (Fabre et al., 1994; Mancini and

Tombesi, 1994), and quantum non-demolition measurements (Jacobs et al., 1994), followed

shortly by the first experimental realizations of optical feedback cooling (Cohadon, Heid-

mann, and Pinard, 1999), radiation pressure self-oscillations (T. Kippenberg et al., 2005), and

damping (Schliesser et al., 2006). Since then, Several experimental platforms have developed

to realize cavity optomechanics, covering a wide range of length- and mass-scales, from kg

scale LIGO mirrors (Whittle et al., 2021) to pico-gram and nano-meter scale optomechanical

crystals (Chan, Alegre, et al., 2011). This enabled to reach a regime where the quantum nature

of the optomechanical interaction becomes relevant (J. D. Teufel, Donner, Castellanos-Beltran,

et al., 2009) and allowed a host of advances, including cooling mechanical systems to the

ground state (J. D. Teufel, Donner, D. Li, et al., 2011; Chan, Alegre, et al., 2011), generation

of entanglement between electromagnetic fields and mechanical oscillators (Palomaki, J.

Teufel, et al., 2013; Barzanjeh, Redchenko, et al., 2019), quantum state transfer (Palomaki,

Harlow, et al., 2013), remote entanglement of mechanical oscillators (Riedinger et al., 2018; C.

Ockeloen-Korppi et al., 2018; Kotler et al., 2021), generation of squeezed mechanical states via

optomechanical reservoir engineering (Wollman et al., 2015), quantum non-demolition mea-

surement of motion (Shomroni, Qiu, et al., 2019), optomechanical induced transparency (Weis

et al., 2010), and generation of squeezed light (Purdy et al., 2013). On the applied side, such

optomechanical systems have been realized to create novel interfaces that convert microwave

to optical fields with minimum added noise (Andrews et al., 2014; R. Delaney et al., 2022),

realizing non-reciprocal microwave transmission (Bernier et al., 2017; Barzanjeh, Wulf, et al.,

2017), and quantum-limited microwave directional amplification (Lépinay, Damskägg, et al.,

2019).

Such mechanical oscillator-based hybrid quantum systems are today envisioned to allow

advances in quantum sensing of displacement (Barzanjeh, Xuereb, et al., 2022), force, or

magnetic fields, are considered as compact storage elements in quantum computing and

communication (Pechal, Arrangoiz-Arriola, and Safavi-Naeini, 2018; A. Reed et al., 2017;

Palomaki, Harlow, et al., 2013), and to make fundamental tests of quantum gravity (Y. Liu,

Mummery, et al., 2021; Gely and G. A. Steele, 2021b), and even assist in searches for dark

matter (Carney et al., 2021; Manley et al., 2021).

Although the field of cavity optomechanics experienced significant advancements in the recent

decade, there are still important challenges existing on the path of maturing this platform to

be practically used in quantum technologies. All the optomechanical coupling approaches

share the dichotomy of using a well-isolated low-dissipation mechanical oscillator, that on

the other hand requires to have sufficient coupling to an auxiliary degree of freedom, while

at the same time should be coupled very weakly to a cold environment – to minimize the

quantum decoherence of mechanical oscillator’s state limited by both thermal decoherence

and dephasing. Across all optomechanical platforms, ranging from kg-scale mirrors (Whittle
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et al., 2021) to trapped particles in ultra-high vacuum (Magrini et al., 2021; Tebbenjohanns

et al., 2021), or optomechanical crystals at milli-Kelvin temperatures (MacCabe et al., 2020), an

enduring challenge has been to achieve low quantum decoherence. Today’s opto and electro-

mechanical systems, as well as systems that feature qubits coupled to mechanical oscillators,

are compounded by large thermal decoherence that is typically well above 1000’s of quanta

per second, well above what can be achieved with the vibrations of trapped charged particles

(i.e. ion traps) (Gaebler et al., 2016; Leibfried et al., 2003), resulting in much shorter quantum

state storage times that can be achieved in superconducting qubits (Kono et al., 2023). One

notable exception is optomechanical crystals (MacCabe et al., 2020; Chan, Safavi-Naeini, et al.,

2012) – which however, suffer from strong dephasing, thereby posing again a limit on quantum

decoherence again.

A particularly promising platform for quantum control is circuit optomechanics (J. D. Teufel,

Donner, D. Li, et al., 2011), which operates at mK temperatures, is sideband resolved, and can

be interfaced with superconducting qubits (A. Reed et al., 2017; A. Clerk et al., 2020). These cir-

cuits have been used for numerous advances including mechanical squeezing (Wollman et al.,

2015; Pirkkalainen, Damskägg, et al., 2015; Lecocq, Clark, et al., 2015), entanglement (Kotler

et al., 2021; C. Ockeloen-Korppi et al., 2018; Palomaki, J. Teufel, et al., 2013), non-classical

state storage (A. Reed et al., 2017; Palomaki, Harlow, et al., 2013), and non-reciprocal cir-

cuits (Bernier et al., 2017). However, it has been a challenge to achieve ultra-low thermal

decoherence in this platform – state-of-the-art decoherence rates are O (1 kHz) (Palomaki,

Harlow, et al., 2013), which is above what e.g., laser-based quantum manipulation of trapped

ions can achieve. Enhancing the quantum coherence in such systems improves the fidelity

of quantum optomechanical protocols (Wallucks et al., 2020; Pechal, Arrangoiz-Arriola, and

Safavi-Naeini, 2018; Gely and G. A. Steele, 2021a) and may equally benefit future tests of

quantum mechanics (Fiaschi et al., 2021; Marinković et al., 2018; Gely and G. A. Steele, 2021b;

Y. Liu, Mummery, et al., 2021).

In this thesis, we discuss how to meet these challenges and demonstrate a superconducting

circuit optomechanical system which simultaneously realizes ultra-low quantum decoherence,

while exhibiting large optomechanical coupling rates. We achieved 20 Hz thermal decoherence

rate (corresponding to 130 quanta of motional heating per second) and 0.09 Hz dephasing rate,

more than 100-fold improvement - and on par with trapped ions (Gaebler et al., 2016; Leibfried

et al., 2003)- corresponding to a lifetime of the quantum ground state of 7.7 milli-seconds.

Using the exceptionally low thermal decoherence, we showed that it is possible to attain high

fidelity ground state preparation of a micro-mechanical oscillator to nm = 0.07 quanta i.e. a

93% ground state occupation, which is one of the lowest occupations reached for macroscopic

mechanical oscillators to date (Whittle et al., 2021). We utilize ultra-low dephasing to prepare

the micromechanical oscillator in a squeezed mechanical state (3 dB below the zero-point

fluctuation) using reservoir engineering techniques.

The low quantum decoherence enables us to record for the first time the free evolution of the

squeezed state, and preserve and monitor the non-classical nature of such state over a 2 ms
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period of free evolution. Our measurements provide a direct snapshot of the environmental-

induced decoherence of a quantum-squeezed mechanical oscillator.

Scaling optomechanical systems is another important aspect to exploit more applications in

this field. Yet all optomechanical experiments -be it the optical or microwave regime, and

both covering the classical and quantum regime- have consistently employed only single

(or few-mode) optomechanical systems (that use at most two coupled optomechanical sys-

tems). Pioneering theoretical studies have predicted that significantly richer physics and novel

dynamics can be accessed in optomechanical lattices that coupled many optomechanical

systems. Numerous theoretical proposals studied collective (G. Heinrich et al., 2011; Xuereb,

Genes, and Dantan, 2012) and quench (Raeisi and Marquardt, 2020) dynamics, Anderson

localization (Roque et al., 2017), topological properties (Peano et al., 2015; Ren et al., 2020),

quantum many-body dynamics (Ludwig and Marquardt, 2013) and entanglement (Akram et

al., 2012), non-reciprocity (Sanavio, Peano, and Xuereb, 2020), reservoir engineering (Tomadin

et al., 2012), and soliton generation (Gan et al., 2016) in optomechanical lattices. Viewed more

broadly, multi-mode systems enable the realization of condensed matter Hamiltonians using

lattice models and have been successfully explored in a variety of fields, including circuit QED,

or to realize topologically protected modes (C. W. Peterson et al., 2018).

However, implementing such optomechanical lattices has not been realized to date and is a

longstanding challenge. The lumped-element implementation of site-by-site engineerable

optomechanical lattices is not yet realized in optical or microwave platforms due to the

technical limitations in the reproducible scaling of individual building blocks. Indeed, the

coupling of the optomechanical cavities has been compounded by disorder in the optical

resonance frequencies or mechanical eigenfrequencies.

In this thesis, we show how to overcome this challenge to achieve large-scale configurable op-

tomechanical lattices in microwave superconducting circuit optomechanics. This is achieved

using a novel approach to create ultra-coherent, low disorder vacuum gap capacitors, from

which we create both 1D and 2D coupled systems, implementing the topological Su-Schrieffer-

Heeger (SSH) model (Asbóth, Oroszlány, and Pályi, 2016; Ozawa et al., 2019) model in both

1D chains and in 2D honeycomb lattices. Our approach achieves remarkably low disorder in

both microwave and mechanical degrees of freedom, as evidenced by the observation of fully

hybridized edge modes across an SSH chain.

As one of many novel directions, utilizing the embedded optomechanical interaction, we

are able to perform direct modeshape measurement and reconstruct the full Hamiltonian,

beyond the tight-binding approximations, allowing the extraction disorder and coupling

strength to higher-order sites. Such optomechanical mode shape measurements are therefore

equally able to overcome the experimental challenge of eigenmode measurement in large-

scale multimode superconducting circuits as a platform for quantum simulation and many-

body physics studies, where only indirect approaches were performed by near field scanning

probes (Underwood et al., 2016), laser scanning microscopy (H. Wang et al., 2019; Morvan
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et al., 2021), or dispersive coupling to qubits (Kim et al., 2021).

The last topic we discuss in this thesis is cryogenic electro-optical interconnects. Although

quantum control of ions, atoms, and molecules has already been achieved in the ’90s, the

developments of superconducting circuits have led to a scalable platform for quantum com-

puting that culminated in the first proof-of-principle computation (Arute et al., 2019) that

on a classical computer takes many orders of magnitude more time—even on the fastest

supercomputers. While technologically there is still a major gap to bridge, and likely decades

will have to pass before quantum computing can perform (if ever at all) actual programmed

algorithms, the field itself has already captured the interest across a wide range of disciplines.

Underlying these advances are Josephson junctions, nature’s most profound nonlinear ele-

ment. In contrast to atoms and ions, these systems can be microfabricated on chip, controlled

at the quantum level with electrical control lines, and are actively pursued by all large actors in

quantum computing (IBM, Google). They have achieved some of the most remarkable quan-

tum measurements to date, such as resolving single photons of the microwave field (Schuster

et al., 2007), or synthesizing arbitrary quantum states (Hofheinz et al., 2009).

Despite these promising virtues however, scaling up those systems in the number of qubits

faces unique challenges. Chief among them is the coherence and scaling of superconducting

circuits. In this context, one future challenge is becoming progressively obvious: the massive

transfer of control signals both into and out of the dilution refrigerator to control hundreds

of qubits. Superconducting qubits operate at 10 mK -where only quantum fluctuations of

the microwave field dominate the noise- and have to be carefully shielded. Currently, the

workhorse to control and readout qubits is dispersive readout via microwave cavities, using

copper alloys (CuNi) coaxial cables and cryogenic high electron mobility transistors (HEMTs)

as readout amplifiers. These, however, induce a substantial heat load within the cryogenic

system. Already today, the most advanced superconducting experiments have many dozens of

control lines, each contributing a major thermal load from the room temperature environment.

With the increasing number of qubits, this problem poses in the long term a major challenge,

as it requires dilution refrigerators with higher cooling power and more space. This problem

is compounded by the fact that improvements in qubit coherence make the devices more

susceptible to thermal fluctuations and noise from the higher temperature stages.

Such considerations are not new to other fields of technology: e.g. data center optical inter-

connects. Data centers have seen over the past decades a remarkable development. Initially

based on electrical cables to transfer data between server racks, the massive increase in data

rates and power consumption (Jones et al., 2018) as well as the sheer size of cables, has led

to the deployment of optical fiber transceivers. First developed in the early 2000s, fiber op-

tic interconnects based on silicon photonics are now commercial reality, and used in any

data center. While the importance of fiber optical interconnects is both undisputed and

omnipresent in data centers, and they are poised in the future to even replace on-board chip

to chip communication, the use of fiber optical interconnects in cryogenic superconducting

technology has not been considered, and is in its infancy.
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In this thesis, we also demonstrate the first proof-of-concept cryogenic electro-optical in-

terconnect experiment that can serve as a blueprint for future development and that clearly

demonstrates the potential of the approach. While the noise figures we achieve in our experi-

ment are presently far from those of commercial HEMT amplifiers, the advances in integrated

electro-optics that are underway (e.g. thin film LNOI (Zhang et al., 2019)) can significantly

improve the required switching voltages to levels where they outperform HEMT. Remarkably,

the presently achieved parameters are well within reach, indicating that cryogenic optical

interconnects for superconducting circuits can become a reality.

Specifically, we demonstrate that microwave drive lines can be replaced with optical fibers

and the HEMT with a commercial Titanium-doped optical LiNbO3 phase modulator, thereby

implementing an electro-optic interconnect transducing the weak microwave signals from

a superconducting system into the optical domain. While modulators are the workhorse of

telecommunications—and presently experience rapid advancement with integrated devices

that operate at only CMOS voltage levels—there are hardly any experiments that have explored

their low-temperature behavior. In our work, we demonstrate that we can operate state-of-

the-art LiNbO3 phase modulators for the first time at 800mK -a temperature that is below the

base temperature for HEMT amplifiers. Specifically, we characterized the phase modulator

at 800mK and performed a cryogenic 5 GBaud/s data communication experiment. This

operation temperature is below the 3K operational temperature of HEMT amplifiers, and we

importantly reveal that heating via laser absorption is marginal.

To illustrate the potential for superconducting circuitry we use the electro-optical cryogenic

optical interconnect to read out a superconducting microwave optomechanical system at a

base temperature of 15mK. We implement direct optical detection of such systems for the

first time. The major advantages of our approach are the substantially smaller heat load due

to three orders of magnitude lower thermal conductivity of the fiber, and the possibility to

transduce at lower temperature, introducing less thermal noise in the output. We performed

coherent spectroscopy of the device, observing optomechanically induced transparency (Weis

et al., 2010; Safavi-Naeini, Alegre, et al., 2011), and compared the readout to conventional

HEMT. Importantly we are able to resolve fine, Hertz level features of the superconducting

device, which are below the linewidth of the laser employed. Equally important, we also

performed incoherent spectroscopy of the output signal and investigated the noise figure

of this method experimentally. We show that with a half voltage of 10 mV the approach can

outcompete HEMT amplifiers in their noise figure—a value that is feasible considering recent

advances in the efficiency (half-voltage) of optical modulators using thin film integrated

lithium niobate modulator technology6 or novel materials with very high Pockels coefficient.

The structure of the thesis in the next chapters is as follows. In the second chapter, We review

the basic theoretical framework of cavity optomechanics and provide deep theoretical discus-

sions on optomechanical sideband cooling in the presence of additional probes as well as a

novel calibration-free mechanical occupation measurement technique. In the same chapter,

we introduce multi-mode optomechanics and discuss how to probe collective microwave
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mode shapes using optomechanical interaction in arrays and lattices. In Chapter 3, we discuss

the design principles and simulations for optomechanical devices. Chapter 4 comprehen-

sively shows the novel nano-fabrication process we developed to fabricate ultra-coherent

and scalable circuit optomechanical systems. In the next chapter, we review all experimen-

tal techniques including cryogenics and microwave measurements required to conduct the

experiments. In Chapter 6, we show how to characterize the mechanical and microwave

properties of a circuit optomechanical device. Chapter 7 is focusing on the ultra-coherent

optomechanical project, followed by Chapter 8 discussing the multi-mode optomechanical

project and the observation of non-trivial topological properties in 1D and 2D lattices. Chapter

9 presents the cryogenic electro-optical project. the last Chapter is concluding the results and

provides an overview of potential future projects and the outlook.
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2 Theory

In this chapter, we briefly review the theoretical background of quantum optomechanics

in the first section. In the second section, we discuss in detail the theoretical treatment of

multi-tone optomechanical cooling and sideband asymmetry. In the third section, we discuss

optomechanical amplification and finally, in section 4, we show the theory of multi-mode

optomechanics and optomechanical modeshape measurement.

2.1 Basics of optomechanics

The aim of this section is not to comprehensively review the field of optomechanics but to

provide the necessary tools to understand the results and discussions in the next two sections

of multi-tone optomechanical cooling, optomechanical amplification, and multi-mode op-

tomechanics. However, we refer the readers who are interested in thoroughly step-by-step

analyzing the theory of quantum optomechanics and understanding different optomechanical

phenomena to the nicely written textbook by W. Bowen and G. Milburn (Bowen and Milburn,

2015). Along with the textbook, the precious review article on cavity optomechanics (As-

pelmeyer, T. J. Kippenberg, and Marquardt, 2014) discusses the advancements in the field on

both experimental and theoretical aspects at a higher level and introduces different platforms

for realizing optomechanical systems. Cavity optomechanics is studying the interaction be-

Optical cavity
Laser input

Reflected light

Figure 2.1: Cavity optomechanics. A simple example of an optomechanical system consists
of an optical Fabry–Pérot cavity with a mechanically compliant mirror that can modify the
cavity frequency. The system can be derived through the fixed semi-transparent mirror by an
incident laser field.

8



Theory Chapter 2

tween an electromagnetic (Optical or microwave) cavity and a mechanical oscillator. A famous

conceptual example of such interaction is a Fabry–Pérot optical cavity consisting of a fixed

mirror and a mechanically compliant mirror, which has a mass and is connected to a sprig

forming a mechanical harmonic oscillator (Fig.2.1). The optical cavity can be derived by an

external laser field coupled through the fixed mirror into the cavity. The mechanical resonator

can modulate the resonance frequency of the optical cavity and consequently the output

signal. On the other hand, this interaction allows manipulating the mechanical oscillator

through incident electromagnetic radiation pressure on the mirror. The Hamiltonian of this

system can be written as the sum of the optical energy (photons in the cavity), the mechanical

energy (phonons in the oscillator), and the external drive term:

Ĥ = ℏωc(x)â†â +ℏΩmb̂†b̂ + iℏs̄
p
κex

(
e iωLt â† −e−iωLt â

)
, (2.1)

where ωc(x) is the optical cavity frequency as a function of the mirror’s position, Ωm is the

mechanical frequency of the oscillator, â and b̂ are annihilation operators for optical and

mechanical mode, s̄ and ωL are the amplitude and frequency of the drive laser, and κex is

the external coupling rate of the optical cavity. Considering the first-order perturbation in

the cavity frequency -small vibration amplitudes of the mirror compared with the optical

linewidth- we can approximate ωc(x) =ωc −Gx̂, where x̂ = xZPF(b̂ + b̂†) and G = −dωc(x)
d x . We

note that we neglected constant terms corresponding to ground state energies (ℏωc/2 and

ℏΩm/2).

We can re-write Eq. 2.1 in the rotating frame with the drive’s frequency by applying a parameter

replacement (â → e−iωLt â):

Ĥ = −ℏ∆â†â +ℏΩmb̂†b̂ +ℏg0â†â(b̂† + b̂)+ iℏs̄
p
κex

(
â† − â

)
, (2.2)

where ∆ =ωL −ωc is the derive detuning from the cavity resonance frequency, and g0 = xZPFG

is the optomechanical single-photon coupling rate.

We are often interested in the small signal response of the system therefore we can expand the

optical annihilation operator around its steady-state solutions and linearize the Hamiltonian.

We decompose the annihilation operator as â = ā +δâ, where |ā|2 = np is the amplitude of

the coherent intracavity field induced by pump (np is the intracavity photon number), and

δâ is the annihilation operator of the cavity field fluctuations around the coherent response.

Neglecting the zeroth order terms, we achieve the linearized optomechanical interaction

Hamiltonian:

Ĥint = ℏg (δâ† +δâ)(b̂† + b̂), (2.3)

where g = g0
p

np is the cavity-enhanced optomechanical coupling rate.

Now we can drive Quantum Langevin equations to describe the dynamics of optical field and

mechanical motion quadratures. We define two quadratures of optical field as Î = 1p
2

(â + â†)
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and Q̂ = 1p
2i

(â − â†), and mechanical quadratures as X̂ = 1p
2

(b̂ + b̂†) and P̂ = 1p
2i

(b̂ − b̂†). The

Langevin equations are derived as:

˙̂I =∆ Q̂ −κ/2 Î +p
κex Îex +p

κ0 Î0,

˙̂Q = −∆ Î −κ/2 Q̂ −2g X̂ +p
κexQ̂ex +p

κ0Q̂0,

˙̂X =Ωm P̂ −Γm/2 X̂ +
√
ΓmX̂0,

˙̂P = −Ωm X̂ −Γm/2 P̂ −2g Î +
√
ΓmP̂0,

(2.4)

where κ0 is the intrinsic loss rate of the cavity, κ = κex +κ0 is the total cavity linewidth, and I0

and Iex are the intrinsic thermal bath noise operator and external drive noise operators respec-

tively for quadrature I . The same notation of noise operators is used for other quadratures.

Dynamical equations (Eqs. 2.4) combined with input-output theory can explain basic optome-

chanical effects such as optomechanical damping, anti-damping, ponderomotive squeezing,

etc. In the following we focus on the theoretical derivation of multi-tone optomechanical

cooling and multi-mode optomechanics.

2.2 Multi-tone optomechanical cooling and sideband asymmetry

In this section, we provide a detailed theory for continuous-wave multi-tone optomechanical

cooling and show how optomechanical sideband asymmetry can be used to characterize

mechanical occupation.

Cooling

Probe Probe

a b

Figure 2.2: Optomechanical sideband cooling and sideband asymmetry. a, Mode diagram
of an optomechanical system when driving the microwave cavity with np intracavity pump
photon numbers. Mechanical and microwave modes are coupled to their thermal baths.
b, Frequency scheme of pumps and probes in a sideband asymmetry and optomechanical
cooling experiment.

Here we discuss the theory of optomechanical sideband cooling in the presence of a cooling

pump and two additional probes used in a sideband asymmetry experiment. As schematically

shown in Fig. 2.2, to extract the mechanical occupation in our experiments, we pump our

device with three microwave tones simultaneously: cooling pump, red probe, and blue probe.

The cooling pump is red-detuned from the cavity and has relatively higher power compared

to those of the red and blue probes. The red and blue probes have a balanced power in a

way that their effective dynamical back-actions are canceled out of each other. Although the
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expressions for sideband cooling have been already derived in prior works considering one or

two tones (Weinstein et al., 2014), the cavity response was considered to be flat around the

cavity frequency, and two probes were considered symmetrically detuned from the cavity. In

our actual experiment, the pump and probes have asymmetric detuning with respect to the

cavity; hence, it is required to derive the full expressions without assuming a flat cavity and by

considering arbitrary detunings. Nevertheless, We report the simplified expressions assuming

the flat cavity approximation at the end of this section.

The Langevin equations of an optomechanical system in the presence of the three microwave

tones are given by

d â

d t
=− κ

2
â − i g0(b̂ + b̂†)â +p

κ0âin
0 (t )

+p
κex

(
αbe−i (Ωm+δb)t +αre+i (Ωm+δr)t +αpe+i (Ωm+δp)t + âin

ex(t )
)

,

db̂

d t
=− iΩmb̂ − Γm

2
b̂ − i g0â†â +

√
Γmb̂in

0 (t ),

(2.5)

where â(b̂) is the annihilation operator for the microwave cavity (mechanical oscillator), g0

is the single photon optomechanical coupling rate, κex(0) is the microwave external coupling

(internal loss) rate, Γm is the mechanical intrinsic damping rate, âin
0 (b̂in

0 ) is the noise operator

for the intrinsic loss of the microwave cavity (mechanical oscillator), and âin
ex is the noise

operator for the external field. Furthermore, αp,r,b denotes the coherent amplitude of the

cooling pump with a detuning of ∆p = −Ωm −δp, the red probe with a detuning of ∆r =

−Ωm −δr, and the blue probe with a detuning of ∆b = +Ωm +δb, respectively. Note that the

Langevin equation for the cavity is described in the rotating frame of the cavity frequency (ωc).

The noise operator correlations satisfy the thermal distribution:〈
b̂in†

0 (t )b̂in
0 (t ′)

〉
= nth

mδ(t − t ′),〈
b̂in

0 (t )b̂in†
0 (t ′)

〉
= (nth

m +1)δ(t − t ′),〈
âin†

0 (t )âin
0 (t ′)

〉
= nth

c δ(t − t ′),〈
âin

0 (t )âin†
0 (t ′)

〉
= (nth

c +1)δ(t − t ′),〈
âin†

ex (t )âin
ex(t ′)

〉
= 0,〈

âin
ex(t )âin†

ex (t ′)
〉

= δ(t − t ′),

(2.6)

where nth
m(nth

c ) is the mechanical (cavity) thermal bath occupation. We can safely assume

that the waveguide of the input-output line is in the ground state. This can be experimentally

verified and will be discussed in Sec.6.4 and Sec. 7.3.2.

To solve the equations, we first divide the cavity field into coherent amplitudes and fluctuation,

i.e., â(t) → ābe−i (Ωm+δb)t + āre+i (Ωm+δr)t + āpe+i (Ωm+δp)t + â(t), where āp,r,b is the coherent

amplitude induced by the cooling pump, red probe, and blue probe, respectively, and â(t ) is

11
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the fluctuation. Considering sufficiently small g0 compared to the other cavity parameters, we

can find approximated solutions for the coherent amplitudes:

āb ≃
p
κex

−i (Ωm +δb)+κ/2
αb,

ār,p ≃
p
κex

+i (Ωm +δr,p)+κ/2
αr,p,

(2.7)

where we can assume that the coherent amplitudes are real without loss of generality.

By linearizing the nonlinear optomechanical coupling terms in the Langevin equations (Eq.

(2.5)) around the coherent amplitudes and going into the rotating frame of the mechanical

oscillator (b̂ → b̂e−iΩmt ), we have

−i g0â†â =− i g0

{(
ā∗

r e−i (Ωm+δr)t + ā∗
pe−i (Ωm+δp)t

)
â +

(
ābe−i (Ωm+δb)t

)
â†

}
− i g0

{(
āre+i (Ωm+δr)t + āpe+i (Ωm+δp)t

)
â† +

(
ā∗

b e+i (Ωm+δb)t
)

â
}

,

−i g0(b̂ + b̂†)â =− i g0

{(
āre+iδrt + āpe+iδpt

)
b̂ +

(
ābe−iδbt

)
b̂†

}
− i g0

{(
ābe−i (2Ωm+δb)t

)
b̂ +

(
āre+i (2Ωm+δr)t + āpe+i (2Ωm+δp)t

)
b̂†

}
.

(2.8)

By neglecting the fast oscillating terms using the rotating wave approximation, Eq. (2.8) can

be simplified as

−i g0â†â ≃−i g0

{(
ā∗

r e−i (Ωm+δr)t + ā∗
pe−i (Ωm+δp)t

)
â +

(
ābe−i (Ωm+δb)t

)
â†

}
,

−i g0(b̂ + b̂†)â ≃−i g0

{(
āre+iδrt + āpe+iδpt

)
b̂ +

(
ābe−iδbt

)
b̂†

}
.

(2.9)

Thus, we have the linearized Langevin equations:

d â

d t
= −κ

2
â − i

{(
gre+iδrt + gpe+iδpt

)
b̂ +

(
gbe−iδbt

)
b̂†

}
+p

κexâin
ex(t )+p

κ0âin
0 (t ),

db̂

d t
= −Γm

2
b̂ − i

{(
gre−iδrt + gpe−iδpt

)
â +

(
gbe−iδbt

)
â†

}
+

√
Γmb̂in

0 (t ),

(2.10)

where gp,r,b = g0āp,r,b is the linearized optomechanical coupling rate. Then, we take the Fourier

transform of the time derivative equations, leading to

−iωâ(ω) = −κ
2

â(ω)− i
{(

grb̂(ω+δr)+ gpb̂(ω+δp)
)+ (

gbb̂†(−(ω−δb))
)}

+p
κexâin

ex(ω)+p
κ0âin

0 (ω),

−iωb̂(ω) = −Γm

2
b̂(ω)− i

{(
grâ(ω−δr)+ gpâ(ω−δp)

)+ (
gbâ†(−(ω−δb))

)}
+

√
Γmb̂in

0 (ω),

(2.11)

12
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where

b̂(ω) ≡F {b̂(t )} =
1p
2π

∫ +∞

−∞
b̂(t )e iωt d t ,

b̂(t ) =F−1{b̂(ω)} =
1p
2π

∫ +∞

−∞
b̂(ω)e−iωt dω,

b̂†(ω) =
(
F {b̂(t )}

)†
.

(2.12)

By substituting â(ω) into b̂(ω) in Eq. (2.11), we obtain

b̂(ω)

χm
=−

(
χrg 2

r +χpg 2
p −χbg 2

b

)
b̂(ω)+

− i gr
p
κexχrâin

ex(ω−δr)− i gr
p
κ0χrâin

0 (ω−δr)

− i gp
p
κexχpâin

ex(ω−δp)− i gp
p
κ0χpâin

0 (ω−δp)

− i gb
p
κexχbâin†

ex (−(ω−δb))− i gb
p
κ0χbâin†

0 (−(ω−δb))

+
√
Γmb̂in

0 (ω)

−χr

{
grgpb̂(ω+δp −δr)+ grgbb̂†(−ω+δb +δr)

}
−χp

{
gpgrb̂(ω+δr −δp)+ gpgbb̂†(−ω+δb +δp)

}
+χb

{
gbgrb̂†(−ω+δb +δr)+ gbgpb̂†(−ω+δb +δp)

}
,

(2.13)

where χ−1
p (ω) = −i (ω−δp)+κ/2, χ−1

r (ω) = −i (ω−δr)+κ/2, χ−1
b (ω) = −i (ω−δb)+κ/2, and

χ−1
m (ω) = −iω+Γm/2 are optical and mechanical susceptibilities.

As long as the coupling rates are small compared to detuning, i.e., |χi gi g j ̸=i | ≃
√
Γi

optΓ
j ̸=i
opt/2 ≪

|δi ±δ j ̸=i |, whereΓk
opt = 4g 2

k /κ is the optomechanical damping rate induced by each microwave

drive and i , j ,k ∈ {
r,b,p

}
, we can safely neglect the terms for the mechanical annihilation

operator with the detuning (δp,r,b) and find a solution with respect to b̂(ω):

b̂(ω)

χeff
≃− i gp

(p
κ0χpâin

0 (ω−δp)+p
κexχpâin

ex(ω−δp)
)

− i gr
(p
κ0χrâin

0 (ω−δr)+p
κexχrâin

ex(ω−δr)
)

− i gb

(p
κ0χbâin†

0 (−(ω−δb))+p
κexχbâin†

ex (−(ω−δb))
)

+
√
Γmb̂in

0 (ω)

(2.14)

whereχ−1
eff =χ−1

m +χpg 2
p+χrg 2

r −χbg 2
b is the effective mechanical susceptibility. Using Wiener–Khinchin

theorem and correlation relations in Eq. (2.6), the power spectral density of the mechanics is

13
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calculated as

Sb̂b̂(ω) =
∣∣χeff

∣∣2
((

g 2
p|χp|2(κ0nth

c )+Γmnth
m

)
+

(
g 2

r |χr|2(κ0nth
c )+ g 2

b|χb|2(κ0nth
c +κ)

))
≃ Γtot

|(Γp
opt +Γr

opt −Γb
opt)/2+ (1− i 2ω/κ)(Γm/2− iω)|2

×
Γp

optnc +Γm(1+ 4ω2

κ2 )nth
m

Γtot
+
Γr

optnc +Γb
opt(nc +1)

Γtot

 .

(2.15)

Here, we approximate χp/χ0 ≃χb/χ0 ≃χr/χ0 ≃ 1, where χ−1
0 (ω) = −iω+κ/2, which is valid as

long as the detunings are sufficiently smaller than the cavity linewidth. We also define the

total mechanical damping rate as Γtot =Γ
p
opt +Γr

opt −Γb
opt +Γm, where Γ

p,r,b
opt = 4g 2

p,r,b/κ is the

optomechanical damping rate induced by each microwave drive. Furthermore, we define the

cavity thermal occupation as nc = κ0nth
c /κ, which is derived later in Eq. (2.20).

If we assume a flat cavity response around the sidebands, which is valid in the weak coupling

regime Γtot ≪ κ, we obtain a Lorentzian function around ω = 0 with linewidth Γtot, which is

expressed by

Sb̂b̂(ω) ≃ Γtot

ω2 + (Γtot/2)2

(
Γ

p
optnc +Γmnth

m

Γtot
+
Γr

optnc +Γb
opt(nc +1)

Γtot

)
. (2.16)

By integrating Eq. (2.16), we can calculate the steady-state phonon occupation:

nm ≡
〈

b̂†b̂
〉

=
Γ

p
optnc +Γmnth

m

Γtot
+
Γr

optnc +Γb
opt(nc +1)

Γtot
. (2.17)

By increasing the cooling power, i.e. increasing Γp
opt , the mechanical occupation will decrease

as long as the system is in the weak coupling regime, and it finally converges to nc. We also

see spurious effects induced by the blue and red probes, which are negligible as long as

Γb
opt ≪ Γ

p
opt and Γb,r

optnc ≪ Γ
p
opt. Note that even if the cavity thermal occupation is zero, the

blue probe adds an additional phonon occupation, called by a quantum back-action, which is

given by Γb
opt/Γtot.

14
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By substituting Eq. (2.14) into the first equation of Eq. (2.11), we find a solution for â(ω):

â(ω)

χ0
=
p
κ0âin

0 (ω)+p
κexâin

ex(ω)

− g 2
pχeff(ω+δp)χp(ω+δp)

(p
κ0âin

0 (ω)+p
κexâin

ex(ω)
)

− g 2
r χeff(ω+δr)χr(ω+δr)

(p
κ0âin

0 (ω)+p
κexâin

ex(ω)
)

+ g 2
bχeff(ω−δb)χb(ω−δb)

(p
κ0âin

0 (ω)+p
κexâin

ex(ω)
)

− i
√
Γm

(
gpχeff(ω+δp)b̂in

0 (ω+δp)

+ grχeff(ω+δr)b̂in
0 (ω+δr)

+ gbχeff(ω−δb)b̂in†
0 (−(ω−δb))

)
.

(2.18)

Therefore, we can also obtain the microwave cavity thermal occupation using Eq. (2.18),

where the first two terms are multiplied by only the cavity susceptibility, which has the cavity

linewidth κ, while the other terms are multiplied by both the cavity and the mechanical

susceptibilities, where the latter has a very narrow linewidth (Γtot) compared to κ. Since

the terms with the mechanical susceptibility play a minor role in the cavity thermal photon

number, the power spectral density of the cavity can be simply calculated as

S ââ(ω) ≃ ∣∣χ0
∣∣2
κ0nth

c

=
κ

ω2 + (κ/2)2

(
κ0nth

c

κ

)
.

(2.19)

By taking the integral of the above equation, we obtain the steady-state cavity thermal occupa-

tion:

nc ≡
〈

â†â
〉

=
κ0nth

c

κ
. (2.20)

The cavity thermal occupation can be interpreted as the averaged photon occupation of the

intrinsic and external baths, weighted with the respective rates, where the temperature of the

external bath is assumed to be zero.

Using the input-output relation for the external bath: âout
ex (ω) = âin

ex(ω)−p
κexâ(ω), we can

calculate the symmetrized noise power spectral density of the output microwave field as

S̄(ω) =
1

2

∫ +∞

−∞

〈
âout†

ex (ω′)âout
ex (ω)+ âout

ex (ω′)âout†
ex (ω)

〉
dω′.

For simplicity, we assume that the sideband signals are well separated in the frequency space

and that the linewidths of the sidebands are much smaller than the cavity linewidth, which is

the case for our experiment. In this case, we can neglect the cross terms between the different
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sideband signals, and describe the spectrum as S̄(ω) ≃ 1
2 + S̄c(ω)+ S̄p(ω)+ S̄r(ω)+ S̄b(ω), where

S̄c(ω) =4
κex

κ

nc

1+ 4ω2

κ2

, (2.21)

S̄p(ω) =
κex

κ

Γ
p
optΓtot

|(Γp
opt +Γr

opt −Γb
opt)/2+ (1− i 2ω/κ)(Γm/2− i (ω+δp))|2

(
1

1+ 4ω2

κ2

){
Γ

p
optnc +Γr

optnc +Γb
opt (nc +1)+Γm

(
1+ 4ω2

κ2

)
nth

m

Γtot

−
((

1− 4ω(ω+δp)

κΓtot

)
(2nc +1)−

(
1/2− 4ω(ω+δp)

κΓtot

))

+
Γ

p
opt +Γr

opt −Γb
opt +Γm

(
1+ 4ω2

κ2

)
2Γtot

}
,

(2.22)

S̄r(ω) =
κex

κ

Γr
optΓtot

|(Γp
opt +Γr

opt −Γb
opt)/2+ (1− i 2ω/κ)(Γm/2− i (ω+δr))|2

(
1

1+ 4ω2

κ2

){
Γ

p
optnc +Γr

optnc +Γb
opt (nc +1)+Γm

(
1+ 4ω2

κ2

)
nth

m

Γtot

−
((

1− 4ω(ω+δr)

κΓtot

)
(2nc +1)−

(
1/2− 4ω(ω+δr)

κΓtot

))

+
Γ

p
opt +Γr

opt −Γb
opt +Γm

(
1+ 4ω2

κ2

)
2Γtot

}
,

(2.23)

S̄b(ω) =
κex

κ

Γb
optΓtot

|(Γp
opt +Γr

opt −Γb
opt)/2+ (1− i 2ω/κ)(Γm/2− i (ω−δb))|2

(
1

1+ 4ω2

κ2

){
Γ

p
optnc +Γr

optnc +Γb
opt (nc +1)+Γm

(
1+ 4ω2

κ2

)
nth

m

Γtot

+
((

1− 4ω(ω−δb)

κΓtot

)
(2nc +1)−

(
1/2− 4ω(ω−δb)

κΓtot

))

+
Γ

p
opt +Γr

opt −Γb
opt +Γm

(
1+ 4ω2

κ2

)
2Γtot

}
,

(2.24)

where S̄c is the noise power spectral density of the cavity thermal emission and S̄p,b,r is the

noise power spectral density of the sideband generated by the cooling pump, red probe, and

blue probe, respectively.

Here, we can further simplify the above equation by assuming a flat cavity response around
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the sidebands, i.e. ω/κ≃ 0, i.e.,

S̄p(ω) ≃κex

κ

Γ
p
optΓtot

Γ2
tot/4+ (ω+δp)2

(nm −2nc) (2.25)

S̄r(ω) ≃κex

κ

Γr
optΓtot

Γ2
tot/4+ (ω+δr)2

(nm −2nc) (2.26)

S̄b(ω) ≃κex

κ

Γb
optΓtot

Γ2
tot/4+ (ω−δb)2

(nm +2nc +1) . (2.27)

The full noise power spectral density contains the three Lorentzian peak of the sidebands with

a linewidth of Γtot with a slight frequency spacing on top of the Lorentzian peak of the cavity

thermal emission with a linewidth of κ, which are individually accessible due to the frequency

spacing among the sidebands, as well as the large linewidth difference between the sidebands

and the cavity emission.

2.3 Optomechanical amplification

In chapter 7, to characterize the thermal decoherence of our mechanical oscillator, we use a

time-domain protocol where the mechanical oscillator is first prepared in either a vacuum

or squeezed state and then measured after a certain free-evolution time. When we measure

the mechanical oscillator, we apply a microwave pump blue-detuned by the mechanical

frequency to induce a two-mode squeezing process between the mechanical oscillator and

the microwave cavity, corresponding to a phase-insensitive amplification of the mechanical

quadratures. By measuring the optomechanical sideband signals induced by the pump field,

we can obtain both the mechanical quadratures amplified in a nearly quantum-limited man-

ner. This intrinsic optomechanical amplification technique was introduced by Reed et.al. (A.

Reed et al., 2017; R. D. Delaney et al., 2019). Here, we theoretically describe the quantum

measurement of the mechanical quadratures based on optomechanical amplification.

The Langevin equations of the mechanical oscillator and the microwave cavity with the blue-

detuned pump are given by

d â

d t
= +iΩmâ − κ

2
â − i gb(b̂ + b̂†)+p

κexâ in
ex (t )+p

κ0â in
0 (t ) (2.28)

db̂

d t
= −iΩmb̂ − Γm

2
b̂ − i gb(â + â†)+

√
Γmb̂ in

0 (t ), (2.29)

where gb is the linearized optomechanical coupling rate. Note that the equation for the
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Time

a b c
Amplification

pump

Figure 2.3: Optomechanical amplification. a, b, Frequency and pulse scheme for optome-
chanical amplification. c, Schematic diagram showing optomechanical amplification process.
A desired mechanical mode to be measured is amplified intrinsically in the optomechanical
system by activating two-mode-squeezing interaction between mechanics and microwave.
During this phase-insensitive amplification, a constant noise is added to the state shown by
nadd + 1

2 referred to the input.

microwave cavity is described in the rotating frame of the pump frequency. By going to the

rotating frames with the respective frequencies, we have

d â

d t
= −κ

2
â − i gbb̂† +p

κexâ in
ex (t )+p

κ0â in
0 (t ) (2.30)

db̂

d t
= −Γm

2
b̂ − i gbâ† +

√
Γmb̂ in

0 (t ), (2.31)

where the rotating wave approximations are applied for neglecting the fast-oscillating terms.

In the parameter regime of our experiment, it can be assumed that the cavity dynamics is

much faster than that of the mechanical oscillator. Using Eq. (2.30) under d â
d t = 0, we can

therefore obtain a quasi steady state of the microwave cavity as

â = −i
2gb

κ
b̂† + 2

p
κex

κ
â in

ex (t )+ 2
p
κ0

κ
â in

0 (t ). (2.32)

By substituting Eq. (2.32) into Eq. (2.31), we have the Langevin equation of the mechanical

oscillator in the optomechanical amplification process, i.e.,

db̂

d t
=
Γamp

2
b̂ +

√
Γmb̂ in

0 (t )− i
√
Γb

optηκâ in †
ex (t )− i

√
Γb

opt(1−ηκ)â in †
0 (t ), (2.33)

where Γamp =Γb
opt −Γm is the effective amplification rate, Γb

opt = 4g 2
b/κ is the optomechanical

anti-damping rate, and ηκ = κex/κ is the collection efficiency of the cavity. We can solve the

derivative equation from the initial time t = 0 when the blue-detuned pump field is applied,

i.e.,

b̂(t ) = e
Γamp t

2

[
b̂(0)+

∫ t

0
d t ′e−

Γamp t ′
2

(√
Γmb̂ in

0 (t ′)− i
√
Γb

optηκâ in †
ex (t ′)− i

√
Γb

opt(1−ηκ)â in †
0 (t ′)

)]
,

(2.34)
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where b̂(t ) is the mechanical annihilation operator at time t . By combining the solution with

Eq. (2.32) and the input-output relation of the external microwave field: âout
ex (t) = â in

ex (t)−p
κexâ, we obtain the output microwave field as

âout
ex (t ) =(1−2ηκ)â in

ex (t )−2
√
ηκ(1−ηκ)â in

0 (t )

+ i
√
ηκΓ

b
opt e

Γamp t
2 ×[

b̂†(0)+
∫ t

0
d t ′e−

Γamp t ′
2

(√
Γmb̂ in †

0 (t ′)+ i
√
Γb

optηκâ in
ex (t ′)+ i

√
Γb

opt(1−ηκ)â in
0 (t ′)

)]
.

(2.35)

In our experiment, we measure the output microwave field after the phase-insensitive amplifi-

cations. The measured microwave field can be effectively described as

âout ′
ex (t ) =

p
G

[
âout

ex (t )+ ĉ in †(t )
]

, (2.36)

where G is the total microwave gain and ĉ in(t) is the annihilation operator of an ancillary

mode describing the effective added noise of the microwave measurement chain, which is

normally dominated by the HEMT amplifier noise when no pre-amplifier is used (see Sec.5.3).

In order to maximize the signal-to-noise ratio in the measurement of the mechanical quadra-

tures, we integrate the measured output microwave signal over a normalized matched filter

function defined as m(t ) =

√
Γamp

eΓampτ−1
e
Γamp t

2 (0 ≤ t ≤ τ), where τ is the final time of the integral.

Note that the filter function can be complex-valued for a more general case. Namely, the

time-independent complex amplitude of the output microwave field is given by

Â =
∫ τ

0
d t m∗(t )âout ′

ex (t ). (2.37)

In the large gain limit (eΓampτ≫ 1), where Γb
opt ≫Γm can be assumed, the microwave complex

amplitude is described as

Â =
√

Gopt
{

i b̂†(0)−p
ηκâ′

ex −
√

(1−ηκ) â′
0

+i

√
Γm

Γamp
b̂′†

0 + 1√
ηκeΓampτ

ĉ† + 1√
ηκeΓampτ

[
(1−2ηκ)âex −2

√
ηκ(1−ηκ)â0

] ,
(2.38)

where Gopt = GηκeΓampτ is the total scaling factor in the optomechanical amplification pro-

cess. Here, we define time-independent convoluted annihilation operators for â in
ex , â in

0 , b̂ in
0 ,

and ĉ in respectively, to satisfy the bosonic commutation relations in the large gain limit,

i.e., Ô =
∫ τ

0 d t m∗(t)Ôin(t) and Ô′ =
Γ

3
2
m

eΓampτ

∫ τ
0 d t

∫ t
0 d s eΓamp(t− s

2 )Ôin(s). Moreover, in order to

straightforwardly convert the microwave complex amplitude to that of the mechanical oscilla-
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tor, we redefine the microwave complex amplitude as i Â† → Â, i.e.,

Â =
√

Gopt
(
b̂(0)+ ĉ†

opt

)
, (2.39)

where an ancillary mode effectively describing all the contributions of the added noises is

defined as

ĉopt =i
p
ηκâ′

ex + i
√

(1−ηκ) â′
0 +

√
Γm

Γamp
b̂′

m − i√
ηκeΓampτ

ĉ†

− i√
ηκeΓampτ

[
(1−2ηκ)âex −2

√
ηκ(1−ηκ)â0

]
.

(2.40)

Importantly note that the first and second terms dominate the total added noise. The third

term is the added noise due to the thermal decoherence of the mechanical oscillator during

the amplification process, which is negligible in the large amplification rate limit, i.e., Γamp ≫
Γth = Γmnth

m . The fourth term is the added noise from the microwave measurement noise,

dominated by the HEMT amplifier noise for our experiment, which is also negligible when the

optomechanical amplification gain is sufficiently large, i.e. eΓampτ≫ nH
add, where nH

add is the

added noise of the HEMT amplifier. The rest terms are the quantum noises for the microwave

cavity, which are suppressed by the optomechanical amplification gain, and can be safely

neglected. Therefore, the annihilation operator of the ancilla mode is approximated by

ĉopt ≈ i
p
ηκ â′

ex + i
√

1−ηκ â′
0, (2.41)

where the ancilla mode can be understood as the hybridized mode of the convoluted mi-

crowave external and internal noise operators.

To characterize the thermalization of mechanical vacuum or squeezed states, we need to

measure the variances of the mechanical quadratures at t = 0, when the blue-detuned pump

is turned on. As defined in Eq. (2.39), we are able to directly measure both the quadratures of

the output microwave field. Here, the measured microwave quadratures are defined as

Î =
Â+ Â†

p
2

,

Q̂ =
Â− Â†

p
2i

,

(2.42)

while the mechanical quadratures to be measured are defined as

X̂1 =
b̂(0)+ b̂†(0)p

2

X̂2 =
b̂(0)− b̂†(0)p

2i
.

(2.43)
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Using Eq. (2.39), the expectation value of the variance of the microwave quadratures are

described as

〈Î 2〉 = Gopt
(
〈X̂ 2

1 〉+nopt
add +

1

2

)
,

〈Q̂2〉 = Gopt
(
〈X̂ 2

2 〉+nopt
add +

1

2

)
,

(2.44)

where it is assumed that the ancilla mode is not initially correlated with the mechanical

oscillator, while it is in the thermal state with the effective added noise, given by 〈ĉ†
optĉopt〉 =

nopt
add. Note that when the ancilla mode is in the vacuum states, i.e., nopt

add = 0, the added

noise becomes 1/2, which corresponds to the ideal simultaneous measurements of both the

mechanical quadratures in the quantum limit. Using Eqs. (2.44), we can obtain the variance of

the mechanical quadratures as

〈X̂ 2
1 〉 =

〈Î 2〉
Gopt −nopt

add −
1

2
,

〈X̂ 2
2 〉 =

〈Q̂2〉
Gopt −nopt

add −
1

2
.

(2.45)

Furthermore, using Eq. (2.45), we can obtain the phonon occupation as the average of the

variances of both the mechanical quadratures, subtracted by the half quanta, i.e.,

nm = 〈b̂†(0)b̂(0)〉 =
〈X̂ 2

1 〉+〈X̂ 2
2 〉

2
− 1

2

=
1

Gopt

〈Î 2〉+〈Q̂2〉
2

−nopt
add −1.

(2.46)

2.4 Theory of multimode circuit optomechanics

This section provides the theoretical description of a multimode circuit optomechanical

system and shows how the collective microwave mode-shapes in optomechanical lattices.

The theoretical discussion here is later used in chapter 8 to explain the system.

2.4.1 Theoretical model

In our model, each electromechanical element consists of a single microwave mode optome-

chanically coupled to an individual mechanical mode. In addition, the microwave modes are

electromagnetically coupled to each other. The Hamiltonian of the multimode system is in

general given by

Ĥ/ℏ =
∑

i

[
ωc,i â†

i âi +Ωm,i b̂†
i b̂i + g0,i â†

i âi (b̂†
i + b̂i )

]
+∑

i ̸= j
(Ji j â†

i â j + J j i â†
j âi ), (2.47)
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b

a

c

Figure 2.4: Optomechanical arrays and lattices. a, Mode diagram of a 1-D optomechanical
array. Electromagnetic and mechanical modes are shown by blue and green circles corre-
spondingly. Each individual optomechanical building block is coupled to the neighbors with
microwave coupling. b, Example of a 2-D optomechanical lattice. c, Equivalent mode diagram
in the collective electromagnetic basis. The collective electromagnetic modes are coupled
to all the mechanical resonators by the effective optomechanical coupling rates which are
proportional to their energy participation ratio, ηk

i .

where âi and b̂i are annihilation operators for microwave mode i with a resonance frequency

ωc,i and mechanical mode i with a resonance frequency Ωm,i , g0,i is the single-photon op-

tomechanical coupling rate, and Ji j is the coupling strength between microwave modes i and

j .

Assuming that the single-photon optomechanical coupling rates are sufficiently smaller than

the microwave resonance frequencies and the electromagnetic coupling strengths, collective

microwave modes can be well defined regardless of the coupling to the mechanical modes.

Thus, we first focus on the Hamiltonian of the coupled microwave modes:

Ĥc/ℏ =
∑

i
ωc,i â†

i âi +
∑
i ̸= j

(Ji j â†
i â j + J j i â†

j âi ). (2.48)

In a matrix representation, the quadratic Hamiltonian Ĥc can be described as

Ĥc = â†Hcâ, (2.49)
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where

â =



â1

â2
...

âi
...


, â† =

[
â†

1 â†
2 · · · â†

i · · ·
]

, and Hc/ℏ =



. . .

ωc,i J j i

. . .

Ji j ωc, j

. . .


. (2.50)

Since Hc is an hermitian matrix, it can be diagonalized by a unitary matrix Uψ as

Dc = UψHcU†
ψ, (2.51)

where Dc is a diagonal matrix whose diagonal element [Dc]k,k corresponds to the eigen-energy

ℏω̃k
c of the collective microwave mode k. On the basis of the collective microwave modes

α̂̂α̂α = Uψâ, Hamiltonian (2.48) is described as

Ĥc/ℏ = α̂̂α̂α† (Dc/ℏ)α̂̂α̂α

=
∑
k
ω̃k

c α̂
†
k α̂k . (2.52)

Note that collective microwave mode k is explicitly be represented using the bare microwave

modes as

α̂k =
∑

i
ψk

i âi , (2.53)

where ψk
i = [Uψ]k,i is the complex amplitude of the normalized mode function of collective

microwave mode k at site i . Thus, we define the participation ratio of bare mode i to collective

mode k as

ηk
i = |ψk

i |2. (2.54)

As will be discussed in chapter 8, our main goal is to characterize the participation ratio using

the optomechanical damping effects in multimode optomechanics.

The property of the unitary transformation gives the normalization conditions of the mode

functions:∑
i
ηk

i =
∑

i
|ψk

i |2 = 1 (2.55)

and ∑
k
ηk

i =
∑
k
|ψk

i |2 = 1, (2.56)
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as well as the orthogonalization condition between different mode functions:∑
i
ψk

i
∗
ψl

i = 0 (if l ̸= k) . (2.57)

The normalization condition of Eq. (2.55) describes the photon-number conservation in

collective mode k when it is decomposed into the bare modes, while the normalization

condition of Eq. (2.56) describes the photon-number conservation in bare mode i when it is

decomposed into the collective modes.

Next, we describe the Hamiltonian of the multimode optomechanical system based on the

collective microwave modes. Using the inverse unitary transformation â = U†
ψα̂̂α̂α, the bare

microwave mode i is represented as

âi =
∑
k
ψk

i
∗
α̂k . (2.58)

With this relation, Hamiltonian (8.2) is rewritten as

Ĥ/ℏ =
∑
k
ω̃k

c α̂
†
k α̂k +

∑
i
Ωm,i b̂†

i b̂i +
∑

k,l ,i

[
g0,iψ

l
i
∗
ψk

i α̂
†
k α̂l (b̂†

i + b̂i )
]

. (2.59)

Assuming that the frequency detuning |ω̃k − ω̃l | among the collective microwave modes are

sufficiently larger than the single-photon optomechanical coupling rates, the rotating-wave

approximation can be valid, and the non-energy conservation term ∝ α̂†
k α̂l (if k ̸= l ) can be

neglected. Thus, the Hamiltonian can be approximated as

Ĥ/ℏ =
∑
k
ω̃k

c α̂
†
k α̂k +

∑
i
Ωm,i b̂†

i b̂i +
∑
k,i

g0,iψ
k
i
∗
ψk

i α̂
†
k α̂k (b̂†

i + b̂i )

=
∑
k
ω̃k

c α̂
†
k α̂k +

∑
i
Ωm,i b̂†

i b̂i +
∑
k,i

(
ηk

i g0,i

)
α̂†

k α̂k (b̂†
i + b̂i ),

(2.60)

where ψk
i
∗
ψk

i = ηk
i . In the collective-mode picture, mechanical mode i is optomechanically

coupled to collective microwave mode k with the single-photon optomechanical coupling rate

g0,i weighted by ηk
i , the participation ratio of bare microwave mode i to collective microwave

mode k.

In our multimode optomechanical system, it can be assumed that the collective microwave

modes and the mechanical modes are well isolated from each other in frequency space and

the frequency spacing between the collective microwave modes is much larger than the

mechanical frequencies, enabling us to operate the multimode system as a single microwave

mode coupled to a single mechanical mode. Furthermore, our multimode system is locally

connected to an input line on one side and an output line on the other side, resulting in

collective microwave mode k being coupled to the input line with the external coupling rate

κk
1 and the output line with the external coupling rate κk

2 , respectively. Note that κk
1 and κk

2

depend on the mode function of collective mode k.
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Here, we consider the case when collective microwave mode k is driven by a coherent field

with a frequency ωk
i from the input line to couple mechanical mode i to collective microwave

mode k. The effective Hamiltonian in the rotating frame of ωk
i is given by

Ĥ k
i /ℏ =∆k

i α̂
†
k α̂k +Ωm,i b̂†

i b̂i +
(
ηk

i g0,i

)
α̂†

k α̂k (b̂†
i + b̂i )+

√
κk

1 ṅk
d

(
α̂†

k + α̂k

)
, (2.61)

where ∆k
i = ω̃k

c −ωk
i is the detuning between the collective microwave frequency ω̃k

c and the

drive frequency ωk
i and ṅk

d is the photon flux of the cavity drive field. With this Hamiltonian,

the quantum Langevin equations of collective microwave mode k and mechanical mode i are

given by

˙̂αk =

[
−i∆k

i −
κk

tot

2
− i

(
ηk

i g0,i

)
(b̂†

i + b̂i )

]
α̂k − i

√
κk

1 ṅk
d +

√
κk

1 âin,1 +
√
κk

2 âin,2 +
√
κk

0 âin,0

˙̂bi =

(
−iΩm,i −

Γm,i

2

)
b̂i − i

(
ηk

i g0,i

)
α̂†

k α̂k +
√
Γm,i b̂in,

(2.62)

where κk
0 and κk

tot = κk
0 +κk

1 +κk
2 are the intrinsic loss rate and the total decay rate of the

microwave mode, respectively. Moreover, Γm,i is the intrinsic loss rate of the mechanical mode,

and âin,0, âin,1, âin,2, are b̂in are input quantum and thermal noises from the corresponding

baths.

Assuming that the coherent amplitude of the microwave mode is not affected by the optome-

chanical coupling, the quantum Langevin equation for the microwave mode can be divided

into the classical part with 〈α̂k〉 and the quantum part with δα̂k . By using the linearization

α̂k = 〈α̂k〉+δα̂k , we therefore have

〈 ˙̂αk〉 =

(
−i∆k

i −
κk

tot

2

)
〈α̂k〉− i

√
κk

1 ṅk
d

δ̇α̂k =

(
−i∆k

i −
κk

tot

2

)
δα̂k − i

(
ηk

i g0,i

)
〈α̂k〉(b̂†

i + b̂i )+
√
κk

1 âin,1 +
√
κk

2 âin,2 +
√
κk

0 âin,0

˙̂bi =

(
−iΩm,i −

Γm,i

2

)
b̂i − i

(
ηk

i g0,i

)(
〈α̂k〉α̂†

k +〈α̂k〉∗α̂k

)
+

√
Γm,i b̂in.

(2.63)

Note that the bare optomechanical coupling terms are neglected. The time evolution of the

mechanical mode is sufficiently slow for the classical amplitude of the microwave mode to be

in the steady state. Using 〈 ˙̂αk〉 = 0, the classical amplitude is therefore obtained as

〈α̂k〉 =
−i

√
κk

1 ṅk
d

i∆k
i +

κk
tot
2

. (2.64)
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and simulation

In this chapter, we discuss the mechanical and electrical properties of the circuit optome-

chanical devices, calculate the optomechanical coupling rate based on the geometrical and

material parameters of the system, and show how a design can be programmed as a digital

pattern for fabrication.

3.1 Electrical circuit

a b

Figure 3.1: Two possible realizations of circuit electromechanics. a, A mechanically compli-
ant capacitor is manipulating the confined electric field and thus the resonance frequency. b,
A mechanically compliant inductor is manipulating the magnetic field and thus the resonance
frequency.

A lumped element microwave resonator is formed by shunting a capacitor, C , and an inductor,

L. Each of these elements can in principle be coupled to a mechanical degree of freedom

(Fig.3.1). For the case of geometric inductance manipulation, due to the relatively distributed

magnetic field and large geometries in standard meander or spiral inductors, position defor-

mation results in a relatively small inductance modulation. Researchers have investigated

other approaches for inductive electro-mechanical coupling such as kinetic inductance mod-

ulation (Roos et al., 2023) or exploiting Josephson junction’s nonlinearity by shunting them
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to a mechanical oscillator and applying external magnetic flux (Rodrigues, Bothner, and G.

Steele, 2019) and achieving significantly high optomechanical coupling rates, however, these

approaches suffer from low mechanical quality factors and lack of scalability. Mechanically

compliant capacitors are more conventional in the field of circuit optomechanics. This may be

due to the fact that the spatial electric field concentration can be quite high in the vacuum-gap

capacitors which results in higher sensitivity to position and geometry change of the element

and consequently higher optomechanical coupling rate, for example, a 10 nm change in the

gap size of a vacuum-gap capacitor with 100 nm gap results in 10% change of the capacitance

and ∼ 5% change of the resonance frequency. In this case, the microwave resonance frequency

can be expanded with respect to the position (x) as:

ω(x) =
1p

LC (x)
=ωc − ωc

2C (0)

∂C

∂x
x +O (x2), (3.1)

Where ωc = 1/
p

LC (0) is the unmodulated frequency of the resonator. In the case of ideal

vacuum-gap parallel plate capacitor C (x) =
ϵ0 Acap

d+x , where Acap is the effective area of the plates,

and d is the gap size. The optomechanical coupling rate for the ideal LC circuit with an ideal

vacuum gap capacitor is derived as:

G =
∂ω(x)

∂x
= +ωc

2d
. (3.2)

As shown, the optomechanical coupling rate only depends on the gap size for a certain

microwave frequency. The detailed calculation of the optomechanical single-photon coupling

rate for the geometry of drumhead capacitors is provided in Sec. 3.3.

3.1.1 Waveguide coupling to the circuit

Micro-strip waveguide cross-sectional Grounded co-planar waveguide cross-sectional

Figure 3.2: Micro-strip and co-planar waveguides. The figure shows two types of waveguides
employed in the different electromechanical projects. While micro-strip waveguides support a
simultaneous non-local coupling to many circuits separated in frequency, CPW offers selective
coupling to circuits and less cross-talk thanks to its confined electromagnetic field.

To control and readout the LC circuit we couple it to a waveguide (Fig. 3.2). For projects

employing a single electromechanical LC such as mechanical squeezing, we use micro-strip

waveguides which are magnetically coupled to the LC circuit - through mutual inductance

between the waveguide and the meander or spiral inductor of the LC circuit. When employing
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arrays and lattices of electromechanical circuits, we normally use a coplanar waveguide struc-

ture terminated with a loop inductor which offers local coupling to a circuit while reducing

the cross-talk and parasitic coupling to far circuits. In both cases, the size of the waveguide

should be designed to guarantee the 50-Ohm impedance matching. Considering 525 µm

thickness of the wafer and Silicon’s dielectric constant of ϵ(Si)
r = 11.8, we calculate 426 µm

width for the micro-strip waveguide. The same parameters result in 18 µm core width and

8 µm core-ground gap spacing for the CPW. We note that for CPW the ratio of the gap and

core widths defines the impedance as long as they are both much smaller than the thickness

of the substrate, therefore the actual sizes can scale to higher or lower values. To analyze

a

b c

Two-port Short ended

Figure 3.3: Waveguide coupling to the circuit. a, LC circuit is inductively coupled to a 50-ohm
impedance microwave waveguide. The effective lump element impedance of such a coupling
in the network analysis is Zeff. The scattering matrix parameters can be calculated based
on the ratio of Zeff and Z0 = 50 Ohm in two cases of a semi-infinite waveguide (b) or the
short-ended waveguide (c).

the circuit coupling to a micro-strip waveguide, we consider a lumped element model for

the piece of waveguide magnetically coupled to the LC circuit with the mutual inductance

of M . The effective impedance of the mutual inductance coupled with the LC circuit can be

calculated as:

Zeff =
M 2ω2

R + 1
jCω + j Lω

, (3.3)

Where R is the effective resistance considered for the LC to model the internal loss. For high-

Q microwave resonances where the linewidth of the resonance is much smaller than the

28



Circuit analysis, design,
and simulation Chapter 3

resonance frequency, the impedance can be approximated as:

Zeff =

M 2ω2
c

2L
R
2L + i (ω−ωc)

, (3.4)

With ωc = 1/
p

LC . In the case of a two-port waveguide, we can calculate the reflection coeffi-

cient from the left port -S11 of the scattering matrix- by assuming the right port to be in series

by a matched load, Z0, modeling the semi-infinite waveguide on the right side. The reflection

coefficient of a waveguide terminated with ZL is given by S11 = ZL−Z0
ZL+Z0

(Pozar, 2011). Assuming

ZL = Zeff +Z0 for the two-port case we derive the reflection coefficient as:

S11 =
κex/2

(κex +κ0)/2+ i (ω−ωc)
, κex =

M 2ω2
c

2Z0L
, κ0 = R/L, (3.5)

Where κex defines the external coupling rate and κ0 defines the intrinsic loss rate of the circuit.

The transmission coefficient also can be calculated as:

S21 =
κ0/2+ i (ω−ωc)

(κex +κ0)/2+ i (ω−ωc)
. (3.6)

For the case of the short ended waveguide, the reflection is calculated as:

S11 =
(κ(short)

ex −κ0)/2− i (ω−ωc)

(κ(short)
ex +κ0)/2+ i (ω−ωc)

, κ(short)
ex = 2×κex =

M 2ω2
c

Z0L
, (3.7)

Where the external coupling rate is double of the two-ported case.

3.1.2 Circuit theory of the dimerized arrays

a b

UPB

LPB

Figure 3.4: Circuit theory of the dimerized arrays. a, Two coupled LC circuits. The inductive
coupling results in energy splitting. The higher frequency mode supports symmetric currents.
While the lower frequency mode shows anti-symmetric currents. b, Infinite chain of dimerized
circuits with alternating couplings. The energy band structure of such a chain consists of two
passbands (UPB and LPB) located around the central frequency.

Here we briefly discuss the circuit theory of microwave SSH chains and link the circuit elements

of such a system to the Hamiltonian parameters - i.e. the coupling rates. We first consider two

coupled identical LC circuits as shown in figure3.4a. The system can be described by electrical
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currents, I1(t ) and I2(t ). Kirchhoff’s equations result in:

LÏ1(t )−M Ï2(t )+ 1

C
I1(t ) = 0 , LÏ2(t )−M Ï1(t )+ 1

C
I2(t ) = 0 (3.8)

Which can be transferred to the frequency domain:

(ω2
c −ω2)LI1 = −Mω2I2 , (ω2

c −ω2)LI2 = −Mω2I1 (3.9)

Where ωc =
√

1
LC . Equation 3.9 results in two eigenfrequencies

ωc

√
1

1∓ M
L

≃ωc (1± M

2L
) (3.10)

corresponding to two eigen modes of I1 = ±I2 respectively. Based on the energy splitting, the

energy coupling rate can be extracted as J =ωc
M
2L . It is worth mentioning that the symmetric

mode (I1 = I2) corresponds to the higher resonance frequency and the asymmetric mode to

the lower one.

Now we describe the infinite array of coupled dimer LC circuits with the staggered couplings

of M and M ′ as shown in figure3.4b. For each dimer (sites 2n and 2n +1) we can derive the

frequency domain circuit equations:

(ω2
c −ω2)I2n + M

L
ω2I2n+1 + M ′

L
ω2I2(n−1)+1 = 0

(ω2
c −ω2)I2n+1 + M ′

L
ω2I2(n+1) + M

L
ω2I2n = 0 .

(3.11)

Considering Bloch’s theorem, the propagating mode in such an array can be described by a

harmonic function:

I2n = I0e iβ2n , I2n+1 = I ′0λe iβ2n (3.12)

Where β ∈ R is the wave number of the propagating mode, λ ∈ C is defining the phase and

amplitude difference between circuits in a dimer and I0 ∈R is one of the current’s amplitudes.

Therefore equation 3.11 will be simplified to:

(ω2
c −ω2)+λM +M ′e−iβ

L
ω2 = 0

λ(ω2
c −ω2)+ M +M ′e iβ

L
ω2 = 0 .

(3.13)

Solving for ω from equations 3.13 will result in the band structure of the infinite chain:

ω =
ωc√

1±
p

M 2+M ′2+2M M ′ cos(β)
L

. (3.14)
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As shown in figure3.4b, the energy spectrum of the infinite chain consists of two passbands. In

case of small mutual coupling ( M
L , M ′

L ≪ 1) The upper passband (UPB) and lower passband

boundaries are:

ωUPB
± = ωc +|J ± J ′|

ωLPB
± = ωc −|J ∓ J ′|

(3.15)

Where J = ωc
M
2L , J ′ = ωc

M ′
2L are the mutual coupling rates in the chain. In the finite chains,

when J < J ′, two edge states arise in the middle of the band gap due to the truncated boundary

condition of the chain. This can be intuitively understood in the extreme case of J ≪ J ′, when

the first and last LC circuits are fully isolated from the rest of the chain, which consists of

strongly coupled circuits.

To probe arrays of electromechanical systems, the specific sites of the chain or lattice can be

inductively coupled to coplanar waveguides using two short-circuited inductive loop couplers.

The external coupling rate to the outermost sites is typically designed to be comparably smaller

than internal microwave couplings in the chain to avoid deviation from the ideal model such

as SSH model. The relation between the external coupling rate and the mutual inductance

follows the same logic as what has been discussed before for a micro-strip waveguide (Eq. 3.5).

3.1.3 Circuit design principles

Here we review design rules and relations between the system parameters and the geometrical

parameters of the circuits. First, we consider a single microwave LC resonator. The capacitance

of a vacuum-gap capacitor can be approximated by CVG = ϵ0 Aeff
d , where Aeff is the effective area

of the parallel plate and d is the gap size. Assuming the wire width of the conductors can

be neglected compared to the inductance size, the self-inductance or mutual inductance of

inductors can be precisely calculated using Neumann’s formula:

L A,B =
µ0

4π

∮
A

∮
B

drA ·drB

|rA − rB |
(3.16)

Where the path integral is carried out over the geometrical curve of the inductors. In the case

of self-inductance A = B and in the case of mutual inductance A and B refer to the curve

functions of the two inductors. Using Neumann’s formula we can numerically calculate the

inductance having the curve functions, however, two simple approximate scaling rules can

be extracted from the formula: The self-inductance of a spiral scales with L ∝ N 2
s reff where

Ns is the number of turns and reff is the effective radius of the spiral. The mutual inductance

between two spirals A and B with the distance of l scales with M ∝ Ns,A Ns,B r 2
eff,Ar 2

eff,B/l 3 in

far distances (l ≫ reff,A ,reff,B ). To increase microwave coupling rates (J =ωc
M
2L ) in a design, M

needs to increase while L is fixed. This can be achieved by increasing the aspect ratio of spirals

to have longer adjacent wires in neighbor sites, like the spirals used in the 10-site 1D chain

discussed in Sec.8.4.
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3.1.4 Electromagnetic simulations

2 μm cellsize 1 μm cellsize Bottom layer Top layer

a b

Figure 3.5: Circuit simulation with Sonnet®. a, Shows the meshed structure of an LC circuit
with two different minimum mesh sizes. b, Shows the computed on-resonance current density
amplitude in both layers.

All the electromagnetic simulations were performed using Sonnet® Suites, which is a 2.5-D

simulation software dedicated to RF and microwave IC chip and PCB design. The Sonnet Suites

develop precise RF models (S-, Y-, Z-parameters or extracted SPICE model) for planar circuits

and antennas. The software requires a physical description of the circuit (in our case GDSII

layout and material properties for metal and dielectrics) and employs a rigorous method-of-

moments electromagnetic analysis based on Maxwell’s equations including parasitic, cross-

coupling, and package resonance effects.

The software imports the GDSII design of the circuit in different layers. We can then define

material properties for the silicon substrate (assuming 10−5 as the loss tangent to have an

estimate of the substrate losses) and superconducting aluminum layers (assuming zero resis-

tivity, but Xs = 0.02 pH/sq as kinetic surface inductance). The gap size between the top and

bottom aluminum layers can also be tuned and swept. We need to define a grounded box

surrounding the design and one or two 50-ohm load-matched ports to calculate the scattering

matrix. the ports are normally connected to the waveguide ends. The next step is to select a

proper minimum mesh size and type (we typically use 2µm×2µm square mesh) and check the

connectivity of the elements, specifically the spiral inductor wires. Higher mesh size (Fig. 3.5a)

will significantly reduce the size of the mesh matrix and accelerates the simulation but result

in less accurate resonance frequencies neglecting the edge effects for example. Sonnet is also

capable of calculating the current density amplitude and reporting its map over the circuit

(Fig. 3.5b).

as an example, in the topological optomechanical lattices project (Sec. 8.4), We first simulated
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the single LC resonator and varied the geometric inductor parameters and bottom capacitor

plate diameter (which changes the capacitance) to get the desired resonance frequency around

7 GHz. As detailed in Sec. 3.1.2, when two harmonic modes get coupled together, two

hybridized modes appear (Fig. 3.6 a inset). The frequency splitting between such two modes
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Figure 3.6: Mutual inductive coupling rate as a function of the distance between two identical
sites a, Unit cells for 1D SSH chain. b, Unit cells for 2D strained graphene lattice in different
directions. The black arrows show the final designed values. The coupling rates are extracted
from the splitting of hybridized modes observed in the FEM simulation with Sonnet as shown
in the inset.

is exactly double the coupling rate between them as can be easily seen from Eq. (3.10). In our

case, the coupling rate between two neighboring modes is inductive, and its strength can be

changed by varying the distance between them. We ran parametrized Sonnet® simulations by

varying the distance between them, and for each run we extracted the coupling rate from the

resulting frequency splitting. As the distance between the two circuits increases, the coupling

rate decreases, as expected. (See Fig. 3.6)

From these simulations, we choose the distances that would result in the coupling strengths

that we desired. For the 1D case (Fig. 3.7 a) there is one direction of coupling. In the graph, the

chosen values of the inter-cell coupling J ′ and intra-cell coupling J can be seen. From these

same simulations, unwanted second and third-order coupling rates can also be extracted,

which we used to compute the expected mode shapes (see Sec. 8.5). For the 2D case (Fig. 3.7

b) we ran two different distance sweeps because of the slightly asymmetric shape of the spiral

inductor, due to the needed crossover point to connect it to the capacitor plates.
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Another important aspect is how much the input/output loop couplers are shifting the reso-

nance frequency of the outermost sites. If the loop coupler is too close to the circuit, we get a

resonance frequency shift, which will only affect the edges of the array, seriously impairing

the hybridization of the modes. To study this effect, after having optimized the dimensions of

the loop itself, we swept the distance to a single LC site. In Fig.3.7 the external coupling rate -

resonance shift trade-off is shown. We chose a distance that could provide a sufficiently high
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Figure 3.7: Coupling to the CPW waveguide. a, Sonnet current simulation and meshing of the
CPW inductive loop coupler. The CPW is short-ended and the current density is maximum
at the end of the waveguide (Bancora, 2021). b,c, Sweeping the distance of a single site LC
to the loop coupler for the 1D (b) and 2D (c) design. The external coupling rates, as well
as the resonance frequency shift due to probing the system, are extracted. The orange dot
corresponds to the distance chosen in the final designs.

coupling rate, but for which the resonance frequency shift was much lower than the coupling

rates in the system ∆ωc/2π≪ J , J ′/.

Finally, the whole device can be simulated in Sonnet®. The result can be seen in Fig. 3.8. For

the 1D case, we directly simulated the mask design used in the fabrication process. For the 2D,

given the size of the structure, we substituted the vacuum-gap capacitors with ideal capacitor

components to reduce the required memory and speed up the simulation. This should not

change the coupling between the sites appreciably because the electromagnetic field of the

vacuum-gap capacitor is confined between the plates, and the magnetic field responsible for

the coupling of neighboring sites is mostly confined around the spiral lines.
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Figure 3.8: Simulation of the full designs. Simulated transmission response of the 1D SSH
chain and 2D strained graphene lattice used in topological optomechanical array project
(Sec. 8.4 and Sec. 8.7). (a) 1D array. (b) 2D lattice. The shades show upper and lower passbands.
Isolated edge modes are visible in the middle of the band gap.

3.2 Mechanical properties of the drumhead resonator

Here we describe the mechanical properties of a circular drumhead resonator. For sufficiently

small deformation of the drumhead, we can approximate the displacement of each element in

time as a harmonic oscillation along the vertical axis. The oscillation amplitude of the drum at

(r,φ) in polar coordinate is described by z(t )u(r,ϕ), where z(t ) with the dimension of length

obeys the harmonic oscillation equation: z̈ = −Ω2
mz, while u(r,ϕ) is the unit-less mode shape

of the drum, normalized such that the amplitude at the origin is 1. For a circular drum with a

radius of R, we have

u(r,ϕ) =Jn(
αn,m

R
r )cos(nϕ),

Ω(n,m)
m =

αn,m

R

√
σm

ρ
,

(3.17)

where αn,m is the mth root of the nth order Bessel function of the first kind, Jn , and σm and

ρ are the mechanical stress and density of the material, respectively, in our case aluminum

with ρAl = 2700 kg/m3. For the fundamental mode (n = 0, m = 1), which we use in this work,

α0,1 ≃ 2.4. The small holes in the actual device slightly deviate the mode shape from that

of a uniform drum. The radius of the drumhead used in the main work is R = 75µm. We

extracted σAl ≃ 350 MPa tensile stress at cryogenic temperatures by measuring the mechanical

frequency of several drums with different radii and matching it with the theory.
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Figure 3.9: Geometrical parameters of the vacuum-gap capacitor. The radius of the bottom
layer is Rb , the radius of the drumhead is R, the thickness of the drumhead is t , and the
distance between the top and bottom layer is d .

The effective mass of such a mechanical oscillator can be defined as the total kinetic energy

over the velocity squared:

Ukinetic =
∫

1

2
ρ|ż(t )u(r,ϕ)|2tr dr dϕ

≡1

2
meff ż(t )2,

(3.18)

where t is the thickness of the drumhead resonator. For the fundamental mode of a circular

drum, this reduces to

meff =2πρt
∫ R

0
r |u(r )|2dr

=mphysξmass,

(3.19)

where mphys is the physical mass of the drum and ξmass is a dimentionless parameter describ-

ing the ratio between the effective and physical mass:

mphys =ρ×πR2t ,

ξmass =
2

R2

∫ R

0
r |u(r )|2dr = 2

∫ 1

0
ζJ0(α0,1ζ)2dζ.

(3.20)

For the fundamental mode, we have ξmass ≃ 0.27. Having the effective mass and the frequency

of the mechanical oscillator, we can find its zero-point fluctuation:

xZPF =

√
ℏ

2meffΩm
. (3.21)

For the drumhead used in the ultra-coherent project, the effective mass of the fundamental

mode can be calculated as meff = 2.3 ng and the zero-point-fluctuation of motion as xZPF =

1.4 fm.

Detailed discussion on the aluminum thin film stress at low temperatures is provided in

Sec.A.1. To experimentally extract the exact value of the stress we created 16 separate LC
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Figure 3.10: Extraction of the aluminum film stress at low temperatures. a, Measured
mechanical frequencies on a chip with 16 separate electromechanical LC resonators. As
shown in b, in the chip layout the trench radius of drums is swept from 60 µm to 100 µm (The
two dimers are separated in the frequency and not used here). Since two LC resonances were
inaccessible due to frequency overlap with the JTWPA stopband, we measured 14 resonances
and considered an error bar showing the uncertainty in the tranch radii. The red line shows the
theoretical curve with σAl = 350 MPa and the green shade shows theory bounds corresponding
to 350MPa× (1±10%) uncertainty.

electromechanical circuits on a chip and swept the radius of the drumhead resonators from

60µm to 100µm. By characterizing the mechanical frequencies we can plot them versus trench

radius and fit the theoretical formula (Eq.3.17) to extract the stress as σAl = 350(±10%) MPa as

shown in Fig.3.10.

3.2.1 FEM simulation of the mechanical mode

To precisely calculate the mechanical frequencies of the final design we simulated the drum-

head resonator using COMSOL® with the finite element method (FEM). FEM simulation

allows us to consider geometric nonlinearities and stress relaxation which slightly deviates the

actual frequencies from the theory. We use shell physics in the structural mechanics library of

COMSOL. The shell model reduced the 3D elastic equations into two dimensions consider-

ing a constant thickness of the object in the third dimension and is a preferable method for

simulating high aspect-ratio structures such as membranes.

Figure 3.11a shows an example of a triangularly meshed drumhead. To be able to precisely

calculate mechanical losses (which will be discussed in the following) the mesh needs to be

significantly finer on the areas which experience more bending, in our case, the clamps. The

simulation is done in two steps stationary stress relaxation and deformation analysis, and the

eigenmode solver. The stationary solver, finds the stable solution of the deformation under an

initial stress applied on the structure (Fig.3.11b), similar to what happens in practice, when

the aluminum film with a uniform stress on the substrate gets released and cooled down. As

expected, when we taper the clamps the stress enhances on the edges to satisfy zero total force
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Figure 3.11: COMSOL® FEM simulation of mechanical modes. a, An example of the triangular
meshed drumhead. The mesh size should be finer close to the clamps in order to precisely
calculate mechanical losses. Meshing of the clamps which are bounded to the substrate is
not needed and only is shown for the sake of visualization. b, The solution of the stationary
solver showing relaxed stress and magnified deformation of a drumhead considering 350 MPa
initial uniform stress. The stress enhances on the tapered clamps as shown in the breakout. c,
Examples of the first four lower frequency mode shapes as results of the eigenmode solver.
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on every arbitrary domain on the drum. Afterward, the eigenmode solver will inherit the initial

conditions from the stationary solver and calculates eigenfrequencies and corresponding

mode shapes of the structure (Fig.3.11c).

3.2.2 Mechanical loss analysis

The loss mechanisms in a macroscopic mechanical oscillator can be separated as intrinsic

(bending loss, surface loss, etc.) and extrinsic (gas damping, acoustic radiation, clamp loss,

etc.) (S. Fedorov, 2020). The traditional design of drumhead capacitors was resulting in a

non-flat geometry of the drumhead, specifically sharp edges at the clamping point. Such

a sharp structure can induce mechanical dissipation at the clamping points, i.e. phonon

tunneling to the substrate (Cole et al., 2011; Wilson-Rae et al., 2011). The conventional circuit

optomechanical devices mainly suffer from such radiative loss, which can be confirmed by

the fact that there is a saturation plateau in the temperature dependence of the mechanical

damping rate since the clamp loss normally does not have temperature dependence, while

the intrinsic mechanical dissipation is expected to decrease for a lower temperature (Cattiaux

et al., 2021). The flat geometry in our design may result in smaller clamp losses, as observed in

the temperature sweep experiment (see Fig. 6.9) where the mechanical damping rate shows

a strong dependency on temperature (while mechanical frequency barely shifts, exhibiting

constant stress and Young’s modulus in that temperature range).

In the ideal case when there are no extrinsic losses, the mechanical quality factor can reach

the maximum bound of the intrinsic quality factor. The intrinsic quality factor in a nanome-

chanical string or membrane can be described as

Qm = Q0 ×DQ , (3.22)

where Q0 is the material’s bulk quality factor and DQ is the dissipation dilution factor (S. A.

Fedorov et al., 2019; S. Fedorov, 2020). DQ = 〈Wtotal〉
〈Wlossy〉 is defined as the ratio of the dynamic elastic

energy averaged over the vibrational period (〈Wtotal〉) over its lossy part (〈Wlossy〉). The total

energy can be divided into tension energy (corresponding to the elongation of the mode shape

and loss-less) and bending energy (corresponding to the bending of the mode shape and lossy).

It can be theoretically shown (S. A. Fedorov et al., 2019; S. Fedorov, 2020) that for a thin beam

or membrane with a characteristic size of R, DQ = (Aλ+Bλ2)−1, where A and B are unitless

geometrical factors and λ = t
2R

√
Y

12σm
with Y presenting Young’s modulus (for aluminum

at low temperatures Y ≃ 75 GPa (Ekin, 2006)). Considering system parameters the range of

λ parameter for our drumhead resonators is O (10−2) which validates the approximation of

DQ ∝λ−1. We simulated the drumhead resonator using COMSOL® and numerically calculate

DQ values based on the eigenmodes of resonances. The result shows a good agreement

with the theory of loss dilution as shown in Fig. 3.12. The loss dilution factor for the device

discussed in the ultra-coherent electromechanics project (chapter 7) is estimated as DQ ≃ 100.

Considering the measured quality factor of Qm = 40×106, we extract a minimum bound for
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Figure 3.12: FEM simulation of the loss dilution factor. a, b, Simulated and theoretically
calculated mechanical frequency and loss dilution factor versus drum’s radius considering
t = 180 nm and σAl ≃ 350 MPa.

aluminum’s bulk quality factor at 10 mk as Q0 ≃ 4×105 for the device we studied.

3.3 Single photon optomechanical coupling rate (g0)

In this section, we calculate the theoretical value for g0 based on the physical parameters of the

vacuum-gap capacitor (Fig. 3.9). Knowing the displacement function of the top plate (Sec. 3.2)

and considering small amplitude oscillations, we can approximate the total capacitance as

the sum over differential parallel plate capacitances:

Ctot =
∫

ε0r dr dϕ

d + z ·u(r,ϕ)
+Cpar

=
∫ Rb

0

ε02πr dr

d + z ·u(r )
+Cpar

≃
∫ Rb

0

ε02πr dr

d

(
1− z

d
u(r )

)
+Cpar

= C0 − 2πε0

d 2 z
∫ Rb

0
r u(r )dr +Cpar,

(3.23)

where Rb is the radius of the bottom plate, C0 = ε0πR2
b/d is the unmodulated capacitance of

the vacuum-gap, and Cpar is the total parasitic capacitance of the other elements of circuit

(wires and spiral inductor). Here, we have considered the mode without angular dependency

40



Circuit analysis, design,
and simulation Chapter 3

and assumed z ≪ d . The frequency of the microwave cavity is then given by

ωc(z) =
1p

LCtot

=
1√

L
(
C0 +Cpar

)(
1− 2πε0

d 2(C0+Cpar) z
∫ Rb

0 r u(r )dr
)

≃ 1√
L
(
C0 +Cpar

) (
1+ 1

2

2πε0/d 2

C0 +Cpar
z
∫ Rb

0
r u(r )dr

)

=ωc + ωc

2d
ξcapξparz,

(3.24)

where

ξcap =
2

R2
b

∫ Rb

0
r u(r )dr = 2

(
R

Rb

)2 ∫ R
Rb

0
ζJn(αn,mζ)dζ.,

ξpar =
C0

C0 +Cpar
,

ωc =
1√

L
(
C0 +Cpar

) .

(3.25)

We can interpret ξcap as the geometrical mode shape contribution factor and ξpar as the

participation ratio of the modulated capacitor to the total capacitance of the microwave

cavity. For the fundamental mode u(r ) = J0(α0,1

R r ), ξcap is dependent to the Rb/R. In our

design for the ultra-coherent electromecahnics project, Rb = 23 µm and R = 75 µm, which

results in ξcap ≃ 0.93. The participation ratio of the vacuum-gap capacitance to the total

capacitance can be extracted in FEM simulations. Simulating our design for the ultra-coherent

electromechanics circuit design in SONNET® results in ξpar ≃ 0.8.

The single photon optomechanical coupling rate is then given by g0 = ∂ω(x)
∂x

xZPF and we can

drive it for our circuit as:

g0 =
ωc

2d
ξcapξparxZPF, (3.26)

where xZPF =
√

ℏ
2meffΩm

is the zero point fluctuation, and meff and Ωm were already derived in

Sec. 3.2.

The final expression for g0 based on the system parameters for the fundamental mode then is

given by

g0 = 0.37
p
ℏ
ωc

2d

(
R2t 2ρσm

)−1/4
. (3.27)

As it can be seen from the above formula, for a constant microwave cavity frequency g0 scales

with d−1, R−0.5, t−0.5, ρ−0.25, andσ−0.25
m . The theoretically expected g0 for the device discussed
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in the ultra-coherent electromechanics project is calculated g0/2π≃ 14 Hz, which is in good

agreement with the experimentally measured value (Sec. 6.3).

To sum up, we provide a scaling rules table (table 3.1) showing relations between optomechan-

ical properties and physical system parameters.

Table 3.1: Scaling rules in drum-head capacitor based circuit optomechanics.

R σm t d

Ωm
1
R

p
σm - -

Γm
1

R2 - t -
Qm,1/Γth R

p
σm t−1 -

g0
1p
R

σ
− 1

4
m

1p
t

1
d

C0 ≡
4g 2

0 /κΓm

R σ
− 1

2
m

1
t 2

1
d 2

3.4 Mask programming

In order to digitally generate a circuit geometry and transfer it into a lithographically define

mask, we developed a Python package to generate GDSII patterns of the chip and wafer

layout. GDSII format is a binary database file format which is the industry standard for

electronic design automation data exchange of integrated circuit or IC layout artwork. The

program is following the same logic as the famous electronic circuit simulation language,

SPICE (simulation program with integrated circuit emphasis) (Vladimirescu, 1994). Every

circuit element such as a vacuum-gap capacitor, interdigitated capacitor, spiral or meander

inductor, etc. is defined as a Python object. The object requires initial arguments defining

the size and geometric parameters of the element and generates a set of GDSII polygons

(using gdspy library) and paths defining the object, all accumulated in a python list that can

be extracted as an object’s parameter. We note that a GDSII mask contains several layers

corresponding to different fabrication steps. Therefore the extracted GDSII objects also

are defined in different layers. In addition, every circuit element object has a list of nodes,

containing coordinates of end wires or nodes to be connected to the other circuit elements

through wires generated with a dedicated function (’connect()’). Furthermore, we can also

define custom parameters for circuit element objects that can be used in the estimation of the

electrical parameters of the design. For example, the estimate of the capacitance is calculated

by the geometric area and the defined gap size, or the self-inductance of a spiral is calculated

by numerical integration of the Neumann formula.

An example of a code generating an LC circuit using our library is shown here:

1 import gdspy
2 from circuit tools import vacuum_gap_trampoline , spiral , connect
3 # Defining a GDSII cell
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4 LC_layout = gdspy.Cell(’LC_layout ’)
5

6 # defining geometrical parameters for a vacuum -gap capacitor as a
Python dictionary:

7 C_options = dict(N=12, r_tranch =100, r_bottom =30, wire_width =3,
layer_top=5, gap =200e-9, ...[ other parameters ]...)

8

9 # Calling and defining vacuum -gap object:
10 C = vacuum_gap_trampoline (** C_options)
11

12 # Extracting GDSii list of the capacitor object:
13 C_GDSII_list = C.obj
14

15 # Defining a spiral inductor object
16 L = spiral (** L_options)
17

18 # Connecting L and C with wires. C.node is the list of node
coordinates for the capacitor.

19 wire_1 = connect(C.node[0], L.node[0], wire_width = 3, layer = 5)
20 wire_2 = connect(C.node[1], L.node[1], wire_width = 3, layer = 5)
21

22 # Adding all GDSII objects to the layout and generating the mask:
23 LC_layout = C.obj + L.obj + wire_1 + wire_2
24

25 gdspy.write_gds(’LC.gds’, cells = LC_layout , unit = 1.0e-6, precision
= 1.0e-9)

26

27 # Calculating the estimate of the resonance frequency:
28

29 f_resonance = 1/( 2*n.pi * np.sqrt( L.inductance () * C.capacitance ()
))

30 print(’Estimated frequency = {} GHz’.format(f_resonance /1e9) )
31

32

Now that simple elements can be generated using objects and form a close circuit by con-

necting wires, we can define higher-level functions to generate different kinds of LC circuits,

waveguides, and couplers to shape the full design of a chip. The chip designs can be arranged

in a grid to fill the whole mask of a round wafer.
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Figure 3.13: GDSII design programming. The LC circuit GDSII mask which is generated by the
example piece of code provided above. Every element compounds several GDSII polygons in
different layers corresponding to fabrication steps. The geometry of each element is controlled
by the input argument of its Python object initiator function. Nodes of the elements can
automatically be connected by wires.
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In this section, we briefly present the challenge in the conventional nano-fabrication technique

for circuit optomechanics, limiting drumhead mechanical resonators’ mechanical coherence

and reproducibility. Then we introduce the novel fabrication process to overcome such

challenges and discuss each step of the process in detail. Finally, we provide more information

on a few topics regarding the fabrication of electro-mechanical systems.

4.1 History and challenges of the conventional circuit optomechani-

cal platforms

Vacuum-gap capacitors have been studied in the field of superconducting circuit quantum

electrodynamics to reduce the losses in microwave resonators by removing the typically lossy

dielectric layer of the capacitor and increasing the participation ratio of the electric field

in vacuum (Cicak et al., 2010). Naik et al. (2006) was the first work where superconducting

vacuum gap capacitors - in the form of high aspect ratio parallel metalized beams hosting MHz

range vibrational modes - were used to study the optomechanical interaction in the microwave

frequency range in the superconducting circuits platform. The low optomechanical coupling

rate and participation ratio (the ratio of vacuum gap capacitance to the total capacitance

including the stray capacitance of other circuit’s components) in the parallel beam capacitors

made this first-generation platform challenging to reach quantum limits in experiments based

on such a platform. J. D. Teufel, Donner, Castellanos-Beltran, et al. exploited drumhead

parallel-plate vacuum gap capacitors in an optomechanical experiment, realizing ground-

state cooling of the mechanical drumhead vibrational mode thanks to the large enough

optomechanical coupling and participation ratio in the new platform.

Figure 4.1 shows an overview of circuit optomechanical devices developed in several research

groups. Since 2010, when the conventional nano-fabrication process of making supercon-

ducting vacuum-gap capacitors was introduced by Cicak et al., the design and process did

not have a substantial change, while it was used to implement outstanding quantum exper-

iments in optomechanics, including ground state cooling (J. D. Teufel, Donner, D. Li, et al.,
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Figure 4.1: Examples of circuit optomechanical devices. a, b, c, shows the first generation of
the electro-mechanical devices using suspended metalized beams developed in EPFL (Zhou
et al., 2013) (shown in a), NIST/UC Boulder (J. D. Teufel, Donner, Castellanos-Beltran, et al.,
2009) (shown in b), and IST (Barzanjeh, Redchenko, et al., 2019) (shown in c). d-f shows the
second-generation based on parallel plate vacuum gap capacitors. d, NIST/UC Boulder device
(J. D. Teufel, Donner, D. Li, et al., 2011). e, Caltech device (Wollman et al., 2015). e, EPFL device
(Toth et al., 2017). g, Aalto device (C. Ockeloen-Korppi et al., 2018).

2011), mechanical squeezing (Wollman et al., 2015), and entanglement (Kotler et al., 2021;

C. Ockeloen-Korppi et al., 2018) to name a few.

The main steps of the conventional process (Fig. 4.2a) consist of deposition and definition

of the bottom plate of the capacitor, deposition of a sacrificial layer covering the bottom

layer, deposition and definition of the top capacitor plate, and finally releasing the device by

removing (isotropic etching) the sacrificial layer. Following the same principle, several research

groups realized circuit optomechanical systems using various sets of sacrificial materials on

different substrates such as Si3N4 on sapphire at NIST (J. D. Teufel, D. Li, et al., 2011), polymer

on Si at Caltech (J. Suh et al., 2014), SiO2 on quartz at Aalto (Pirkkalainen, Damskägg, et al.,

2015), and aSi on sapphire at EPFL (Toth et al., 2017).

Due to the deposition-induced compressive stress in the superconducting thin film (mostly

aluminum), the drumhead capacitor buckles up after the release at room temperature, which

increases the gap size between two plates up to a few micrometers. Cooling down such devices

induces tensile stress in the aluminum film due to the high thermal expansion rate difference

with the substrate. Under tensile stress, the drumhead shrinks down and buckles in the oppo-

site direction, resulting in a small (∼50 nm), but not accurately predictable, nor reproducible,

gap size. This prevents precisely controlling the microwave and mechanical properties of

the system at low temperatures and reduces the reproducibility of the design given the high

probability of deformations and collapses after the release (Tóth, 2018). In practice, any non-

uniformity of the stress distribution in the drumhead after release or asymmetric buckling

results in an uncertainty in the final gap size at cryogenic temperatures. This can be in the

order of tens of nano-meters, hence limiting the frequency fluctuation in the microwave LC

resonator in the order of O (10%). This was the main barrier to realizing multi-mode optome-

chanical systems and arrays in superconducting circuit platforms since the microwave and

mechanical frequency control is an essential parameter in such systems.
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Figure 4.2: Challenges of the conventional fabrication process for circuit optomechanics. a,
The conventional nano-fabrication process used to make mechanically compliant vacuum-
gap capacitors: a sacrificial layer (aSi or Si3N4) used to support the top layer. After the
release, the capacitor buckles up around 1 µm due to the compressive stress in the deposited
superconducting metal. At low temperatures, the drumhead shrinks resulting in a small but not
accurately controllable gap size of ∼ 50 nm. Due to the non-flat topography of the sacrificial
layer, the suspended plate has several edges close to the clamping point shown by red arrows.
b, SEM image of a drumhead fabricated with the conventional process at EPFL (Toth et al.,
2017; Tóth, 2018) showing the non-flat geometry of the mechanically compliant plate. c, Laser
profilometry of a successfully released drumhead. d,e, Laser profilometry of a deformed and a
collapsed drumhead correspondingly.

In addition, the non-flat geometry of the suspended plate -induced by the bottom plate’s

topography- and the presence of sharp step edges on the clamps increases the mechani-

cal dissipation in such resonators dominated by the phonon tunneling loss (radiation loss)

through the substrate (Cattiaux et al., 2021). This limited the mechanical quality factors up to

Qm = O (105) in such devices.

4.2 The new nano-fabrication process for ultra-coherent and repro-

ducible circuit optomechanics

The key idea to solve the existing challenges in circuit optomechanics can be expressed by

flat topography. In the conventional fabrication process to make vacuum gap capacitors, the

shadow pattern of the bottom electrode and sacrificial layer were imprinted on the topography

of the suspended vibrating top plate. In contrast, we may imagine a flat topography for

the tensioned vibrating plate. This naturally results in lower mechanical loss and prevents

thermal-induced deformations, which affects the capacitor gap size. Figure 4.3 b shows a

schematic 3D illustration of the vacuum gap capacitor we propose. A flat superconducting

trampoline is suspended on top of a so-called trench etched in the substrate, containing the

bottom electrode. The capacitor gap size is then determined by the depth of the trench minus
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the thickness of the bottom electrode and will not be a function of the temperature in case of

having tensile stress in the trampoline.

Here we present our novel nano-fabrication process to realize such a device and simulta-

neously improve the mechanical quality factor, the gap size control, and the process yield.

b

I II III

a

b

Si

SiO2

Al

IV V VI

Trench definition

Drumhead definition Release Cooldown

Sacrificial layer Planarization

Figure 4.3: Overview on the fabrication technique for the new generation circuit optome-
chanics. a, The main steps of the process consists of etching a trench in the substrate followed
by deposition of a sacrificial layer, planarization, top layer definition, release, and finally cool
down. Due to the compressive stresses, the top plate will buckle up after the release. However,
the drumhead shrinks and flattens at cryogenic temperatures, resulting in a controllable gap
size. b, A schematic 3D model of the final structure. The drumhead parallel plate capacitor is
flattened and suspended over the trench.

A brief overview of the developed process is shown in 4.3 a. The main steps of the process are

as follows. We first define a trench in a silicon substrate by dry etching. Next, we deposit and

pattern the bottom plate of the capacitor inside the trench. The trench is then covered by a

thick SiO2 sacrificial layer, which inherits the same topography of the layer underneath. To

remove this topography and obtain a flat surface, we use chemical mechanical polishing (CMP)

to planarize the SiO2 surface. We then etch back the sacrificial layer down to the substrate

layer and deposit the top Al plate of the capacitor. The sacrificial layer will be removed by HF

vapor isotropic etching to suspend the structure. Although after the release the drumhead
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may buckle -depending on the deposition-induced stress- up due to the compressive stress, at

cryogenic temperature the high tensile stress ensures the flatness of the top plate. This will

guarantee the gap size to be precisely defined by the trench’s depth and the bottom plate’s

thickness. Furthermore, the top plate’s flat geometry significantly reduces the drumhead

resonator’s mechanical dissipation.

The following sections will discuss each step of the process in detail.

4.2.1 Material selection

The main idea presented in Fig.4.3b can be implemented using different materials for substrate,

superconducting metal, and sacrificial layer. However, process compatibility of materials and

their resilience against different etching steps conducts us to choose a specific set of materials

for this process.

Substrate

The standard options for substrates in superconducting circuits are sapphire, silicon, and

quartz. Although sapphire has a low bulk loss tangent (tan(δ) ≈ 10−7 (Read et al., 2022)) and is

generally resilient to Florine chemistry etchants as well as acids, it is not the best option for our

process. We initially tested sapphire wafers but observed insufficient adhesion of the sacrificial

layer to the substrate, which was preventing full planarization (details are provided in Sec. A.3).

Also micro, structuring sapphire is challenging since there are not many established processes

to etch and manipulate this material. In contrast, silicon wafers show a perfect match to our

process due to their processing flexibility -as many nano-fabrication techniques are optimized

for silicon wafers at industrial levels- and high-quality wafer suppliers. The loss tangent of

the silicon substrate is also low compared to other materials (tan(δ) ≈ 10−6 (O’Connell et al.,

2008)) An important note is to use a high-resistivity float-zone silicon wafer to minimize

substrate impurities and losses of the superconducting circuit. Another parameter is the

wafer’s flatness, uniformity, and bow, which play an essential role in the CMP planarization

step. We use a high-resistivity (> 20 kΩcm), low-bow (< 20µm), low total thickness variation

(TTV< 5µm) float-zone intrinsic silicon wafer with 10 cm diameter and 523 µm thickness

supplied from Topsil®. It is recommended to do a Piranha (sulfuric acid with peroxide 100°C)

cleaning followed by HF cleaning (1% diluted) on the raw wafers before the process.

Superconducting metal

Aluminum is a widely used material in the field of superconducting circuits, because of its

flexibility in micro-structuring, simple deposition -evaporation or sputtering-, high enough

superconducting critical temperature (∼ 1.2 K), and self-passivating thin oxide layer. For

these reasons we also decided to keep aluminum as our superconducting material. This

makes future integration of our circuits with conventional superconducting qubits more

straightforward. Other materials such as Titanium nitride, Niobium, or Tantalum could also

be candidates because of their higher critical temperature, however, they are less compatible
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with the release process, form more complex amorphous structures and oxide compounds,

and has unknown mechanical properties at low temperatures.

Sacrificial layer

Amorphous silicon (aSi), silicon nitride (Si3N4), silicon oxide (SiO2), and polymer photoresists

are four candidates for sacrificial layer used in the previous generation of circuit optomechan-

ical devices. Each one needs different isotropic etching as the release process. For example aSi

can be removed by XeF2, which is an exothermic pulsed gas etching. Si3N4 can be etched by

SF6 plasma, and polymer resists by oxygen plasma. We decided to use SiO2 as our sacrificial

layer which can be removed with HF vapor, enabling us to release high aspect ratio structures

by avoiding plasma or wet etching, therefore increasing the yield and successful release rate of

the process. More details will be discussed in the release section (Sec. 4.2.12).

4.2.2 Optical lithography

a b

c d

2 μm 2 μm

2 μm 2 μm

Figure 4.4: Photo-resists cross section. The cross-section SEM images show the sidewall
angle of different photoresists. This is important for a clean etching of lift-off process. a, AZ®

1512 positive resist. b, AZ® ECI 3007 positive resist. c, AZ® nLof negative resist with high
development recipe. d, AZ® nLof negative resist with low development recipe.

We use optical lithography to transfer patterns on the photoresist. It is performed by direct

mask-less optical lithography (Heidelberg® MLA 150). We spin coat a 1 µm thick AZ® ECI 3007

positive photoresist after HMDS surface preparation. All photoresist coating and developing

steps are processed using automatic coater/developer (Süss® ACS200 GEN3). The exposure

dose and depth of focus vary based on the tool and need to be calibrated by dose tests, but

are typically set to ∼ 150 mJ/cm2. After the exposure, the resist will be developed, and the

wafer will be rinsed in a spin dryer to clean any unwanted contamination. To remove residual

photoresist on the surface of exposed areas, we conduct a short (10-20 seconds) oxygen plasma

descum at 200 Watts and 200 sccm (Tepla® GiGAbatch). After the descum, the wafer is ready

for the etching step. Cross-section SEM comparison of a few positive and negative photoresists

after exposure and development is shown in Fig. 4.4.

It is worth noting that the perfect exposure dose is different when etching silicon trench or

etching aluminum film because of the different reflectivity of the surface. This needs to be
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tuned by separate dose tests with and without the aluminum layer. An example of a dose test

pattern is shown in Fig. 4.5.

a b c

15 μm 15 μm

Figure 4.5: Dose test. a, A dose test pattern containing lines with various angles and widths,
both for positive and inverted lithography jobs. The circuit wires are written in the inverted
mode using positive resist for aluminum etching, while the trench itself is patterned without
inversion. The pattern is written with different doses and depths of focus in direct (mask-less)
lithography. We extract The critical dimensions of the wire and trenches using the optimized
dose. b, c, Examples of positive and inverted patterns after dose test resist development.

The critical dimensions can be achieved by direct laser writing is CD≈ 1µm minimum thick-

ness of a pattern and pattern size fluctuation of ∆d ≈ 500 nm. Compared to the sizes of

drumhead capacitors and spiral inductors, these CD and SF are sufficiently low resulting in

mechanical frequency disorder of ∆Ωm

Ωm
= ∆d

R ≈ 1% for a trench radius of R = 50µm. However,

when size fluctuation of drums and trenches matter – e.g., to observe collective mechanical

phenomena when degenerate mechanical modes are desired – we may consider electron

beam lithography (∆d ≈ 5 nm) or deep UV lithography (∆d ≈ 50 nm). This may result in

smaller disorder of mechanical frequencies down to ∼ 0.01% and ∼ 0.1% for e-beam and

DUV, respectively. Nevertheless, the microwave frequencies are more robust to lateral size

fluctuations since the spiral inductor is a relatively large structure with a less concentrated

electromagnetic field (compared with meander inductors or interrogated capacitors), and the

value of inductance is less sensitive to the thickness disorder of the wire.

After each etching step, the photoresist will be stripped first using UFT remover 1165 wet

process, followed by rinse and drying, and 3 minutes 600 Watt and 400 sccm Oxygen plasma

(Tepla® GiGAbatch). In case the wafer contains not covered aluminum thin-films it is recom-

mended to keep the wafer longer in UFT remover and expose it lower to Oxygen plasma by

either reducing power or exposure time to avoid additional oxidation and local heating of the

metal, specifically for the vibrating top plate.

4.2.3 Etching trenches in silicon

After lithography, we use deep reactive ion etching (DRIE) to etch the trenches in the silicon

substrate. We use C4F8 chemistry plasma as etchant (Alcatel® AMS200) with a typical etch

rate of ∼ 13 nm/sec and selectivity of Si:PR∼ 10 : 1. Since the total depth of etch is tuned by

time and the etch rate fluctuates in such a tool, it is recommended to use test wafers with
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a similar pattern to calculate the etch rate by removing the resist and measuring the trench

depth using mechanical profiterole. The total etching depth should be set to ∼ 30 nm more

than the target capacitor gap size plus the thickness of the bottom electrode to compensate

for potential non-uniformity in the CMP planarization step among different chips on a wafer.

The excess depth after CMP can be etched back by IBE in the following steps to reach the

desired gap size. The roughness of the silicon inside the trenches is measured Ra ≈ 1.5 nm

with a trench depth uniformity of ∼ 1%.
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a

Figure 4.6: Etching the trench in Silicon. a, Optical microscope image of trenches. b, Atomic
Force Microscopy of a test trench etched in Si with DRIE. c, AFM of the Si surface inside the
trench. The average roughness is Ra = 1.5 nm. d, An example of a trench etch when the resist
descum was not enough. After the etch, the residual photoresist in the trenches results in big
hillocks of Si.

4.2.4 Bottom aluminum layer deposition

the bottom layer inside trenches contain the spiral inductor and bottom electrode of the

capacitor. Although the spiral inductor can also be located on the top layer, we prefer to

keep it in the trench to cover it by sacrificial layer and reduce contamination in the next steps

specifically chip dicing. Since the metal-substrate interface has a major effect on the total loss

of the superconducting circuit, we clean the wafer after trench etching with Piranha and dip it

into HF (1% diluted) for a few minutes to remove the native silicon oxide. Then we abruptly

rinse and dry the wafer and immediately transfer it to the deposition tool (less than 3 minutes)

and pump down the chamber to avoid re-grow of the native oxide.

Deposition of the bottom aluminum layer can be done by either sputtering or electron beam

evaporation. However, evaporation is preferred because of better thickness uniformity and
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thickness control compared to sputtering. We typically choose 100 nm thickness for the

bottom layer.

4.2.5 Bottom layer patterning and etching

25 μm120 μm 120 μm

500 μm 100 μm 25 μm

a

d e f

b c

Figure 4.7: Bottom Aluminum layer patterning. a, Micrograph of a successfully patterned
photoresist inside the trench to etch Al. b, c, Bottom layer circuits after a successful Al etch. d,
Patterned photoresist after development when the thickness of the resist was not enough. The
areas close to edges are under exposed. e, Etching result when the photo resist was not thick
to compensate the trench topography and gets flattened in spin coating. f, When the metal
wires pattern are too close to the trench edges, the trench’s edge prevents a proper exposure in
corners.

After deposition of the aluminum layer, we do a similar lithography as explained earlier

(Sec. 4.2.2) to transfer the bottom circuit pattern on the photoresist. The difference is that here

most of the aluminum layer will be etched and only the circuit parts will remain, which means

the circuit pattern should be covered by resist. For this purpose the circuit pattern should be

inverted before exposure of the positive resist. The inversion is done in the exposure tool job

setup or by manually defining an inverted layer in GDS file. Another important note in this step

is the topography of the surface. We require to perfectly expose both levels on the substrate

as well as aluminum inside the trench which is typically ∼ 300 nm lower the surface level.

Therefore, we increase the thickness of the resist to 1.2 µm to reduce the topography thickness

variation after spin coating and increase exposure dose respectively to avoid under-exposure

inside the trenches, specifically on areas close to the trench edges (see Fig. 4.7). Due to the

scattering effect of trench edges, we recommend a minimum spacing of 2 µm between metal

wires and the trench edges. We note that ideally all the metal outside of the design area should
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be removed from the wafer, even close to the wafer edges. This helps uniformity of the CMP

polishing.

We use wet etching to remove aluminum using the following chemistry at 35°C: H3PO4 85%+
CH3COOH 100%+HNO3 70% 83:5.5:5.5. Although the etch rate can be tuned by time, observ-

ing the wafer will tell us when the etching is done by an abrupt change of the surface color.

After the color change, we keep the wafer ∼ 10 seconds more in the etchant and then rinse

it. We note that in principle plasma etching of aluminum using chlorine chemistry will also

work here, but may result in over etching of the silicon substrate since silicon is not resilient to

this etchant. This may destroy the edge sharpness of the trenches and affect the mechanical

properties of the drumhead resonator.

4.2.6 Sacrificial layer deposition

1 μm

1 μm 400 nm

400 nm

a b

dc

Figure 4.8: SiO2 sacrificial layer deposition. a, b, Cross section SEM of low temperature oxide
low pressure chemical vapor deposition (LTO LPCVD) of SiO2 sacrificial layer covering the
trenches. The step coverage and gap filling is perfect, the porosity is low, and the oxide layer
is dense. c, d, Cross section SEM of plasma enhanced chemical vapor deposition (PECVD)
of oxide at 200 Celsius. The oxide layer is porous and does not show a good step coverage,
forming void areas at the corners of the trench.

Generally there are several methods to deposit/grow SiO2 such as low pressure chemical vapor

deposition (LPCVD), plasma-enhanced chemical vapor deposition (PECVD), low temperature

oxide LPCVD (LTO), and sputtering which results in different levels of film quality, porosity,

step coverage and adhesion to substrate. The SiO2 sacrificial layer for our process requires
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a few conditions to satisfy: it should be grown at low temperatures (below the melting point

of aluminum at 660°C) to minimize aluminum damage, it should have a good step coverage,

should not be porous to result in a flat surface after planarization, and should have high

enough adhesion to the substrate to avoid delamination or dishing when a big mechanical

shear stress is applied to the surface in CMP polishing.

The standard LPCVD normally gives the highest film quality but is operated at temperatures

above 1000°C. Sputtering can be done at room temperature but yields a high porosity and soft

SiO2. PECVD and LTO both can be operated at lower temperatures, 100-250°C and 300-450°C,

respectively. We first tried PECVD because of the lower temperature, however, we realized the

film quality was not high enough. The softness of the film was causing delamination in CMP,

and the porosity was not low enough compared with the roughness of the aluminum top layer

resulting in lower quality suspended aluminum film. Then we switched to LTO and found a

perfect film quality, a dense oxide, and high adhesion. This can also be observed in CMP, when

the etch/polish rate of LTO-grown oxide is measured ∼ 30% lower than PECVD oxide. The LTO

process is very slow (a few hours of deposition) and gives a very uniform film, often less than

0.5% non-uniformity for 3 µm film around the wafer. We do not observe a tangible increase of

the microwave loss in superconducting circuits exposed to the LTO process, as shown by the

intrinsic loss (κ0 ∼ 25 kHz) of our circuits. However, occasionally and irregularly, we observe

small and sparse holes (less than 1 µm diameter) on the bottom aluminum film after LTO. This

may be due to contamination in the shared LTO chamber. Nevertheless, we did not observe

any impact on the circuits due to this effect. A comparison SEM cross sections of LTO and

LPCVD oxides are shown in Fig. 4.8.

The thickness of the grown sacrificial layer should be 4-7 times more than the maximum

topography of the wafer, i.e. the trench depth. For example for a 300 nm trench we deposit

2 µm oxide layer. This guarantees enough room to run CMP which simultaneously etches and

plagiarizes the surface.

4.2.7 Chemical-mechanical polishing

CMP is the key step in our process to remove the topography of the trench and bottom

layer from the sacrificial layer. The CMP technology is widely used in micro-electronics

and integrated circuit industry to planarize copper interconnects and oxide layer (Luo and

Dornfeld, 2001). Planarization is a hybrid process of chemical etching and abrasive and

corrosive mechanical polishing using liquid slurry nano-particles. As shown in Fig. 4.9, the

tool consists of a big rotating polishing pad, a rotating head that holds the wafer, a slurry

nozzle, and a conditioning head. The wafer will be fixed upside-down to the head. Then the

head will bring the wafer close to the polishing pad and press it on the pad. Both pad and

head rotate while the head also laterally moves around the pad. The slurry nozzle pours a little

slurry on the pad to facilitate polishing. The conditioning head is separately used to clean

and polish the big rotating pad itself after each planarization run. Although the tool often
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Figure 4.9: Chemical mechanical polishing tool. a, Top view schematics of CMP tool. A
rotating head holding the wafer is moving back and forth to polish the wafer on a big rotating
pad with rough surface. The pad is moisturized with a liquid slurry containing abrasive nano-
particles. b, The side view schematics showing the head pressure and the back pressure used
to compensate the wafer’s bow. c, A photo of the CMP tool used in EPFL CMI cleanroom. d,
Photo of the polishing head and slurry nozzle. e, Photo of the conditioning head used to clean
and prepare the polishing pad after each run.

has many knobs to tune different parameters, the most important ones to manipulate for a

successful CMP planarization are the pad rotation speed, the head rotation speed, the head

pressure on the pad, the back-pressure (for holding the wafer and tune its bow), the slurry

rate, and the polishing time. Normally the tool does the polishing in three steps. The first step

is surface preparation. The second is the longest step for polishing and the last for cleaning

by replacing the slurry with water. After each run, conditioning is required to clean the pad.

As mentioned, CMP planarization simultaneously etches the oxide layer and smooths the

edges and reduces the topography. The etching rate varies based on the oxide type, pressure,

slurry rate, etc. in the range of 100-300 nm/minute, but nonlinear due to the pad softening

and heating up (this means that running the CMP two times with a conditioning in between

gives a different etch rate of running it once with double of the time). The polishing rate is

also depend on parameters and very nonlinear, often higher when topography is deep and

lower when it gets shallower (see fig. 4.10). The process is often optimized for 2-3 minutes

of polishing time and then will be repeated several times with a conditioning between each

cycle. We normally need to remove a thickness of 2-4 times higher than the maximum wafer

topography to planarize it, this is the reason that we deposit a thick sacrificial layer in LTO.

There is always a trade-off between uniformity and residual topography when running CMP.

Polishing the wafer for longer times and number of cycles will reduce the topography –with a

nonlinear trend often saturates by dishing effect– but increases the thickness non-uniformity.
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Figure 4.10: Topography planarization in CMP. CMP enables us to reduce the surface topogra-
phy from ∼ 500 nm (the trench depth) to below 10 nm. The figure shows the effect of successive
CMP runs on the topography measured by a mechanical profilometer. The final global curve
in the topography shows the wafer bow. The inset shows magnified final topography.

Therefore it is crucial to optimize the process parameters to get as high as possible uniformity

in each cycle, while keeping sufficient planarization. This needs several iterative tests on

dummy wafers. The effect of each parameter on the etch rate and polishing is explained

in the following. Note that all numbers provided are tuned for the tool we use (ALPSITEC®

MECAPOL E 460) and may vary for other machines.

• Pad and head rotation speeds: higher speed increases both etch rate and polishing rate.

normally set around 80 rpm in our case.

• Slurry rate: higher rate increases the chemical etching faster than mechanical polishing

rate. Normally set to a low rate to just wet the pad. However, very low rate significantly

increases the non-uniformity of the polishing due to the high friction.

• Head pressure: Increases the polishing rate faster than the etch rate. normally set

around 0.5 Bars. Using very high pressures deforms the wafer and increases etching

non-uniformity.

• Back-pressure: The wafer has a slightly bowed structure causing higher pressure on

the edges than it would be on the center, which results in non-uniform polishing. In

order to compensate for the wafer bow, back-pressure is applied to the wafer’s backside

which will equalize the center to edge etch rate difference. This is a crucial parameter to

manipulate to reduce the non-uniformity.
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Figure 4.11: CMP uniformity. Photos show different wafers after CMP planarization. a, b,
Showing successful CMP planarization with low non-uniformity around the center of 10 cm
wafers. The non-uniformity can be quantitatively measured using optical reflectometer us-
ing the big square trenches on every chip. In addition, qualitatively the uniformity can be
inspected by color change in fringes forming on the wafer due to the thickness variation of the
remaining oxide film. c, CMP result when the back-pressure was not properly tuned to com-
pensate the etch rate variation. d, It is recommended to remove the excess metal throughout
the wafer to increase uniformity. In this wafer, although the uniformity is acceptable at the
center, the excess metal imposes thickness variations on the edge chips. the photo is taken
after IBE etch-back.

Delamination in CMP happens when sacrificial layer adhesion is not enough, or the thickness

of the layer outside of the trench gets very thin. In this case the mechanical shear stress can

peel off the sacrificial layer from the trench and creates voids on the corners of the trench

(see Fig. 4.12 b-d). For this reason, we always make sure to stop the polishing ∼ 500 nm above

the substrate level. The remaining oxide layer will be etched back in the next step with IBE.
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Dishing effect is generally the final limit for planarization, when the trench’s topography gets

very smooth and wide over a few hundred microns with a residual depth of ∼ 5 nm. In order

to minimize dishing and delamination effect, and increase the polishing uniformity, we fill

all the empty areas of the wafer and between circuits with dummy patterns. These patterns

are squares with the size of 60µm with double of this size spacing as shown in Fig. 4.27. This

substantially influences the polishing quality. Another helpful tip for a successful CMP is to

1 μm
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Figure 4.12: CMP planarization. a, A cross section SEM showing successful CMP planarization
of oxide sacrificial layer covering a trench. The remaining oxide will be removed by IBE to
prevent delamination. b-d, SEM of released final devices where the CMP etched oxide and
reached too close to the substrate surface resulting in delamination of the sacrificial layer,
creating voids at the edges of the trench and creaks on sidewalls of the trenches. e, f, SEM
showing the slurry nano-particles after CMP (with PECVD oxide sacrificial layer for these
samples). The slurry particles should be cleaned before IBE step using one of the cleaning
techniques mentioned in the text.

use a flat wafer, i.e., low bow and low TTV. We usually expect higher quality chips from the half

middle of the wafer (±2.5 cm from a 10 cm wafer) and optimize uniformity and polishing for

this area. However, it is essential to extend the topography pattern to the edges of the wafer to

help a uniform polishing.

The final measurement of the residual topography can be done by mechanical profilometer

(KLA® Tencor D600). However, the residual thickness of the sacrificial layer (inside or outside

of the trench) can not be measured without an optical spectroscopic reflectometer (Nanospec®

AFT-6100 or FilMetrics® F54-XY). to measure the thickness inside the trenches, we always
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locate a big dummy trench (∼ 0.5×0.5 mm2, bigger than the waist diameter of the optical

beam) on every chip to be able to individually measure chips and extract a wafer map of the

residual thickness.

After the CMP polishing, the remaining slurry particles on the wafer must be removed (see

Fig. 4.12 e and f). These particles are a few hundred nano-meter big spheres that can be

easily seen under SEM, resulting in surface contamination and, more importantly, topography

disorder of the top aluminum plate. The ideal method to remove the slurry is to use a post-

CMP cleaning tool (GnP® Cleaner 428) immediately after the CMP before the wafer dries

out. This tool uses dedicated brushes and sonication to remove these particles completely.

However, if such this tool is not available, dipping the wafer in diluted liquid HF (1%) for

∼ 1 minute will remove the particles while slowly etching the SiO2 layer uniformly.

Here we provide a short technical note on the CMP operation procedure we use to polish the

wafers:

• We first set up the tool, prepare the slurry (often 30N50, a basic slurry made of col-

loidal SiO2 particles for dielectric polishing), and run a 1-minute pad conditioning. We

sometimes dilute the slurry with water (1:1) to decrease the etch rate and increase the

mechanical polishing effect.

• We start with plain dummy silicon wafers covered with the same oxide layer grown

together with the main wafers in LTO. These plain dummy wafers have no pattern

and are just used to optimize the etching rate and uniformity of the CMP. We measure

their uniformity and average oxide thickness optically and run a single CMP cycle with

optimized parameters from our previous experiences. After the run, we simply rinse

and dry the plain dummy wafer and measure it again optically. Whit this, we can extract

the average etch rate as well as the non-uniformity of the etch. Depending on these

two values, we modify the back pressure (to increase uniformity), head pressure, and

slurry rate (to change the etch rate). We then use another clean and plain dummy wafer

with the modified parameters and continue this iteration until we reach the minimum

possible non-uniformity (usually around 1% non-uniformity after a single CMP run).

• After the uniformity optimization, we use another set of patterned dummy wafers (with

exactly the same trench depth and pattern of the trenches we have on the design) to

check the planarization rate. We measure the initial topography with a mechanical

profilometer. After running an optimized CMP cycle, we measure the topography again

to see how much the trench depth is reduced on the sacrificial layer. We continue

running CMP cycles to ensure the topography can be reduced to less than 10 nm in

a reasonable cycle number (not etching more than 5 times the trench thickness and

not reaching closer than 500 nm to the substrate surface to avoid delamination). If the

process does not work properly or results in a low planarization rate, we go back to

the first step and increase the head pressure or modify the slurry rate and repeat the

procedure.
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• When all the suitable parameters are achieved, we switch to the main wafers. We run

the CMP for several cycles on the wafer, including a 30 s pad conditioning between each

cycle until we reach to the residual topography tolerance. After that we immediately run

the post-CMP cleaning.

• Finally, we measure the residual thickness of SiO2 on the big square trenches we dis-

cussed earlier and extract a chip-wise map of thickness over the wafer area.

Table 4.1 shows optimized parameters for a CMP run for our tool.

Table 4.1: Optimized parameters for one cycle of CMP.

Step Head speed (rpm) Pad speed (rpm) Pressure (Bar) Time (s)

Preparation 40 60 0.2 15
Polishing 78 85 0.4 120
Cleaning 100 100 0.25 30

Slurry 7A5 Gal (pure) or 30N50 (1:1 diluted), both with the flow of 1/10.
Back pressure 0.25 Bar

4.2.8 Ion beam etching

After the CMP, we need to etch back the remaining SiO2 to reach the Si surface. IBE does this,

a physical etching process that uses argon ions also called argon milling. The advantages of

using IBE are the extremely uniform etching, slow etch rate, which increases the controllability

of the process, and, most importantly, offering almost 1:1 etch selectivity for Si:SiO2. The latter

is crucial to avoid increasing topography when reaching the wafer’s surface. We normally

over-etch the surface by ∼ 20 nm to make sure all SiO2 is removed, and we will have good

contact between the top aluminum layer and the Si surface during the HF release process.

For this purpose, we have to use a 1:1 selectivity etching process to ensure the sacrificial

layer inside the trench will not be etched faster than the Si substrate so that they will be

removed together and the flat topography will be maintained. In IBE the wafer rotates during

etching (10 rpm in our case) to increase uniformity and it can be exposed to an ion beam

with an adjustable angle. This not only modifies the etching rate, but also helps to reduce

the re-deposition effect of IBE - when the etched particles get accumulated on the edges of

the pattern and create unwanted bumps. In addition doing angled IBE is also a polishing

method, since the sharp topographies will be bombarded by ions from different directions

and get smoother. The IBE tool we use (Veeco® Nexus IBE350) offers different etching powers

corresponding to 35 nm/minute (Low recipe) and 125 nm/minute (High recipe) etching rates

for 45 degrees wafer angle. The roughness of the surface will not significantly increase after

IBE, and is measured Ra ≃ 0.75 nm for Si substrate.

We typically conduct a course IBE with the High recipe until we reach to close to the surface,
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Figure 4.13: IBE etch-back. a, SEM images showing trenches after planarization and IBE
etch-back. The oxide-silicon border is dense and smooth, making a perfect condition for
top-layer deposition. b, Extracting the etching rate of IBE (Low power recipe). The linear and
slow IBE etch rate as well as its 1:1 selectivity for oxide and Si enables us to accurately control
the process, land on the Si substrate and over etch it to fine-tune the final gap size.

then we optically measure again the thickness of the sacrificial layer on the trenches (using the

big pads discussed earlier) and run a fine IBE with Low recipe and set timing in a way that the

Si surface will be over etched with the same amount of tolerance we had added to the trench

depth when etching Si to reach to the target gap size.

4.2.9 SiO2 opening for galvanic connection

Before the deposition of the top aluminum layer, we need to create an opening window in the

sacrificial layer to connect the top and bottom circuits galvanically. The galvanic connection

can be evaded by making two parallel plate capacitors in series (as shown in Fig. 4.14). In

this case, the optomechanical coupling rate will be diluted proportionally to the capacitors’

participation ratio. However, we decided not to dilute the coupling and create a direct galvanic

contact between the top and bottom layers.

We define square pads of ∼ 20µm size at end of bottom and top wires coming from spiral

inductor and capacitor respectively to form the galvanic connection. After IBE we coat the

wafer with the normal photoresist and lithographically define an smaller rectangle on top

of the SiO2 layer covering the bottom connection pad. This pattern will be etched to open a

window in SiO2 and let direct galvanic connection during the top Al layer deposition.

Since the thickness of the top aluminum layer is comparable with the height difference

between the wafer surface and the bottom layer surface inside the trench, it is essential to
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Figure 4.14: Circuits without galvanic connection. a, Circuit diagram of an electro-
mechanical system with two mechanical oscillators which does not require galvanic con-
nection of top to bottom layers. Since two capacitors are in series, the optomechanical
coupling for each of them will be reduced proportional with their participation ratio. b, SEM of
a double-capacitor circuit without galvanic connection. c, d, Micrograph and SEM of a circuit
with spiral inductor and two capacitors inside and outside of the spiral connected through the
spiral airbridges.
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Figure 4.15: Problem of galvanic connection with sharp edges. a, The galvanic connection
on SiO2 openings with sharp edges. Due to the local thickness decrease of Al layer on the
sharp edges, these circuits show frequency shift when the intracavity photon number -in other
words, circulating current- is high. b, In addition, the sharp edges of the opening may result in
accumulation of Al during the top layer deposition.

smoothly bring down the top wire to avoid sharp thickness reduction. We observed strong

high-power nonlinearities in the microwave response of superconducting circuits when we
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Figure 4.16: Reflow process for smooth SiO2 opening. a-c, The schematic fabrication process
showing the photoresist after patterning and development (a), Heating up the resist for reflow
(b), and etching the SiO2 with a low selectivity DRIE process (c). d-f, Microscope images of
the opening after the corresponding step shown above (a-c). The optical fringes in e indicates
the smooth sidewall of the resist. g-j, Microscope top view images and SEM cross sections
of normal resist and re-flowed resist respectively. k, Mechanical profilometry on normal
and re-flowed resist. l, m, SEM of a galvanic connection after the release showing smooth
transition of the top layer to the lower level.
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did not make a smooth top-bottom transition. This may be due to the thin aluminum contact

(< 50 nm) on the edges of the galvanic connection, which may not tolerate the high local

current densities at high powers (see Fig.4.15 for examples of galvanic connection without

smoothing).

To solve this problem, we reflow the photoresist after development by heating up the wafer

to 180 Celsius for 30 seconds using a standard hot plate. This results in smooth and slopped

photoresist sidewalls. After the reflow, we do the standard descum to remove resist residues.

Afterward, we use DRIE plasma etching (SPTS® APS) with CHF3 chemistry which offers 1:1

selectivity for SiO2:PR and transfer the photoresist pattern into the oxide. Then the resist will

be removed by the standard procedure discussed earlier. Fig. 4.16 shows the steps of the reflow

and opening process.

4.2.10 Top aluminum layer deposition

Now the wafer is ready for the top Al layer deposition. The top layer deposition can be done by

sputtering or evaporation, which results in different film quality, roughness, and mechanical

stress affecting the mechanical properties of the drumhead resonator.

The deposition-induced stress in the Al film is typically compressive in standard deposition

methods. This results in the buckling of the drumhead in a dome shape after the release

at room temperature. We realized that such a buckling helps a successful release since the

gap size will increase more than ∼ 1µm, and HF vapor can penetrate easier to remove the

remaining sacrificial layer. On the other side, tensile stress at room temperature will result in

higher stress at cryogenic temperatures and prevents significant deformation of the film after

the release, which may increase the mechanical quality factor of the resonator. We explored

several methods to induce tensile stress in deposition, which are discussed in Sec. A.1.

Now we focus on the evaporation method, which gives us the highest film quality. We use two

different evaporators (Eva: Alliance-Concept® EVA 760, and Plassys: Plassys® MEB550SL3) for

different purposes. Eva is a standard electron beam evaporator with 450 mm working distance.

a 200 nm Al film grown with 5 nm/s deposition rate in Eva results in ∼ 50 MPa compressive

stress. Plassys (as shown in Fig. 4.17b) is an ultra-high vacuum 3-chamber system dedicated for

shadow evaporation for Josephson junction fabrication. This system has a separate load-lock

chamber equipped with Argon ion milling and can transfer the wafer between the load-lock

and the main deposition chamber under a high vacuum. This enables the system to clean or

etch the wafer with the embedded IBE immediately before Al deposition without breaking

the vacuum and growing the unwanted native oxide on Si or Al. The deposition chamber is

relatively smaller than Eva’s. An optimized evaporation on 200 nm Al in Plassys gives negligibly

minor tensile stress in the film.

We typically deposit ∼ 200 nm thick Al for the top layer. Although we used Eva for the multi-

mode optomechanics project and achieved perfect results, Plassys offers an essential option
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Figure 4.17: Removing native aluminum oxide in Plassys. a, The schematic fabrication
process shows the native Al2O3 layer in galvanic connection can be removed using Plassys®

evaporator using argon ion milling. The wafer is then transferred to the evaporation chamber
under ultra-high vacuum for the top Al layer deposition. b, Shows the Plassys machine we use
in EPFL-CMi. The load-lock chamber is equipped with an ion beam source. The transfer arm
moves the wafer between different chambers isolated with gates. The oxidation chamber is
dedicated for Josephson junction fabrication and not used in this work.

that is crucial for optomechanical systems operated in the quantum regime; The native

oxide layer on the aluminum pad in the SiO2 opening can be removed by the embedded

IBE in Plassys, resulting in a perfect galvanic connection between two layers of the circuit.

We discovered that removing such a thin 2-4 nm Al2O3 layer between the top and bottom

superconducting Al layers in the galvanic connection can substantially reduce the microwave

cavity heating when pumping the circuit with high power, therefore allowing us to reach lower

mechanical occupations in sideband cooling. For this reason, we prefer to use Plassys as we

did in the ultra-coherent circuit optomechanics project. We etch 5-10 nm of Si with the Ar

milling at 45 degrees incident angle. This is enough to remove the native oxide layer on Al in

the opening and Si wafer, which also ensures there will be no remaining native SiO2 under

the clamps of the Al resonator or the top wire. The etching time can be precisely calibrated

and timed using a dummy wafer with SiO2 layer. The process is shown in Fig. 4.17a. In Plassys,

before taking out the wafer after deposition, we shortly expose it to clean Oxygen flow in the

load lock to make sure the native Al2O3 layer is grown in a clean environment on the drumhead
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resonator, and then open the load lock.

After the deposition, we use the standard lithography technique to pattern the top layer and

etch it using the same wet process which has mentioned earlier. An interesting tip is that

because of the CMP planarization, all the topography information of the wafer is removed,

and after covering the wafer with 200 nm reflective aluminum, it will be challenging to find

markers for lithography, which are buried below the sacrificial layer and Al. To avoid this

problem, we etch big openings on the markers (defined in the trench layer as the first pattern)

during SiO2 opening step to make them visible in the next lithography step.

4.2.11 Dicing

Now the wafer is ready to be diced into chips for the last step, the HF release. The size of

chips in our design is 9.5 mm×6.5 mm. To dice the wafer, we first spin coat it with a thick

resist (15µm AZ® 10XT-60) to protect the circuits from Si debris and other contaminations

during dicing. We use 100 µm Nickel blade with 35000 rpm rotation speed and 5 mm/s cutting

speed (Disco® DAD321). On the wafer design, we defined dashed lines in the trench layer and

bottom Al layer to as chip border boxes to be used in dicing alignment. After dicing, the chips

will be gently detached from the UV tape used for dicing and will be sorted in a teflon chip

holder for UFT resist stripping. We keep chips for more than 20 minutes in a UFT clean bath,

then rinse and dry them manually (with a pressurized air nozzle). Afterward, we use 600 Watt

and 400 sccm oxygen plasma (Tepla® GiGAbatch) for a few minutes to clean any remaining

resist residue from the chips.

We fabricated a dedicated silicon wafer chip holder by deep etching (Bosch DRIE) a Si wafer

pattern 200 µm rectangular pads corresponding to our chip size. We locate chips inside

these pads during oxygen plasma and HF release to minimize the risk of chip flipping during

chamber pump down.

4.2.12 Release

The last step of the nano-fabrication process is releasing the vacuum gap capacitors by remov-

ing all SiO2 sacrificial layer from trenches. This is done by vapor phase Hydrofluoric acid SiO2

etching. The vapor HF process uses reduced pressure, gas phase, anhydrous HF and ethanol

(C2H5OH) to etch sacrificial SiO2 for MEMS release in a non-polluting, vacuum-based system.

This produces a clean, residue-free release etch that does not require liquids or supercritical

drying. Reaction with the sacrificial SiO2 on the wafer surface produces silicon tetrafluoride

(SiF4) gas and water vapor.

SiO2 +4HF−2 +4C2H5OH+2 −→ SiF4 +2H2O+4C2H5OH (4.1)

Although the liquid HF attacks aluminum, the vapor HF does not deteriorate or degrade Al

67



Chapter 4 Fabrication

films. In addition, the HF vapor offers isotropic etching, as well as the laminar gas flow. The

etching process is liquid-free, which is crucial to release structures with high aspect ratios, in

our case ∼ 100µm big drums suspended by ∼ 200 nm gap above another metallic layer. Any

water formation will result in the collapse and sticking of two capacitor plates. Combining all

mentioned advantages makes HF vapor an ideal process to release vacuum gaps. Examples of

successfully released devices are shown in Figs. 4.18 and 4.19.
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Figure 4.18: Released devices. a, b, Shows SEM images of released drumhead capacitors for
two cases of having zero/tensile (Plassys) and compressive stress (Eva) in the top aluminum
layer respectively. c, d, Shows microscope images corresponding to each top layer deposition
method after the release. Drums with compressive stress clearly buckle up and form a dome
shape visible under the microscope. e, SEM of a capacitor with clamp ratio of 1 -Drum is
totally clamped on the edges of the trench similar to a. The compressive stress buckles it
up, but in a non-symmetric and wavy shape. f, g, Optical profilometry of drums after the
release for two two different top layer stresses respectively. In case of compressive stress, the
drum may buckles up to ∼ 2µm. However the gap size at cryogenic temperatures goes to the
designed value due to the temperature induced tensile stress and consequently flatness of the
drum.
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Figure 4.19: Elements of the final device. a, Focused ion beam cross-section of a capacitor
before removing the SiO2 sacrificial layer (Pt is used as the focused ion beam protective layer).
The flatness of the top layer is visible in the image indicating a successful CMP planarization.
b, SEM image of the perforated released drumhead. The holes facilitate the release process. c,
Magnified SEM of one release hole. The bottom Al layer is visible from the hole. The small
particles seen on the aluminum surface are aluminum hillocks, a well-know accumulation
of aluminum in evaporation technique. The size and distribution of hillocks depends on the
evaporation rate, and the pressure of the chamber. d, Shows the bottom wire going under
a drum. e, Shows a magnified SEM of a drumhead clamp. f, g, Show the spiral inductor air
bridges and the galvanic connection.
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The tool we use (SPTS® uEtch) operates etching in cycles, where each cycle contains stabiliz-

ing, etching, and purging of the chamber. This helps the release and reduces the risk of liquid

water formation. We use a recipe with 125 Torr pressure and ∼ 100 nm/minute etch rate for

900 seconds etching time in every cycle. Since the vapor HF needs to penetrate horizontally

between the top Al layer and the trench bottom surface, the total number of cycles needed

should be calculated based on the maximum lateral distance between two penetration win-

dows for the gas etchant, considering the pattern of Al covering the trenches. We multiply this

number by a factor of four to prevent any residual oxide and ensure the whole structure is

released. It is recommended to slowly heat up the chips (sitting on the dedicated wafer we

discussed earlier) to 180 Celsius for two minutes right before loading them onto the tool to

reduce the risk of water formation.

To facilitate the release, specifically for big drums, we perforate drums by defining small holes

with 1.8 µm diameter and distance of ∼ 10µm as shown in Fig. 4.21. These holes let the vapor

HP uniformly penetrate underneath, resulting in a more robust release. We could successfully

release vacuum gaps with the gap size down to 75 nm, however the success rate of the release

was not high for such a low gap size. For gaps above 150 nm, we had almost 100% yield of

release. Of course, the success rate depends on the trench size, the thickness of the top plate,

and the room temperature stress.

Smaller drums have a lower risk of collapse and can tolerate smaller gap sizes. We usually use

150-200 nm thick Al top layer. Attempts to release thin top layers (50 nm) were not successful

(see Fig. 4.22). Also, the compressive stress in the film results in a dome shape buckling and

facilitates the release, while having zero or tensile stress increases the risk of collapse.

Figure 4.20: Collapsed drums. Too small gap size, thin top layer, and the big size of the
drumhead can cause collapse of the structure after the release. Nevertheless, the collapse
is less stochastic, meaning that defining the mentioned parameters in the proper range will
result in high yield fabrication i.e. 100% successful release.
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Figure 4.21: Effect of the release holes. a-d, Shows similar drums on a same chip after release.
a and b shows wrinkled drums without release holes to assist HF vapor penetration under
the structure. c and d shows the effect release holes which result in releasing drumheads in
the fundamental symmetric buckling mode. e, Shows a drumhead without release holes after
a long exposure to HF vapor. The central part which covers the bottom electrode is still not
released because of smaller spacing between layers. HF vapor needs longer time to laterally
penetrate under the top layer resulting in an incomplete release forming a wavy buckled shape
on the released parts.

250 μm 100 μm
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Figure 4.22: Effect of top layer thickness on the release. Here we compare two identical
designs after release with a same fabrication process but different top aluminum layer thick-
nesses of 50 nm (left image) and 150 nm (right image) with 200 nm gap size. The thin aluminum
wrinkles instead of buckling up.
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Figure 4.23: Effect of clamps, size, and shape on the release. a, Microscope image of drums
with same parameters but sweeping the clamp ratio (The ration of the total trench perimeter
over the clamps perimeter) from CR=1 (the left drum) to CR=4 (the right drum). Fully clamped
drums (CR=1) in the presence of the compressive stress buckles up in a deformed shape, while
the rest buckle in the fundamental mode. b-d, SEM and optical profilometry of released drums
with high CR number. e-g, Show the maximum radius of successfully released drums with the
gap size of 200 nm (e) and the collapse/deformation of bigger drums (f, g). h-j, Shows other
possible geometry as rectangular beams released with and without using release holes.
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4.2.13 Packaging
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Figure 4.24: Chip box. a, Photo of the chip box made out of oxygen free high conductivity
copper. The box has two SMA coaxial outputs soldered to short micro-strip PCBs glued to the
box. b, A chip will be glued by conductive silver paint inside the box. c, Photo of elements of a
sample box before assembling. the lid will be closed to ensure the superconducting sample is
light-tight during the experiment.

After the release, the chips are ready for packaging. We need to handle chips carefully to

avoid the risk of collapse due to mechanical shocks or electrostatic discharge. The electro-

mechanical devices can be inspected using an optical microscope -if we have compressive

stress in Al top layer, the dome shape of buckled drums is clearly visible under a 10X micro-

scope aperture. More systematically, we use an optical profilometer (Sensofar® S-Neox or

Bruker® Contour X) to measure the surface topography of the drum (especially when it does

not buckle due to stress) and make sure it is successfully released as shown in Fig. 4.18 f and g.

We use a machined copper box as the chip holder made out of oxygen-free high-conductivity

copper to ensure good thermal contact at mK temperatures developed by L.D. Toth (Tóth,

2018) and N.R. Bernier (Bernier, 2019). The sample holder has two SMA connectors soldered

to a micro-strip line defined on a short piece of printed circuit board which is glued inside

the box. The PCBs will be electrically connected to the micro-strip feed line on the chip by

wire bonds. The PCBs are permanently glued to the copper box using a conductive epoxy

(Epo-Tek® H20E). The chip holder can be cleaned using a fiber brush, followed by Isopropanol

cleaning. The copper box gets oxidized in the span of time, and can be cleaned by sonication

in diluted acetic acid.

We use silver conductive paint (RS® Pro) to mount the chip inside the box to make a good

thermal connection between the chip and the box and maintain the electrical boundary
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condition. Then we use wire bonder (F&S® Bondtec 56i or TPT® HB10) to connect the feed

line on the chip to the PCB using aluminum 25 µm diameter wires. We typically use more

than five bonds on each side to ensure the 50-ohm impedance matching connection. Using a

smaller number of wires showed impedance mismatch resulting in standing waves for micro-

strip feed lines. After wire bonding, the electric connection will be tested by an Ohm-meter

(typically shows ∼4 Ohms between two cores of the SMA connector using micro-strip feed

line), and the lid of the box will be closed and tightened by a brass screw, and the device is

ready for low-temperature measurements.

Exposing samples to air during the packaging will not degrade them (except for dust con-

tamination on the drums, which can be removed by gently blowing them with pressurized

air). However, we recommend avoiding abrupt temperature and humidity changes during the

transfer and keeping chips in Nitrogen boxes for long-time storage.

400 μm

40 μm

a b

Figure 4.25: Wire bonds. a, Microscope image of a chip with micro-strip waveguide connected
to the copper center of PCB micro-strip waveguide through 35µm aluminum wire bonds. We
normally use more than 5 bonds to ensure the impedance matching between the sample
and PCB. b, SEM of 35µm aluminum wire bonds connected to the 100 nm aluminum bottom
plate. If the parameters of bonding such as ultra-sonic power, press time, and force are not
optimized, the bond will be detached and leaves a 100×100µm2 footprint on the chip which
cannot be used for a second bonding anymore.
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Figure 4.26: Detail fabrication process flow. a, A high-resistivity silicon wafer is cleaned
and used as substrate. b, Etching a trench in a silicon wafer (300 nm typical). c, Aluminum
deposition of the bottom plate (100 nm typical). d, Patterning of the bottom Al. e, SiO2

sacrificial layer deposition (2.5 µm typical). f, CMP planarization. g, Etching back and landing
on the substrate using IBE. h,Aluminum deposition of the top plate (200 nm typical). This step
consists of opening the oxide for galvanic connections, removing native AlOx, and deposition,
shown in h.1-5. i, Patterning the top Al layer. j, Dicing the wafer to chips. k, Releasing the
structure using HF vapor. Depending on the compressive stress of Al top layer, the top plate
may buckle up. l, At cryogenic temperatures, the drumhead shrinks and flattens. The optical
micrographs show examples of selected steps of the process flow.
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Figure 4.27: Example of wafer and chip layout. a, The wafer layout containing chips, align-
ment markers, and dummy trench patterns filling all the empty area to increase uniformity of
the CMP planarization. b, the galvanic connection and air bridges of the spiral. c, Layout of a
LC electro-mechanical resonator. d, The alignment markers for direct laser writer. e, The full
layout of a chip containing several LC resonators (frequency multiplied) inductively coupled
to a micro-strip waveguide. The top right rectangular big trench used for optical reflectometer
measurement of the remaining SiO2 after CMP. f, Shows the dummy patterns for CMP.
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Perfect devices can never be exploited without a perfect arrangement of the experimental

apparatus in the laboratory. This chapter discusses the experimental setups, instruments, and

techniques for controlling and measuring superconducting circuit optomechanical devices in

the quantum regime. We first introduce dilution refrigerators hosting the devices at cryogenic

temperatures and review considerations on wiring the circuit at both low and room tempera-

tures. We discuss microwave measurement instrumentation used in this work and provide

information on special components and setups built for quantum-limited measurement and

control, such as Josephson traveling wave parametric amplifiers, microwave tone-cancellation

setup, and tunable filter cavities. Finally, we review the data acquisition and instrument

computer control and programming techniques used in the projects.

5.1 Cryogenics

The average photonic or phononic occupation of a harmonic oscillator with the frequency ofω

in thermal equilibrium with a bath at a temperature of T is given by the Bose-Einstein statistic,

n̄ =
(
e

ℏω
kBT −1

)−1
, where kB is the Boltzmann constant. For optical cavities (2π×ω≃ 2001012 Hz),

even at room temperature (T ≃ 300 K), the ratio of thermal fluctuations to the single quanta

of energy is negligible, ensuring that the optical cavity is in its ground state. However, for

microwave cavities used in the circuit optomechanics with a frequency range of a few Giga-

Hertz, this occupation exceeds 1000 quanta, preventing the implementation of any quantum

protocol. Although the superconductivity of materials used in circuit optomechanical devices

is crucial to reduce cavity losses and can be reached at temperatures below 1 K depending on

the material, the above-mentioned thermal occupation enforces operating such systems at

much lower temperatures, around 10 mK, where the microwave cavity is ideally at the ground

state - without considering noise sources from the higher temperatures.
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Figure 5.1: Dilution fridge. a, b, Photo of one of the BlueFors® dilution fridges we use. Flanges
and components are marked on the photo. c, Schematic of the fridge showing approximate
available cooling power at different flanges, i.e. the maximum additional dissipated power
before significantly heating up the flange.

5.1.1 Dilution refrigerator

Fortunately, these ultra-low temperatures are achievable using the well-established and com-

mercialized technology of dilution refrigeration, where the mixing of two isotopes of helium
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(helium-3 and helium-4) as an endothermic process provides continuous cooling power at

temperatures below ∼ 1 K. In practice, the typical base temperatures that could reach in

dilution refrigerators is ∼ 10 mK depending on the total heat load in the fridge, the mass, and

the design of the fridge.

We use two BlueFors® LD-250 dry dilution fridges with similar properties. In dry dilution

fridges, the temperature needs to be kept continuously down to 4 K exploiting a pulse-tube

cryocooler which uses 4He in compression and expansion cycles to extract heat from the

system. Dilution fridges have several flanges corresponding to different temperatures, where

each flange holds several components, such as heat switches, thermometers, heaters, and

dilution process mixture circuits. The dilution fridge has a nested architecture, where each

flange has a shield connected to it, covering the other flanges with lower temperatures to

prevent thermal radiation to reach the lower stages. These internal shields are not vacuum

tight; nevertheless, the whole fridge operates under a high vacuum kept by the exterior room

temperature shield, which is vacuum tight. The vacuum is initially prepared by a scroll pump

followed by a turbo pump to reach ∼ 10−4 mBar. After running the pulse tube to cool down

the fridge, all the vacuum pumps will be turned off, and the pressure of the fridge will reach

and remain ∼ 10−6 mBar due to the fact that the whole body of the fridge acts as a cryo-pump.

Of course, at the lower temperature stages, the actual pressure is much smaller, since any gas

will be condensed. This enables a dry dilution fridge to run continuously for months and even

years without using any vacuum pump and only running the pulse-tube cryo-cooler. The

BlueFors®-LD fridge consists of the following stages. The room-temperature flange contains

all input-output vacuum tight ports for the pulse tube, mixture tubes, electronics wiring

and optical feed-throughs if needed. The 50-K flange as a temperature mediator. The 4-K

flange connected to the pulse-tube’s cold head. The 800-mK flange, also called still flange, is

connected to the 4-K flange with special He-based heat switches. The 100-mK flange, and

finally, the 10-mK flange, which hosts the dilution unit called the mixing chamber where the

heat extraction process is happening. Fig. 5.1 shows the dilution fridge when all the shields

are removed.

A standard cooling process which typically takes one and half days or less, is as follows:

• Scroll pumping: When all the shields are properly closed, and the external shield is tight,

a scroll pump starts to evacuate the chamber until the whole fridge reaches pressures

below 5 mBar.

• Turbo pumping: The turbo pump starts working in series with the scroll pump to

evacuate the chamber down to ∼ 10−4 mBar.

• Pulse-tube cooling: If the pressure drops fast enough with the turbo pump, which is

the sign of a successful leak test, the pulse tube starts working to cool down the fridge.

Meanwhile, when the temperature reaches a certain level, the turbo pump and scroll

pump will be turned off, all valves will be closed, and the pressure keeps going down

to ∼ 10−6 mBar due to the cryo-pumping effect. The heat switches will be turned on,
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increasing the heat conductivity between lower-temperature flanges and the 4-K flange.

The process continues for ∼ 18 hours depending on the total additional mass and the

heat load in the fridge until the 4-K flange reaches close to its nominal temperature

while the lower temperature stages get thermalized slower, reaching ∼ 10 K.

• Pule pre-cooling: In this step, to facilitate thermalization of the low-temperature stages

to the 4-K flange, the He mixture gets injected into the dilution unit, passing through

all the pipes and heat exchangers and gets evacuated again after a few seconds. This

pulsed cycle gets repeated around 100 times until the low-temperature flanges will be

thermalized to ∼ 4 K.

• Condensation: Afterward, the heat switches will be turned off, thermally isolating

flanges. A compressor will start to condensate He mixture reaching pressures up to

1.8 Bar to create liquid phase He in the dilution unit and increase the flow of He to ∼ 1

mmol/s. This process also starts the cooling of the 10-mK flange and consequently,

other flanges to reach close to their nominal temperatures.

• Normal circulation: Finally, when all the mixture has been condensed, the compressor

stops working, and the turbo pump starts, in series with a scroll pump, circulates the

mixture and providing continuous cooling at the base temperature. The total cooling

power depends on the flow of the He mixture and the temperature difference between

the still flange and the mixing chamber. This can be manipulated by a resistive heater

called the still heater installed in the 800-mK flange to slightly heats it up, and increases

the pressure and the flow of the mixture in the circuit.

The temperature of the fridge in a standard cooldown cycle is shown in Fig. 5.2.

Thermometry in dilution fridges is usually done by four-port electrical measurement of resis-

tance. Each flange is equipped with a calibrated resistor which can be measured using a low-

noise resistance bridge instrument (Lake Shore®370 AC Resistance Bridge or BlueFors®built-in

system in the newer models). For the base temperature, ruthenium oxide (RuO) is used as the

resistance material for the sensor due to its sharp temperature-resistance curve below 100 mK.

For the higher stages, germanium sensors can be used.

Although radiation is an important heat transfer channel for higher temperature flanges -

which is controlled by the nested shields-, the dominant heat transfer mechanism at tempera-

tures below 4 K is thermal conduction. To ensure uniform thermalization to the 10-mK flange,

We tightly mount all the microwave components, including the sample, on a homemade

perforated 0.5-cm thick plate made out of high conductivity oxygen-free copper. This plate

is tightly screwed under the 10-mK flange. For microwave components such as directional

couplers, we brush and remove the insulating paint from one side of their box to increase heat

conductivity when mounting them on the copper plate. For components that dissipate power

in the base temperature, such as circulators’ third ports -which are terminated with 50-ohm -

or microwave attenuators, we use copper bundle wires wrapping around them and connected
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Figure 5.2: Cooldown of dilution fridge. a, A standard cooldown cycle of the dilution fridge.
The yellow shade shows the pulse pre-cooling when injections and extraction of the He mixture
facilitate the thermalization of the mixing chamber to the 4-K flange. We observed that the
abrupt increase of the 10-mK flange temperature and its fast oscillations during this step may
cause significant mechanical quality factor degradation in optomechanical devices which are
sensitive to temperature shocks. The Brown shade shows the condensation step. b, Example
of a cooldown without pulse pre-cooling. The mixing chamber temperature is monotonically
decreasing and experiences fewer fluctuations.

to the 10-mK flange. Before a cooldown, we slightly rub off the sample box with a fiber brush

to remove the oxide layer or contaminations and improve its thermal contact.

Adding cables or power dissipative components to the fridge will increase the heat load. it

must be checked that the additional heat load does not exceed the available cooling power

each flange can handle to prevent interruption in the normal circulation conditions. Fig. 5.1c

shows available cooling powers at different flanges for our dilution fridge. It is worth noting

that the 10-mK flange is equipped with a resistive heater which can be used to intentionally

increase the base temperature up to ∼ 500 mK without interrupting the normal circulation.

This is useful when a temperature sweep is needed in specific characterizations.

It is worth noting that we observed the mechanical quality factor of our drumhead resonators

are very sensitive to temperature shocks and thermal cycles, i.e., a fast increase of the fridge’s

temperature even in a few kelvin range may degrade the mechanical quality factor, even

though their mechanical frequencies are not affected. This may be due to the microscopic
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crack formation on the clamping points in an abrupt stress shock, as a possible explanation.

Because of this issue, we omit the pulse-precooling step in the cooldown process of ultra-

coherent samples, which may help maintaining the high quality factors for mechanical devices

under test (Fig.5.2 b). We note that a controlled slow temperature sweep, similar to what is

shown in Sec. 6.3, are reproducible and do not reduce the mechanical quality factors.

5.1.2 Helium battery

As mentioned earlier, the pulse-tube cooling system is crucial to pre-cool the fridge and

provide high cooling power for high-temperature flanges to ensure running the dilution

cooling process in proper conditions. In practice, increasing the temperature of the 4-K flange

to more than ∼ 7 K will heat up the 800-mK flange faster than the available cooling power when

the circulation is running and interrupts the normal condition. In these cases, the mixture

should be collected, the fridge should reach back to 4 K, and the condensation needs to run

again.

In some applications, the weak mechanical vibrations generated by the pulse tube can reach

to the sample and disrupt the mechanical state. Each cycle of the pulse tube generates an

impulse-like shock with a cycle time of ∼ 1 s. Such impulse acoustic shock can travel through

the fridge’s rigid body and reaches the sample. In some cases, depending on the mechanical

frequency of the drumhead resonator, the mounting place and direction, and the total mass of

the fridge’s body, this shock can excite the mechanical motion with a measurable energy scale.

To avoid these shocks in certain experiments, the pulse-tube should be turned off, which

results in a fast increase of the 4-K flange temperature in less than two minutes when the

mixture is circulating.

A helium battery is an additional option provided by BlueFors®to solve this problem, allowing

running the mixture circulation without pulse-tube for a few hours. As shown in Fig.5.3a,

the battery is a container installed on the 4-K flange, which can store liquid 4He and let it

evaporate at an engineered rate to provide cooling power with evaporation cooling.

The battery should be kept under vacuum until the fridge reaches its standard running con-

ditions. Then we turn off the still heater and let 4He gas with a pressure of ∼ 700 mBar into

the battery. This initially increases the temperature of the 4-K flange -where the battery is

installed- to ∼ 6 K. Waiting around 15 minutes, the gas in the battery will be thermalized and

starts to condensate, and the temperature stabilizes at 4 K. The filling process of the battery

takes around 8 hours to condensate around 1000 liters NTP gas 4He. When the battery is

filled, no matter if the full capacity is used, the 4He gas flow can be stopped, and the battery

valve can be closed. Although a filled He battery can be kept in the fridge for a long time, it is

not recommended to delay between filling and using the battery. The liquid He can explode,

turning to the gas phase in case of interruption in the fridge. To operate the fridge with the

battery, we start pumping out the battery with the scroll pump and turn off the pulse-tube.

He evaporation provides enough cooling power to keep the temperature of the 4-K flange
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Figure 5.3: Helium battery. a, Working principle of the 4He battery. The 4-K flange is con-
tinuously cooled with the pulse tube cold head. 4He room temperature gas will be injected
into the battery. The 4He will slowly be cooled down and condensate into the liquid phase.
When the battery is filled, the pulse tube can be turned off while pumping the 4He battery.
Evaporation of the liquid H4 will provide enough cooling power to run the dilution process in
the fridge for a few hours. b, Example of measured power in an optomechanical sideband of a
mechanical oscillator which gets excited by the pulse tube mechanical shocks. c, Temperature
of the mixing chamber and the 4-K flange when running the 4He battery which was filled for
about 10 hours. The base temperature remains below 20 mK for up to 3.5 hours. The fast
increase of the 4-K flange indicates that the battery is empty and the pulse tube needs to be
turned on immediately after the temperature rise. d, The same trace for a run with a partially
filled battery for only 3 hours of filling.

below 4.5 K, allowing the normal circulation of the mixture for dilution cooling. This can

last for maximum 3 hours before the battery gets empty when the pressure of the battery

decreases and the temperature of the 4-K flange rises abruptly. Therefore the pulse-tube needs

to immediately start cooling the system. Figure 5.3c, and d shows the temperature of the fridge
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while running the He battery.

5.2 Microwaves and electronics

In this section, we discuss the high-frequency microwave components, instruments, and

wiring inside the dilution fridge, as well as the room temperature setup.

5.2.1 Cryogenic wiring

Inside the dilution fridge, we use two types of coaxial cables to carry microwave signals in

and out of the control and measurement chain. The input lines carrying down the microwave

signals from the room temperature setup to the mixing chamber are made out of Copper-nickel

(CuNi) alloys satisfying both low thermal conductivity and low microwave loss. At every flange,

these cables are thermalized to the nominal temperature. In the base temperature, to route the

signal, we use semi-flexible SMA Coaxial cables with 3.5 mm diameter (Pasternack®PE39423),

which have 0.9 dB/m loss at room temperature. The output signal, which often carries weak

signals in the order of a few quanta/s·Hz, travels through the same cables until it reaches

the 10-mK flange, where a set of superconducting niobium-titanium (NbTi) coaxial cables

are installed to transfer the output signal with minimal loss to the HEMT amplifier. After the

HEMT amplifier avoids signal-to-noise ratio reduction, the signal travels through Cu-Ni cables

to reach the room temperature setup. We also use a set of twisted pair phosphor bronze DC

wires to feed manual heaters or cold switches at the base temperature.

5.2.2 Cold attenuators

Without any attenuation or isolation, the input and output coaxial cables transfer the thermal

(Johnson–Nyquist) noise in addition to the main signals from room temperature to the device,

which heats up the microwave cavities and is in contradiction with the main reason we operate

the experiment at low temperatures. To solve this problem, we need to attenuate the input

signal at different temperatures in the fridge to remove and replace the hot thermal noise with

the lower energy noise thermalized at lower temperatures.

In quantum mechanics, an attenuator can be modeled as a beam-splitter that takes a fraction

ηatt of the incoming signal and replaces it with a fraction 1−ηatt of the thermal noise. This

added noise is necessary to preserve the commutation relations of the traveling mode. For an

input signal with a background noise of nin + 1
2 , we can write:

nout + 1

2
= ηattn

in + (1−ηatt)nth + 1

2
, (5.1)

85



Chapter 5 Experiment

Where nth =
(
e

ℏω
kBT −1

)−1
is the attenuator’s thermal noise. The typical attenuations to remove

the 300 K thermal noise from the input signal typically used in our experiments, as well as

thermal noises corresponding to different temperatures are shown in table 5.1.

Table 5.1: Cold attenuators arrangement to remove the room temperature thermal noise.

Temperature (K) 300 50 3 0.8 0.1 10×10−3

nth (quanta) at 5 GHz 1250 208 12 2.9 0.1 10−11

η (dB) 0 0.1 20 10 0.1 20

nout (quanta) at 5 GHz 1250 1225 24 5.0 4.9 0.03

5.2.3 High Electron Mobility Transistor Amplifiers

Cryogenic HEMT amplifiers are essential components in the measurement chain providing

a low-noise amplification of microwave signals at 3-K flange to overcome the thermal noise

contamination of the warmer stages. We use HEMTs provided by Low Noise Factory® (LNF-

LNC4-8F) with a typical bandwidth of 4-8 GHz, a gain of∼ 40 dB, and added noise of∼ 8 quanta.

The HEMT needs ∼ 0.7 V and ∼ 15 mA voltage and current applied to the transistor’s drain to

operate in the low-noise and high-gain regime. This also increases the heat load on the 3-K

flange by dissipating ∼ 1 mW of power per each operating HEMT.

5.2.4 Cryogenic circulators, couplers, and Eccosorb filters

It has been reported that HEMTs emit additional noise back to their input line which can

be coupled to the sample at 10-mK and contaminate the signals. For this reason, cryogenic

circulators are used to isolate the sample from the backward propagating noise in the output

chain. We use LNF®-CIC4-8A circulators with typical isolation of 20 dB and insertion loss of

∼ 0.2 dB.

Eccosorb microwave filters are also used at the input line in base temperature to protect the

sample and JTWPA from high frequency (>20 GHz) and infrared noise radiation.

In circuit optomechanical experiments such as ground state cooling and squeezing often

high microwave pump powers are needed in order to reach intracavity photon numbers as

large as 106 quanta. In these cases, the dissipated power of the microwave pump in the 20 dB

attenuator at the base temperature can be comparable with the existing cooling power of

the mixing chamber stage and result in slight heating of the base temperature. To solve this

issue, we normally use a 20 dB directional coupler instead of an attenuator to transfer the 99%

residual power through another input line and dissipate it in attenuators installed in higher

temperature flanges offering more cooling power. This wiring scheme can simultaneously

be used to combine a tone-cancellation tone and generate destructive interference after the
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Figure 5.4: Microwave wiring in the fridge. The standard microwave wiring used in circuit
optomechanical experiments is shown. To reduce power dissipation in the base temperature
flange we use directional couplers instead of cold attenuators and redirect the residual high-
power optomechanical pump to higher stages to dissipate. The dissipation line simultaneously
is used to combine tone cancellation signals to generate destructive interference before JTWPA.
The dissipation line also carries the JTWPA pump.

coupler output to prevent saturation of the next amplifiers in the measurement chain.

5.2.5 Electrical spectrum analyzer

ESA is the final destination of the amplified microwave signals in the measurement chain.

Understanding the working principle of ESA helps to optimize the timing and noise level in

optomechanical power spectral density measurements.

We use R&S® FSW 26 GHz as our main ESA instrument. In the fast Fourier transform (FFT)

mode the signal flow in the spectrum analyzer is described by the following: the microwave

input signal to ESA gets mixed with an internal microwave tone to down-convert to an in-

termediate frequency (IF) range and will be sampled by an analog to digital converter (with

200 MHz sampling clock in our case). The total record length of a single time trace is defined

by the resolution bandwidth (RBW), e.g. for RBW = 1 Hz the record length is ∝ 2/RBW ∼ 2 s.

Then the FFT of the digital time trace is numerically calculated, with an arbitrary number of

points in the frequency range. The resolution of the frequency spectrum is limited by RBW, i.e.

the record length. The truncation of the digital time trace data results in the convolution of the

original signal frequency spectrum by a filter (in our case Gaussian) with the linewidth of RBW.

A PSD measured with a given resolution bandwidth (RBW) corresponds to the convolution of
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an actual PSD S(ω) with a Gaussian filter f (ω) = e−(ω/
p

2σRBW)2
, where σRBW = RBW/

p
2π. This

is described as

S̃(ω) ≡
∫ +∞

−∞
S(ω′)× f (ω−ω′)dω′. (5.2)

For a Lorentzian spectrum, the convolution with a Gaussian filter result in a Voigt function:

V (ω;Γ,σRBW) ≡
∫ +∞

−∞
Γ

π(ω′2 +Γ2)
×e

− (ω−ω′)2

2σ2
RBW dω′ (5.3)

The Voigt function is used to numerically fit on PSD of optomechanical sidebands for exam-

ple. When the linewidth of a sideband signal is smaller or comparable with the RBW, the

convolution cannot be negligible for obtaining the sideband power, i.e., the integration of the

measured PSD does not give the actual sideband power. Therefore, we fit the measured PSD

to a Voigt function with a given RBW and extract the height and linewidth of the Lorentzian

PSD to calculate the actual sideband power. ESA is reporting the PSD data in the units of dBm

(decibel normalized to 1mW of power) which is the integration of the original PSD with the

RBW filter function in time. We can qualitatively consider three different regimes when taking

the PSD of a signal with a feature bandwidth of W using ESA: when RBW>>W We basically

lose most of the spectrum information and only observe the Gaussian filter, hence the peak

of the Gaussian corresponds to the total power of the signal and ESA acts like a power meter.

When RBW<< W , the signal spectrum is resolvable and the measured PSD reflects a good

estimate of the main signal spectrum. In this case, the actual PSD of the signal can be inferred

by dividing the measured power by the RBW which gives us the PSD in the units of dBm/Hz.

When RBW∼W , we have to consider the convolution effect of the RBW Gaussian filter and

use fitting or numerical analysis to restore the information of the main signal spectrum.

For example, in the ultra-coherent electromechanical project (chapter 7) the inset of Fig. 7.2h

shows the measured PSD of a mechanical sideband, compared with the ideal Gaussian core of

the Voigt function (RBW = 1 Hz ≫Γm = 45 mHz). The linewidth of the mechanical sideband-

which in this case includes any unwanted frequency fluctuation - can be then extracted by

fitting a Voigt function to the measured PSD. The noise floor in the PSD of a signal measured

with ESA scales with the RBW, since the input white background noise gets integrated in a

wider span by increasing RBW. Although reducing RBW increases the signal-to-noise ratio

of signals when RBW>> W , it simultaneously increases the measurement time as well. In

the regime of RBW<< W however the signal-to-noise ratio remains constant by changing

RBW. Due to the stochastic nature of the noises in the real world, averaging the PSD of a

stationary signal in ESA reduces the fluctuation of the signal and noise level. Considering a

white Gaussian stochastic process for the background noise, the noise fluctuation - i.e. the

variation of the measured PSD in frequency compared to the average level of the noise PSD -

scales with 1/
√

Navg. To properly measure weak signals such as optomechanical sidebands

we require that the background noise fluctuation gets smaller than the peak of the signal to be

able to reliably fit on the measured PSD.
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Figure 5.5: Fluctuation scaling with averages in ESA. a, Shows ESA traces of a weak optome-
chanical sideband measured with different averages. b, The background fluctuation is scaling
with 1/

√
Navg as shown by dashed line. The calculated background standard deviation from

the measured traces are shown by blue dots. In order to reliably fit on a data, the background
fluctuation needs to be smaller than the signal power. As shown, the slight deviation from the
ideal scaling at high averages is mainly due to background ripples of the measurement tool or
the measurement line which cannot be eliminated by averaging.

The ESA can be also operated in the zero-span mode, measuring the signal’s power in a specific

RBW at a fixed frequency versus time. In this mode, the time variation of the signal should be

slower than RBW in order to be fully resolvable and not limited by the time response of the

filter. Of course, the trade-off between the speed and noise scaling with RBW again exists in

this mode. We typically use the zero-span mode for the ring-down measurements (Sec. 6.2.3)

to characterize the bare and optomechanically induced mechanical damping rate.

Another useful mode that sometimes comes as an additional option on ESA is the IQ-analyzer.

In this mode, the signal gets down-converted around a center frequency to IF domain, gets

sampled with A/D converter, and numerically multiplied by numerically generated sine and

cosine waves to extract its I and Q quadratures versus time in a specific sweep time window

and sampling rate. All the numerical processing is done on the internal FPGA of the ESA

and the user can directly extract the quadrature data from the tool. This mode is useful

when we need more information than average power spectral density and need access to

both quadratures of optomechanical sidebands for example to measure the optomechanical

sideband quadrature distribution in optomechanical amplification scheme (Sec. 7.4.1). In this

mode, the ESA is reporting the quadrature data in Volts versus measurement time.

5.2.6 Vector network analyzer

VNA is the standard microwave measurement tool for characterizing scattering matrix param-

eters, Si j = |Si j |e i∠Si j . The tool has two ports, sending a microwave tone from one port to the

device and measuring the reflection to the same port and transmission to the other port and

extracting the total attenuation/gain as well as the phase shift between the transmitted and
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Figure 5.6: Photo of room temperature components and the measurement instruments. a,
An example photo of the room temperature microwave wiring including solid-state switches,
couplers, combiners, and mechanical switches for signal routing. The wiring used in the
ultra-coherent electromechanics project is slightly different with faster solid-state switches
and more components which is schematically shown in Fig. 7.12. b, The photo shows ESA
in the zero-span mode taking a ringdown trace, the VNA taking the S21 response of a 24-site
graphene electromechanical lattice, and two microwave sources. Photo courtesy of b: Andrea
Bancora.

received signals. By sweeping the frequency of the tone the tool will extract the frequency

response of a DUT connected between ports. The received signal is collected through a band-

pass filter with adjustable bandwidth, BW. The total sweep time for a trace with a certain

frequency span and number of points is given by Tsweep ∝ 2×NOP
BW while the sweep speed of

the VNA tone will be 2×SPAN
NOP ×BW

[Hz
s

]
. The span divided by NOP defines the minimum

frequency feature that can be resolved by VNA, and should be adjusted considering experi-

ment requirements. For example in OMIT experiment (see Sec. 6.2.2) the feature can be as

narrow as the mechanical bare linewidth in the order of 100 mHz when we need many NOP in

a small span. BW of the measurement determines the signal-to-noise ratio and in principle

decreasing BW is similar to increasing the averages of the trace. Properly choosing BW helps

to adjust the sweep speed to avoid the observation of non-stationary effects, e.g. OMIT ripples

(see Sec. 6.2.2). We use R&S® ZNB 20 GHz as our main VNA instrument.

5.2.7 Other microwave components

To generate high-power microwave pulses (>20 dBm) in the optomechanical amplification

experiment we use ultra-fast solid-state switches (Planar Monolithics Industries®, P1T-4G8G-

75-R-SFF) with ∼ 50 ns rising/falling time. An arbitrary waveform generator (AWG) with two

outputs generates short pulses which can activate microwave solid-state switches, and trigger

the ESA and microwave sources. We use Tektronix®-AFG3252 as our AWG. Room temperature

amplifiers (Mini-Circuits® ZVA-183-S+) are required to increase the HEMT noise floor level
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more than the electronic noise of the ESA - but the signal-to-noise ratio will not change

significantly due to the high gain of HEMt and JTWPA. We use room-temperature mechanical

microwave switches supplied from Mini-circuits® (MSP2T-18XL+) to redirect the VNA tone

and microwave sources between different instruments.

5.2.8 Phase locking and clock distribution

All microwave measurement instruments and microwave sources need to be phase locked

to avoid fluctuations and systematic errors specifically in the long measurements when a

sub-milli-Hertz frequency mismatch between instruments can build up errors. The standard

procedure in microwave measurements is to generate a very stable reference signal with typi-

cally 10 MHz frequency and distribute it between all the instruments as a phase reference. Any

other frequencies can be then generated based on the reference clock using frequency dou-

bling schemes. The reference signal can either be generated using an internal Quartz-based

clock in instruments such as ESA or VNA, or using a dedicated atomic clock. In our experiment,

we decided to use ESA as the reference signal source and use a low-noise signal distributor

Oscilloquartz® 5020 to split it into several paths and feed other sources and instruments with

it. Microwave sources are using phase-lock loops (PLL) to follow the phase of the reference

signal. The bandwidth of the PLL affects the stability of locking and the rate of the phase drift

which are crucial parameters for state tomography experiments e.g. mechanical squeezing

free evolution experiment (see Sec. 7.5). We operate our sources with PLL bandwidth of 100 Hz

and minimum lock-in range of ±3 ppm and measure extremely small phase drift using ESA

IQ-analyzer lass than π
1day for a GHz range microwave tone.

5.3 Josephson traveling wave parametric amplifier

JTWPA is a wide-band and near-quantum-limited amplifier working based on the four-wave-

mixing process (Fig.5.7) in an engineered chain of the nonlinear Josephson junction-based

lumped-element resonators forming an effective nonlinear waveguide for microwave sig-

nals (Macklin et al., 2015). The first practical realization of JTWPAs dated back to 2015 by

MIT Lincoln Laboratory and UC Berkeley. JTWPA offers more than 20 dB loss-compensated

gain with less than 1
2 + 1

2 quanta added noise which significantly increases the signal-to-noise

ratio compared with the HEMT. JTWPA is usually operated at the base temperature, before

the HEMT amplifier. The JTWPA is amplifying the signal in a four-wave mixing process in

the presence of a microwave pump, resulting in an amplified signal and idler symmetrically

detuned from the pump frequency to satisfy the energy conservation. To overcome the phase-

matching condition in the traveling wave amplification process the dispersion of the JTWPA is

engineered resulting in a bandgap in the transmission spectrum called the dispersive feature

- centered around 6 GHz in our JTWPA. Applying a microwave pump close to the dispersive

feature activated the four-wave-mixing process resulting in high gains in the broad bandwidth

of 4-8 GHz, excluding the dispersive feature bandwidth. The 1-dB compression point of the
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Figure 5.7: Josephson traveling wave parametric amplifier. a, Photo of a JTWPA device
showing a lumped-element waveguide of thousands of nonlinear circuits providing wide-
band and low-noise microwave gain fabricated in MIT Lincoln Laboratory (Image courtesy:
Macklin, et.al. 2015 (Macklin et al., 2015)). b, An example of the JTWPA gain profile measured
on a device provided by MIT Lincoln Laboratory for our experiment. The brown shade shows
the dispersive feature where no gain is expected. The JTWPA needs to be pumped close to
the dispersive feature and amplify the signal and idler. To conserve energy conservation in
the four-wave mixing process, the signal and idler frequencies are symmetrically detuned
from the pump frequency. c, To optimize the pump power and frequency we sweep these
parameters and measure signal-to-noise ratio improvement when JTWPA is off and on. The
higher SNRI corresponds to lower added noise in the amplification process. d, Schematics
showing SNR and gain when JTWPA is on and off.

JTWPA is reported ∼−100 dBm at the output, therefore any other microwave tone used in the

experiments needs to be canceled at the input of the JTWPA to avoid saturation. It is worth

noting that JTWPA is extremely sensitive to electrostatic discharges. ESD shocks can destroy

junctions in the device which significantly reduce the gain and increases the loss in the device.

To avoid ESD damages, we use anti-ESD gloves, and bracelets connected to the common
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ground as well as anti-ESD coats.

The quantum efficiency of the measurement chain is strongly dependent on the JTWPA-added

noise during amplification. The added noise and gain of the JTWPA are both dependent on the

pump frequency and power. To optimize JTWPA and find the best operating points we sweep

the pump power and frequency and monitor the signal-to-noise ratio improvement (SNRI) of

the JTWPA (Fig.5.7c, and d). This can be simply measured by introducing a weak microwave

tone and measuring its peak power and noise background after and before activating the

JTWPA, i.e. turning on the microwave pump.

5.3.1 Estimation of the JTWPA added noise using SNRI

DUT

JTWPA (on) HEMT

DUT

JTWPA (off) HEMT

a

b

c

−1000 −500 0 500 1000
0

0.5

1.0

1.5

2.0

Figure 5.8: JTWPA SNRI and added noise. a,b, Schematic model of the measurement chain
for two cases of JTWPA’s pump on (amplification) and off (attenuation). c, An example of
calibrated PSD of the microwave cavity noise emission. In the ideal phase-insensitive amplifi-
cation -50% quantum efficiency- a 1

2 quanta/s·Hz noise will be added to the vacuum noise
level. In practice, the finite quantum efficiency of the measurement chain can be measured
and the actual noise background including total added noise referred to the device can be
calculated as shown by 1

2 + 1
2 +nadd.

We consider a simplified model for the output chain as shown in Fig. 5.8. The emitted signal

from DUT is experiencing a total attenuation of η before reaching JTWPA. When the pump

of the JTWPA is off it acts as an attenuator, ηT. When the JTWPA’s pump is on, it amplifies

the signal by the gain of GT, and adds an added noise of 1
2 +nT

add to the signal (referred to the

input). The signal is amplified again at 3 K stage by HEMT, with an effective added noise of
1
2 +nH

add (including the attenuation between HEMT and JTWPA) and the gain of GH ∼ 40 dB.

Because of the high gain of HEMT, the noise figure of the measurement chain is dominated

by HEMT (and JTWPA, if its pump is on), and will not be considerably affected by further

attenuation or amplification in the room temperature setup.
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We can consider a signal, s, plus the vacuum noise of 1
2 emitted from the DUT. The total output

of the HEMT amplifier can be calculated when JTWPA is on or off:

JTWPA off: GH

(
1

2
+nH

add +ηT

(
ηs + 1

2

)
+ (1−ηT)

1

2

)
= GHηTη

(
s + 1+nH

add

ηηT

)
, (5.4)

JTWPA on: GH

(
1

2
+nH

add +GT

(
1

2
+nT

add +ηs + 1

2

))
= GHGTη

(
s + 1+nT

add

η
+

1
2 +nH

add

ηGT

)
. (5.5)

In each case, the SNR can be simplified as:

SNRoff =
s

1
ηηT

(1+nH
add)

, (5.6)

SNRon =
s

1
η (1+nT

add +
1
2+nH

add
GT

)
, (5.7)

and the SNRI can be written as:

SNRI =
1+nH

add

(1+nT
add)ηT + ηT( 1

2+nH
add)

GT

. (5.8)

The second term in the denominator can be neglected compared to the first term because of

the high gain of JTWPA. Therefore, the JTWPA added noise can be extracted as:

nT
add =

1

ηT

1+nH
add

SNRI
−1. (5.9)

With this, the background noise level of the measured signal referred to the DUT, 1+nadd, can

be expressed by:

1+nadd =
1

ηηT

1+nH
add

SNRI
. (5.10)

As an example, in the ground state cooling experiment (Sec. 7.3), we measured SNRI=11.3 dB

and a loss compensated gain of GT
ηT

= 25.7 dB. The HEMT’s added noise is extracted from

the datasheet as nH
add,nominal ≃ 6.9 quanta. The attenuation of the cryogenic circulators is
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reported as 0.25 dB at low temperatures based on their datasheet. Considering two circulators

between JTWPA and HEMT, 0.5 dB cable loss (1 dB/m flexible coaxial cable loss), and lossless

superconducting lines from circulators to the HEMT, the effective HEMT’s added noise is

assumed nH
add ≃ 8.7 quanta. The attenuation of the JTWPA is provided by its datasheet as

ηT = 2.5 dB at 5.5 GHz. The total attenuation between DUT and the JTWPA is composed of:

0.25 dB (cryogenic circulator) + 0.3 dB (directional coupler) + 1.0 dB (1 dB/m flexible coaxial

cable loss). This results in the total estimated noise background of 1+nadd ≃ 1.9 quanta/s·Hz,

and JTWPA added noise of nT
add ≃ 0.3 quanta, in agreement with the results from sideband

asymmetry calibration discussed in Sec. 7.3.2.

5.4 Microwave tone cancellation

To avoid the saturation of the JTWPA by strong optomechanical pumps, we have to cancel the

signal before the JTWPA by destructively interfering it with a tone cancellation signal. This is

realized by splitting the signal at room temperature into two paths and adding a phase and

attenuation to the signal in the tone cancellation path, and combining it with the signal right

before the JTWPA. We use digital attenuators and phase shifters for this purpose (Vaunix®

LDA-602EH and LPS-802), as shown in Fig. 5.9a, and c. In this section, we calculate the

guaranteed level of tone cancellation which can be achieved using the digital phase shifters

and digital attenuators.

For simplicity, we define the signal after the splitter as sin and the signal from the device under

test as s (as shown in Fig. 5.9a). Note that we here consider the case with a balanced splitter,

which can be straightforwardly extended to be general. In the ideal case, the attenuator in

the cancellation path should add the same total attenuation as the signal in the main path is

experiencing, while the phase shifter is adding a π phase shift for the destructive interference.

However, our digital attenuator and phase-shifter can only change the attenuation and phase

by finite steps of 0.25 dB and π
180 , respectively. This limits the maximum guaranteed cancel-

lation that can be achieved in the system. In this case, the residual combined signal can be

written as

sres = s +
√
η+∆ηe i (ϕ+∆ϕ)sin, (5.11)

where η and ϕ are the optimal attenuation and phase shift to destructively interfere with

the signal, resulting in
p
ηe iϕsin = −s, while ∆η and ∆ϕ are unwanted errors in the tone

cancellation elements. An illustration in the complex plane is provided in Fig. 5.9b. Using

Taylor expansion, we then approximate the combined signal as

sres ≃−
(
i∆ϕ+∆η

2η

)
s. (5.12)
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Figure 5.9: Microwave tone cancellation. a, Splitting a signal into two paths and adding
an attenuation and inverse phase using the digital attenuator and phase shifter, results in
a destructive interference upon recombining them. This is used to cancel out strong op-
tomechanical pumps to avoid saturation of the JTWPA. b, Due to the finite step size of the
phase shifter (∆ϕ) and attenuator (∆η), the combined signal (red vectors plus pink vector)
cannot completely vanish. The maximum possible power of the remaining signal (blue vector)
determines the guaranteed limit of the tone cancellation. c, Photo of the tone cancellation
setup showing two coarse and fine-tuning branches of digital attenuators and phase shifters.
To reduce the loss in the coarse branch which limits the maximum power of the main pump
we use 1:10 directional couplers to split and recombine the fine-tuning branch. The JTWPA
pump is normally sent through the tone-cancellation line to avoid unwanted driving of the
sample.
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Using the relative error in the attenuation, the error in dB is described as

∆(Att.)dB =∆(−10log10η)

= −10∆(log10η)

=
−10

ln10

∆η

η
.

(5.13)

Hence, the guaranteed tone cancellation in dB can be calculated as

10log10(sres/s) = 10log10

(
∆ϕ2 +

(
ln10

20
∆(Att.)dB

)2)
. (5.14)

This guaranteed cancellation is independent of absolute values of η and ϕ. Therefore even

in the case of an unbalanced signal splitter, different paths, or unbalanced coupler, where

different values of attenuation or phase shift are needed to compensate for the effective path

difference between two signals, the residual power will not be changed and only is dependent

to the errors of phase shifter and attenuator. Considering the reported values for the Vaunix

phase shifter ∆ϕ = π
2×180 and attenuator ∆(Att.)dB = 0.25/2 dB (division by 2 in both cases

originates from their digital nature), we can achieve at least -35 dB cancellation for every tone

cancellation branch. Using several tone cancellation branches multiplies the cancellation

level. We use two branches for the optomechanical cooling pump cancellation corresponding

to at least -70 dB cancellation. It is worth mentioning that the effective bandwidth of the tone

cancellation is inversely proportional to the effective microwave path length (Lpath):

BWTC ∝ πv

Lpath
, (5.15)

where v is the phase velocity of the signal in the microwave cables. Considering a few meters

length of wiring in our setup, this bandwidth is BWTC = O (100 kHz) in our setup. For this

reason, we use another tone cancellation branch for the blue detuned pumps which are

detuned by 2Ωm/2π = 3.6 MHz from the red tone.

5.5 Microwave filter cavities

The classical phase noise in a microwave pump for sideband cooling can in principle drive the

mechanical resonator and impose a limitation for cooling. The lowest attainable mechanical

occupation in the presence of the phase noise (Aspelmeyer, T. J. Kippenberg, and Marquardt,

2014; Rabl et al., 2009) is given by

n(min)
m =

√√√√Ω2
mnth

mΓm

g 2
0

S̄ϕϕ(Ωm), (5.16)
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where S̄ϕϕ(Ωm) is the phase noise spectral density at the mechanical frequency in the rotating

frame of the pump frequency. To achieve n(min)
m < 1, the theoretical limitation requires

S̄ϕϕ(Ωm) < g 2
0 n(min)

m
2

Ω2
mnth

mΓm
. (5.17)

Considering our system parameters in the ultra-coherent electromechanical project, the

theoretical limit to realize n(min)
m < 0.1 quanta is -137 dBc/Hz at 1.8 MHz detuning from the

microwave pump. The measured phase noise for our microwave sources (Rohde & Schwartz,

SMA100B) is below -140 dBc/Hz, so it almost fulfills this requirement. However, higher-fidelity

ground-state cooling requires a further lower phase noise. This is why we use a microwave

filter cavity (Joshi et al., 2021) which is automated, tunable, and narrow-band (Fig. 5.10). It

reduces the phase noise within ∼ 50 kHz linewidth below -155 dBc/Hz on the microwave

cavity frequency, which makes sure that classical phase noise cannot drive the mechanical

system.

a

c

b

d

Figure 5.10: Motorized microwave filter cavity. a The schematic design (cross-section). b, The
actual device. The frequency of the cavity can be tuned by changing its length using a linear
micro-positioner which can be controlled remotely (Image courtesy: Joshi, et.al. 2021 (Joshi
et al., 2021)). c, Phase noise spectrum of a microwave source tone at 6.4 GHz corresponding
to different tuning frequencies of the filter cavity (Joshi et al., 2021). d, |S21|2 response of the
cavity after an algorithm tune the system at frequencies around 6.4 GHz in steps of 0.5 MHz
(corresponding to traces shown in c). Red dots indicate the value of the blue curve precisely at
the desired frequency (Joshi et al., 2021).

The frequency stability of the filter cavity is essential, especially for the thermal decoherence

measurements, where the experiment and calibration process continues for hours. Due to

the large size (∼ 15 cm) and high thermal expansion rate of the copper of the filter cavity, we

observe a slow frequency drift of the filter cavity frequency. In fact, we estimate 0.5 centigrade
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Figure 5.11: Frequency stability of the motorized filter cavity. Filter cavity response a, without
and b, with adaptive frequency stabilization. The dashed blue line indicates the target filter
frequency. Due to slight environmental temperature changes, the cavity without stabilization
can be completely detuned from the target frequency. The issue is solved using an adaptive
stabilization technique.

temperature difference can shift the resonance frequency by more than 50 kHz (as shown

in Fig. 5.11a). Therefore, we monitor the resonance frequencies of the filter cavities during

the experiment by re-routing the VNA signal through them using mechanical switches, and

adaptively tune their frequency using a sub-micron accuracy linear positioner. The frequency

stability of the cavities with and without the adaptive tuning is shown in Fig. 5.11, where the

stabilization process is clearly keeping the cavity resonance on the target frequency. The design

and control codes for such cavities are available online and can be found in the supplementary

materials of Joshi, et.al. (2021) (Joshi et al., 2021).

5.6 Instrument control and data acquisition

Conducting an experiment is similar to an orchestra when every instrument needs to be com-

manded and controlled in a time sequence by a computer program to follow the experiment’s

logic of initializing devices, sending pulses, measuring the output, and tuning parameters for

example. All the instruments in our experiment including the fridge are connected to a local

computer network. We can address every instrument by its local IP address and send com-

mands and queries. A measurement computer mediates between instruments and collects the

data. QTLab (QTLab GitHub repository n.d.) is a Python package developed at Delft university

before 2015 for communication with instruments and running python based measurement

scripts. We adopted QTLab and added several features, wrapping codes, and instruments to it

and formed a domestic version of this package adapting our new instruments and measure-

ment flow. The structure of our Python-based computer control package can be explained in

three levels of Python codes (Fig.5.12).

1) Instrument control codes: Every instrument supports dedicated string-based commands
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Figure 5.12: Computer control of the measurement flow. The figure shows the hierarchy of
the measurement control computer program. At the lowest level, Python objects are commu-
nicating with instruments through a local network using the PyVisa library. Python objects are
used to build libraries containing basic measurement codes to fulfill a single measurement
job. At the highest level, a measurement script describes the flow of an experiment using the
libraries to sweep and optimize parameters or apply feedback. An example of a measurement
script algorithm is shown for the calibration of optomechanical amplifier.

and queries to communicate with developed by its manufacturer. Knowing the IP address of a

tool, we can use the PyVisa package to send these commands through LAN cables or USB and

receive the tool’s response. These low-level commands can change the instrument parameters

and modes. By sending queries we can extract information on the parameters of the tool or

the raw data of the traces such as measured PSD in ESA or scattering matrix parameters from

VNA for example. Here are some examples of the commands and queries:

• ’frequency:span?’ : Asks for the frequency span of R&S VNA.

• ’DISP:trac:Y:RLEV?’ : Asks for the reference level of the Y axis in R&S ESA.

• ’source1:burst:ncycles 10’: Set 10 number of cycles in the burst mode of Tektronics

AWG.

To facilitate communication with the instruments, we define a python object for every in-

strument. The python object contains an initialization function to set up the connection

to the instrument using PyVisa. The instrument object has several functions which contain

communication codes to instruments to set or get parameters and modes of each tool. Every

time a measurement script runs we can define the required instruments as objects at the
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beginning of the code and call them when needed. We created these python objects for ESA,

VNA, AWG, sources, phase shifters and attenuators, fridges control unit, microwave switches,

linear motors, etc. For example for calling VNA object to read the trace data of VNA we

simply call ’S = vna.get_tracedata()’ or for setting its bandwidth we send the command

’vna.set_bandwidth(10)’.

2) Measurement libraries: Now that we have access to the instruments through objects, we

can form measurement libraries containing Python functions responsible for specific basic

measurements requiring one or many instruments. Here we take an example, a ringdown

experiment requires one blue-detuned microwave source to excite the mechanics using para-

metric instability, one red-detuned microwave source to probe the optomechanical sideband,

the ESA in the zero-span mode to measure the sideband’s power in time, and an AWG to

trigger the excitation and readout pulses and also trigger ESA to start the measurement. In this

case, we write a library containing a function that asks several arguments such as mechanical

and microwave frequencies, and parameters of the ringdown, for example, excitation pulse

power and length, readout time, and bandwidth. The function based on the input arguments

initializes and sets up the correct parameters in microwave sources and AWG, put ESA in the

zero-span mode and initializes it to wait for the trigger, sends the trigger command ad waits

until the ringdown is complete, and extracts the time trace data from ESA. It can also repeat

the cycle and averages the trace if required. Finally, the function generates a folder titled the

data and measurement date in a determined data path and saves the trace data and the plot,

as well as a setting file containing all the instruments’ object parameters at the moment of

the measurement. The function can also return the trace data in the code if required. All this

process can be run by calling the function from the ringdown library (mrd):

’Trace, Times = mrd.ringdown(source1, source2, **options_dict)’

Many basic experiments are implemented in such way in Python libraries and can be used

as code building blocks in more complicated experiments. This architecture significantly

increases the programming flexibility in big projects.

3) Experiment scripts:

Although short and quick characterizations can be manually conducted using the measure-

ment functions in the Python console, a complicated and long experiment needs several

sweeps and stabilization or feedback during the sweeps which require a programmed script.

Let’s consider the optomechanical amplification experiment (see Sec. 7.4.1) as an example. In

a script, we first need to load and define all the instruments and libraries needed as well as

system parameters such as mechanical and microwave frequencies. Then several initializa-

tion steps are needed such as calibration of the JTWPA gain, running the tone cancellation

optimization function, tuning filter cavities on resonance, and calibrating microwave source

powers to name a few. Then a measurement loop starts where we sweep over different cooling

pump power to prepare different mechanical occupations close to the ground state. In every

iteration of the code, the cavity response with VNA and PSD of the sidebands with ESA needs
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to be measured. Then we turn off JTWPA and using ringdown we calibrate the optomechanical

damping rate and call the optomechanical amplification function setting up pulses and mea-

suring quadratures of motion using IQ-analyzer in hundreds of iterations. We typically need

to average these signals for long times and to stabilize the measurement over days we split

these averages into several cycles. In each cycle, we measure the imbalance of the blue and

red probes, re-tune filter cavities, re-route the microwave tones using switches in the setup,

and run the above-mentioned loop once. All the data corresponding to each measurement is

separately saved in a hierarchical structure based on the cycle number, cooling power, and

measurement type. In addition, we combine and save the final traces data as well as system

parameters in a single Numpy dictionary which can be easily loaded later for post-processing.

Using such a programming structure, we are able to run complicated measurements includ-

ing several instruments, and precisely control and stabilize the experiment flow over long

measuring times.
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This chapter reviews the characterization experiments procedure of circuit optomechanical

devices and discusses how electrical and mechanical properties can be extracted from those

measurements.

6.1 Microwave resonance characterization

As discussed in Sec.5.2.6 the microwave response - scattering parameters - of a device un-

der test is measured using a vector network analyzer. Searching for resonance features (as

discussed in Sec.3.1.1) in the scattering parameters over a desired frequency span enables

us to roughly estimate the center resonance frequencies. The typical linewidth (κ = κ0 +κtot,

including intrinsic loss rate and the external coupling rate) of electromechanical LC circuits is

in the range of 5 MHz - 50 kHz depending on the design, and they can be spread over a few

GHz of measurable frequency window (typically 4-8 GHz). We developed an automated reso-

nance search protocol to facilitate this initial characterization step. Considering the minimum

frequency resolution needed to resolve the finest feature -e.g. a 2/κ(max) = 50 kHz linewidth

resonance- and the maximum number of points of the VNA, the code divides the desired

search frequency range into several sub-spans. We typically use 10 kHz frequency spacing

and 100 kHz measurement bandwidth for VNA. The measured complex S21(ω) contains phase

and amplitude response. The phase response reported by VNA is wrapped between 0 to 2π.

After taking the data, the code unwraps the phase to have a continuous trace, φ(ω). Then

the phase derivative is numerically calculated. The phase derivative of a resonance feature is

inversely proportional to the linewidth, dφ(ω)
dω = 2

κ , therefore the peaks higher than a certain

value (2/κ(max)) in the phase gradient response indicate the existence of a resonance feature

which can be extracted from the trace. Figure 6.1 shows an example of the measured phase

gradient for a chip containing 13 LC circuits.
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Figure 6.1: Searching for microwave resonances using phase gradient. a, Shows an example
of a |S21|2 response of a chip measured with VNA. The background wideband ripple indicates
a slight impedance mismatch which may result in Fano resonances. b, Phase gradient of
the measured response. Peak frequencies indicate resonance frequencies and peak heights
indicate the inverse of total cavity linewidths.
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Figure 6.2: Resonance feature in the complex plain and coupling regimes. A Lorentzian
resonance is corresponding to a circle parametric curve in the complex plain. Depending on
the ratio of κex and κ0, the circle may winds around the origin resulting in a 2π phase shift in
the response. The three regimes of over-coupling, critical coupling and under-coupling are
shown from left to right respectively.

6.1.1 Circle fit in the complex plain

Here we consider the short-ended cavity case as an example without losing generality. The

reflection coefficient in the ideal model is given by Eq.3.7 (S11 = (κex−κ0)/2−i (ω−ωc)
(κex+κ0)/2+i (ω−ωc) ), and can be
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reformatted as:

S11 =
κex

(κex +κ0)/2− i (ω−ωc)
−1 = −κ0

κ
+ κex

κ
e i 2tan−1

(ω−ωc
κ/2

)
, (6.1)

Which corresponds to a circle parametric curve in the complex plain centered at −κ0
κ , with the

radius of κex
κ as shown in Fig.6.2. This simplified graphical representation shows that for over-

coupled resonances (κex > κ0) a total 2π phase shift is expected when passing the resonance

frequency since the circular curve winds around the origin of the complex plain, while for

the under-coupled resonances (κex < κ0) this phase shift is zero. A measured microwave
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Figure 6.3: Effect of electric delay and Fanoness on resonance. The measured resonance
deviates from the ideal Lorentzian shape due to measurement line properties and impedance
mismatch. The effect of each correction considered in fitting function (Eq.6.2) is shown here:
scaling, delay, and Fanoness from left to right respectively.

resonance feature may deviate from the ideal model of Lorentzian shape (Eq.6.1) due to

unknown gain and attenuation in the measurement chain, electrical delay, or impedance

mismatch (Fig.6.3). In order to extract the resonance properties, we need to expand the model

to be able to numerically fit on the measured data:

S(meas.)
11 (ω) = Ae iφ×e iωτdelay × κex

(κex +κ0)/2+ i (ω−ωc)
+ (x + i y). (6.2)

In Eq.6.2, Ae iφ is a global constant amplitude and phase shift modeling the loss and gain

of the measurement chain, e iωτdelay is the electrical delay term modeling the non-negligible

length of the measurement chain compared with the wavelength, and x + i y is modeling

the Fano effect. The last term is specifically important to model the unwanted impedance

mismatch between the sample and measurement lines (Probst et al., 2015; S. Fan, W. Suh, and

105



Chapter 6 Characterization

Joannopoulos, 2003; Bernier, 2019). Figure 6.3 shows the effect of each term on the shape of

measured the resonance. Applying a fit by numerically minimizing a cost function reflecting

the mean square distance of the measured complex dataset of S21 with the parametric curve

described by Eq.6.2 will give us resonance parameters (Fig. 6.4).

−2 −1 0 1

−2

−1

0

1

2

5.5504 5.5510 5.5516
−7

−6

−5

−4

−3

−2

−1

5.5504 5.5510 5.5516
1

2

3

4

5

6

7

Frequency (GHz) Frequency (GHz)

Figure 6.4: Circle fitting to measured data. Red dots show the measured dataset after numeri-
cal scaling and compensating for the electrical delay. The green curves show the fits to the
data set. The fitting is done on the complex dataset and corresponding phase and absolute
values are then calculated and sketched respectively.

6.2 Mechanical resonator characterization

In this section, we review the routine measurements to characterize mechanical frequencies

and damping rates.

6.2.1 Optomechanical sidebands

Optomechanical sidebands are the most straightforward signals to be measured for char-

acterizing mechanical frequency. As discussed in the theory chapter (Sec. 2.2), applying

a microwave pump to the cavity scatters two optomechanical sidebands separated by the

mechanical frequency around the pump. Measuring the PSD of sidebands and calculating

the pick frequency minus the frequency of the pump gives us the mechanical resonance

frequency. In practice, optomechanical sidebands can be much weaker than the pump itself

and at the same level as the measurement chain noise floor. This makes direct detection

of the sideband challenging when the cavity is pumped on-resonance (ωp =ωc), and often

requires high pump powers, small measurement resolution bandwidth, and many averages

to increase the signal-to-noise ratio. Therefore, we often use optomechanical parametric

instability (Carmon et al., 2005; T. Kippenberg et al., 2005) to derive the mechanics and easily

detect its sidebands. When pumping the cavity blue-detuned (ωp > ωc), optomechanical

interaction results in an anti-damping effect on the mechanical resonator, which reduces its
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total dissipation rate, Γtot =Γm −|Γopt|, where Γopt is proportional to the pump’s intracavity

photon number. Moderate blue-detuned pump powers result in negative total damping rates

and therefore drive the mechanical state into the high amplitude self-oscillations limited by

the system’s nonlinearities (Fig.6.5). In this case, we observe high-power optomechanical

sidebands as well as their frequency multiplexed comb-like sidebands which are the results

of the higher-order nonlinearities in the system. We often slowly sweep up the frequency of

a microwave pump from resonance until the PI feature appears. Then we measure PSD and

roughly extract the mechanical frequency, which may vary a few hertz from the exact value

due to self-oscillation nonlinearity. Afterward, we pump the system on resonance and focus

on the frequency span expected to see the sideband, average a few hundred times with RBW

of 1 Hz, and precisely calculate the peak frequency.
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Figure 6.5: Optomechanical parametric instability. a, Driving an optomechanical system at
the frequency of ωc +Ωm excites the transition corresponding to photon-phonon generation
and amplifies the mechanical occupation. b, An example of a measured PI feature when
pumping a device blue-detuned. Due to higher-order nonlinearities at high mechanical am-
plitude oscillations, a train of high-power optomechanical sidebands appears with a spacing
of mechanical frequency. This can be used to characterize the mechanical frequency.

6.2.2 Optomechanically induced transparency

Optomechanical induced transparency (Weis et al., 2010) is a two-tone spectroscopy measure-

ment when applying a microwave pump on the lower motional sideband (red-detuned by

mechanical frequency from the cavity resonance) and sweeping a second weaker probe tone

across the resonance (Fig.6.6a). The strong pump damps the mechanical motion, resulting in

a wider effective mechanical linewidth, Γtot =Γm +|Γopt|, where Γopt = 4g 2/κ. The microwave

pump modifies the cavity response due to the electromechanical coupling, resulting in a

transparency window of width Γtot that appears on resonance, which will be observed by

the probe’s transmission or reflection coefficient. Experimentally, This measurement is done

using a microwave source as the red-detuned pump and vector network analyzer to sweep

the resonance and measure the scattering parameter (Fig.6.6b). Measuring OMIT window

center frequency and linewidth (Γtot) not only reflects the mechanical frequency but more

importantly gives us information on the optomechanical coupling rate, g , as well as the

pump’s cooperativity, C = 4g 2/κΓm. The latter is specifically important since the total loss
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Figure 6.6: Optomechanical induced transparency. a, Sweeping the microwave cavity with
a weak tone while pumping the cavity on the red side and results in an interference feature
in the probe’s response corresponding to the effective mechanical linewidth. b, Example of
OMIT response while for different nominal red-detuned pump powers. c, OMIT response of
an electromechanical system with 10 mechanical resonators. Each feature corresponds to one
mechanical mode. d, The sweep speed of the microwave probe as well as the bandwidth of
the VNA have to be smaller than the effective optomechanical damping rate. Otherwise, the
transient mechanical response affects the measured OMIT feature resulting in oscillations
in the response. The figure shows an OMIT response measured with three different VNA
bandwidths with a 2001 number of points in a 100 Hz span.
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from a microwave source to the device is often uncalibrated, therefore knowing Γtot enables

us to relate the nominal microwave source power with the cooperativity as an important

optomechanical parameter.

OMIT is particularly useful compared with sideband PSD measurement in finding mechanical

frequencies in a multi-mode optomechanical system. The reason is when pumping such a

system on the blue side, nonlinearities often result in high amplitude self-oscillation of only

one mechanical mode and the other mechanical frequencies close to the self-oscillated mode

do not exhibit PI features. In those cases for example in the optomechanical lattices experi-

ment (chapter 8) we use low cooperativity OMIT features to precisely measure mechanical

frequencies (Fig.6.6c).

The main limitation of OMIT is its slow process of measurement and its limited practical

frequency resolution, specifically for characterization of high-Qm samples when Γm < 1 Hz. As

mentioned in Sec. 5.2.6, the VNA frequency accuracy and step size depend on the instrument

model and are typically in the order of a few milli-Hertz which makes sub-Hertz response mea-

surement challenging. More importantly, The transient response time of an optomechanical

system is proportional to the lowest dynamic rate in the system which is Γtot =Γm +Γopt. This

means that for the measurement of an OMIT feature with Γtot linewidth, for every measure-

ment point in frequency, the VNA needs to wait for more than 1/Γtot to reach the stationary

response and report a true value of the scattering parameter. This forces us to employ small

measurement bandwidth which significantly increases the measurement time. Figure 6.6d

shows examples of ripple-like artifacts when VNA sweeping speed is comparable to or more

than the dynamic rate of the system. decreasing the bandwidth and frequency sweeping speed

removes the unwanted oscillations in the response. To overcome this limitation, we use a

mechanical ringdown experiment to measure low optomechanical damping rates. Finally, we

note that at low cooperativities, far from the strong coupling regime, we can use the standard

circle fit (Eq.6.2) to extract the linewidth and center frequency of an OMIT feature from the

measured scattering parameters.

6.2.3 Ringdown and ring-up

In order to measure the bare mechanical damping rate, Γm, we use a time-domain experiment

where we first excite the mechanical oscillator by applying a strong blue-detuned pump,

having the system in an optomechanical parametric instability, and then observe the energy

decay by measuring the optomechanical sideband scattered from a weak red-detuned probe

(Cprobe << 1) in time, as shown in Figs. 6.7a and b. For higher red-detuned probe powers

with cooperativity of Cprobe, the effective mechanical damping rate is Γtot = Γm(1+Cprobe).

Sweeping the power of the red probe enables us to directly measure Γm (Figs. 6.7c and d). In

addition, we can accurately calibrate the cooperativity for every pump power, by measuring

the effective damping rate in other experiments.

The ringdown experiment requires time control of two blue- and red-detuned pulses which
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Figure 6.7: Ringdown and amplification rate measurements. a, b Pulse and frequency scheme
of the ringdown measurement. A strong blue detuned pulse is exciting the mechanical oscilla-
tor through optomechanical parametric instability. A red-detuned readout pulse generates
an optomechanical sideband on resonance. c, Example of ringdown traces measured for
different readout powers. The initial nonlinear behavior in the ringdown trace may be due to
the energy exchange between different mechanical modes of the drumhead at high amplitude
vibrations. For the exponential fitting, we only use the low-power linear part of the ring down.
d, Effective mechanical damping rates versus the readout nominal power at the source. The
fit shows a bare mechanical damping rate of Γm/2π = 44 mHz. The inset shows the same for
higher pump powers. e, f Pulse and frequency scheme of optomechanical amplification rate
characterization. g, h Optomechanical amplification traces and extracted anti-damping rates
measured for different nominal readout powers.
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can be controlled by solid-state switches and an AWG (Sec.5.2.7). The time trace is recorded

by ESA in the zero-span mode. It is important to check that RBW in ESA is higher than the

damping rate, Γtot, to be able to resolve the dynamic. It is worth mentioning that mechanical

oscillators may experience frequency shifts when driving in the PI, but the frequency of the

ESA should be centered at the undriven mechanical frequency to track the low-occupation

dynamics of the mechanical oscillator.

We often observe a chirp-like oscillation in the optomechanical sideband power at the be-

ginning of the ringdown when the mechanical oscillator has a very large amplitude after the

PI. The origin of such effects is still unknown to us, but we are interested in low-occupation

dynamics at many orders of magnitude lower occupations. Because of this effect, we only

apply the numerical fitting on the linear part of the ringdown trace. To fit the measured

sideband power, PSB(t ), we use the simple model of PSB(t ) = P0e−Γtott +nfloor, where nfloor is

the constant noise floor or the measurement.

Another crucial characterization is the optomechanical anti-damping rate which needs to be

calibrated for the optomechanical amplification experiment (Sec. 7.4.1). When pumping the

cavity on the blue sideband, for large enough powers, the total damping rate of the mechanical

oscillator will be negative, and an exponential increase in the mechanical occupation and

the sideband power is expected. Measuring the transient dynamics of the oscillator when

applying the blue-detuned pump from low occupations to the PI self-oscillations enables us

to extract the amplification rate and calibrate the nominal blue-detuned microwave source

power.

Finally, we note that for multi-mode optomechanical systems, as mentioned earlier (Sec.6.2.2),

the PI excitation will not necessarily excite all the mechanical modes and if so, often the

ringdown of several modes simultaneously is not desired in the experiment. In these cases, we

use another excitation scheme by applying a resonance excitation pump together with a strong

red-detuned pump separated by the desired mechanical frequency. The beat note of these two

pumps exactly matches only one mechanical mode and drives it into high occupation coherent

oscillation. We use this method in the topological optomechanical lattices experiment to read

out the collective mode shapes. More discussions will provide in Sec.8.5.

6.3 g0 characterization

The single photon optomechanical coupling rate, g0, is an important figure of merit for

optomechanical systems, which describes the cavity resonance shift induced by the zero-

point fluctuation of motion. The method we used for measuring g0 is based on the PSD

measurement of the motional sidebands when pumping the system on-resonance (ωp =ωc)

with a relatively weak pump (Bernier, 2019). In this case, two sidebands will appear (ω =

ωc ±Ωm, Fig. 6.10a), where the power in the upper motional sideband when measuring a
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short-ended device is given by

PSB = 4g 2
0 nm

(κex/κ)2

Ωm
2 + (κ/2)2

ωc

ωc +Ωm
PMW. (6.3)

Here, PSB is the scattered sideband power emitted from the device at ω =ωc +Ωm, PMW is the

microwave input pump power to the device at ω =ωc, and nm is the mechanical occupation.

On resonance pumping does not induce dynamical backaction (i.e. damping or anti-damping)

on the mechanics; however, the back action noise can still heat up the mechanical oscil-

lator (Bowen and Milburn, 2015). Here we use microwave powers that result in negligible

back-action noise of the microwave pump on the mechanical oscillator,

nba ≡
4g 2

0

κΓm

(4κex/κ2)PMW

1+ (2Ωm/κ)2 ≪ nth
m , (6.4)

Where nba is the equivalent back-action noise in units of quanta (Bowen and Milburn, 2015).

This condition can be simply checked by measuring the effective optomechanical damping

rate of the same probe power (PMW) but applied on the red sideband. This can be explained by

the fact that the cooperativity of a red-detuned pump with the same microwave power exactly

scales the same way that nba scales (Eq.6.4), Cred =
4g 2

0

κΓm

(4κex/κ2)PMW

1+(2Ωm/κ)
2 , which can be measured

using optomechanical damping rate, Cred =
Γopt

Γm
= Γtot

Γm
−1.

While it is challenging to directly measure PMW and PSB at the device, we can measure the

sideband at the detector (spectrum analyzer) and the pump power at the microwave source.

The pump signal is attenuated with an unknown factor ηatt from the source to the device, and

the measured sideband is amplified with an unknown factor G from the device to the detector.

Since we need to use the tone cancellation of the pump to avoid the saturation of the JTWPA

and also the dynamic range of the ESA is limited, we send an additional weak calibration tone

placed at the upper motional sideband frequency with a small detuning (ω = ωc +Ωm +δ)

that passes through the same input/output lines as the sideband signal, so we can accurately

obtain the relative power of the calibration tone to the on-resonance pump. In this case we

have

P meas
SB =GPSB = G

PSB

PMW
ηattP

src
MW

P meas
cal =Gηatt

Ωm
2 + ((κex −κ0)/2)2

Ωm
2 + ((κex +κ0)/2)2

P src
cal ,

(6.5)

where P meas
SB is the measured sideband at the detector, P src

MW is the pump power at the mi-

crowave source, P meas
cal is the measure calibration pump power at the detector, and P src

cal is the

calibration tone power at the microwave source. In the above expression, the fraction in the

calibration tone comes from its interaction with the microwave cavity.
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We can now eliminate the unknown parameter Gηatt and reach to:

P meas
SB

P src
MW

P src
cal

P meas
cal

= 4g 2
0 nm

(κex/κ)2

Ωm
2 + ((κex −κ0)/2)2

ωc

ωc +Ωm
. (6.6)

If the mechanical oscillator is in a thermal equilibrium with a bath at temperature T , the

mechanical occupation is approximately given by nm ≈ nth
m = kBT /ℏΩm, where kB is the Boltz-

mann constant, so the measured sideband power is linearly proportional to the temperature.

To ensure a proper thermalization we sweep the nominal temperature of the dilution fridge

and measure PSB.
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Figure 6.8: Temperature sweep of the dilution fridge. a, Temperature of the mixing chamber
versus time. Measurements are performed when the temperature is stable (red data points). b,
The stable temperature versus the heater dissipated power at the mixing chamber.

To characterize g0, we sweep the mixing chamber temperature using a resistive heater mounted

on this flange. To ensure the thermalization of the flange to the nominal temperature, we wait

for ∼ 10 minutes after each increase in the heater’s dissipated power. After the stabilization

of the fridge’s temperature (Fig. 6.8), the mechanical and microwave parameters, such as κ

and ωc are measured by taking a VNA trace (Fig. 6.9), while Γm is measured by a ringdown

experiment and Ωm is determined as the frequency difference between the optomechanical

sideband and the applied microwave pump (Fig. 6.9). Both the mechanical and microwave

frequencies slightly vary with temperature (a few parts per million compared to the respec-

tive frequencies). Nevertheless, we observe a strong temperature dependence in Γm, which

indicates that the mechanical dissipation in our drumhead resonator is not dominated by the

clamping loss, i.e. phonon tunneling through the substrate (see more discussion in Sec. 3.2.2).

We note that the cooperativity of the on-resonance pump needs to be simultaneously checked

by measuring ringdown when pumping on the red sideband with the same power to ensure

Cred ≪ nth
m . The gain and signal-to-noise improvement of JTWPA needs to also be monitored

when sweeping the temperature to ensure constant measurement chain properties (G and

ηatt) when reading out the sidebands. Small changes in the JTWPA gain will be compensated

on the final measured PSB. Finally, we can plot the calibrated sideband power as a function of

temperature and use Eq.6.6 to fit a linear function and extract g0 as the only free parameter.
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Figure 6.9: Temperature dependence of system parameters. a, Shift of the microwave cavity
frequency and b, linewidth versus temperature. c, Shift of the mechanical resonance frequency
and d, linewidth versus temperature. e, Measured mechanical sideband power. f, JTWPA gain
versus temperature. To calibrate g0, we only consider the temperature region with the stable
gain and compensate for its variation on the measured sideband power.

For example, in the ultra-coherent electromechanics project (chapter 7) the single-photon

optomechanical coupling rate is found to be g0/2π = 13.4±0.5 Hz as shown in Fig. 6.10. The

experimentally measured value is in good agreement with the theoretically expected one

(g (theory)
0 /2π = 14 Hz, discussed in Sec. 3.3). As shown in the figure, the linear scaling of the

estimated phonon occupation with the temperature at lower temperatures indicates a good

sample thermalization and verifies the assumption of nm ≈ kBT /ℏΩm.

It is worth mentioning that in principle higher g0 values can be achieved by lowering the gap

size without sacrificing other optomechanical parameters. However, we did not systematically

investigate the samples with lower gaps in this work. More information about the limitations

and feasibility of reducing the gap size is provided in the fabrication chapter (Sec. 4.2.12).
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Figure 6.10: g0 measurement. a, Frequency scheme for g0 measurement experiment. An
on-resonance pump (green line) is used to generate two motional sidebands (in purple). A
calibration tone (brown) is placed close to the motional sideband to rule out the unknown
parameters for the input loss/output gain. b, Mechanical occupations (calculated after ex-
tracting g0/2π = 13.4 Hz from the measured PSD of the motional sidebands and fitting) versus
nominal temperature of the fridge.

6.4 Microwave cavity heating

Increasing the intracavity photon number np induced by a pump field enhances the optome-

chanical coupling rate between a mechanical oscillator and an optical/microwave cavity, as

expressed by g =
p

npg0. To realize mechanical ground-state cooling in contemporary op-

tomechanical platforms, a large np is required – in the order of 104 to 107 photons, depending

on the system parameters. Such a large cavity photon number can lead to thermally heating

the optical/microwave cavity, resulting in an increase in the effective temperature of the opti-

cal/microwave intrinsic bath. In the context of sideband cooling of a mechanical oscillator,

the cavity heating effect limits the lowest phonon occupation for most cases (J. D. Teufel,

Donner, D. Li, et al., 2011). In this section, we address how to characterize the total thermal

photons in the microwave cavity and significantly reduce the cavity heating effect in the circuit

optomechanical platform. A microwave cavity can be coupled to several thermal bathes

through different loss mechanisms such as radiation losses, dielectric losses, substrate losses,

galvanic connections, etc. In a phenomenological description, we define a loss rate of κi
0 for

intrinsic bath i with a thermal bath occupation of nth,i
c (Fig.6.11). This results in the effective

intrinsic loss rate of κ0 =
∑
κi

0 and the effective thermal bath occupation of nth
c = (

∑
κi

0nth,i
c )/κ0.

In principle, the thermal bath occupation can be a function of the intracavity photon number,

i.e., nth,i
c (np), since the absorbed energy from the cavity can be inelastically scattered to the

bath and increase its effective temperature. However, the dependency of the bath occupation

on np can be different due to the different heat capacity and microscopic loss mechanism of

each intrinsic bath. For example, the radiative loss thermal bath is expected to be significantly

less sensitive to np compared to the dielectric and substrate losses.

In our platform, the main suspect for the cavity heating was the galvanic connection between

the top and bottom aluminum plates of an LC circuit. The native aluminum oxide, which
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Figure 6.11: Microwave cavity heating. a, The mode diagram shows the microwave resonance
is coupled to many loss channels corresponding to different physical processes. In the pres-
ence of a coherent drive, the effective thermal bath occupation of each loss channel scales
differently by the pump’s intracavity photon numbers np. The total thermal occupation of
the mode is the average of the thermal bath occupations weighted with their loss rates. b, An
example of the normalized PSD of incoherent noise emission from the microwave cavity when
pumping it on the red sideband for different pump powers. .

grows on the bottom layer by a few nanometers, remains when the top layer is deposited

without any treatment, leading to a thin resistive layer for the LC circuit. The resistive layer

dissipates the intracavity energy and heats up the intrinsic bath, inducing a finite cavity

thermal photon. To address the heating effect, we perform argon milling to remove the

aluminum oxide layer, followed by the deposition of the top aluminum layer. Importantly,

note that these two processes are performed successively under the ultra-high vacuum (see

more detail in Sec. 4.2.10).

To characterize the cavity heating effect, i.e., the cavity thermal photon number induced

by one or more microwave drive fields, we measure the cavity thermal emission by using

the JTWPA as a nearly quantum-limited amplifier. As shown in Eq. 2.21, the noise power

spectral density of the cavity emission is given by S̄c(ω). Note that the expression is general

regardless of the number of microwave drive fields. By integrating the power spectral density

and normalizing it by the external coupling rate with 2π, we obtain the cavity thermal photons

as

nc =

∫
dω S̄c(ω)

2πκex
. (6.7)

In Fig. 6.12, the cavity thermal photon number induced by a strong pump is extracted for

two samples with and without the native oxide resistive layer, respectively. By employing the

Ar milling to remove the oxide layer, we could reduce the cavity heating effect by a factor of

∼30, resulting in a vast improvement in the ground-state cooling of the mechanical oscillator,

since the final phonon occupation is usually limited by the cavity heating. We finally note

that in cavity heating measurement the background (off-resonance) noise level remains
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unchanged even at very high pumping powers. This indicates that the temperature increase

in microwave attenuators in the input coaxial lines is negligible and the microwave lines’

effective temperature, i.e. the input noise, can be safely considered constant and close to the

vacuum noise.
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Figure 6.12: Cavity heating treatment. a, Cavity thermal photon number as a function of
cooling pump cooperativity for two samples with (blue) and without (red) the Argon milling
treatment to remove the aluminum oxide layer. The shaded circles correspond to the noise
power spectra respectively, shown in b and c. b, c, Noise power spectrum of the cavity thermal
emission with a red pump applied to the samples with (b) and without (c) the Argon milling
treatment, respectively. Both resonances are over-coupled, resulting in the fact that the peaks
correspond to 4nc. .

6.5 HEMT added noise

HEMT-added noise is a reference level often used to calibrate measured PSD of signals. If

JTWPA is not used in an experiment, the noise floor of the measured PSD is considered as the

effective HEMT added noise as it will be the dominant added noise of the measurement chain

because of the HEMT’s high gain. Although in experiments such as ground-state cooling or

squeezing, we use an out-of-loop and calibration-free technique to extract the mechanical

occupations which do not rely on the added noise calibration (see Sec.7.3.1), it is still useful to
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characterize HEMT for rough estimations of the output spectra and signal powers.

The HEMT added noise is calibrated by a temperature sweep. The measured power spectral

density at the output of the measurement chain S can be written as

S =αGH(nT +nH
add), (6.8)
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Figure 6.13: HEMT noise characterization. a, b, Experimental setup and schematic signal
flow for HEMT noise characterization. A noise source thermalized at temperature T feeds the
HEMT with Johnson noise. The measured power spectral density is proportional to the noise
from the source plus the HEMT’s added noise. The noise source is a thermally isolated copper
block containing a cryogenic resistive heater, a thermometer, and a 50−Ω load. The noise
source is connected to a ceramic DC block and 12 GHz low-pass filter. b, The added noise
of the HEMT versus frequency. Inset: An example of the measured average power spectral
density of HEMT background noise at 6 GHz vs. T . The dashed line is the fit based on Eq. (6.8).

Whereα is the total loss factor of the measurement chain after the HEMT and nT = 1/(eℏω/kB T −
1) is the spectral density of the Johnson noise generated by a cryogenic 50-Ohm load thermal-

ized at temperature T . By sweeping T , we can extract nH
add at different frequencies and use this

value as a reference level for further calibrations. nH
add is the effective added noise referred to

the device, which includes the internal noise of the HEMT plus any thermal contribution at the

input of the HEMT divided by the attenuation factor between the DUT and HEMT. The noise

source consists of a cryogenic resistive heater, a thermometer, and a 50-Ohm load, all plugged

into a small copper block, to ensure proper thermalization (Fig.6.13). The copper block is

suspended from the 10 mK stage by a 12 GHz low-pass filter (K&L 6L250-1200/T26000-0/0,

insertion loss < 1 dB at room temperature) that thermally isolates it from the stage while

allowing microwave propagation. The thermal isolation allows the operation of the noise

source up to 3 K while keeping the mixing chamber temperature below 100 mK. After the

low-pass filter, we use the exact same cables to the HEMT (NbTi superconducting coaxial
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lines) as in the other experiments. We note that the measured ESA noise floor drops by 15 dB

when turning HEMT off, verifying that the noise floor in the output chain is dominated by the

HEMT with negligible contribution from the room temperature amplifier.

Figure 6.13 shows an example of the measured HEMT added noise within its 4-8 GHz nominal

bandwidth. At each frequency, the measured average PSD is fitted versus the temperature of

the Johnson noise source and the added noise is extracted as shown in the figure inset. The

ripples in the added noise versus frequency indicate a slight impedance mismatch between

the noise sources and the HEMT.
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7 A squeezed mechanical oscillator with
milli-second quantum decoherence

Quantum control and measurement of mechanical oscillators has applications ranging from

quantum metrology (Aasi et al., 2013; Mason et al., 2019; Whittle et al., 2021) and quantum

computing (Pechal, Arrangoiz-Arriola, and Safavi-Naeini, 2018; Wallucks et al., 2020), to fun-

damental test of quantum mechanics itself (Fiaschi et al., 2021; Marinković et al., 2018) or

searches for dark matter (Carney et al., 2021; Manley et al., 2021). This has been achieved

by coupling mechanical oscillators to auxiliary degrees of freedom in the form of optical or

microwave cavities (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014), or superconducting

qubits (A. Clerk et al., 2020; Chu and Gröblacher, 2020), allowing numerous advances such

as mechanical squeezing (Wollman et al., 2015; Pirkkalainen, Damskägg, et al., 2015; Lecocq,

Clark, et al., 2015), quantum state transfer (A. Reed et al., 2017; Chu, Kharel, et al., 2018),

quantum transduction (Mirhosseini, Sipahigil, et al., 2020b; Andrews et al., 2014), or teleporta-

tion (Fiaschi et al., 2021). An enduring challenge in constructing such hybrid systems is the

dichotomy of engineered coupling to an auxiliary degree of freedom, while being mechanically

well isolated from the environment, that is, low quantum decoherence – which consists of

both thermal decoherence and dephasing. Although Hertz-level thermal decoherence has

been achieved in optomechanical crystals at mK temperature (MacCabe et al., 2020), such

systems suffer from large dephasing. Currently employed opto- and electro-mechanical (M.

Rossi et al., 2018; Palomaki, Harlow, et al., 2013; Magrini et al., 2021) as well as qubit-coupled

mechanical systems (Chu, Kharel, et al., 2018; Wollack et al., 2022; Satzinger et al., 2018) have

significantly higher thermal decoherence.

In this chapter, we show how to overcome this challenge by introducing a superconducting

circuit optomechanical platform which exhibits an ultra-low quantum decoherence while

having a large optomechanical coupling to prepare with high fidelity the quantum ground

and squeezed states of motion. We directly measure a thermal decoherence rate of only

20.5 Hz (corresponding to T1 = 7.7 ms) as well as a pure dephasing rate of 0.09 Hz, on par

with and better than, respectively, the motional degree of freedom of trapped ion systems

in high vacuum (Gaebler et al., 2016; Leibfried et al., 2003), and 100-fold improvement of

quantum-state lifetime compared to the prior optomechanical systems (M. Rossi et al., 2018;
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Figure 7.1: Mechanical quality factors in circuit optomechanics platforms since 2010. A
summary of published works on circuit optomechanics in Nature and Science since 2010.
No improvements have been realized in the mechanical quality factors -and consequently
phonon lifetime - in the recent decade. The star shows our platform enhancing the mechanical
coherence by almost two orders of magnitude.

MacCabe et al., 2020; A. Reed et al., 2017). This enables us to reach to 0.07 quanta motional

ground state occupation (93% fidelity) and realize mechanical squeezing of -2.7 dB below

zero-point-fluctuation. To directly measure the quantum-state lifetime, we observe the free

evolution of the phase-sensitive squeezed state for the first time, preserving its non-classical

nature over milli-second timescales. Such ultra-low quantum decoherence not only increases

the fidelity of quantum control and measurement of macroscopic mechanical systems, but

may equally benefit interfacing with qubits (Gely and G. A. Steele, 2021a; Pechal, Arrangoiz-

Arriola, and Safavi-Naeini, 2018), and places the system in a parameter regime suitable for

tests of quantum gravity (Gely and G. A. Steele, 2021b; Y. Liu, Mummery, et al., 2021).

7.1 Quantum decoherence

The decoherence of a mechanical oscillator induced by the interaction with its environment

conceals macroscopic quantum phenomena and limits the realization of mechanical oscillator-

based quantum protocols (Marinković et al., 2018; Fiaschi et al., 2021; Wallucks et al., 2020;

Kotler et al., 2021; M. Rossi et al., 2018; R. D. Delaney et al., 2019; Mirhosseini, Sipahigil, et al.,

2020b). The quantum decoherence can be characterized with two independent rates: the

thermal decoherence rate (Γth = (nth
m +1)Γm, where nth

m is the thermal bath occupation and

Γm is the bare damping rate), which describes the rate at which phonons are exchanged with

the thermal bath, and the pure dephasing rate (Γϕ), caused by the mechanical frequency

fluctuations, i.e. phonon-number conserving interactions with the environment (Gardiner,

Zoller, and Zoller, 2004).
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Table 7.1: The comparison of the longest measured mechanical quantum state lifetime in
various platforms.

Platform Thermal decoherence Dephasing Quantum state lifetime

Optomechanical crystals
(MacCabe, Science 2020)

0.1 Hz 4 kHz 130µs

Dissipation-diluted
Si3N4 membranes
(Rossi, Nature 2018)

220 Hz Not measured <0.7 ms

Levitated particles
(Reported in several
works)

∼1 kHz Not measured <100 µs

Circuit optomechanics
(Reed, Nature Physics
2017)

1 kHz Not measured 140 µs

HBAR-Qubit
(von Lüpke, Nature
Physics 2022)

2 kHz ∼1 kHz ∼100 µs

This work 20 Hz 0.09 Hz 7.7 ms

Even though the lowest thermal decoherence has been achieved in optomechanical crystals

at mK temperature (Γth/2π≃ 0.1 Hz), such systems experience a large dephasing (Γϕ/2π≃
4 kHz), limiting their quantum coherence (MacCabe et al., 2020). Soft clamped dissipation

diluted Si3N4 membranes (M. Rossi et al., 2018) and levitated particles (Magrini et al., 2021;

Tebbenjohanns et al., 2021) are other examples of optomechanical platforms interfacing with

light, which achieved thermal decoherence rates of O (1 kHz), but support limited optome-

chanical protocols as they operate in the non-resolved-sideband or cavity-free regimes, or

suffer from optical heating (Delić et al., 2020; Piotrowski et al., 2023).

One of the most widely and successfully used optomechanical platforms is microwave super-

conducting circuit optomechanics (J. D. Teufel, Donner, D. Li, et al., 2011), which exhibits large

optomechanical coupling in the resolved-sideband regime, and can be integrated with super-

conducting qubits (A. Reed et al., 2017; A. Clerk et al., 2020). These circuits have been used

for numerous advances including mechanical squeezing (Wollman et al., 2015; Pirkkalainen,

Damskägg, et al., 2015; Lecocq, Clark, et al., 2015), entanglement (Kotler et al., 2021; C.

Ockeloen-Korppi et al., 2018; Palomaki, J. Teufel, et al., 2013), non-classical state storage (A.

Reed et al., 2017; Palomaki, Harlow, et al., 2013), and non-reciprocal circuits (Bernier et al.,

2017). However, it has been a challenge to achieve a high quantum coherence in this platform

- state-of-the-art decoherence rates are O (1 kHz) (Palomaki, Harlow, et al., 2013). Enhancing

the quantum coherence in such systems improves the fidelity of quantum optomechanical

protocols (Wallucks et al., 2020; Pechal, Arrangoiz-Arriola, and Safavi-Naeini, 2018; Gely and
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G. A. Steele, 2021a) and may equally benefit future tests of quantum mechanics (Fiaschi et al.,

2021; Marinković et al., 2018; Gely and G. A. Steele, 2021b; Y. Liu, Mummery, et al., 2021).

While some attempts (Seis et al., 2022; Y. Liu, Q. Liu, et al., 2021) have been made to integrate

ultra-coherent soft clamped Si3N4 membranes (Tsaturyan et al., 2017) with superconduct-

ing circuits, these hybrid systems have been compounded by insufficient optomechanical

coupling, resulting in unwanted cavity heating.

Here we demonstrate a circuit optomechanical platform which simultaneously realizes an

ultra-low quantum decoherence, i.e. both thermal decoherence and dephasing, while ex-

hibiting an efficient optomechanical coupling for quantum control and measurement. By

observing free evolution of the prepared ground state as well as squeezed state we report a

thermal decoherence rate of 20.5 Hz (corresponding to 130 quanta/sec motional heating rate)

and a pure dephasing rate of 0.09 Hz, showing the quantum decoherence is dominated by

the thermal decoherence, comparable with motional decoherences achieved in trapped ion

systems in high vacuum (Leibfried et al., 2003), where the thermal decoherence is typically

O (10 Hz), while the dephasing rate reaches O (100 Hz) (Gaebler et al., 2016).

7.2 Ultra-coherent circuit optomechanical platform

We develop a nanofabrication process based on a silicon-etched trench (see chapter 4), which

enables us to significantly enhance the mechanical quality factor, Qm. Figure 7.2a shows a

vacuum gap capacitor with a top plate suspended on a circular trench with a gap size of 180

nm. The capacitor is shunted by a spiral inductor (Figs. 7.2b and c), forming a microwave LC

resonator with a frequency ofωc/2π = 5.55 GHz and a total decay rate of κ/2π = 250 kHz which

is inductively coupled to a waveguide (Fig. 7.2f). This superconducting circuit is operated in a

dilution fridge with ∼ 11 mK base temperature. The flat geometry of the top plate (Figs. 7.2d

and e) ensures minimal clamp and radiative mechanical losses, as well as stress relaxation in

the aluminum thin-film. A mechanical ring-down measurement (Fig. 7.2h) clearly exhibits the

extremely low dissipation rate of Γm/2π = 45 mHz for the fundamental drumhead mode with a

frequency of Ωm/2π = 1.8 MHz, corresponding to Qm = 40×106. This can be explained by the

loss dilution factor (Schmid et al., 2011) estimated to be DQ ≃ 100 from finite element method

(FEM) simulation for such a flat drumhead as shown in Fig. 7.2h top inset (see Sec.3.2.1 for

detailed information). The single-photon optomechanical coupling rate is measured to be

g0/2π = 13.4±0.5 Hz (see Sec.6.3). We note that lower gap sizes lead to higher g0 values, but

not implemented in this work. Furthermore, the frequency fluctuation is observed below

0.1 Hz - inferred as an upper bound for dephasing- by measuring the power spectral density

(PSD) of a thermomechanical sideband averaged over more than an hour and subtracting a

measurement resolution bandwidth of 1 Hz (Fig. 7.2h bottom inset, see Sec.5.2.5 for more

information).

The summary of system parameters characterized or measured in this experiment is shown in

table 7.2.
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Figure 7.2: Ultra-coherent circuit optomechanics. a, False colored SEM image of a mechani-
cally compliant parallel plate capacitor. b, A microwave superconducting LC resonator consist-
ing of the capacitor shunted by a spiral inductor. c, Magnified image showing a silicon-etched
trench, inductor air-bridges, and the galvanic connection. d, Focused ion beam cross-section
of a test capacitor –with a higher gap size than the main device– before removing a SiO2

sacrificial layer, where Pt is used as the FIB protective layer. e, Schematic cross-section of
the suspended capacitor over the trench. f, Mode diagram of an optomechanical system. κ0

and κex are internal loss and external coupling rates of the cavity respectively. (g, Equivalent
circuit diagram of the system. h, Ring-down trace, showing the energy decay of the mechanical
oscillator with a rate of Γm/2π = 45 mHz. The red line is the exponential fit. The top inset
shows the FEM simulation of the fundamental mechanical mode of the drum. The blue line in
the bottom inset shows the averaged PSD of the mechanics with 1 Hz measurement resolution
bandwidth (gray line), indicating the frequency instability of less than 0.1 Hz.

7.2.1 Fabrication technique

A comprehensive discussion on the nanofabrication process we developed for circuit optome-

chanics can be found in chapter 4. In summary, We define a trench in the substrate containing
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Table 7.2: System parameters

Parameter Symbol Value

Microwave cavity frequency ωc 2π · 5.5 GHz
Microwave cavity linewidth (κex +κ0) κ 2π · 250 kHz
Microwave cavity external coupling rate κex ∼ 2π · 200 kHz
Microwave cavity internal loss rate κ0 ∼ 2π · 50 kHz
Mechanical frequency Ωm 2π · 1.8 MHz
Mechanical bare damping rate Γm 2π · 45 mHz
Mechanical quality factor Qm 40 ×106

Single-photon optomechanical coupling rate g0 2π · 13.4 Hz
Thermal decoherence rate of mechanical oscillator Γth 2π ·20.5 Hz
Pure dephasing rate of mechanical oscillator Γϕ 2π ·0.09 Hz

the bottom plate of the capacitor. The trench is then covered by a thick SiO2 sacrificial layer,

which inherits the same topography as the layer underneath. To remove this topography and

obtain a flat surface, we use chemical mechanical polishing to planarize the SiO2 surface. We

then etch back the sacrificial layer down to the substrate layer and deposit the top Al plate of

the capacitor. We release the structure by Hydrofluoric acid vapor etching of SiO2. At cryogenic

temperatures, the high tensile stress ensures the flatness of the top plate. This will guarantee

that the gap size is precisely defined by the depth of the trench and the thickness of the bottom

plate and reduces the clamp losses in the mechanical oscillator.

We note that we did not systematically investigate the minimum gap size that can be achieved

using this process, but observed a lower successful release rate (in the HF vapor etching step)

for gap sizes below 100 nm most probably due to the van der Waals force between two plates

or water formation during the release step. Increasing the thickness of the top layer, reducing

the radius, and decreasing the HF release etch rate (lowering the pressure and increasing

the etching time) may help to increase the release success rate. In addition, the compressive

room temperature stress of the top layer of the aluminum thin film helps the buckling of

the drumhead and facilitates the release. This thermally induced deposition stress can be

controlled by evaporation rate and temperature. Optimizing the release process using the

methods mentioned above combined with enhancing the CMP planarization may allow us

to achieve much lower effective gap sizes down to the ultimate limit of the roughness of the

top and bottom aluminum films (in the order of a few nanometers). It is worth mentioning

that the fabrication-induced disorder in identically designed LC circuits using optical direct

laser lithography is measured below 1% for mechanical frequencies and 0.5% for microwave

frequencies (Youssefi et al., 2022).
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Figure 7.3: High-fidelity optomechanical ground-state cooling. a, Frequency landscape for
optomechanical cooling and sideband asymmetry measurement. The Stokes and anti-Stokes
sideband powers are proportional to nm +2nc +1 and nm −2nc respectively. b, Simplified
experimental setup for optomechanical cooling. c, An example of the PSD of the microwave
cavity thermal emission measured at C = 6400 on top of the noise floor of 1+nadd. d, PSD of
optomechanical sidebands scattered from the cooling pump when two probes are off. The
black line shows the Lorentzian fit. e PSD of optomechanical sidebands scattered from red
and blue probes. f, Measured occupation of the mechanical (violet dots) and microwave (red
dots) modes as a function of the cooperativity when the two probes are off. The shaded area
shows theoretically expected phonon occupation in the range of system parameters errors.
The inset shows the measured powers of the Stokes (blue) and anti-Stokes (red) sidebands
generated, Pb and Pr, by the probes, exhibiting high quantum efficiency of the readout chain.

7.3 High-fidelity optomechanical ground state cooling

The extremely high mechanical quality factor, together with the sufficient optomechanical

coupling, enables us to perform an effective optomechanical sideband cooling (J. D. Teufel,

Donner, D. Li, et al., 2011) to prepare the mechanical oscillators in its quantum ground

state with high fidelity. As schematically shown in Fig. 7.2g, in the resolved-sideband regime,

where the quantum back-action does not influence the final phonon occupation (Aspelmeyer,

T. J. Kippenberg, and Marquardt, 2014), i.e., (κ/4Ωm)2 = 0.001 ≪ 1 in our case, the phonon

occupation of the mechanical oscillator in the presence of a cooling pump red-detuned by
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Ωm from the cavity frequency is given by

nm =
nth

m

1+C
+ C

1+C
nc, (7.1)

where C = 4npg 2
0 /(κΓm) is the optomechanical cooperativity with the intracavity pump pho-

ton number np and nc = κ0nth
c /κ is the cavity thermal photon number induced by a finite loss

rate of κ0 to an intrinsic photon bath with nth
c . The strong cooling pump may heat up the

intrinsic photon bath occupation and consequently nc, which normally imposes the minimal

achievable phonon occupancy in the large cooperativity limit, i.e., C ≫ 1 (J. D. Teufel, Donner,

D. Li, et al., 2011). We discovered that the thin native oxide layer in the galvanic connection be-

tween top and bottom layers (shown in Fig. 7.2c) is the dominant source of such cavity heating,

which has been ubiquitous in all microwave optomechanical experiments. We significantly

reduced the heating by removing the oxide to achieve nc ∼ 0.05 quanta at high cooperativities

(see Sec.6.4 for details of the characterization procedure and Sec.4.2.10 for fabrication details).

To reliably characterize the phonon occupation close to the ground state, we use optomechan-

ical sideband asymmetry (Weinstein et al., 2014) as an out-of-loop calibration. As shown in

Fig. 7.3a, we apply a strong cooling pump, and two weak, blue- and red-detuned, probes with

balanced powers to generate Stokes and anti-Stokes optomechanical sidebands, respectively,

on the cavity resonance with a few kHz spacing to individually measure them. Figure 7.3b

shows the simplified experimental setup, where a Josephson traveling wave parametric ampli-

fier (JTWPA) (Macklin et al., 2015) is used to amplify microwave signals with an added noise of
1
2 +nT

add ≃ 1
2 +0.3 quanta and sufficient gain of GT = 25 dB to suppress the classical noise domi-

nated by the HEMT amplifier (nH
add ≃ 8), enabling a nearly quantum-limited measurement of

thermomechanical noise spectrum with an effective added noise of 1
2 +nadd ≃ 1

2 +0.9 (see the

calibrated noise floor in Fig. 7.3c). Figures 7.3c and e show the measured thermomechanical

noise spectrum of the cavity thermal emission, as well as the Stokes and anti-Stokes sidebands,

which used for obtaining their powers, expressed by Pc, Pb, and Pr, respectively, by fitting a

Lorentzian to the PSD of the sidebands. While the sideband asymmetry may allow us to per-

form the calibration-free measurement of nm, a finite cavity heating distorts the asymmetry,

i.e., Pb ̸∝ nm +1 and Pr ̸∝ nm, preventing us from extracting nm without the prior knowledge

of nc (Weinstein et al., 2014). Nevertheless, we are able to simultaneously extract both nc and

nm without any calibration of the measurement chain by analytically obtaining them from the

two sideband powers normalized by the cavity thermal emission power, expressed by

Pb

Pc
=
Γb

κ

nm +1+2nc

nc
and

Pr

Pc
=
Γr

κ

nm −2nc

nc
, (7.2)

where Γr(Γb) is the optomechanical (anti-)damping rate of the red (blue) probe. Importantly,

this analysis enables us to calibrate the scaling factor between the actual occupations and the

measured powers, which can be used to directly extract nc and nm independently from the

cavity thermal emission and the sideband induced by the cooling pump, even when the two

probes are off – therefore avoiding the quantum back-action induced by the blue probe and

128



A squeezed mechanical oscillator with milli-second quantum decoherence Chapter 7

an additional cavity heating (see Sec.2.2 for theoretical details).

Using the PSDs of the thermomechanical sideband from the cooling pump (Fig. 7.3d) and the

cavity thermal emission when two probes are off, we thus extract nc and nm as a function of

the cooling pump cooperativity, as shown in Fig. 7.3f. The result shows a high-fidelity ground

state cooling down to n(min)
m = 6.8(±0.9)×10−2 quanta (93% ground state occupation which is

−8.7 dB of the zero-point energy), mainly limited by the cavity heating.

7.3.1 Detailed discussion on the sideband asymmetry calibration

To characterize the phonon occupation cooled by a red-detuned pump in a continuous-

wave measurement, we use the sideband asymmetry measurement (Weinstein et al., 2014)

as an out-of-loop calibration, where two balanced probes red- and blue-detuned by the

mechanical frequency are applied, and the thermomechanical sideband signals are measured

(Fig. 7.4a). This scheme requires quantum measurement of the noise power spectrum density

of the output signals from the cavity. Pre-amplifying the weak signals in a quantum-limited

manner at the cryogenic temperature allows us to realize such a quantum measurement.

Therefore, we amplify the output signals using a JTWPA operated in a nearly quantum-limited

phase-insensitive manner and measure them classically at room temperature (see Sec. 7.6.1

for the detailed experimental setup). The total microwave measurement chain, including

propagation losses, the gain and added noise for each amplifier, and the detection noise, can

be characterized by only two parameters, an effective added noise (nadd) and a scaling factor

(G). Using these two parameters, the measured noise power spectrum density is described as

S̄′(ω) = G

[
S̄(ω)+ 1

2
+nadd

]
, (7.3)

where S̄(ω) is the noise power spectrum density from the device, which is described in

Eqs. (2.21)–(2.27). Note that the 1/2 quanta added noise is inevitable even with an ideal

phase-insensitive amplification process, and is distinguished from nadd that may be induced

by any kinds of imperfections, such as propagation losses and amplification noises. Namely,

the ideal measurement of the noise power spectral density is realized by nadd = 0 in our

definition. In the sideband asymmetry measurement with a cooling pump, there are three

thermomechanical sideband peaks and one thermal cavity emission peak in the full noise

power spectrum density. By integrating each Lorentzian noise peak after subtraction of the

corresponding noise floor, we can obtain the photon flux for the respective peak, which is
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analytically given by

Pp = Gηκ
[

2πΓp
opt(nm −2nc)

]
, (7.4)

Pr = Gηκ
[

2πΓr
opt(nm −2nc)

]
, (7.5)

Pb = Gηκ
[

2πΓb
opt(nm +1+2nc)

]
, (7.6)

Pc = Gηκ [2πκnc] , (7.7)

where Pp, Pr, and Pb are the noise photon fluxes of the sidebands induced by the cooling pump

and the red- and blue-detuned probes respectively, and Pc is the noise photon flux from the

cavity. Here, the collection efficiency of the cavity is defined as ηκ = κex/κ. For convenience,

we normalize the photon fluxes by the corresponding rates and define the scaled phonon and

photon numbers as

Np = Pp/(2πΓp
opt) = Gηκ (nm −2nc) , (7.8)

Nr = Pr/(2πΓr
opt) = Gηκ (nm −2nc) , (7.9)

Nb = Pb/(2πΓb
opt) = Gηκ (nm +1+2nc) , (7.10)

Nc = Pc/(2πκ) = Gηκ nc. (7.11)

Note that Γp
opt, Γ

r
opt, Γ

b
opt, and κ can be determined from independent experiments, allowing

us to experimentally obtain all the scaled occupation, Np, Nr, Nb, and Nc. Furthermore, we

can obtain the noise floor of the power spectrum density, which is described as

Nfloor = G(1+nadd). (7.12)

Here, our task is to extract the four unknown parameters, nm, nc, G , and nadd from Eqs.

(7.8)–(7.12) including the experimentally accessible parameters, Np, Nr, Nb, Nc, and Nfloor.

Given the fact that Np and Nr are equivalent, we have four independent equations and four

unknown parameters, enabling us to analytically obtain the solutions for the four unknown

parameters. This shows that the sideband asymmetry measurement is useful even when there

is a squashing (or a fake asymmetry) in the thermomechanical sideband signals induced by

the cavity heating, i.e., when nc > 0.

For our experiment, there is a Fano effect in the cavity reflection spectrum, preventing us from

reliably determining the collection efficiency ηκ. Nevertheless, we find that it is still possible

to extract the three unknown parameters nm, nc, and the effective scaling factor Gηκ from the

three equations, Eqs. (7.10), (7.11) and (7.9). This is because the collection efficiency effectively

modifies only the scaling factor in the measurement chain for all the signals emitted from

the cavity [see Eqs. (7.8)–(7.11)]. By using Eqs. (7.9), (7.10), and (7.11), we have the analytical
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solutions described as

nm =
RΓ(Nr +Nb)+2(RN +RΓ)Np

(RN −RΓ)(Nr +Nb)−4(RN +RΓ)Np
(7.13)

nc =
RN nm −RΓ(nm +1)

2(RN +RΓ)
(7.14)

Gηκ =
(Nr +Nb)/2

nm +1/2
, (7.15)

where we define RN = Nb/Nr and RΓ = Γb
opt/Γ

r
opt. Note that we use Np instead of Nr in our

analysis since Np can be obtained with a higher signal-to-noise ratio for a high cooling pump

power.

It is known that there is a quantum-backaction induced by the blue-detuned probe that may

dominantly heat the mechanical oscillator in the sideband asymmetry measurement even

when the red- and blue- detuned probes are perfectly balanced (see Eq. (2.17)). Also, the two

probes may induce an additional heating effect on the cavity, which limits the lowest phonon

occupancy achievable by sideband cooling.

Here we propose to characterize the phonon occupation cooled by a cooling pump without

using the two probes used for the sideband asymmetry measurement. In this case, the

measured noise power spectral density contains the thermomechanical sideband induced by

the cooling pump and the cavity thermal emission. Thus, the photon fluxes of the sideband

and the cavity emission, Pp and Pc, can be obtained independently by integrating each peak.

Then, we obtain the scaled phonon and photon numbers by normalizing the photon fluxes by

the corresponding emission rates, which are analytically described as

Np = Pp/(2πΓp
opt) = Gηκ (nm −2nc) (7.16)

Nc = Pc/(2πκ) = Gηκ nc. (7.17)

The key idea is that we use the effective scaling factor, Gηκ, which has already been calibrated

in a reliable way based on the sideband asymmetry measurement. Importantly, note that we

can experimentally confirm that the effective scaling factor does not depend on how strong

total power is applied to the device in our measurement. With Gηκ, we can first obtain the

thermal cavity photon number as

nc =
Nc

Gηκ
. (7.18)

Using nc, we then obtain the phonon occupation as

nm =
Np

Gηκ
+2nc. (7.19)
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Figure 7.4: Sideband asymmetry experiment a, Frequency scheme of the sideband asymmetry
experiment. b, c, An example of cavity emission and optomechanical sidebands measured
for C = 1270. The power of each signal is extracted by Voigt function fitting as shown by
black lines. d, Calculated values of Gηκ for different cooling cooperativities. The solid line
shows the average of the flat part of the plot which is used as the global calibration factor.
This value is in good agreement with the calibration method based on SNR improvement of
JTWPA. Error bars are corresponding to standard deviations. e, Calibrated photon and phonon
occupations of the cavity and mechanics respectively for both cases of probes on and off. Error
bars are corresponding to standard deviations. The shaded area shows theoretically expected
occupations in the range of system parameters errors.

7.3.2 Experimental details of the sideband asymmetry measurement

In the experiment, we set the optomechanical damping and anti-damping rates of the bal-

anced probes to Γr
opt/2π = Γb

opt/2π = 12.9 Hz, inducing sidebands with frequency detuning

of δr/2π = 0 and δb/2π = 10 kHz at the cavity frequency. The cooling pump is applied to

cool down the mechanical oscillator and generate the sideband with δp/2π = 25 kHz, and its

power is swept up to the maximum output power of the microwave source, corresponding to

cooperativity of C = 8000.

For the calibration based on the sideband asymmetry measurement, we apply the cooling

pump together with the red- and blue-detuned balanced probes. Figures 7.4b and c show the

measured noise power spectrum density of the cavity thermal emission and the respective

optomechanical sidebands. The power of the cavity thermal emission is obtained as the area of

a Lorentzian fitted to the measured spectrum density, while the power of each optomechanical

sideband is obtained by fitting a Voigt function (a convolution of a Lorentzian with a Gaussian

filter with a 1 Hz resolution bandwidth) to the spectrum density and extracting the area of the
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Lorentzian. Note that the residual imbalance of the probe powers (less than 2%) is directly

measured and compensated in the data analysis. Using the obtained powers together with

Eqs. (7.13)–(7.15), we obtain and show the scaling factor Gηκ as a function of the cooling

cooperativity in Fig. 7.4d. We find that there is an unknown heating effect on the cavity (see the

cavity occupation with the two probes in Fig. 7.4e) when the cooling pump is nearly balanced

with the blue probe, which distorts the scaling factor Gηκ. Nevertheless, we reliably obtain the

scaling factor to be Gηκ = 0.21(±0.03) [fW/quanta·Hz], shown with the red line in Fig. 7.4d, by

using a cooperativity region where the heating effect disappears when the cooling pump is

sufficiently large (C > 2000).

We use ringdown in the optomechanical cooling experiment to verify that the dynamical

back-actions of the balanced probes are negligible compared to the cooling pump. This is

confirmed by comparing the linewidth of the measured PSD of optomechanical sidebands

when probes are on and off with the values from the ringdown experiment. As shown in

Fig. 7.5e, the agreement between these three values of the total damping rate ensures that

the two probes are well balanced. Moreover, we can also confirm that the optomechanical

coupling still behaves linearly for higher cooling cooperativities.

5.0 10.0 15.0
Cooling pump nominal power [dBm]

10

100

PSD of Cooling pump with probes
PSD of Cooling pump alone
Ring down
Linear fit

Figure 7.5: Comparing mechanical linewidth from ringdown and PSD. Effective mechanical
damping rates versus nominal source powers in the optomechanical cooling experiment
(measured in different room temperature setup). Mechanical linewidth is measured directly
by ringdown (green) and by fitting to the measured PSD f the cooling pump’s sideband when
sideband asymmetry probes are on (magenta) and off (red). The fact that extracted linewidths
are the same in three experiments verifies that the effective dynamical back action of balanced
probes is negligible compared to the cooling pump.

We ensure sufficient attenuation in the input line, therefore we can assume that the input

noise from the waveguide corresponds to the vacuum noise, regardless of the amount of input

pump power (This assumption is used in the theoretical derivations in Sec.2.2). This can be

experimentally confirmed by the fact that there is no significant dip on the noise floor of the
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power spectral density at the cavity frequency, showing that the effective temperature of the

external bath is equal to the intrinsic bath temperature that can be safely assumed to be zero

when a strong pump field is not applied. Furthermore, there is no significant increase in the

noise floor even when stronger pump fields are applied.

We experimentally confirm that the gain and SNR improvement of the JTWPA for a weak

coherent tone is not varying for different cooling powers, with and without the two probes,

ensuring the scaling factor Gηκ is constant for the entire measurements. Using the well-

calibrated Gηκ, we can therefore directly extract the microwave and mechanical occupations

from the cavity thermal emission and the optomechanical sideband induced by the cooling

pump respectively by using Eqs. (7.18) and (7.19). Figure 7.4e shows both the extracted

occupations when probes are on and off. Due to additional heating effects induced by the two

probes, the cavity occupation with the probes is higher than that without the probes, which

limits the minimum phonon occupation that can be achieved by sideband cooling. Here, we

obtain the minimal phonon occupation to be nm = 6.8(±0.9)×10−2 quanta when the probes

are switched off, which is approaching the limitation imposed by the cavity heating effect.

It is worth mentioning that the power spectral density of sidebands scattered from the red

probe or the cooling pump can show a dip, instead of a peak, when nm −2nc < 0. As shown

in Fig. 7.6d, a Lorentzian dip of the cooling pump sideband is indeed observed for C = 6400,

implying that the mechanical occupation is reaching the minimum limit imposed by the cavity

heating.

Furthermore, using Eq. (7.12), we determine the effective added noise of the microwave mea-

surement chain to be nadd = 0.9(±0.2) quanta in agreement with the independently calibrated

added noise using the SNR improvement of the JTWPA discussed in Sec. 5.3.

7.4 Measurement of motional heating rate

After preparing a high-fidelity ground state with optomechanical cooling, we directly measure

the thermal decoherence by recording the thermalization of the mechanical oscillator out of

the ground state using a time-domain protocol (Fig. 7.6b), where we first prepare the ground

state, and leave the system to freely evolve for a certain time of τev. Using optomechanical am-

plification technique with a blue-detuned pump (Palomaki, J. Teufel, et al., 2013; R. D. Delaney

et al., 2019), we intrinsically amplify the mechanical motion by ∼ 50 dB with a minimal added

noise, and measure both quadratures of motion encoded in a generated optomechanical

sideband signal (Fig. 7.6a). Repeating this pulse sequence allows us to capture the quadrature

distribution of the mechanical state, realizing quantum-state tomography (Fig. 7.6d). As

shown in Fig. 7.6c, we are able to precisely calibrate the amplification process using different

phonon occupations as an input state, which are well-calibrated by the sideband asymmetry

measurement, resulting in nopt
add = 0.80±0.09 quanta.

Figure 7.6d shows examples of the measured quadrature distributions at different evolution
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Figure 7.6: Recording the motional heating rate out of the quantum ground state.
a, Schematic diagram showing optomechanical amplification process, where an initial me-
chanical state is amplified by Gopt with an added noise of 1

2 +nopt
add referred to input. b, Pulse

sequence for observing the thermalization of the ground state. c, Quadrature variance of the
optomechanical sideband signal, σ2, as a function of the prepared phonon occupation that is
calibrated by the sideband asymmetry measurement, enabling us to reliably determine Gopt

and nopt
add. d, Scatter plots of the measured quadratures of motion normalized by

p
Gopt for

different evolution times. The marginal histogram for each quadrature is shown by purple bars.
A Gaussian curve with the calculated variance is shown by thick blue lines, reproducing each
histogram. e, Extracted mechanical occupations as a function of the free evolution time. The
blue dots are experimental data with error bars while the red line is the exponential fit. The
right inset shows the same experiment for a short evolution time range, exhibiting a thermal
decoherence rate of Γth/2π = 20.5±0.6 Hz obtained from the linear fit.

times in units of
[p

quanta
]
. Figure 7.6e shows the free evolution from the ground state to the

thermal equilibrium. The exponential fit results in a bare dissipation rate of Γm/2π = 80 mHz

in the low phonon occupation regime, close to the value measured from the ring-down

experiment with nm > 107 (Fig. 7.2h). The right inset of the Fig. 7.6 e shows the thermaliza-

tion in shorter evolution times, where the thermal decoherence rate is directly measured as

Γth/2π = 20.5±0.6 Hz, corresponding to a phonon lifetime of T1 = 7.7 ms.

7.4.1 Optomechanical amplification measurement and calibration

To observe the thermal decoherence rate of our mechanical oscillator, we use a time-domain

protocol, where we first prepare the mechanical oscillator to either a vacuum state or a

squeezed state, let it freely evolve for a certain time (τev), and then measure the mechanical

quadrature by using the optomechanical amplification process induced by a blue-detuned

pump (A. Reed et al., 2017; R. D. Delaney et al., 2019) (see Sec. 2.3). We measure the optome-
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chanical induced amplification sideband signal and obtain the phase-insensitive amplified

mechanical quadratures. Repeating such a time domain protocol and collecting the measured

output microwave quadrature data (a pair of I and Q electrical quadratures in units of µV

extracted from each recorded time trace) allow us to construct the quadrature probability

density function (PDF) of the measured state and calculate its standard deviations, which in

case of a thermal (symmetric Gaussian) state are equal to each other σ2 = 〈I 2〉 = 〈Q2〉. Using

this intrinsic optomechanical amplifier, we achieve Gopt = exp(+τampΓamp) ≃ 50 dB gain in

the microwave optomechanical sideband signal where τamp = 22 ms and Γamp = 2π×85 Hz are

the blue pulse length and total optomechanical anti-damping rates, respectively. It is worth

to note that in each cycle, the length of the preparation (cooling or squeezing) pulse should

be long enough to damp the mechanics which was amplified in the previous amplification

sequence (Γprepτprep ≫ Γampτamp) to avoid instability of the time domain protocol. We set

the τprep > 100 ms to ensure ∼ 50 dB higher cooling rate than the amplification rate in the

sequence. After each sequence, we turn off all pulses for 10 ms to collect the traces from

the measurement device, which is also sufficient to thermalize the cavity and microwave

thermal bath to their initial states in the absence of pumps. The total repetition rate is around

5 sequences per second in our experiment, slightly varying based on the preparation time

needed for different cooling rates.

As discussed in the theory section (Sec. 2.3), the original mechanical state is added with

an effective noise referred to input, nopt
add, in the amplification process. The measured PDF

normalized with
p

Gopt shows the convolution of the quadrature PDF of the original state

(thermal or squeezed state) with the added noise of a Gaussian PDF. By calculating the average

of the standard deviations of both the mechanical quadratures, we can obtain the scaled

phonon occupation including the vacuum noises and the input-referred added noise in the

optomechanical amplification process. For a thermal state, the measured phonon occupation

is described by

σ2 =
〈I 2〉+〈Q2〉

2
= Gopt

(
nm + 1

2
+nopt

add +
1

2

)
, (7.20)

where nm ≥ 0 is the thermal phonon occupation of the prepared state, Gopt and nopt
add are the

conversion factor and the added noise in the optomechanical phase-insensitive amplification,

respectively. Note that the 1 quanta is the sum of the vacuum noise of the mechanical oscillator

and the added noise of the ideal phase-insensitive amplification. To precisely calibrate the

conversion factor and added noise of the amplification process, we prepare several different

thermal states which are independently calibrated with the sideband asymmetry experiment

based on continuous waves, and measure them through the optomechanical readout. Then,

we can relate the measured microwave variances, σ2, to the actual phonon occupation of the

prepared state, nm, by fitting a linear function to the variance as a function of the phonon

occupation (as shown in Fig. 7.6d). With this, we are able to determine the added noise to be

nopt
add = 0.80(±0.09) quanta and the conversion factor to be Gopt = 1.13± (0.04) [µV2/quanta],

respectively.
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Figure 7.7: Optomechanical amplification. a, The pulse sequence of optomechanical cooling
and amplification. A red-detuned pulse prepares the mechanical oscillator in its ground-state.
After leaving the state to freely evolve for τev, a blue-detuned pulse amplifies the thermalized
mechanical state to allow low-noise measurement of quadratures of motion. The sequence is
repeated (∼ 12,000 times) to extract the quadrature scatter plots. b, an example of the time
trace collected during the optomechanical amplification process. Both quadratures of the
microwave field corresponding to the optomechanical sidebands are exponentially growing
and being simultaneously recorded. One pair of I and Q is extracted from each trace. c, An
example of the scatter plot of measured quadratures. Marginal histograms verify the Gaussian
distribution.

7.5 Recording thermalization of squeezed mechanical state

Finally, we generate a quantum-squeezed state of our oscillator. Since the squeezed state is

a phase-sensitive quantum state, its free evolution is subject to the dephasing in the system.

Tracking its time evolution enables us to directly measure the quantum-state lifetime and

verify minimal dephasing in our mechanical oscillator. The ability to squeeze the mechanical

oscillator critically relies on the residual thermal occupation upon cooling, which in our case

is below 0.1 quanta, implying that strong squeezing below zero-point fluctuation is possible.

We use optomechanical dissipative squeezing technique (Kronwald, Marquardt, and A. A.

Clerk, 2013; Wollman et al., 2015; Pirkkalainen, Damskägg, et al., 2015; Lecocq, Clark, et al.,

2015) by simultaneously applying two red- and blue-detuned pumps symmetrically with

respect to the cavity frequency (Fig. 7.8b), and achieve 〈X 2
sq〉/ 1

2 = −2.7+1.4
−2.3 dB squeezing in one

quadrature of motion below the vacuum fluctuation and 〈X 2
a.sq〉/ 1

2 = 8.1+0.3
−0.3 dB anti-squeezing

in the other quadrature. These are obtained by subtracting the accurately calibrated nopt
add in

the optomechanical amplification (Figs. 7.8 a and c).

Figure 7.8d shows measured quadrature scatter plots of the prepared squeezed state and

its time evolution. We are able to record the free evolution of a prepared squeezed state

(Fig. 7.8d) and observe the decoherence of both the quadratures to the thermal equilibrium

(Fig. 7.8e). A slight difference is observed in the decoherence rates of the two quadratures,

(Γsq −Γa.sq)/2π = 1.1(±0.6) Hz. Comparing it with a numerical simulation allows us to char-

acterize the dephasing rate of Γϕ/2π = 0.09(±0.05) Hz in our platform (see sec.7.5.2), in
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Figure 7.8: Tracking the free evolution of a mechanical squeezed state. a, Pulse sequence for
recording the free evolution of a squeezed state. b, Frequency landscape of optomechanical
dissipative squeezing. c, Schematic diagram showing optomechanical amplification process of
an initially prepared squeezed state. d, The measured quadrature scatter plots for the initially
prepared squeezed state and its time evolution. The gray and black ellipses represent standard
deviation contours scaled by a factor of 2 (for better visualization) of the Gaussian density
function before (measured state) and after (inferred squeezed state) noise subtraction. Dashed
red circles indicate the same for the zero-point fluctuation (ideal ground state). e, Variance of
the squeezed (blue) and anti-squeezed (red) quadratures, relative to the zero-point fluctuation,
as a function of the free evolution time. The initial state shows −2.7+1.4

−2.3 dB squeezing and
8.1+0.3

−0.3 dB anti-squeezing. The blue and red solid lines are the linear fits, revealing a slight
difference in decoherence rates of two quadratures, corresponding to a pure dephasing rate of
Γϕ/2π = 0.09(±0.05) Hz.

agreement with the measured frequency fluctuation discussed earlier. We observe that the

variance of the squeezed quadrature remains below the zero-point fluctuation up to 2 ms,

demonstrating a significantly long quantum state storage time in a macroscopic mechanical

oscillator.

7.5.1 Generation and calibration of mechanical squeezed states

We use optomechanical dissipative squeezing technique to squeeze one quadrature of motion

below the zero-point-fluctuation (Kronwald, Marquardt, and A. A. Clerk, 2013; Wollman et

al., 2015; Pirkkalainen, Damskägg, et al., 2015). As shown in Fig. 7.9 a inset, simultaneously

applying two symmetrically red- and blue-detuned pumps from the microwave frequency

with optomechanical damping and anti-damping rates of Γr
opt and Γb

opt respectively results in

a beam-splitter interaction Hamiltonian:

Ĥint = −ℏG â† β̂ +H.c., (7.21)
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where β̂ =

√
Γr

opt

Γr
opt−Γ

b
opt

b̂ +
√

Γb
opt

Γr
opt−Γ

b
opt

b̂† is the Bogoliubov’s mode annihilation operator and

G =
p
κ/4

√
Γr

opt −Γb
opt is the coupling rate. This beam-splitter Hamiltonian allows us to reach

the ground state of the Bogoliubov operator, which is a squeezed state of motion with

〈X̂ 2
sq〉 =

1

2
e−2r , 〈X̂ 2

a.sq〉 =
1

2
e+2r , (7.22)

where tanh(r ) =
√
Γb

opt/Γ
r
opt. In practice, the non-zero occupation of the thermal bath prevents

us from reaching to such a pure squeezed state. A more comprehensive analytical derivation

on the purity of optomechanical squeezing is discussed by Kronwald et.al. (2013) (Kronwald,

Marquardt, and A. A. Clerk, 2013).

We use optomechanical amplification to measure quadrature PDF of the amplified state

(X̃1 = I /
p

Gopt, X̃2 = Q/
p

Gopt scaled to [
p

quanta] unit) as a convolution of the initial state

with the precisely calibrated Gaussian added noise during amplification as shown in Fig. 7.10a.

Subtracting the added noise from the variance of the scaled quadrature PDF results in the

squeezed and anti-squeezed quadrature variances of the input mechanical state for the op-

tomechanical amplification:

〈X̂ 2
sq,a.sq〉 = 〈X̂ 2

1,2〉−nopt
add −

1

2
. (7.23)

Figures 7.9a and b show the measured phonon occupation and quadratures of the gener-

ated squeezed state prepared with different blue pump powers. We used a damping rate of

Γr
opt/2π = 75 Hz. The optimal power of the blue pump for the thermalization of the squeezed

state is found 5 dB below the red pump, where the maximum quadrature squeezing is achieved,

as shown in Fig. 7.9b. Increasing the relative power of the blue pump results in optome-

chanical heating. In particular, when the power of pumps close to the balanced condition,

optomechanical instabilities, such as two-tone instability, will occur in the presence of a slight

frequency detuning (Shomroni, Youssefi, et al., 2019). With the optimal pump powers, we

obtain 〈X 2
sq〉dB = 10log10

(
〈X 2

sq〉/ 1
2

)
= −2.7+1.4

−2.3 dB squeezing of one quadrature of motion below

the vacuum fluctuation and 〈X 2
a.sq〉dB = 8.1+0.3

−0.3 dB anti-squeezing in the other quadrature, as

shown in Fig. 7.10b. The achieved squeezing value is close to the theoretical squeezing limit,

corresponding to 2〈X̂ 2
sq〉 =

√
(1+2nth

m)/C = −3.5 dB (Kronwald, Marquardt, and A. A. Clerk,

2013).

Afterward, we record the free evolution of the prepared squeezed state, as shown in Fig. 7.10c.

The marginal PDF of both the measured quadratures, as well as the noise-subtracted squeezed

and anti-squeezed mechanical quadratures are shown for different evolution times. One

quadrature of motion remains below the zero-point fluctuation up to 2 ms. At the longer

evolution times, the state is thermalized to an isotropic thermal state (Fig. 7.10d).

139



Chapter 7 A squeezed mechanical oscillator with milli-second quantum decoherence

a b

−9 −8 −7 −6 −5 −4 −3 −2 −1

1

2

3

4

5

6

7

8

−9 −8 −7 −6 −5 −4 −3 −2 −1
−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Figure 7.9: Optomechanical squeezing. a (inset), Frequency landscape for optomechanical
squeezing. two symmetrically detuned blue and red pumps with nominal powers of P src

b , P src
r

are applied to the cavity. a, Measured total phonon occupation versus the ratio between blue
and red pump powers. While the blue pump power increases, The system will be closer to the
optomechanical instability threshold. Error bars are corresponding to standard deviations.b,
Measured squeezed and anti-squeezed quadratures of motion versus the blue pump relative
power. The optimally selected squeezing point for the thermalization experiment is shown by
the green line. Error bars are corresponding to standard deviations.

7.5.2 Dephasing effect on thermalization of squeezed states

A mechanical squeezed state has a phase coherence between the Fock states, resulting in the

sensitivity to the pure dephasing. By observing the free evolution of such a phase-sensitive

state, we can characterize the pure dephasing rate of our mechanical oscillator. When the

mechanical state is initialized in an isotropic Gaussian state, such as the vacuum or thermal

states, the decoherence rates for the quadrature variances in all phases are identical regardless

of the amount of the pure dephasing. However, when the mechanical state is initialized in a

squeezed state, the decoherence rate of the quadrature variance in the squeezed axis is greater

than that in the anti-squeezed axis if the pure dephasing rate is finite. Thus, we can use this

property to extract the pure dephasing rate of the mechanical oscillator.

In the large phonon bath occupation limit (nth
m ≫ 1), which is the case for our experiment,

the free evolution of a mechanical oscillator with a pure dephasing is described by a master

equation,

d ρ̂

d t
=ΓthD[b̂]ρ̂+ΓthD[b̂†]ρ̂+2ΓϕD[b̂†b̂]ρ̂, (7.24)

where Γϕ is the pure dephasing rate, ρ̂ is the density matrix, and D[Ô]ρ = Ôρ̂Ô† − (Ô†Ôρ̂+
ρ̂Ô†Ô)/2 is the Lindblad dissipator. By calculating the time evolution of the density matrix,

we can numerically obtain (using the Python QuTiP package (Johansson, Nation, and Nori,

2012)) the time evolution of the quadrature variances and the phonon occupation as 〈X̂1(t )2〉 =

Tr[ρ(t )X̂ 2
1 ], 〈X̂2(t )2〉 = Tr[ρ(t )X̂ 2

2 ], and nm = 〈b̂†b̂〉, respectively. Note that we here consider only

a mechanical state with Tr[ρX̂1] = Tr[ρX̂2] = 0, e.g. a vacuum, thermal, and squeezed states.

The blue and red circles in Fig. 7.11a show the experimental results of the quadrature variances,
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Figure 7.10: Measurement of squeezing. a, Schematic diagram showing the prepared squeezed
state added with the input-referred noise of the amplification process. The measured state
has a quadrature density function proportional to the convolution of the initial state with the
added noise. Precise calibration of the Gaussian added noise allows us to extract the initial
state quadrature variances. b, Quadrature scatter plot for the initially prepared squeezed
state. The gray ellipse represents standard deviation contours scaled by a factor of 2 (for
better visualization) of the Gaussian density function. The green circle shows the same for
the measured ground state. The black ellipse shows the same for the noise-subtracted state
demonstrating the initial squeezing. The red dashed line shows the same for the zero-point
fluctuation (ideal ground state). c, Quadrature marginal histograms are shown by purple bars
and calculated Gaussian marginal density functions by thick blue lines verifying measurement
of Gaussian squeezed state. The red lines show the added noise-subtracted density functions
of the initial squeezed state. Insets depict the extracted squeezed state versus the zero-point
fluctuation. d, Phonon occupation of the squeezed state evolution in long time scales. The red
line shows the exponential fit. Error bars are corresponding to standard deviations.

〈X 2
sq〉 in the squeezed axis and 〈X 2

a.sq〉 in the anti-squeezed axis as a function of the free-

evolution time respectively, while the purple circles show the time evolution of the phonon

occupation, nm = (〈X 2
sq〉+〈X 2

a.sq〉)/2−1/2. Here, we define the decoherence rate as a slope of the

time evolution, i.e., Γsq =
d〈X 2

sq〉
d t , Γa.sq =

d〈X 2
a.sq〉

d t , and Γth = dnm
d t . By linearly fitting the results (see

the black dotted lines in Fig. 7.11a), the decoherence rates are found to beΓsq/2π = 17.7±0.7 Hz,

Γa.sq/2π = 16.5±0.6 Hz, and Γth/2π = 17.1±0.6 Hz. Furthermore, the difference between the

decoherence rates in the squeezed and anti-squeezed axes is obtained as (Γsq −Γa.sq)/2π =

1.1±0.6 Hz. Importantly note that the thermal decoherence rate can be obtained by observing
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the thermalization of a squeezed state, instead of the vacuum state, i.e., Γth = (Γsq +Γa.sq)/2,

enabling us to determine the pure dephasing rate from the difference between the decoherence

rates in the squeezed and anti-squeezed axes.

The sensitivity of a squeezed state to the pure dephasing depends on its squeezing level. To

accurately extract the pure dephasing rate, we therefore need to numerically determine the

initial squeezed state using the experimentally obtained quadrature variances, i.e., 〈X 2
sq〉 =

0.27±0.1 and 〈X 2
a.sq〉 = 3.27±0.2. We can consider the prepared squeezed state as a squeezed

thermal state, which is defined as SρthS†, where S = exp
[ r

2 (b̂2 − b̂† 2)
]

is a squeezing operator

with a squeezing parameter of r and ρth is a thermal state with an average phonon number

of nth. We can extract the thermal phonon number and the squeezing parameter as nth =√
〈X 2

sq〉〈X 2
a.sq〉−1/2 = 0.4±0.2 and r = −1

4 log
(
〈X 2

sq〉/〈X 2
a.sq〉

)
= 0.6±0.1.

Using the initial squeezed state, we calculate the time evolution of the quadrature variances

for different pure dephasing rates and obtain the difference between the thermal decoherence

rates of the squeezed and anti-squeezed variances. The green line in Fig. 7.11b shows the

numerical results of the thermal decoherence rate difference. As the dephasing rate increases,

the difference becomes larger. We compare the numerical results with the experimentally

obtained value, which are shown with the blue line. From this, we find that the pure dephasing

rate of our mechanical oscillator is found to be Γϕ/2π = 0.09±0.05 Hz.

Finally, we show the numerical results of the time evolution of the quadrature variances and

the phonon occupation with a dephasing rate of Γϕ/2π = 0.09 Hz in Fig. 7.11a (see the green

lines). The numerical results reproduce well the experimental ones.

7.6 Technical information on the experiment

7.6.1 Experimental setup and wiring

The experimental setup, including room temperature (RT) and cryogenic, can be seen in

Fig. 7.12. For the sideband cooling experiment, four sources are required: one for pumping

JTWPA near its stopband (Rohde & Schwartz, SGS100A) to activate a 4-wave mixing amplifi-

cation process, one strong pump for optomechanical sideband cooling (Rohde & Schwartz,

SMA100B), which is red detuned from the cavity, and two weak probes (Keysight, N518313) to

generate Stokes and anti-Stokes sidebands for sideband asymmetry calibration. All signals

from sources first go through a microwave filter cavity to remove the phase noise around the

cavity frequency (see Sec. 5.5). The reflected signal from the filter cavity will be divided in two

paths: one goes to the device in the fridge and the other one goes to a tone cancellation line,

which consists of a variable digital phase shifter (Vaunix, LPS-802) and attenuator (Vaunix,

LDA-602EH). The signal from the tone cancellation line will be combined with the TWPA input

line to realize a destructive interference and suppress strong optomechanical drives that satu-

rate the JTWPA (see Sec. 5.4). A coherent signal from the Vector Network Analyzer (VNA: Rohde

& Schwartz, ZND) is also combined with the input line to measure the microwave frequency
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Figure 7.11: Dephasing effect on the free evolution of a mechanical squeezed state. a, Quadra-
ture variances and average phonon number of a squeezed state as a function of the free-
evolution time. The blue, red and purple circles are the data for the quadrature variances in
the squeezed and anti-squeezed axes, and the average phonon number, respectively. The black
dotted lines are linear fits, while the green lines are the numerical simulation results. Error
bars are corresponding to standard deviations. b, The difference of the thermal decoherence
rates for the quadrature variances in the squeezed and anti-squeezed axes as a function of the
pure dephasing rate. The green line shows the numerical simulation results, while the blue
line is the experimentally obtained value. The shaded regions showing the errors, respectively.

response of the device. Using mechanical microwave switches (Mini-Circuits, MSP2T-18XL+),

we can redirect the main signal path to directly observe the frequency response of the filter

cavities and accurately tune them.

In time-domain experiments, where we observe the thermalization of the vacuum and

squeezed states, we use an additional microwave source, as a blue-detuned pump for optome-

chanical amplification (Rohde & Schwartz, SMA100B). The cooling pump and blue probe are

also used for generating thermal states or squeezed states. All microwave pulses are gener-

ated using ultra-fast solid state switches (Planar Monolithics Industries, P1T-4G8G-75-R-SFF)

with ∼ 50 ns rising/falling time, and are controlled with an arbitrary wave generator (AWG:

Tektronix, AFG325230). The output signal from the fridge divides in two parts using a hybrid

coupler: one part goes to the second port of the VNA to measure scattering parameters, and

the other part goes to the Electronic Spectrum Analyzer (ESA: Rohde & Schwartz, FSW). De-

pending on purposes, we use different modes of ESA: for measuring PSD, e.g. in the sideband

asymmetry experiment, we use frequency domain mode, for measuring signals in the time

domain e.g. optomechanical amplification experiment, we use I-Q analyzer mode, and for

measuring the ringdown of the mechanical oscillator, we use the zero span PSD measurement

mode. In the time domain experiments, the ESA is triggered by the AWG.

The device is mounted in the mixing chamber of the dilution refrigerator (BLUEFORS, LD250).

In the refrigerator, for both the input line to the device and the tone cancellation line, we use
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Figure 7.12: Detailed experimental setup. The black lines show the main signal path of the
control and readout. The brown lines show the tone cancellation and JTWPA pump path. The
gray lines show auxiliary paths used for filter cavity tuning. The solid-state switches are only
used in the time domain experiments.
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cryogenic attenuators, Eccosorb filters, and 18-GHz low pass filters. The reflected signal from

the device which is combined with the tone cancellation signal is amplified using a JTWPA

(provided by MIT Lincoln Lab), which is a nearly quantum-limited amplifier (Macklin et al.,

2015). Before the JTWPA, we use a cryogenic circulator (Low Noise Factory, LNF-CIC4-12A) to

remove reflections from JTWPA back to the device. We also use circulators after the JTWPA to

remove hot noise penetrating down from the higher temperature stages to the JTWPA. The

signal is then amplified using a High-Electron-Mobility Transistor (HEMT: Low Noise Factory,

LNF-LNC4-8C) at 4 Kelvin, followed by a Room Temperature Amplifier (RTA: Mini-Circuits,

ZVA-183-S+)

7.6.2 Full data of chip characterization

The circuit optomechanical device studied in this work is one of the 16 separate electrome-

chanical LC circuits fabricated on a 9.5 mm×6.5 mm chip (Fig.7.13). Those 16 LC resonators

follow the same design principle as shown earlier, but frequencies were multiplexed in a chip

in the range of 5-7 GHz and 1.5-2.5 MHz for both microwave and mechanical frequencies

respectively. This was done by changing the trench radius for mechanical frequency tuning,

and the capacitor bottom plate radius for microwave frequency tuning. All 16 LC circuits were

magnetically coupled to a micro-strip waveguide.

In Table 7.3, we provide the system parameters for all 14 independent electromechanical LC

resonators in a chip - we did not observe two LC resonators, most probably due to overlapping

their frequencies with the JTWPA stop-band. More than 50% of the resonators exhibit more

than 20×106 mechanical quality factor, which demonstrates a high yield in our new fabrication

process.

The total linewidth, intrinsic loss, and external coupling rates of each microwave cavity are

obtained by taking the VNA trace and applying a circle fit in the complex plane. For a few

microwave cavities, we could not reliably obtain the internal and external coupling rates due

to the Fano effect, which may be originated from the impedance mismatch. The microwave

cavity used in the main work (No. 2) is strongly over-coupled, while it suffers from the Fano

effect. Nevertheless, the total linewidth can be reliably determined by the circle fit even in the

presence of the Fano effect. Importantly note that all the calibration methods used in the main

work (e.g. sideband asymmetry experiment, optomechanical amplification and squeezing)

are independent of the absolute values of κ0 and κex, since our calibration method is based

on the total coupling rate (κ). As all the microwave cavities in the same chip are fabricated

together, we do not expect to observe a significant statistical deviation of the intrinsic loss

rates among them. Therefore, we can assume that the internal coupling rate of our device

is κ0/2π = 47±17 kHz, which is the average and the standard deviation of all the extracted

internal coupling rates.
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Table 7.3: Full characterization data of different resonances in a chip.

ωc/2π (GHz)
κ/2π
(kHz)

κex/2π
(kHz)

κ0/2π
(kHz)

Ωm/2π (MHz) Γm/2π (Hz) Qm (106)

1 5.30 610 - - 1.48 0.056 26.4
2∗ 5.55 250 - - 1.80 0.045 40.0
3 5.70 76 46 30 2.10 6.6 0.3
4 5.74 81 36 45 1.82 0.076 23.9
5 5.80 264 192 72 1.56 0.079 19.7
6 5.81 179 157 22 1.92 0.058 33.1
7 5.86 342 - - 1.63 0.040 40.8
8 5.92 125 91 34 1.96 0.085 23.1
9 6.09 288 232 56 1.70 5.88 0.3

10 6.12 528 456 72 1.74 0.07 24.9
11 6.20 221 162 59 1.77 0.05 35.4
12 6.25 137 103 34 2.24 0.30 7.5
13 6.36 360 - - 1.76 13.2 0.1
14 6.43 256 - - 1.83 31.0 0.1

* This resonator is used for all measurements in the main work.

Trench layer

Bottom Al layer

SiO2 opening

Top Al layer

a b

Figure 7.13: Chip layout of for the ultra-coherent electromechanical samples. a, The de-
signed layout of the chip used in the experiment. Each chip includes 16 separate frequency
multiplexed LC resonators as well as two dimer LCs which are not studied in this work. b,
magnification of the layout of one LC resonator. The color code explains different lithography
layers.
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8 Topological lattices realized in super-
conducting circuit optomechanics

Cavity optomechanics enables controlling mechanical motion via radiation pressure inter-

action (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014), and has contributed to the

quantum control of engineered mechanical systems ranging from kg scale LIGO mirrors to

nano-mechanical systems, enabling ground-state preparation (J. D. Teufel, Donner, D. Li,

et al., 2011; Chan, Alegre, et al., 2011), entanglement (Kotler et al., 2021; C. Ockeloen-Korppi

et al., 2018), squeezing of mechanical objects (Wollman et al., 2015), position measurements

at the standard quantum limit (J. D. Teufel, Donner, Castellanos-Beltran, et al., 2009), and

quantum transduction (Andrews et al., 2014). Yet, nearly all prior schemes have employed

single- or few-mode optomechanical systems. In contrast, novel dynamics and applications

are expected when utilizing optomechanical lattices (Peano et al., 2015), which enable to

synthesize non-trivial band structures, and have been actively studied in the field of circuit

QED (Carusotto et al., 2020). Superconducting microwave optomechanical circuits (J. D. Teufel,

Donner, D. Li, et al., 2011) are a promising platform to implement such lattices, but have been

compounded by strict scaling limitations. In this chapter, we show how to overcome this

challenge and demonstrate topological microwave modes in 1D circuit optomechanical chains

realizing the Su-Schrieffer-Heeger (SSH) model (Asbóth, Oroszlány, and Pályi, 2016; Ozawa

et al., 2019). Furthermore, we realize the strained graphene model (Pereira, Neto, and Peres,

2009; Naumis et al., 2017) in a 2D optomechanical honeycomb lattice. Exploiting the embed-

ded optomechanical interaction, we show that it is possible to directly measure the mode

functions of the hybridized modes without using any local probe (Underwood et al., 2016; H.

Wang et al., 2019). This enables us to reconstruct the full underlying lattice Hamiltonian and

directly measure the existing residual disorder. Such optomechanical lattices, accompanied by

the measurement techniques introduced, offers an avenue to explore collective (G. Heinrich

et al., 2011; Xuereb, Genes, and Dantan, 2012), quantum many-body (Ludwig and Marquardt,

2013), and quench (Raeisi and Marquardt, 2020) dynamics, topological properties (Peano et al.,

2015; Zangeneh-Nejad and Fleury, 2020) and more broadly, emergent nonlinear dynamics in

complex optomechanical systems with a large number of degrees of freedoms (Akram et al.,

2012; Sanavio, Peano, and Xuereb, 2020; Tomadin et al., 2012).
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8.1 challenges of realizing multi-mode optomechanical systems

The majority of optomechanical systems, which have probed classical as well as quantum

properties and dynamics, have utilized few-mode optomechanics, i.e., systems that employ

a small number of optomechanical degrees of freedom. Pioneering theoretical works have

predicted that significantly richer and novel dynamics can be accessed in optomechanical

lattices including topological phases of light and sound (Peano et al., 2015), collective (G.

Heinrich et al., 2011; Xuereb, Genes, and Dantan, 2012; Roque et al., 2017) and quench (Raeisi

and Marquardt, 2020) dynamics, quantum many-body dynamics (Ludwig and Marquardt,

2013) and entanglement (Akram et al., 2012), non-reciprocity (Sanavio, Peano, and Xuereb,

2020), reservoir engineering (Tomadin et al., 2012), and topological phonon transport (Ren

et al., 2020). To date, such optomechanical lattices have only been realized via mechanically

mediated coupling (Safavi-Naeini, Hill, et al., 2014) - similar to studies that employ mechanical

meta-materials (Yang et al., 2015). Indeed, while the coupling of mechanical oscillators for

acoustic metamaterials has been successfully achieved (Huber, 2016; Surjadi et al., 2019),

implementing optomechanical lattices has been a long-lasting challenge. Topological phonon

transport has recently been reported in optomechanical crystals (Ren et al., 2020), consist-

ing of coupled mechanical oscillators. However, site-by-site engineerable optomechanical

lattices have not yet been realized due to the stringent requirements on identical individual

optomechanical sites. To realize optomechanical lattices that include photon transport, it is

imperative that the disorder in the optical (or microwave) cavity is sufficiently small to enable

building lattice models.

Superconducting circuit optomechanical systems based on vacuum-gap capacitors (Cicak

et al., 2010) are a very promising platform to realize such lattices, and have been employed

in a wide range of experiments, including ground-state cooling (J. D. Teufel, Donner, D. Li,

et al., 2011), mechanical squeezing (Wollman et al., 2015), entanglement (C. Ockeloen-Korppi

et al., 2018; Kotler et al., 2021; Lépinay, C. F. Ockeloen-Korppi, et al., 2021) of mechanical

motion, dissipative quantum reservoir engineering (Toth et al., 2017), the realization of hybrid

qubit-mechanical systems (Palomaki, Harlow, et al., 2013; Pirkkalainen, Cho, et al., 2013; A.

Reed et al., 2017), as well as non-reciprocal microwave devices (Bernier et al., 2017). While

microwave planar resonators have been coupled and been used to create topological waveg-

uides (Mirhosseini, Kim, et al., 2018; Kim et al., 2021), it has to date not been possible to

realize optomechanical lattices in a similar fashion due to the technical challenge of reliably

fabricating multiple vacuum-gap capacitors, with identical mechanical and microwave prop-

erties. Here we overcome this challenge and demonstrate circuit optomechanical lattices. We

use them to implement a 1D chain with a topological band structure exhibiting topologically

protected edge states (Asbóth, Oroszlány, and Pályi, 2016; Ozawa et al., 2019), as well as a

2D honeycomb lattice realizing the strained graphene model with edge states (Pereira, Neto,

and Peres, 2009; Naumis et al., 2017; Ni et al., 2008; Rechtsman et al., 2013; Delplace, Ullmo,

and Montambaux, 2011). Using the on-site optomechanical interactions, we are able to per-

form a direct measurement of the collective microwave modeshapes and reconstruct the full
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Hamiltonian of such a multimode system, addressing an experimental challenge in large-scale

multimode superconducting circuits where only indirect approaches were performed by near

field scanning probes (Underwood et al., 2016), laser scanning microscopy (H. Wang et al.,

2019; Morvan et al., 2021), or dispersive coupling to qubits (Kim et al., 2021).

8.2 Multimode optomechanics in lattices
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Figure 8.1: Optomechanical lattices composed of superconducting circuit optomechanical
systems. a, Mode diagram of an optomechanical array with staggered mutual couplings
demonstrating the Su-Schrieffer-Heeger model. Electromagnetic and mechanical modes
are shown by blue and green circles correspondingly. b, Equivalent mode diagram in the
collective electromagnetic basis. The collective electromagnetic modes are coupled to all the
mechanical resonators by the effective optomechanical coupling rates which are proportional
to their energy participation ratio, ηk

i . c, The equivalent circuit representation of an optome-
chanical site. d, Red-detuned pumping on the lower sideband, generating thermomechanical
sidebands e, Microscope image of an optomechanical circuit with a mechanically compliant
capacitor. f,g, Modeshapes and energy levels of a 1D SSH chain versus mutual coupling rates
ratio. The optomechanical damping of mechanical oscillator i can be induced by sideband
driving collective electromagnetic mode k. Collective electromagnetic modeshape examples
of the two highest and lowest frequency modes as well as topological edge states shown in f
are calculated for J/J ′ = 0.5. h, Off-diagonal element ρ(k) of the bulk Hamiltonian for the SSH
model in the cases of the topological and trivial phases, respectively.

As shown in Fig. 8.1a, we first theoretically consider an arbitrary lattice composed of optome-

chanical systems, whereby electromagnetic modes are mutually coupled with coupling rates

Ji j . Each optomechanical system consists of a mechanical oscillator with a frequency Ωm,i

and an electromagnetic mode with a frequency ωc,i , coupled via radiation-pressure force with

a single-photon optomechanical coupling rate g0,i , where the photon-phonon interaction can

be induced by pumping the electromagnetic mode, leading to the effective optomechanical
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coupling rate g =
p

ncg0 (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014), enhanced by

the mean intracavity photon number nc (see Figs. 8.1c and d). Figure 8.1e shows the physical

realization of the optomechanical site in the microwave superconducting circuit platform,

consisting of an LC circuit with a mechanically compliant vacuum-gap capacitor (J. D. Teufel,

Donner, D. Li, et al., 2011). The Hamiltonian of such a lattice is described by

Ĥ/ℏ =
∑

i

(
ωc,i â†

i âi +Ωm,i b̂†
i b̂i + g0,i â†

i âi (b̂†
i + b̂i )

)
+∑

i ̸= j

(
Ji j â†

i â j + J j i â†
j âi

)
,

(8.1)

where âi and b̂i are the annihilation operators for the electromagnetic and mechanical modes

at site i , respectively. In the weak optomechanical coupling regime, the Hamiltonian of the

microwave subsystem is diagonalized by collective microwave modes, described as α̂k =∑
i ψ

k
i âi , where ψk

i is the normalized modeshape of collective microwave mode k at site i .

Using the collective mode basis, the total Hamiltonian is given by

Ĥ/ℏ =
∑
k
ω̃k

c α̂
†
k α̂k +

∑
i
Ωm,i b̂†

i b̂i

+∑
k,i

(
g0,i ·ηk

i

)
· α̂†

k α̂k (b̂†
i + b̂i ),

(8.2)

where ω̃k
c is the eigenfrequency of collective microwave mode k and ηk

i = |ψk
i |2 is the energy

participation ratio of collective microwave mode k at site i . As schematically shown in Fig. 8.1b,

each collective microwave mode is parametrically coupled to all the mechanical oscillators

with the weight of the corresponding participation ratio. Since each mechanical oscillator is

locally coupled to the collective microwave modes, the optomechanical interaction can be

used as a local probe to perform a microwave modeshape measurement.

When the coupling strengths are designed to be alternating along a 1D chain, the microwave

subsystem corresponds to a bosonic SSH chain (Asbóth, Oroszlány, and Pályi, 2016; Ozawa

et al., 2019). As shown in Fig. 8.1a, each unit cell consists of two optomechanical building

blocks with an intra-cell electromagnetic coupling rate of J , and is connected with an inter-cell

coupling rate of J ′. Solving the two-band Bulk Hamiltonian of an infinite-size SSH chain yields

upper and lower passbands (UPB and LPB). There are two topologically distinct phases, for

which the transition occurs when the band gap closes at J/J ′ = 1 (see Fig. 8.1g). For J < J ′, the

phase is topological, with two zero-energy modes emerging in the band gap when the SSH

chain is truncated to be a finite system. The zero-energy modes are spatially localized at the

edges of the chain, and are hybridized at both the edges for a disorder-free system. Figure 8.1f

shows examples of the modeshapes for a few modes from the UPB and LPB, and the two

zero-energy modes in the topological phase. The bulk-edge correspondence identifies the two

phases by the winding number, which is topologically protected (Asbóth, Oroszlány, and Pályi,

2016; Ozawa et al., 2019). The winding number is a bulk property, defined as the number of

times that the off-diagonal element ρ(k) of the two-band bulk Hamiltonian winds around the
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origin of the complex plane, i.e., a chain with a non-zero winding number is in the topological

phase, exhibiting the edge states (see Fig. 8.1h and more details in the following section).

8.3 Review on SSH model in a 1D bosonic chain

To demonstrate a topological property, we realize the 1D SSH model in our multimode optome-

chanical system. Here, we report the analysis of J. K. Asbóth, et al. (2011) (Asbóth, Oroszlány,

and Pályi, 2016) and discuss the topological aspects of the SSH model.

8.3.1 Band structure

The SSH model is constructed by a 1D chain of unit cells individually consisting of two sites

(A and B). The two sites in a unit cell are coupled to each other with a coupling strength of

J , while a unit cell is connected to adjacent cells with a strength of J ′, as shown in Fig. 8.2a.

To analyze the band structure, we consider a 1D SSH chain with a total cell number of N and

impose a periodic boundary condition on the chain. The Hamiltonian of such a chain is given

by

Ĥ =
∑
n

(
J |n,B〉〈n, A|+ J ′|n +1, A〉〈n,B |+h.c.

)
, (8.3)

where |n, A〉 and |n,B〉 denote a state vector at site A and B of unit cell n, respectively. For

convenience, the Hamiltonian is described by a tensor product of the intra-cell and inter-cell

subsystems, i.e.,

Ĥ =
∑
n

(
J |n〉〈n|⊗ σ̂++ J ′|n +1〉〈n|⊗ σ̂−+h.c.

)
, (8.4)

where |n〉 is a state vector of the inter-cell subsystem and σ̂+ = |B〉〈A| (σ̂− = |A〉〈B |) is a ladder

operator describing the intra-cell coupling. Based on Bloch’s theorem, we can diagonalize the

Hamiltonian of the inter-cell subsystem using a wavenumber basis, which is defined as

|k〉 =
1p
N

∑
n

e i kn |n〉, (8.5)

where k = 2πν/N (ν = 1,2, · · · , N ) is the wavenumber. Thus, the Hamiltonian can be rewritten

as

Ĥ =
∑
k
|k〉〈k|⊗

[
J σ̂x + J ′

(
σ̂+e i k + σ̂−e−i k

)]
. (8.6)

152



Topological lattices realized in superconducting circuit optomechanics Chapter 8

Then, the band structure of the 1D chain is obtained as the eigenenergy of the so-called ’bulk

Hamiltonian’ related to the intra-cell subsystem:

Ĥ(k) = 〈k|Ĥ |k〉 (8.7)

= J σ̂x + J ′
(
σ̂+e i k + σ̂−e−i k

)
(8.8)

=

(
0 ρ(k)

ρ∗(k) 0

)
, (8.9)

where σ̂x is the Pauli-x matrix of the intra-cell system. Here, the off-diagonal element ρ(k) of

the bulk Hamiltonian is defined as

ρ(k) = J + J ′e−i k ≡ |ρ(k)|e−iφ(k). (8.10)

From the 2×2 matrix, the eigen-energy for each wavenumber is obtained as

E(k) = ±|ρ(k)| = ±
√

J 2 + J ′2 +2J J ′ cosk (8.11)

with eigenvectors (Bloch wave function) of

|uk,±〉 =
1p
2

(
e−iφ(k)

±1

)
. (8.12)

In the thermodynamic limit of N →∞, the band structure shows upper and lower bands when

J ̸= J ′, while the two bands are closed at the phase transition point of J = J ′ (see the Fig. 8.2b).

8.3.2 Bulk-edge correspondence

The bulk-edge correspondence (Delplace, Ullmo, and Montambaux, 2011) reveals the exis-

tence of edge states of a truncated 1D SSH chain from the bulk properties of the corresponding

infinite chain. More specifically, we can predict the existence from the Zak phase, which is

calculated using the eigenvectors of Eq. (8.12) as

Z = i
∮

dk〈uk,±|∂k |uk,±〉 =
1

2

∮
dk ∂kφ(k), (8.13)

where the integration is performed over the first Brillouin zone. Note that the Zak phase is a

bulk property, which can be defined in the infinite size limit. The chiral symmetry confirms

that the Zak phase is discretized to be πmultiplied by an integer. As we will see in the following

section, when Z = 0, the chain is in the trivial phase, where the truncated chain does not show

edge states. On the other hand, when Z =π, the chain is in the nontrivial topological phase,

showing two edge states when the chain is truncated to be a finite system. For the 1D SSH

model, Z = 0 when J > J ′ while Z =π when J < J ′.

Furthermore, the Zak phase can be graphically obtained from the winding number of ρ(k). As

153



Chapter 8 Topological lattices realized in superconducting circuit optomechanics
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Figure 8.2: 1D SSH model. a, Schematic of a 1D SSH chain. The black and white circles
describe sites A and B , respectively. b, Band structure as a function of the coupling ratio J/J ′.
c,d, off-diagonal element ρ(k) in the bulk Hamiltonian in the trivial and topological phase,
respectively.

shown in Figs. 8.2c and d, the off-diagonal element ρ(k) of the bulk Hamiltonian for the trivial

and topological cases is described by a closed curve in the complex plane, respectively. The

Zak phase is obtained as the product of π and the winding number of the closed curve around

the origin. Namely, the existence of edge states is simply determined by whether the closed

curve winds around the origin or not for the 1D SSH model.

8.3.3 Finite-size effect

Here, we report the analysis presented and introduced by Delplace, et al. (2011) (Delplace,

Ullmo, and Montambaux, 2011), explaining how the Zak phase can predict the existence of

edge states in the 1D SSH model. Then, we discuss the finite-size effects on the prediction.

Importantly, the following analysis can be extended to a generalized 1D SSH model, where a

1D chain is constructed by a chain of 2-site unit cells with arbitrary inter-cell couplings that

do not break the translational symmetry. Furthermore, the analysis can be valid as long as the

inter-call couplings do not induce the Pauli-z component in the bulk Hamiltonian. This is the

case for our 1D SSH model including the second and third nearest-neighbor couplings, as well

as a wavenumber-resolved 1D model reduced from a strained graphene ribbon.

When an open boundary condition is imposed on a 1D SSH chain, an eigenstate of the full

Hamiltonian can be described by a superposition of two degenerate plane waves. Using Bloch’s
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a b
constant energy contour

Figure 8.3: finite-size effect in 1D SSH model. a, off-diagonal element ρ(k) in the complex
plane. Its value corresponding to the maximum and minimum absolute values of the eigen-
energy are shown at wavenumbers kmax and kmin. The wavenumber k and k ′ that satisfy
the degeneracy constraint are found by the two intersections between ρ(k) and the constant
energy contour. b, (N +1)k̄−π j (green lines for j = 0,1, · · ·N ) and φ̄

(
k̄
)

(blue lines for the cases
in the trivial and topological phases, respectively) as a function of k̄.

theorem, a state vector of a plane wave with an eigen-energy of E (k) = ±|ρ(k)| is described by

|ψk ,±〉 =
1p
2N

∑
n

e i kn

(
e−iφ(k)

±1

)
(|n, A〉 |n,B〉). (8.14)

Note that there are two degenerate plane waves, except for the maximum and minimum abso-

lute values of eigen-energy. Thus, a trial eigenstate of bulk modes is given by a superposition

of |ψk ,±〉 and |ψk ′ ,±〉 with the constraint of the degeneracy, i.e., E(k) = E(k ′).

To satisfy the open boundary condition, the trial eigenstate should vanish at the nearest site

outside of the chain, that is, at site B for n = 0 and at site A for n = N +1. These conditions

determine a possible wavenumber for bulk modes. The condition at site B for n = 0 is straight-

forwardly satisfied by superposing the two plane waves such that (|ψk ,±〉−|ψk ′ ,±〉)/
p

2. Then,

the other condition at site A for n = N +1 imposes[
k(N +1)−φ(k)

]− [
k ′(N +1)−φ(k ′)

]
= 2π j , (8.15)

where j is an integer. By defining k̄ = k−k ′
2 and φ̄

(
k̄
)

= φ(k)−φ(k ′)
2 , Eq. (8.15) is rewritten as

(N +1)k̄ −π j = φ̄
(
k̄
)

. (8.16)

Thus, counting the number of the solutions, which is the number of the possible bulk modes,

corresponds to counting the number of intersections between (N +1)k̄ −π j and φ̄
(
k̄
)

in the

range of 0 < k̄ <π.

For simplicity, we assume that the phase references are determined by the plane wave with

the highest absolute value of the eigen-energy such that k̄ → 0 and φ̄
(
k̄
)→ 0 when k → kmax,
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where kmax is the wavenumber associated with the maximum absolute value of the eigen-

energy (see Fig. 8.3a). Moreover, without loss of generality, we can define k̄ to be a positive

number. With these conditions, k̄ depends on only k due to the constraint of E(k) = E(k ′).

Then, we systematically find solutions from the wavenumber with the highest absolute value

of the eigen-energy
(
k̄ = 0

)
to one with the lowest absolute value of the eigen-energy

(
k̄ =π

)
by plotting (N +1)k̄ −π j and φ̄

(
k̄
)
, as shown with an example of the standard 1D SSH case in

Fig. 8.3b. While φ̄(0) = 0 by definition, φ̄(π) depends on the Zak phase, i.e., while φ̄(π) = 0 if

Z = 0, φ̄(π) =π if Z = 1 (see Fig. 8.3a for the topological case). As shown in Fig. 8.3b, we can

always find N solutions in the range of 0 < k̄ <π when in the trivial phase (Z = 0), confirming

that all the solutions are found in the bulk modes and there are no edges states. On the other

hand, when in the nontrivial topological phase (Z = π), the function of (N + 1)k̄ −π j for

j = 1,2, · · ·N −1 have an intersection with φ̄
(
k̄
)
, but not for j = N in the range of 0 < k̄ < π,

for sufficiently large N . Thus, there are only N −1 solutions for bulk modes, implying that

there is one another mode that is not described by the plane waves, corresponding to an edge

state (Delplace, Ullmo, and Montambaux, 2011). Since we can independently apply the same

analysis to both the upper and lower bands, there are two edge states in total when Z =π.

When the system size is large enough, the Zak phase calculation accurately predicts the

existence of edge states. However, when the system becomes smaller, the number of solutions

of Eq. (8.16) may change. More precisely, even though the condition of Z =π is satisfied, we

can find an intersection between (N +1)k̄ −π j for j = N and φ̄
(
k̄
)

in the range of 0 < k̄ < π

when the slope of φ̄
(
k̄
)

at k̄ is steeper than N + 1. Therefore, the slope condition for the

existence of edge states is mathematically described as∣∣∣∣∂φ̄(k̄)

∂k̄ k̄=π

∣∣∣∣< N +1, (8.17)

which is actually satisfied in the example shown in Fig. 8.3b for the case in the topological

phase. Furthermore, Eq. (8.17) can be simplified as∣∣∣∣∂φ(k)

∂k k=kmin

∣∣∣∣< N +1, (8.18)

where we use ∂φ(k)

∂k
= −∂φ(k ′)

∂k ′ for k,k ′ → kmin. Here, kmin is the wavenumber associated with

the minimum absolute value of the eigen-energy. Therefore, in order to possess edge states, a

1D SHH chain needs to satisfy two conditions: the condition for the Zak phase (Z =π) and the

slope condition for φ(k) at k = kmin, described by Eq. (8.18). Note that the slope condition is

automatically satisfied in the limit of infinite size (N →∞), implying the Zak phase calculation

accurately predicts the existence of edge states for a large-size system.

8.3.4 Effect of parasitic couplings

In most physical implementations of the SSH model in lattices, parasitic couplings between

distanced sites are unavoidable and deviate the actual response of the devices from the
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ideal model. In our case, the parasitic couplings arise from the mutual inductance between

distanced spiral inductors of LC circuits. The parasitic coupling rate decreased with Jpar. ∝ 1
l 3 ,

where l is the effective distance between two spirals. The effect of these higher-order couplings

on the band structure, modeshapes, and topological properties of the SSH chains has been

studied in several works (L. Li, Z. Xu, and S. Chen, 2014; Pérez-González et al., 2018; Pérez-

González et al., 2019). Here we summarize these results and calculate the band structure of

the designed devices in the presence of the parasitic coupling.
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Figure 8.4: Effect of parasitic couplings on the 1D SSH model. a, Mode diagram of a 1D SSH
chain including second and third nearest-neighbor couplings. The black and white circles
describe sites A and B , respectively. b, Off-diagonal element ρ(k) in the complex plane with
and without taking into account the third nearest-neighbor couplings. We use the system
parameters of the 1D device presented in Sec.8.4. c, The energy levels (eigenfrequencies) as a
function of the relative second nearest-neighbor coupling strength for the 1D SSH chain. The
dashed line shows the value of the second nearest-neighbor coupling of the actual devices
discussed in Sec.8.4. Color coding denotes the LPB, edge states and UPB. d, Comparison of the
modeshapes between an ideal 10-site SSH chain and a chain with the second nearest-neighbor
couplings, showing a minor change in the modeshapes.

Figure 8.4a shows the mode diagram including the second and third nearest-neighbor cou-

plings J2, J3 and J ′3. In our 1D optomechanical system, the second and third nearest-neighbor

couplings are found to be approximately J2/2π = 100 MHz, J ′3/2π = 37 MHz and J3/2π = 27 MHz

respectively, while the alternating nearest-neighbor couplings are found to be J/2π = 470 MHz

and J ′/2π = 700 MHz. Importantly, we can safely assume that the two different second nearest-

neighbor couplings are strictly identical due to the geometry of our 1D system. The Hamilto-
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nian of a 1D SSH chain including such parasitic couplings is given by

Ĥ =
∑
n

[J |n,B〉〈n, A|+ J ′|n +1, A〉〈n,B |

J2|n +1, A〉〈n, A|+ J2|n +1,B〉〈n,B |
J3|n +1,B〉〈n, A|+ J ′3|n +2, A〉〈n,B |
+h.c.].

(8.19)

Since the parasitic couplings does not distort the translational symmetry, we can apply Bloch’s

theorem using the wavenumber basis defined as Eq. (8.5), and obtain the bulk Hamiltonian as

Ĥ(k) =

(
ϵ(k) ρ(k)

ρ∗(k) ϵ(k)

)
, (8.20)

where

ρ(k) = J + J ′e−i k + J3e i k + J ′3e−i 2k ≡ |ρ(k)|e−iφ(k) (8.21)

and

ϵ(k) = J2 cos(k). (8.22)

The second nearest-neighbor couplings modify the diagonal elements of the bulk Hamiltonian,

not inducing a component of the Pauli-z matrix but only the identity matrix. This is because

the two different second nearest-neighbor couplings, which, in general, may differ, are identi-

cal in our 1D system. As a result, we can diagonalize the Bulk Hamiltonian with eigenvectors in

the same form as Eq. (8.12) and apply the same analysis as the ideal 1D SSH model in order to

predict the existence of edges states. On the other hand, the third nearest-neighbor couplings

modify the off-diagonal element ρ(k).

In Fig. 8.4b, we plot ρ(k) in the complex plane, using the experimentally obtained coupling

strengths with and without taking into account the third nearest-neighbor couplings. Since

the third nearest-neighbor couplings are negligible in our 1D optomechanical system, the

winding number is found to be 1 for both the cases. As long as it shows a well-defined band gap

(J2 < J ′/2), the 1D SSH chain with the non-trivial winding number possess edges modes (Pérez-

González et al., 2018). This is the case for the 1D optomechanical chain presented in Sec.8.4.

Furthermore, we numerically study the effect of parasitic couplings on the eigen-energies and

modeshapes in the SSH model. For simplicity, we here neglect the third nearest-neighbor

couplings. Figure 8.4c shows the energy levels as a function of the relative second nearest-

neighbor coupling strength for our 1D SSH chain. The second nearest-neighbor coupling

breaks the symmetry of the band structure resulting in a wider UPB and narrower LPB (Pérez-

González et al., 2018), while the edge states splitting and the band gap is barely affected.

Figure 8.4e shows the modeshapes of an ideal 10-site SSH chain and a chain with the second

nearest-neighbor couplings, respectively. The second nearest neighbor couplings of our 1D
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Figure 8.5: Superconducting circuit optomechanical chain realizing the 1D SSH model. a,
Microscope image of a 10-site circuit optomechanical chain. The mutual coupling is controlled
by the spacing between adjacent spiral inductors (see insets). The chain is inductively coupled
at both edges to co-planar waveguides. b, SEM of a mechanically compliant vacuum-gap
capacitor. The inset shows the FEM simulation of the fundamental mechanical mode of the
vibrating plate. c, Schematic cross-section of the capacitor. d, Focused ion beam cross-section
of a capacitor before removing the SiO2 sacrificial layer (Pt is used as the FIB protective layer).
e, SEM of a suspended clamp over the trench. f, Equivalent circuit diagram of the SSH chain.
g, Transmission spectrum of the device shown in a. Two topological edge modes are observed
in the gap of the two bands (shaded regions), which are numerically calculated for the corre-
sponding infinite SSH chain including parasitic couplings (see Sec. 8.3.4). h, Optomechanical
induced transparency (OMIT) response of the highest frequency collective microwave mode.
Each OMIT feature is associated to one of the drumhead capacitors along the chain, identified
by the mechanical frequency. i, Frequency scheme for the OMIT measurement. j, Measured
mechanical frequencies versus the trench radius (green dots). The solid line shows the inverse
linear fit. One mechanical resonance is off due to an unusual deformation of the capacitor
after the release. k, Microwave resonance frequencies of the device, design targets (orange),
and measured values (blue).

device do not significantly change the modeshapes.

8.4 Circuit optomechanical lattices

The main challenge of implementing such circuit optomechanical lattices is the low repro-

ducibility of the gap size of vacuum-gap capacitors. The non-flat geometry of the movable

capacitor plate (Cicak et al., 2010) prevents accurate control of the gap size and consequently
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the mechanical and microwave frequencies, as well as their coupling strength.

To overcome this challenge, we developed a nanofabrication process that significantly im-

proves reproducibility and controllability over the gap size. We realize a flat aluminum mem-

brane as the movable capacitor plate suspended over a trench (Figs. 8.5b, c, and d). In brief,

we first etch a trench in a silicon substrate and cover it with a SiO2 sacrificial layer. We then

planarize the oxide layer to remove the topography and deposit the flat top plate of the capaci-

tor. Finally, by removing the sacrificial layer, the top plate is suspended (see Figs. 8.5b and e).

Cooling down of the device induces a tensile stress in the Al thin film, which guarantees the

flatness and consequently the gap size to be controlled by the trench depth (see chapter 4 for

details). This high-yield process allows us to control microwave and mechanical resonance

frequencies with fluctuations of less than 0.5% and 1% respectively (see Sec.8.5 for details).

Moreover the approach benefits from low mechanical dissipation Γm/2π∼O (1−10) Hz (see

Sec.8.10.3 for the full characterizations).

To realize a circuit optomechanical 1D SSH chain in the topological phase (Fig. 8.1a), we

fabricated a 10-site chain of mechanically compliant LC resonators with alternating mutual

inductive coupling controlled by their physical distance (Figs.8.5a, and f). The gap size is

fabricated to be 245 nm, which results in a microwave frequency of ωc/2π = 7.12 GHz and a

single-photon optomechanical coupling rate of g0/2π = 10 Hz for all sites. The microwave

coupling rates are designed to be J/2π = 470 MHz and J ′/2π = 700 MHz to achieve the non-

trivial topological phase.

Figure 8.5g shows the microwave transmission spectrum of the chain, the UPB and LPB are

highlighted by the shaded areas, and two topological edge modes can be observed in the

middle of the band gap. The transmission response is in good agreement with the calculated

eigenfrequencies of the desired design (Fig. 8.5k), which indicates reliable control over the

system parameters in the fabrication process. The linewidth of the modes varies from 7 MHz

for the edge modes to 80 kHz for the first LPB mode depending on the collective modeshape.

The asymmetry of the band structure in the transmission spectrum originates from the small

parasitic mutual inductive coupling between sites beyond the nearest neighbor (see Sec.8.3.4)

and does not change the topological properties of the chain (L. Li, Z. Xu, and S. Chen, 2014).

In order to identify each site by its mechanical frequency, we gradually increment the trench

radius by 500 nm along the chain to distinguish them in the further measurements (see

Figs. 8.5b inset). The mechanical frequencies can be measured using optomechanically

induced transparency (OMIT) (Weis et al., 2010) by applying a microwave pump red-detuned

from a collective microwave mode while sweeping a weak probe tone across the resonance,

as shown in Fig. 8.5i. Figure 8.5h shows the OMIT response of the highest bulk mode. We

observe ten OMIT features indicating mechanical frequencies, matching the inverse trench

radius relationship (Fig. 8.5j).
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8.4.1 Device design considerations

The mechanical frequency of the first fundamental mode of a drumhead resonator can be

approximated as Ωm ≃ 2.4
R

√
σAl

ρAl where R is the radius of the drumhead (radius of the circular

trench as fixed mechanical boundary condition) and σAl, ρAl are the stress and the density of

the Al thin film (refer to Sec.3.2 for comprehensive discussion on the drumhead mechanical

mode). In the device, we gradually change the trench radius of different sites by 500 nm (1%) to

distinguish them in the mode-shape measurement experiment by their mechanical frequency.

It is important to mention that the mechanical frequency disorder in the fabrication process

should be smaller than the mechanical frequency shift introduced by incrementing trench

radius in order to keep them in the correct designed order. This can be verified by comparing

the measured mechanical frequencies from OMIT response and the theoretical Ωm,i ∝ 1
Ri

relation from the design, as shown in Fig. 8.5j and Fig. 8.14d. We note that this slight variation

on the trench radius does not have a significant effect on the electrical boundary conditions of

the capacitor, given that the bottom plate of the capacitor only sees ≈ 20% of the center top

plate’s area and thus does not perturb the microwave resonance frequencies of the LC circuits,

ωc = 1/
p

LC .

To probe the system, the two ends of the chain are inductively coupled to coplanar waveguides

using two short-circuited inductive loop couplers. The external coupling rate to the outermost

sites is designed to be comparably smaller than internal microwave couplings in the chain to

avoid deviation from the ideal SSH model (See Fig. 3.6).

8.4.2 Device fabrication

A detailed description of each step can be found in chapter 4. To briefly summarize the process

here we mention important steps. We define a trench in the substrate containing the bottom

plate of the capacitor. The trench then is covered by a thick SiO2 sacrificial layer, which inherits

the same topography of the layer underneath. To remove this topography and obtain a flat

surface, we use chemical mechanical polishing (CMP) to planarize the SiO2 surface. We then

etch back the sacrificial layer down to the substrate layer Using ion beam etching. We create

openings in the sacrificial layer for the top-bottom galvanic connection and then deposit the

top Al plate of the capacitor. Although after the release of the structure by HF vapor etching of

SiO2 the drumhead will buckle up due to the compressive stress, at cryogenic temperatures

the high tensile stress ensures the flatness of the top plate. This will guarantee the gap size is

precisely defined by the depth of the trench and the thickness of the bottom plate.

8.5 Optomechanical modeshape measurement

Next, we exploit mechanical oscillators as embedded probes to directly and non-perturbatively

measure the collective microwave modeshapes. We use the optomechanical damping ef-
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a b

Figure 8.6: Example of a honeycomb lattice and the galvanic connection in the circuit. a,
SEM micrograph of the triangular building blocks of the honeycomb lattice. b, The galvanic
connection of top and bottom Al layers and the crossovers of the spiral inductor.

fect (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014) to deduce the modeshape infor-

mation (ηk
i ) from the mechanical oscillator’s dynamics. In the sideband resolved regime

(κk
tot ≪Ωm,i ), the effective damping rate of mechanical mode i , in the presence of a pump on

the lower sideband for collective microwave mode k, is given by

Γk
eff,i =Γm,i +nk

c

4
(
ηk

i · g0,i
)2

κk
tot

, (8.23)

where Γm,i is the bare mechanical damping rate, nk
c and κk

tot are the photon number and

the linewidth of the collective mode, respectively. In a time-domain protocol, we apply an

excitation pulse on resonance to generate a beat note with a pump red detuned by Ωm,i

(Fig. 8.7b) and selectively excite mechanical mode i (the disorder in Ωm,i from the designed

value is smaller than the mechanical frequency increment to ensure correct identification of

sites in the lattice). We then measure the ringdown signal of the optomechanical sideband in

the presence of the red-detuned pump. The slope of Γk
eff,i as a function of the pump power

is proportional to
(
ηk

i

)2
, as shown in Eq. 8.23. Figure 8.7c shows the ringdown data sets for

a few mechanical modes in the chain measured on the highest UPB mode. By measuring

the effective damping rate of every site in the chain, the full modeshape can be extracted

for the corresponding microwave mode. Although it is challenging to independently obtain

several parameters in Eq. 8.23, such as g0,i and nk
c , we can extract ηk

i from all the slopes of

Γk
eff,i by using the normalization condition of the modeshapes, i.e.,

∑
k η

k
i =

∑
i η

k
i = 1 (see

Sec. 8.5.2 for details). Figure 8.7e shows the full result of the modeshape characterization on

the 10-site chain compared with the theoretical values with the design parameters. The data is

in excellent agreement with the theoretical predictions, demonstrating bulk modes in UPB,

LPB, and topologically protected edge modes.

In prior experimental realizations of the SSH model, non-hybridized topological edge states

were observed (Kim et al., 2021; St-Jean et al., 2017) (localized on only one side of the chain).

162



Topological lattices realized in superconducting circuit optomechanics Chapter 8

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

-50

457

95

32

9

652

116

38

-12

455

101

27

39

657

106

47

-17

445

109

24

15

658

122

45

55

456

98

24

34

661

115

-35

442 -39

Reconstructed Hamiltonian

0

100

200

300

400

500

600

Measured Theory Measured Theory
d

Site numberSite number

f

10

9

8

7

5

4

3

2

1

6

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

1 5 10
0

0.2

0.4

1 5 10

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

1 5 10
0

0.2

0.4

1 5 10

0

0.2

0.4

0

0.2

0.4

[M
H

z]

b Readout
Excitation

Excitation Readout

time

c e

0 1 2 3 4
Power [ W] μ

0

100

200

300

[H
z]

1 105

H
yb

rid
iz

at
io

n 
pa

ra
m

et
er

, 

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

0 0.5

0.96

0.98

1

a

HEMT

ESA

15m K

0.8 K

3 K

300 K

50 K

Figure 8.7: Optomechanical modeshape measurement and Hamiltonian reconstruction of a
topological SSH chain. a, Experimental setup for the modeshape measurement. b, Frequency
and pulsing scheme: each mechanical mode is selectively excited by a resonant cavity drive
while a readout pump on the lower sideband is on. c, Effective mechanical damping rate of
the specific sites shown in the inset while driving the highest UPB mode. The slope of the
linear fits depends on the collective modeshape. d, Measured and corresponding theoretical
modeshapes of UPB, topological edge states, and LPB. Error bars are shown in black. In the
theory plots, the sign of the phases is represented by different brightness. e, Stochastic analysis
of the cavity frequency disorder effect on edge state hybridization, quantified by ζ. The blue
line shows the expected value, blue and green shades reflect 70% and 90% certainty ranges,
and the orange line shows the measured value. f, Reconstructed Hamiltonian matrix of the
microwave subsystem in the rotating frame of the averaged cavity frequency. The diagonal
elements show the cavity frequency disorder, and off-diagonal ones show the nearest-neighbor
couplings (J , J ′) as well as the parasitic couplings between distanced sites (J2, J3, etc.).

The edge state hybridization strongly depends on the disorder in the system parameters.

Here, in contrast, we observe fully hybridized topological edge states, indicating minimal

frequency disorder in the fabrication process. We perform numerical stochastic analysis to

study the effect of disorder in the bare cavity frequency on the hybridization of the edge

modes, quantified by ζ (see the definition in Sec. 8.6). Figure 8.7e shows the expected value of

ζ versus the standard deviation of the disorder σ∆ω, indicating less than 0.3% disorder in the

experimentally realized chain (see Sec. 8.6 for details).

Finally, considering the knowledge of all the eigenvectors (ψk
i , modeshapes) and eigenvalues

(ω̃k
c , collective microwave frequencies) of the system, we can reconstruct the actual Hamilto-
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nian of the microwave subsystem in the basis of the physical sites:

Hc/ℏ = U†
ψ


ω̃1

c 0
. . .

0 ω̃2N
c

Uψ (8.24)

where [Uψ]k,i =ψk
i is a unitary matrix obtained from the measured participation ratios. Since

our measurement protocol does not retrieve the phase of the eigenvectors, we infer it from

the theoretically calculated ones. To more accurately reconstruct the Hamiltonian, we correct

the unitary matrix by further imposing the orthogonality condition (see Sec. 8.5.3 for details).

Figure 8.7f shows the reconstructed Hamiltonian of the 1D SSH device. The diagonal elements

represent the cavity frequency disorder of each site (σ∆ω
= 0.5% corresponds to a 2 nm

gap size variation), while off-diagonal elements show the alternating microwave couplings

as designed for the SSH model and parasitic second and third nearest neighbor couplings

between distanced sites.

8.5.1 Extraction of participation ratio from optomechanical damping rate

As discussed earlier, we introduce a new technique to characterize the participation ratio ηk
i

and consequently the microwave collective modeshapes by measuring the optomechanical

damping rate of mechanical mode i coupled to collective mode k. From Eqs. (2.63), the

optomechanical damping rate (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014) is given

by

Γk
opt,i = nk

c,i

(
ηk

i g0,i

)2

 κk
tot(

Ωm,i −∆k
i

)2 +κk
tot

2
/4

− κk
tot(

Ωm,i +∆k
i

)2 +κk
tot

2
/4

 , (8.25)

where

nk
c,i = |〈α̂k〉|2 =

ṅk
dκ

k
1

∆k
i

2 +κk
tot

2
/4

is the average photon number in collective mode k, where ṅk
d is the on-chip photon flux. This

yields the total effective damping rate of mechanical mode i :

Γk
eff,i =Γm,i +Γk

opt,i . (8.26)

To extract the optomechanical damping effect, we can linearly change the drive power gener-

ated by a microwave source. Here, we define the transmittance between the microwave source

at room temperature and the device as Rk = ṅk
d/ṅd, where ṅd is the photon flux at the output

of the microwave source. The frequency dependence of the input wiring and components is

weak and we assume that the transmittance depends only on k, but not on i . Then, we obtain
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∂Γk
eff,i /∂nd, the slope of the total damping rate with respect to the photon flux ṅd.

From Eq. (8.25), the slope of the total mechanical damping rate is analytically obtained as

∂Γk
eff,i

∂nd
=
κk

1 Rk
(
ηk

i g0,i
)2

∆k
i

2 +κk
tot

2
/4

 κk
tot(

Ωm,i −∆k
i

)2 +κk
tot

2
/4

− κk
tot(

Ωm,i +∆k
i

)2 +κk
tot

2
/4

 . (8.27)

From this equation, we experimentally obtain the un-normalized participation ratio
(∑

k or i η̃
k
i ̸= 1

)
as

η̃k
i =

√√√√√√∂Γk
eff,i

∂nd

(
∆k

i
2 +κk

tot
2

/4
) κk

tot(
Ωm,i −∆k

i

)2 +κk
tot

2
/4

− κk
tot(

Ωm,i +∆k
i

)2 +κk
tot

2
/4


−1

. (8.28)

By definitions in Eqs. (8.27) and (8.28), the relation between the normalized and un-normalized

participation ratios is described as

η̃k
i = g0,i η

k
i

√
κk

1 Rk . (8.29)

8.5.2 Iterative normalization

In principle, the participation ratio ηk
i can be determined by normalizing Eq. (8.29) with

g0,i , κk
1 and Rk that would be obtained independently. However, the local optomechanical

coupling g0,i can not be straightforwardly measured in such a multimode optomechanical

system. Furthermore, it is also not trivial to determine κk
1 and Rk using the conventional

microwave setups in the transmission configuration, since it is difficult to differentiate the

input contribution to the output one.

Nevertheless, we can determine ηk
i from experimentally-obtainable η̃k

i based on the normal-

ization conditions of the unitary transformation (Eqs. (2.55) and (2.56)). Here, we apply an

iterative normalization method for η̃k
i as follows. We first define the initial un-normalized

participation ratio as

η̃k
i (0)

= η̃k
i . (8.30)

Then, we iterate the normalization process in the row and column axes alternatively. Namely,

the un-normalized participation ratio η̃k
i (n)

at step n is updated in each normalization step to

η̃k
i (n+1)

as

η̃k
i (n+1)

=
η̃k

i (n)∑
i η̃

k
i (n)

(∀k, if n is even) (8.31)
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or

η̃k
i (n+1)

=
η̃k

i (n)∑
k η̃

k
i (n)

(∀ i , if n is odd). (8.32)

In the iterative normalization method, the un-normalized participation ratio at step n can be

always described as

η̃k
i (n)

= Ci (n) η
k
i Dk (n), (8.33)

where Ci (n) and Dk (n) are coefficients depending only on either i or k, respectively. Impor-

tantly, each normalization process updates only the coefficients Ci (n) and Dk (n) without any

changes in ηk
i . This can be easily confirmed from Eqs. (8.31) and (8.32).

Here, we numerically confirm that both Ci (n) and Dk (n) converge to 1, i.e., η̃k
i (n)

→ ηk
i with

an sufficiently large number of the iteration. For this purpose, we prepare a random N ×N

unitary matrix U and obtain the participation ratio as ηk
i = |[U]k,i |2. In addition, we prepare

random coefficients 0 < Ci < 1 and 0 < Dk < 1 and artificially generate the un-normalized

participation ratio as η̃k
i = Ciη

k
i Dk to simulate the un-normalized participation ratio. The task

is to deduce ηk
i from η̃k

i . We apply the iterative normalization method to the un-normalized

participation ratio. As an evaluation function, we define the averaged relative error of the

un-normalized participation ratio at n step compared with the original one as

ε =

∑
i ,k

∣∣∣η̃k
i (n)

−ηk
i

∣∣∣/ηk
i

N 2 . (8.34)

In Fig. 8.8, we plot the averaged relative error ε at each iteration step for 1000 different data

sets. From these results, we confirm that the un-normalized participation ratio converges to

the original one, i.e. η̃k
i (n)

→ ηk
i when the number of the iteration is sufficiently large.

8.5.3 Orthogonalization of modeshapes

Our measurement scheme does not retrieve the sign of the modeshapes of the collective

microwave modes to fully determine the unitary matrix Uψ, which is necessary for the Hamil-

tonian reconstruction. By inferring the phase information from the theoretical modeshapes,

we can construct the “unitary” matrix Ũψ from ηk
i as

[
Ũψ

]
k,i = +

√
ηk

i or −
√
ηk

i . (8.35)

While it satisfies the normalization conditions, the obtained matrix does not satisfy the orthog-

onalization condition due to the finite measurement error. To more accurately reconstruct the

Hamiltonian, we further correct Ũψ to satisfy both the normalization and orthogonalization
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Figure 8.8: Numerical justification of iterative normalization method. The averaged relative
error of the un-normalized participation ratio compared with the original participation ratio
as a function of step n of the iterative normalization. Each different-colored line corresponds
to a different dataset. The system size is chosen to be N = 10.

conditions. We first numerically calculate the generator of Ũψ as

G = log
(
Ũψ

)
. (8.36)

In general, the generator can be decomposed into a Hermitian matrix H and anti-Hermitian

matrix H̄ as

G = H+ H̄, (8.37)

where H = (G+G†)/2 and H̄ = (G−G†)/2. Although the generator of a unitary matrix only con-

tains an anti-Hermitian matrix, the experimentally obtained G contains the finite Hermitian

component. By neglecting the Hermitian component, the corrected unitary matrix can be

obtained as

Uψ = exp
(
H̄

)
, (8.38)

which is used for the Hamiltonian reconstruction.

8.5.4 Modeshape extraction methods comparison

As explained in section 8.5.1, to extract the modeshapes we have to go through at least one

normalization step.

η̃k
i → η̃k

i∑
i η̃

k
i

∀k
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This step is very intuitive as we are summing over all sites (i ) in a given collective mode (k):

the total input power gets distributed along the sites according to their participation ratio ηk
i ,

and all the participation ratios in a given collective mode must sum up to 1.

Next, we make use of the normalization conditions of the unitary matrix, and perform the iter-

ative normalization process described in section 8.5.1. These are the modeshapes presented

in Figs. 8.7 and 8.14.
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Figure 8.9: Three different modeshape extraction methods comparison. The red bars are
with the single-step normalization for each collective mode. The dark blue bars are with the
iterative normalization method (presented in Sec.8.5.2). The light blue bars are modeshapes
corrected based on the orthogonalization property of the unitary matrix.

As described in Sec. 8.5.3, in order to accurately reconstruct the Hamiltonian shown in Fig. 8.7,

the modeshapes obtained from the iterative normalization method are further corrected based

on the orthogonalization property of the unitary matrix, providing the modeshapes satisfying

both the normalization and orthogonalization conditions. In Fig. 8.9 we present the evolution

of the modeshapes along these three steps.

Collective mode, i 10 9 8 7 6 5 4 3 2 1
1−F (ψR

i ,ψN
i ) [×10−3] 0.8 0.6 0.4 1.2 0.3 0.5 1.2 0.3 0.6 0.6

1−F (ψN
i ,ψN,O

i ) [×10−3] 0.06 0.3 0.5 0.4 0.7 1.3 0.7 0.4 0.2 0.5

Table 8.1: Infidelities between different subsequent normalization methods

To verify that our iterative normalization method does not perturb the modeshapes we com-

pute the infidelities 1−F (ψi ,ψ′
i ), where F (ψi ,ψ′

i ) = |〈ψi |ψ′
i 〉)|2, between the same mode with

different normalization methods. Table 8.1 shows the comparison between a one-step (site-

wise) normalization as the raw data, ψR
i , and the iterative normalization process, ψN

i . It also

shows the comparison between the iterative normalization method, ψN
i , and the modeshapes
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computed from the orthogonalization after iterative normalization, ψN,O
i , (introduced in the

Sec.8.5.3). The small infidelities calculated demonstrates the minimal disorder in the system

parameters.

Collective mode 10 9 8 7 6 5 4 3 2 1
1−F (ψN

i ,ψth
i ) [×10−3] 2.1 2.2 1.5 0.3 1.4 4.6 5.4 4.2 17 17

Table 8.2: Infidelities between the measured modeshapes and the theoretical ones

For completeness, in table 8.2 we also report the infidelities between the experimental mode-

shapes (iterative normalization, ψN
i ) and the theoretical ones, ψth

i , presented in Fig. 8.9.

8.5.5 Statistical analysis of orthogonality and measurement error

We discussed the optomechanical modeshape measurement technique in Sec.8.5 to directly

extract the eigenmodes (eigenvectors of the system Hamiltonian). In Sec.8.5.2, we explained

the iterative normalization method used to extract the modeshapes without the need to

measure some hardly-accessible parameters of our system. To check the accuracy of our

measurements and quantitatively verify the orthogonality of the modeshapes as eigenstates of

the system, we show the inner product of every pair of modes,|Σiψ
∗k
i ψl

i | in Fig. 8.10a,b for 10

site 1D chain as well as 24 site honeycomb lattice. Since the measurement does not retrieve the

phase in the modeshapes (i.e. positive or negative signs because such a system always results

in real eigenvector and eigenvalues), we inferred the phases from the theoretical modeshape

estimates. As it is shown in the figure, the 1D dataset manifests high orthogonality with a

maximum ∼ 3% inner product. The 2D dataset also shows small values except for a single

mode (mode 17) which has a non-zero product with a few other modes. As a figure-of-merit,

the average value of all inner products,
∑

k ̸=l 〈ψk |ψl 〉
2N×(2N−1) , is 1.2% for the 1D chain and 5% for the 2D

lattice.

To estimate the average error induced by the measurement process on the extracted eigen-

states, we performed a simple numerical stochastic analysis. In a 2N -dimensional space, one

can consider an ideal orthonormal set of vectors, {ek }, and add a 2N -dimensional Gaussian

random variable with a standard deviation of σ to every element in order to create a disturbed

set of {e′k }. Figure 8.10c shows the stochastic expected value and the 90% certainty range of

the average inner product of the disturbed set,
∑

k ̸=l e′
k ·e′

l

2N×(2N−1) for 2N = 10 (1D) and 2N = 24 (2D).

Considering the measured average inner products, we conclude σ≃ 1% for 1D and σ≃ 5% for

2D devices.

8.6 Disorder effect and edge state hybridization in SSH chains

Here we discuss the effect of disorder in the finite SSH chains. In any realized system, dis-

order and fluctuations can distort the system’s parameters and consequently deviate the

response from the ideal model. There are two possible types of disorder in the coupled circuit
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Figure 8.10: Inner products of the measured eigenstates as an indicator for measurement
accuracy. a, b, Scalar products between the measured mode functions after iterative nor-
malization (introduced in the theory section) for 1D and 2D devices correspondingly. The
inner products are a quantitative orthogonality verification of the measured modeshapes
(eigenvectors) in those systems. c The stochastic analysis of the standard deviation of the
equivalent Gaussian noise (σ) induced in the measurement on the eigenmodes. The expected
value of the average inner products in a 10 (1D), and 24 (2D) dimensional space is shown
versus σ. The grey lines indicate the measured average inner product.

chains: cavity frequency fluctuation and mutual coupling rate fluctuation. In the case of

electromechanical arrays introduced in this work, the coupling rate fluctuation is related to

the -lithographically defined- self and mutual inductances disorder. In contrast to capacitive

coupling where the coupling rate depends on the local electric field between closely spaces

electrodes, here the coupling rate depends on the longer-range magnetic field generated by

spirals and is more robust to the geometry distortions that arise from the lithographic accuracy

(∼ 500 nm). The dominant source of disorder is the capacitor’s gap size fluctuation, which

is strongly depending on CMP planarization uniformity as well as the etched trench depth

variation. The gap size fluctuation was observed up to 1% using mechanical profilometry

(which corresponds to 0.5% cavity frequency fluctuation), hence g0 variations are small.

To study the effect of disorder on the energy spectrum and mode structure of the SSH chains,

here we consider a stochastic error on the cavity frequencies with normal distribution:

ωc,i =ωc (1+N (0,σ∆ω)) (8.39)

Where N is a Gaussian random variable with zero mean and standard deviation σ∆ω express-

ing the relative cavity frequency error. Assuming coupling rates and resonance frequencies

same as the 10 cell SSH chain discussed in Sec.8.4, we numerically calculate the energy spec-

trum and modeshapes for various relative disorder standard deviations, σ∆ω. Figure 8.11a

shows the result for frequency disorder up to 6%, averaged over 4000 random distributions for

each standard deviation. The uncertainty (± standard deviation) in energies increases with the

disorder as shown with shaded areas in Fig. 8.11a and leads to the regime that two eigenmodes

are not distinguishable anymore, as they overlap. As mentioned in Sec.8.3, the ideal SSH

model in finite chains always results in two topological edge states, both with co-localized
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modeshapes on two edges regardless of the size of the chain (See Fig. 8.1h). In contrast to

eigen energies that are robust against disorder, the topological modeshapes hybridization

will break down sooner due to disorder and result in two edge states each one only localized

on one end of the chain. To quantitatively describe this effect, we defined the edge states

hybridization factor, ζ, defined by:

ζ =
1

2

(
min{ηN

1 ,ηN
2N }

max{ηN
1 ,ηN

2N }
+ min{ηN+1

1 ,ηN+1
2N }

max{ηN+1
1 ,ηN+1

2N }

)
(8.40)

where again ηk
i is the energy participation ratio of site i to the collective microwave mode k,

hence ηN
i and ηN+1

i are the energy participation ratios of the topological edge modes in a 2N

cell SSH chain. For a fully co-localized topological modeshape ζ = 1, while it reduces to 0 for

the fully non-hybridized (single side-localized) case (Fig. 8.11b). We calculated the average

and standard deviation of ζ over the statistical pool for various σ∆ω. Figure 8.11c shows that

hybridization is dramatically affected by disorder. Based on the modeshape measurement data

presented in Sec.8.5, the hybridization factor for the 10 cell SSH device is ζmeas = 0.98 which

corresponds to the the stochastic frequency disorder in the range ofσ∆ω = (0.01%,0.38%) with

90% certainty. This indicates small relative disorder in the gap size (σ∆gap = 1
2σ∆ω). It’s worth

mentioning that hybridization is also strongly affected by the length of the SSH chain, where

for an example of 20 cell chain with the same parameters as the 10 cell case, the hybridization

factor reduces sharply at smaller σ∆ω as shown in Fig. 8.12.

8.6.1 Observation of edge state localization

As explained in Section 8.6, in order to observe well-hybridized edge states instead of localized

ones, the disorder in the cavity frequencies needs to be low enough. The physical quantity

to compare the disorder to is the coupling rates J , J ′ between the array sites. We say that

the disorder is low enough when it’s negligible compared to the coupling rates. The device

shown in Sec.8.4 belongs to a second-generation design. The first generation design, visible

in Fig. 8.13a featured a different inductor design and the coupling rates were lower: J ′/2π =

127 MHz, J/2π = 260 MHz by fitting the hybridized modes’ frequencies with an SSH model.

The superconducting optomechanical array was also inductively coupled to input-output

waveguides, albeit with a different, microstrip, geometry. In Fig. 8.13 we show a 12-site

topological realization of this generation of devices. Thanks to the use of two circulators on

the two input/output ports of the chip this device could be measured either in transmission

or in reflection from both sides. Firstly, we see in the transmission spectrum (8.13b-c) that

the edge modes have abnormally low transmission, even though their current density at

the edges should be very big, resulting in a great external coupling rate. This is because the

edge states are actually localized at one of the edges each. This can be seen in the reflection

measurements in Fig. 8.13d where when we look at the reflection from one side we see only

one of the topological peaks, and the other one is only visible at the opposite side of the array.
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Figure 8.11: Disorder effect in SSH chains. a, Effect of cavity frequency disorder on the mode
spectrum of a 10 cell SSH chain considering the same parameters as the device discussed in
the main device. For every relative frequency disorder standard deviation, σ∆ω, 4000 random
cases were generated. The solid lines show the average mode frequency. The shades show the
statistical standard deviation of mode frequencies. b, Example of disordered topological edge
states with different hybridization factors, ζ. c, Plot of hybridization factor versus frequency
disorder standard deviation. The solid blue line shows the statistical average over 4000 random
points for each error percentage. The shades show bonds for 70% and 90% statistical certainty.
The gray line identifies the measured hybridization factor in the 1D chain discussed earlier.

The horizontal axis in subpanels c and d are the same.

8.7 2D circuit optomechanical lattice

The circuit optomechanical platform introduced here can be straightforwardly extended to 2D

structures. As a proof-of-concept experiment, we realize a 2D optomechanical honeycomb

lattice. To demonstrate the coupling tunability, we alternate the mutual microwave couplings

(J and J ′) along the vertical axis (see Fig. 8.14b) , which is known as the strained graphene

model (Pereira, Neto, and Peres, 2009; Naumis et al., 2017). For strain-free graphene (J = J ′),

the band structure is gapless, and the upper and lower bands are connected to each other,

forming Dirac cones. When applying strain in a certain orientation and decreasing the ratio

of J ′/J , a phase transition occurs at J ′/J = 0.5, and a band gap appears. For a finite-size

graphene sheet, a set of edge modes can emerge depending on the structure of the edges and

the strength of a strain (Nakada et al., 1996; Delplace, Ullmo, and Montambaux, 2011).

Figures 8.14a and b show a 24-site circuit optomechanical system and its mode diagram
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Figure 8.12: Disorder effect on hybridization for different chain lengths. The hybridization
factor ζ in relation to the frequency disorder is shown for several chain lengths with same the
parameters. In longer chains, the hybridization is more sensitive to disorder.

respectively, realizing a strained graphene flake, where the triangular spiral inductor in each

site is inductively coupled to its three neighbors. The system is designed on the border of

the phase transition J ′/J ≃ 0.5 (see Sec. 8.8.1 for details). Figures 8.14c and d show all the

microwave collective modes in the transmission spectrum and all the mechanical frequencies

as a function of the trench radius, respectively.

Next, to gain insight into the properties of edge states and their topological origin, we consider

our 24-site graphene flake as a truncated strained graphene ribbon, where the existence of

edge states can be predicted using the bulk-edge correspondence (Delplace, Ullmo, and Mon-

tambaux, 2011). Figures 8.14e and f, and figures in Sec. 8.8.3 show all 6 possible orientations

for the ribbon. Given a parallel wavenumber k∥, which is a good quantum number for the

ribbon Hamiltonian, the graphene ribbon can be reduced to a wavenumber-resolved 1D
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Figure 8.13: Experimental evidence of edge state localization. a, First generation 12-site
topological SSH array measured with reflection capabilities from both sides. b,c, VNA S21

transmission measurement of the device. d, VNA S11 measurements from both sides of the
device. The horizontal axis is the same as in c.

model in the perpendicular direction. In a similar manner to the two-band model for the

standard 1D SSH chain, the off-diagonal element ρ(k⊥|k∥) of the corresponding bulk Hamil-

tonian can be obtained by introducing a perpendicular wavenumber k⊥. If ρ(k⊥|k∥) winds

around the origin in the complex plane, the ribbon with the k∥ is in the nontrivial topological

phase, possessing edge states. As shown in Figs. 8.14 e and f, we find that only a “zig-zag”

edge ribbon with ρ(k⊥|k∥) = J ′+ J ′e−i k∥ + Je−i k⊥ and two “tilted armchair” edge ribbons with

ρ(k⊥|k∥) = J ′+ Je i (k⊥−k∥) + J ′e−i k⊥ can possess edge states, while not for the other orientations.

Both the two sites on the top and bottom edges of the flake overlap with edge modes seen in

either the zig-zag or tilted armchair edge ribbons, enabling one to predict the existence of

edge states on these 4 sites (see Sec.8.9.1 for details).

We perform a full modeshape measurement on the 2D lattice, revealing close agreement with

the theoretical calculations. A few examples of the modeshapes are shown in Figs. 8.14e–h

(the full results can be found in Fig. 8.17). We find that there are four collective microwave

modes whose modeshapes are localized in the two sites on either the top or bottom edges, as

the topological analysis predicts.

8.7.1 Extended data for 2D lattice

The full OMIT response of the 24-site optomechanical system in the 2D honeycomb lattice

is shown in Fig. 8.15a measured on the highest frequency collective microwave mode. We

extract all the mechanical frequencies by fitting each OMIT resonance, shown in Fig 8.14d.

The minimum and maximum trench radius used in the device is highlighted in the figure.
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Figure 8.14: Two-dimensional superconducting circuit optomechanical honeycomb lattice
realizing the strained graphene model. a, Microscope image of a 24-site optomechanical
honeycomb lattice (strained graphene flake) with alternating couplings. b, Mode diagram
of the device shown in a. c, Transmission spectrum of the 2D lattice. Four edge modes are
observed in the band gap. d, Measured mechanical frequencies versus trench radius and
the inverse linear fit. e,f, 24-site flake (gray-shaded region) as a truncated strained graphene
ribbon in the zig-zag or tilted armchair orientations, respectively. The numerically simulated
modeshapes of edge states are shown in amplitude, where the sites hosting the edge modes in
the flake are identified by black circles. The off-diagonal elementρ(k⊥|k∥) of the corresponding
bulk Hamiltonian for a fixed wavenumber k∥ is shown in the case of the topological phase,
respectively. g–i, Examples of measured modeshapes of the 2D lattice in the upper and lower
bulk modes, and edge modes, respectively. The observed edge modes are overlapping with the
sites hosting the edge states in the analogous graphene ribbons in e and f. The modeshape
information in amplitude is reflected on the color and area of each circle.
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Fig. 8.15b shows the design target collective microwave frequencies versus the measured

values.

All the modeshapes of the 2D device obtained by the iterative normalization method are

shown in Fig. 8.17. For some of them, we don’t see good agreements as we observed in the

1D case. This is because, given the much higher number of microwave modes, the effect of

frequency disorder plays a more important role. Where the dots are completely missing it

means that the experimental power participation ratio ηk
i of site i to the collective microwave

mode k was not high enough to produce a detectable signal.

Using the extracted modeshapes of the 2D device, we reconstruct the Hamiltonian of the

microwave subsystem. Fig. 8.16 shows the reconstructed Hamiltonian matrix in the rotating

frame of the average microwave frequency and the ideal designed Hamiltonian including the

second-nearest neighbor couplings. Due to the higher frequency disorder in the measured

modeshapes of the 2D device, the unitary matrix and consequently Hamiltonian are slightly

more disturbed compared to the 1D case, however, they still, show good agreement with the

design and theoretical predictions.
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Figure 8.15: Characterization of 24-site 2D honeycomb lattice. a, Optomechanically-induced
transparency (OMIT) response of the 2D device measured on the highest microwave bulk
mode. Increasing the trench radius results in a slight shift of the mechanical frequencies. b,
Microwave resonance frequencies of the device, design targets (orange), and measured values
(blue).
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8.8 Strained graphene model

To demonstrate the extendability of our scheme to a 2D structure, we realize the strained

graphene model in our optomechanical system, as shown in Sec. 8.7. Here, we explain the basic

concepts of the graphene model (Ni et al., 2008; Naumis et al., 2017; Pereira, Neto, and Peres,

2009), including the band structure of an infinite-size system, the bulk-edge correspondence,

and the numerically-simulated results for a finite-size system. These will give us a good

intuition about the modeshapes of our 24-site 2D optomechanical system.

8.8.1 Band structure

To label every site in a honeycomb lattice, we define two lattice vectors, as denoted with

a1 and a2 in Fig.8.18a, where the coordinate is chosen to have lattice vectors defined as

a1,a1 = (±
p

3
2 , 3

2 ). In addition, one unit cell, enclosed in the green shaded area, consists of

two sites. As shown with lines at different angles, connecting sites in Fig. 8.18a, three unique

couplings (Ja , Jb , and Jc ) exist in the honeycomb lattice.

The Hamiltonian of such a 2D multimode system can be formally written as

Ĥ =
∑

i−j=a1

Ja |i, A〉〈j,B |+ ∑
i−j=a2

Jb |i, A〉〈j,B |+∑
i

Jc |i,B〉〈i, A|+h.c., (8.41)

where |i, A〉 and |i,B〉 denotes a state vector at site A and B of unit cell i = ma1 +na2, respec-

tively.
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Figure 8.16: Hamiltonian reconstruction of 24-site 2D honeycomb lattice. The reconstructed
Hamiltonian of 24-site 2D honeycomb device (left) and the designed Hamiltonian including
second nearest-neighbor couplings (right). The diagonal elements represent the individual
site’s resonance frequency deviation from the average bare cavity frequency.
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c d e

Figure 8.18: Honeycomb lattice for a graphene of infinite size. a, Multimode system in a
honeycomb lattice with a unit cell (green region) and two lattice vectors (a and b). Three cou-
pling strengths (Ja , Jb , and Jc ) in different orientations are shown with lines of different colors,
respectively. The black and white circles describe sites A and B , respectively. b, Reciprocal
honeycomb lattice with two reciprocal lattice vectors (a* and b*)., where the first Brillouin
zone is highlighted. c–e, Band structure of a strain-free and strained graphene for J ′/J = 1,
J ′/J = 0.5, and J ′/J = 0.25, respectively.

In a similar way to the 1D SSH model, we first consider the Hamiltonian of an infinite-size

honeycomb lattice with periodic conditions in the two translational-symmetry directions (ther-

modynamical limit of N →∞). Using Bloch’s theorem, we can diagonalize the Hamiltonian of

the inter-cell subsystem by using a wavenumber basis, which is defined as

|k〉 =
1p
N

∑
i

e i i·k|i〉, (8.42)

where i denotes a lattice point and k is the wave vector, shown with red in Fig.8.18b, to-

gether with the reciprocal lattice. The two reciprocal lattice vectors are a∗
1 ,a∗

2 = 2π(±
p

3
3 , 1

3 )

in the coordinate we choose, following the convention i · j∗ = 2πδi j (i , j ∈ {a,b}). Thus, the

wavenumber-resolved intra-cell Hamiltonian, called bulk Hamiltonian, is obtained as

Ĥ(k) = 〈k|Ĥ |k〉 (8.43)

=

(
0 ρ(k)

ρ∗(k) 0

)
, (8.44)
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where

ρ(k) = Jc + Jae−i a·k + Jbe−i b·k ≡ |ρ(k)|e−iφ(k). (8.45)

By diagonalizing the bulk Hamiltonian, the band structure can be obtained as E(k) = ±|ρ(k)|.
The upper and lower bands for strain-free graphene of infinite size (Ja = Jb = Jc ) are shown

in Fig. 8.18c, where the upper and lower bands are connected at the Dirac points. A strain

applied to the lattice will introduce non-equal couplings for different angles, depending on

the orientation of the strain. For the threshold Ji + J j = Jk (i , j ,k ∈ {a,b,c}), pairs of Dirac

points will merge (see Fig. 8.18d), while the upper and lower bands become gapped for further

anisotropy (see Fig. 8.18e). For the model presented in Sec. 8.7, two of the couplings are

equal (Ja = Jb = J) while the other is different from them (Jc = J ′). In this case, the infinite 2D

honeycomb lattice shows a phase transition at J ′/J = 0.5, where the band structure will be

gapped for J ′/J < 0.5.

8.8.2 Graphene ribbon

The 2D optomechanical lattice presented in Sec.8.7 can be interpreted as a truncated graphene

ribbons with different orientations of the boundaries, as shown in Fig. 8.21a. It is well known

that the existence of edge states depends on the edge structure of a graphene ribbon (Nakada

et al., 1996; Kohmoto and Hasegawa, 2007; S. Wang et al., 2016; Hatsugai, 2009; Rechtsman

et al., 2013; Plotnik et al., 2014) and can be predicted from the bulk structure of the correspond-

ing graphene model of infinite size. This is known as the bulk-edge correspondence. One of

the examples of such edge states appears on the so-called zig-zag edges of a graphene rib-

bon (Nakada et al., 1996) and has been experimentally observed in 2D materials (S. Wang et al.,

2016; Plotnik et al., 2014) as well as photonic (Rechtsman et al., 2013) and microwave (Bellec

et al., 2013; Bellec et al., 2014) structures. To predict the existence of edge states for our 2D

optomechanical lattice, we follow the method formalized by Delplace, et al. (2011) (Delplace,

Ullmo, and Montambaux, 2011). Here, we explain how a graphene ribbon with different

orientations of boundaries can be described to predict the existence of edge states using the

bulk-edge correspondence.

A graphene ribbon is modeled by a multimode system in a honeycomb lattice, where the

periodic boundary condition is imposed on the ribbon direction while the open boundary

condition is imposed on the width direction that is parallel to a lattice vector defining the rib-

bon width. The translational symmetry in the ribbon direction ensures that the wavenumber

in the ribbon direction is well defined. Therefore, given a certain wavenumber in the ribbon

direction, the 2D lattice can be reduced to a 1D chain in the width direction, enabling us to

predict the existence of edge states of the ribbon by using a similar analysis to the 1D SSH

model (Delplace, Ullmo, and Montambaux, 2011). Note that a different wavenumber in the

ribbon direction gives a different result on the prediction of the existence of edge states.

The choice of a unit cell and two lattice vectors is naturally determined by the boundary
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structure of a graphene ribbon to be considered. This is crucial to predicting the edge states on

the boundary using the bulk-edge correspondence. Since our 2D optomechanical system can

be considered to have either so-called zig-zag or armchair edges, we describe the Hamiltonian

with two different choices of a unit cell and two lattice vectors.

Zig-zag
Zig-zag

Armchair

Armchair

a

c d

b e

f

Figure 8.19: Graphene ribbon. a, Zig-zag edge graphene ribbon. b Armchair edge graphene
ribbon. c,d, Schematic of wavenumber-resolved generalized 1D SSH chains for zig-zag and
armchair edges, respectively. The black and white circles describe sites A and B , respec-
tively. e,f, ρ(k⊥|k∥) as a function of k⊥ in the complex plane for zig-zag and armchair edges,
respectively.

The zig-zag edges of a graphene ribbon can be described by using a unit cell and two lattice

vectors of a∥ and a⊥ that are shown in Fig. 8.19a. The direction of a∥ is parallel to the ribbon

direction, while the size of a⊥ defines the width of the ribbon. More precisely, a graphene

ribbon with zig-zag edges can be defined by imposing an open boundary condition on the

basis of a⊥ while a periodic boundary condition is imposed on the basis of a∥. The Hamiltonian

of such a graphene ribbon is given by

Ĥ =
∑
n,m

[Ja |m,n〉〈m,n|⊗ σ̂−+ Jb |n,m +1〉〈m,n|⊗ σ̂−+ Jc |m,n +1〉〈m,n|⊗ σ̂−+h.c.] , (8.46)

where |m,n〉 for n = 1,2, · · ·N and m = 1,2, · · ·M is a state vector at unit cell (m,n) of the lattice.

By using the translation symmetry in the ribbon direction (a∥), the Hamiltonian is partially

diagonalized as

Ĥ =
∑
k∥

|k∥〉〈k∥|⊗
∑
m

[
(Ja + Jbe−i k∥)|n〉〈n|σ̂−+ Jc |n +1〉〈n|σ̂−+h.c.

]
, (8.47)
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where the wavenumber basis in the ribbon direction is defined as

|k∥〉 =
1p
M

∑
m

e i k∥m |m〉 (8.48)

with the wavenumber k∥ = 2πµ/M (µ = 1,2, · · · , M). By projecting the full Hamiltonian onto a

certain wavenumber subspace with k∥, we obtain the Hamiltonian for a wavenumber-resolved

1D chain:

Ĥ(k∥) = 〈k∥|Ĥ |k∥〉 =
∑
n

[
(Ja + Jbe−i k∥)|n〉〈n|σ̂−+ Jc |n +1〉〈n|σ̂−+h.c.

]
. (8.49)

As schematically shown in Fig. 8.19c, the 1D chain is considered as a generalized 1D SSH chain,

where unit cells, individually consisting of two sites, are connected to each other in a chain.

Here, an intra-cell coupling coefficient is a complex number and depends on wavenumber k∥.

To predict the existence of edges states in the reduced 1D chain with the given wavenumber of

k∥, or edge states on the boundaries of the graphene ribbon, we here use a similar analysis to

the 1D SSH model, explained in Sec. 8.3. By imposing a periodic boundary condition on the

chain, we can diagonalize the Hamiltonian using a well-defined wavenumber basis, that is

given by

|k⊥〉 =
1p
N

∑
n

e i k⊥n |n〉, (8.50)

where k⊥ = 2πν/N (ν = 1,2, · · · , N ). Then, we have the bulk Hamiltonian:

Ĥ(k⊥|k∥) = 〈k⊥|Ĥ(k∥)|k⊥〉 (8.51)

=

(
0 ρ(k⊥|k∥)

ρ∗(k⊥|k∥) 0

)
, (8.52)

where

ρ(k⊥|k∥) = Ja + Jbe−i k∥ + Jc e−i k⊥ ≡ ∣∣ρ(k⊥|k∥)
∣∣e−iφ(k⊥|k∥). (8.53)

Using the wavenumber-resolved bulk Hamiltonian in the thermodynamic limit (N →∞), we

can predict the existence of edge states by the following discussions. Note that the thermody-

namic limit in the ribbon direction (M →∞) is not necessarily required as long as the periodic

boundary condition is imposed. For a finite-length ribbon, the wavenumber k∥ is discretized

depending on the size M .

With a graphical approach, we plot the closed curve of the off-diagonal element ρ(k⊥|k∥) of the

bulk Hamiltonian for a given k∥ and varying k⊥, in the complex plane, as shown in Fig. 8.19e.

When the winding number of the closed curve around the origin is one, the wavenumber-

resolved 1D chain is in the nontrivial topological phase, supporting two edge states on the

zig-zag edges for the given k∥. On the other hand, when the winding number is zero, the chain

182



Topological lattices realized in superconducting circuit optomechanics Chapter 8

is in the trivial phase, showing no edge states.

Alternatively, we can also predict the existence of edge states by calculating the wavenumber-

resolved Zak phase, given by

Z (k∥) = i
∮

dk⊥〈uk⊥|k∥,±|∂k⊥ |uk⊥|k∥,±〉 =
1

2

∮
dk⊥ ∂k⊥φ(k⊥|k∥), (8.54)

where |uk⊥|k∥,±〉 = 1/
p

2(e−iφ(k⊥|k∥), ±1)T is an eigenvector (Bloch wave function), diagonalizing

the two-band bulk Hamiltonian of Eq. (8.52). The wavenumber-resolved generalized 1D SSH

chain is in the topological phase when Z (k∥) =π, while the chain is in the trivial phase when

Z (k∥) = 0.

a

b

Zig-zag Armchair

−2

0

2

−2

0

2

Figure 8.20: Strain-free graphene ribbons. a, Phase φ(k⊥|k∥) for zig-zag and armchair edge
graphene ribbons, respectively. The discontinuities of the phase are located at the boundary
between the red region (φ = −π) and the blue region (φ =π). b, Band structure as a function
of k∥ for zig-zag and armchair edge graphene ribbons with an approximately 100-cell width,
respectively. The regions of k∥ satisfying Z = ±π are highlighted.

In the same manner, we can predict the existence of edge states in a graphene ribbon with

armchair edges. An armchair-edge graphene ribbon is defined by a unit cell and two lattice

vectors that are shown in Fig. 8.19b. According to the connectivity among the unit cells, the

full Hamiltonian of the graphene ribbon is given by

Ĥ =
∑
n,m

(Jc |m,n〉〈m,n|⊗ σ̂−+ Jb |m,n +1〉〈m,n|⊗ σ̂−+ Ja |m +1,n −1〉〈m,n|⊗ σ̂−+h.c.) .

(8.55)

183



Chapter 8 Topological lattices realized in superconducting circuit optomechanics

Importantly, the connectivity is different from the Hamiltonian for the zig-zag edges [see

Eq. (8.46)], which results in a different prediction of the existence of edges states. By diagonal-

izing the full Hamiltonian with the wavenumber basis in the ribbon direction (k∥), we have

the Hamiltonian of a wavenumber-resolved generalized 1D SSH chain:

Ĥ(k∥) = 〈k∥|Ĥ |k∥〉 =
∑
n

(
Jc |n〉〈n|⊗ σ̂−+ Jb |n〉〈n +1|⊗ σ̂−+ Jae−i k∥ |n −1〉〈n|⊗ σ̂−+h.c.

)
.

(8.56)

As schematically shown in Fig. 8.19d, the wavenumber-resolved 1D chain can be considered as

a generalized 1D SSH chain. By introducing the wavenumber basis in the width direction (k⊥),

the bulk Hamiltonian is obtained as Eq. (8.52), where the off-diagonal element is modified as

ρ(k⊥|k∥) = Jc + Jbe−i k⊥ + Jae−i k∥+i k⊥

= Jc +e−i k∥/2 [
(Ja + Jb)cos(k⊥−k∥/2)+ i (Ja − Jb)sin(k⊥−k∥/2)

]
.

(8.57)

In this case, the closed curve of ρ(k⊥|k∥) is an ellipse in the complex plane, as shown in

Fig. 8.19f. However, we can apply the same analysis to the armchair-edge graphene ribbon in

order to predict the existence of edge states, as in the case of the zig-zag edges. Namely, if the

closed curve winds up the origin, the armchair-edge graphene ribbon shows edge states for

the given k∥.

As examples, we analyze strain-free graphene ribbons with zig-zag and armchair edges, for

which Ja = Jb = Jc . In Fig. 8.20a, the phaseφ(k⊥|k∥) for the zig-zag and armchair edge graphene

ribbons are shown as a function of k∥ and k⊥, respectively, as introduced by Delplace (Delplace,

Ullmo, and Montambaux, 2011). The phase is restricted to the interval [−π,π] to be a single-

valued function. The two singularity points, corresponding to the Dirac points, are shown in

each plot. With a fixed k∥, the phase of φ(k⊥|k∥) along k⊥ gives the wavenumber-resolved Zak

phase to predict the existence of edge states. More simply, the discontinuities of φ(k⊥|k∥) are

useful to determine the discretized Zak phase (Z = 0 or π) since a path along k⊥ necessarily

goes across a discontinuity to give a non-zero Zak phase.

In Fig. 8.20b, we numerically calculate the band structure of graphene ribbons with zig-zag

and armchair edges for different k∥, respectively. The ribbon width is set to be on the order

of 100 to avoid the finite-size effect. Since the ribbon width is sufficiently wide, edge states

are found to be zero-energy states in the band gap. The regimes of Z (k∥) =π are highlighted

in Fig 8.20b. As the Zak phase predicts, there are edge states in the zig-zag edge ribbon for

|k∥| > 2π/3, while not in the armchair edge ribbon for all k∥.

8.8.3 Strained graphene ribbon

In our 2D optomechanical lattice, only one of the couplings in three different orientations is

different, where the coupling strength is denoted by J while the other two coupling strengths

are denoted by J ′. This corresponds to applying a strain to a graphene ribbon in a direction
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Figure 8.21: Strained graphene ribbons. a, Four different interpretations of our 2D lattice as a
truncated strained graphene ribbon: zig-zag, armchair, tilted armchair, and tilted zig-zag edge.
b, The phase φ(k⊥|k∥) for the four different orientations. The discontinuities of the phase are
located at the boundary between the blue region (φ = −π) and the red region (φ =π). c, Band
structure as a function of k∥ for the four different graphene ribbons with an approximately
100-cell width, respectively. The region of k∥ satisfying Z = ±π are highlighted.

parallel or perpendicular to the direction of coupling J . As shown in Fig. 8.21a, our 2D lattice

is interpreted as a truncated strained graphene ribbon with zig-zag or armchair edges. More

precisely, there are four different possible orientations for the ribbon: zig-zag edges perpen-

dicular to the direction of coupling J (zig-zag ribbon), armchair edges parallel to the direction

of coupling J (armchair ribbon), zig-zag edges tilted with respect to the direction of coupling

J (tilted zig-zag ribbon), and armchair edges tilted with respect to the direction of coupling

J (tilted armchair). Note that due to the reflection symmetry, there are two orientations of

strained graphene ribbons with tilted zig-zag and tilted armchair edges, respectively, that are

not shown in Fig. 8.21a to avoid redundancy.

We plot the phase φ(k⊥|k∥) for the four different orientations of the ribbon. To describe

a zig-zag strained graphene ribbon, we set Jc = J and Ja = Jb = J ′ in the Hamiltonian of

Eq. (8.46), while we set J = Ja and Jb = Jc = J ′ (or J = Jb and Ja = Jc = J ′) for a tilted zig-zag

ribbon. To describe an armchair strained graphene ribbon, we set Jc = J and Ja = Jb = J ′ in

the Hamiltonian of Eq. (8.55), while we set Ja = J and Jb = Jc = J ′ (or J = Jb and Ja = Jc = J ′)
for a tilted armchair ribbon. We note that due to the reflection symmetry, the phase for the

two tilted zig-zag ribbons can be converted by replacing J and J ′, resulting in identical phase

trajectories in the complex plane. The same argument is valid for the two tilted armchair
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orientations.

For our specific setting with J ′/J = 0.51, the phase φ(k⊥|k∥) is plotted as a function of k∥ and

k⊥ in Fig. 8.21b. The two Dirac points almost merge since the coupling ratio is close to the

transition point of 0.5. In the same way as the cases without a strain, we can determine for

which k∥ edge states exist from the phase φ(k⊥|k∥) in the path along k⊥. To confirm that

the prediction of the existence of edge states from the Zak phase is correct, we numerically

simulate the band structure of strained graphene ribbons of approximately 100-cell width,

as shown in Fig. 8.21c, where the regions of Z = π are highlighted. Edge states appear as

zero-energy modes in the band gap (Kohmoto and Hasegawa, 2007; Delplace, Ullmo, and

Montambaux, 2011). The analytical calculation of the Zak phase accurately predicts the

existence of edge states. Importantly, for our specific setting with J ′/J = 0.51, the zig-zag

ribbon and the tilted armchair ribbon show edge states for almost all k∥.

8.8.4 Finite-width effect on graphene ribbon

Depending on the boundary structures, the width of the graphene ribbon is found to be

N = 4 for the zig-zag edges and N = 7 for the armchair edges (see Fig. 8.22a). As discussed in

Sec. 8.3, the finite-size effect modifies the prediction of the existence of edge states. Since

the wavenumber-resolved 1D chain reduced from a graphene ribbon can be considered as

a generalized 1D SSH chain, we can apply the same discussions as for the standard 1D SSH

model to predict the existence of edge states of a graphene ribbon in the presence of the

finite-width effect. Namely, edge states appear when both Z =π and the slope condition are

satisfied simultaneously. Here, the slope condition for the wavenumber-resolved 1D chain is

described as∣∣∣∣∂φ(k⊥|k∥)

∂k⊥
k⊥=k⊥,min

∣∣∣∣< N +1, (8.58)

where k⊥,min is the wavenumber associated with the minimum absolute value of the eigenen-

ergy for the given k∥.

As shown in Fig. 8.22b, we numerically simulate the energy levels as a function of k∥ for the

four different ribbons with the same width as our 24-site lattice. We find that for specific

ranges of k∥, there are zero-energy modes, corresponding to edge states, in the band gap,

only for the zig-zag and tilted armchair edge ribbons. This is consistent with the prediction.

However, due to the finite width of the ribbons, the edge states are hybridized, showing an

energy splitting. For further study, the band structure as a function of the coupling ratio of

J ′/J is shown in Fig. 8.22c. As expected, zero-energy states appear when J ′/J → 0 only for the

case with the zig-zag edges and the tilted armchair edges.

Using the Zak phase condition (Z =π) and the slope condition, we can predict the existence of

the edges states. In Fig. 8.22b, the regions of k∥ that satisfy both the conditions are highlighted,

while the transition points that are predicted from the Zak phase calculation are shown with
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Figure 8.22: Strained graphene ribbons of finite width. a, Four different interpretations
of our 2D lattice as a truncated strained graphene ribbon: zig-zag, armchair, tilted zig-zag,
and tilted armchair edges. The black dots denote the unit cell used for the calculation of the
band structure based on Bloch’s theorem. b, Band structure as a function of k∥ for the four
different orientations. The coupling ratio is set to be J ′/J = 0.51 and the width is the same as
our 24-site lattice. The number of the energy levels corresponds to the number of sites in the
unit cell (black dots in a). The regions of k∥ satisfying both Z =π and the slope condition are
highlighted while the transition points calculated only from the Zak phase are shown with the
black dashed lines. c, Band structure of the corresponding graphene ribbons as a function of
J ′/J . The dashed line points out J ′/J = 0.51, our design value.

the black dashed lines. We find that the region of k∥ showing edges states are decreased from

the case with an infinite width due to the finite-width effect. Importantly, edge states exist

only in either the zig-zag edge ribbon or the tilted armchair edge ribbon.

8.9 24-site honeycomb lattice

8.9.1 Band structure and modeshapes

The 24-site multimode optomechanical system in a honeycomb lattice presented in the Sec.8.7

is designed to be close to the transition point for strained graphene (J ′/J = 0.5). From the

discussions for strained graphene ribbons, we could expect that edge states appear on both

the two sites of the top and bottom edges of the flake. This is because the two sites overlap

the edge states seen in the zig-zag and tilted armchair edge ribbons with the same width

as our 24-site lattice, as shown in Fig. 8.23 (see Sec. 8.8.4). However, the prediction can be
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precise only when a periodic boundary condition is imposed in the ribbon direction. Our

24-site lattice could be obtained by truncating the corresponding strained graphene ribbon

and imposing an open boundary condition in the ribbon direction. Therefore, it is not trivial

and beyond the scope of this work and still and open question how to precisely predict the

existence of edge states in such a small flake of strained graphene, since the finite-size effects

in both the two lattice directions could be mixed up.

Zig-zag Tilted armchair

Degenerate modes

Figure 8.23: Edge states of graphene ribbons overlapping the flake structure. Examples
of numerically simulated modeshapes of edge states in zig-zag and tilted armchair edge
graphene ribbons, overlapping both the two sites on the top and bottom edges of the 24-site
flake. The titled armchair orientation has a reflection symmetry resulting in two degenerate
mode shapes.

Nevertheless, we can numerically simulate the band structure and the modeshapes of the

24-site multimode system. In Fig. 8.24a, we show the energy levels of the 24-site system as a

function of J ′/J . In the small coupling ratio limit (J ′/J → 0), four zero-energy modes appear in

the band gap. Figures 8.24b and c show several examples of modeshapes of two of the upper

bulk modes, all the zero-energy states, and two of the lower bulk modes for J/′ J = 0.15 and

J ′/J = 0.51 (design values), respectively. As expected, the four zero-energy modes are localized

at the four sites of the top and bottom edges. This is consistent with the topological prediction

of the existence of edge states from strained graphene ribbons, discussed in Sec. 8.8.4.

8.9.2 Effect of parasitic couplings

The ideal nearest neighbor coupling in the honeycomb lattice is realized by mutual inductance

between adjacent triangular spirals with shared edges in the circuit shown in Fig.8.14. Beyond

this, there are parasitic mutual inductances between distanced spirals in the realized lattice.

Based on the electromagnetic FEM simulations, we expect that parasitic mutual inductance

between triangles which have a shared vertex (as shown in Fig. 8.25a) resulting in approxi-

mately identical parasitic coupling rates, while the parasitic coupling is an order of magnitude

smaller than the nearest neighbor coupling rate. Figure 8.25b shows the numerically calcu-

lated energy levels including the parasitic couplings for the 24-site graphene flake versus the

relative second nearest-neighbor coupling rate. This can explain the asymmetry in the band

structure of the 24-site flake which was experimentally measured and presented in Sec.8.7.
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Figure 8.24: 24-site honeycomb lattice designed bands. a, Energy levels of the 24-site honey-
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Figure 8.25: Effect of parasitic coupling on the 2D honeycomb lattice. a, Mode diagram of
the 24-site 2D honeycomb lattice including second nearest-neighbor couplings. b, Energy
levels as a function of the relative second nearest-neighbor coupling rate for the 2D case. The
dashed line shows the values of the actual device discussed in Sec.8.7. Color coding denotes
the LPB, edge states and UPB.

8.10 Experimental setup and measurement techniques

8.10.1 Full experimental setup

The full experimental setup (Fig.8.26a) consists of a room-temperature (RT) and a cryogenic

section. At RT, two Rohde & Schwartz (R&S) SMB 100A analog microwave sources generate
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the cooling/probe and excitation pumps, a R&S ZNB20 Vector Network Analyzer (VNA) and

a R&S FSW 26 Electronic Spectrum Analyzer (ESA) are used for the measurement itself. The
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Figure 8.26: Experimental setup for optomechanical lattices experiment.a, Full experimental
setup used for the chips’ characterization. Some elements of the input line (inside round
brackets) are specific only to the 1D sample. b, Packaged chip inside the copper sample holder.

VNA measures the coherent response of the devices, in our case the transmission scattering

parameter S21(ω). The ESA is not used in its usual frequency-domain mode, instead, for our

experiment we use it in the so-called ’zero-span’. In this mode the instrument demodulates at

a fixed CW frequency and effectively implements a time-domain power measurement over

a large dynamic range, which is typical of spectrum analyzers. The ESA is able to trigger the

microwave sources to start the time-domain sequence, which is programmed in the sources.

All the instruments are locked together and to an SRS FS725 Rubidium Frequency Standard to

achieve reliable frequency stability and accuracy. The two microwave sources are combined

at RT through a 3dB microstrip coupler. The VNA is then directionally coupled with 20dB of

insertion loss and all the signals are finally sent to the Dilution Refrigerator (DR).

A series of cryogenic attenuators are used at the different flanges to thermally anchor the input

wiring and more importantly to remove the room temperature noise from the input signal.

For the 1D sample a total of 46 dB of nominal attenuation were used. For the 2D samples a

total of 26 dB of nominal attenuation were used. In this experiment we are not interested to

probe the devices at the single photon level, hence the not-so-high attenuation values. We are

more interested in being able to reach the regime where the effective mechanical damping
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rate greatly exceeds the intrinsic one Γeff ≫Γm through optomechanical sideband cooling,

which requires high on-chip powers (O (−30 dBm)). For the 1D chip an additional K&F 18GHz

lowpass filter and circulator were used.

The output signal from the chips is firstly amplified with a cryogenic High Electron Mobility

Transistor (HEMT) amplifier at the 4K flange of the DR. The HEMTs were both from Low-Noise-

Factory, model numbers are LNF-LNC4_8C and LNF-LNC1_12A for the 1D and 2D samples

respectively. The typical gain is 40 dB. The circulators placed after the chips are crucial in

preventing the back-propagating high-amplitude signals of the HEMT amplifier from reaching

the chip. A room temperature amplifier, model number iXblue DR-AN-10 is placed as close to

the fridge as possible to further amplify the signal and make it robust against injected noise

along the cables until they reach the measurement equipment. This signal is then split with a

180-hybrid coupler and sent back to port 2 of the VNA and the ESA.

The chip holder (Fig.8.26b) is mounted at the MXC flange of the DR, which has a temperature

of T ≈ 15 mK. The chip holder is constructed with Oxygen-free copper. The CPW signal lines

are wire bonded, as well as the ground plane close to them, while the perimeter ground plane

has been contacted using conductive silver glue.

8.10.2 Ringdown data analysis and cavity shifts

We fit the ringdown data, an example data set of which can be seen in Fig. 8.27a, with an

exponential profile P (t ) = P0 exp(−Γeff/2π)+N and extract Γeff from such fit.

Given the very large amount of ringdown traces (# powers)×(# sites)×(# collective modes) =

(5,100 for the 1D and 29,236 for the 2D sample), a robust automated fitting algorithm has been

advised to reliably find good initial parameters for the fits. Another challenge arises because,

due to the large variation of ηk
i across the different modes and sites, there can be more than 2

orders of magnitude in the exponential decay rate of the measured signal, as can bee seen in

Fig. 8.27b. This makes it difficult to have a one-for-all starting condition for the fits. Moreover,

the initial decay of a highly-excited mechanical oscillator can exhibit non-linear behaviour due

to the high-amplitude oscillations and it should not be included in the exponential fit. Finally,

since for the optomechanical damping effect the relative detuning between the cavity and

mechanical frequency is relevant, we measured the collective modes’ resonance frequency

shift with the cooling powers used for the experiment. Figure 8.27c shows an example of such

analysis for mode k = 15 which has a linewidth closest the average among all the modes. We

can see that for this mode the cavity shift is negligible compared to the linewidth. This might

not be the case for the modes with the lowest linewidths, and it could justify restricting the

fitting to a lower-power range. This effect can also be taken into account by plugging in the

correct ω̃k
c and κk

tot into the optomechanical damping rate equation (8.25).
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8.10.3 Samples parameters

The hybridized modes frequencies ωc and line-widths κ (Tab. 8.3 and 8.5) were measured at

the VNA then fitted with a complex Sexp
21 (ω) = SLor

21 (ω)+x + i y expression that also takes into

account any non-ideal Fano effect. sLor
21 (ω) is a Lorentzian lineshape and x + i y is a complex

displacement that even though it doesn’t physically interpret the origin of the ’Fanoness’, it

enables us to model it. For the cavity and mechanical resonance frequencies, the uncertainty

in the values is many orders of magnitude smaller than the least significant reported digit.

The mechanical frequencies (Tab. 8.4 and 8.6) were measured in a similar way, doing and OMIT

measurement, and fitting the VNA trace with an Sexp
11 (ω) reflection Lorentzian experimental

profile. The bare mechanical damping rates Γm were extracted by taking the intercept of the

Γeff fits versus power. For a fixed mechanical site, more than one independent value of Γm

was extracted by looking at the different hybridized modes. What we are reporting here is the
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Figure 8.27: Data analysis. a, Example raw data set of ringdowns with increasing cooling power.
b, Γeff vs cooling power data for some sites of the k = 24 collective mode of the 2D sample. c,
Collective mode resonance frequency shift versus cooling power for the average-linewidth
mode with κ/2π = 2 MHz. The shaded area indicates the mode’s linewidth.
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weighted average of such values. The error in these measurements is of the same order of

magnitude of the digit in round brackets.

Hybridized mode 10 9 8 7 6
ωc /2π [GHz] 8.463 8.139 7.767 7.435 7.016
κ/2π [MHz] 3.904 4.556 4.176 4.668 4.964

Hybridized mode 5 4 3 2 1
ωc /2π [GHz] 6.922 6.590 6.404 6.285 6.216
κ/2π [MHz] 7.09 0.696 0.384 0.239 0.080

Table 8.3: 1D hybridized cavity modes parameters

Site number 1 2 3 4 5
Ωm/2π [MHz] 2.142 2.165 2.202 2.238 2.267
Γm/2π [Hz] 4.3(3) 4.2(3) 12.(1) 11.(1) 15.(4)

Site number 6 7 8 9 10
Ωm/2π [MHz] 2.315 2.616 2.405 2.448 2.506
Γm/2π [Hz] 12.(2) 15.(2) 8.(0) 16.(6) 10.6(3)

Table 8.4: 1D mechanical modes parameters

Hybridized mode 24 23 22 21 20 19 18 17
ωc /2π [GHz] 8.250 7.926 7.851 7.667 7.644 7.512 7.494 7.481
κ/2π [MHz] 6.468 2.165 2.504 1.027 3.31 2.002 0.349 0.362

Hybridized mode 16 15 14 13 12 11 10 9
ωc /2π [GHz] 7.401 7.374 7.224 7.189 7.100 7.068 6.911 6.896
κ/2π [MHz] 4.79 4.601 4.485 1.09 0.265 0.766 4.36 1.121

Hybridized mode 8 7 6 5 4 3 2 1
ωc /2π [GHz] 6.871 6.837 6.829 6.797 6.772 6.750 6.717 6.671
κ/2π [MHz] 0.241 0.174 2.635 1.603 1.261 0.532 1.308 0.456

Table 8.5: 2D hybridized cavity modes parameters

Site number 1 2 3 4 5 6 7 8
Ωm/2π [MHz] 2.106 2.127 2.158 2.179 2.208 2.233 2.260 2.291
Γm/2π [Hz] 43.(7) 9.(0) 6.(9) 4.(1) 15.(6) 12.(6) 14.(1) 6.0(9)

Site number 9 10 11 12 13 14 15 16
Ωm/2π [MHz] 2.314 2.347 2.380 2.413 2.435 2.469 2.501 2.539
Γm/2π [Hz] 29.(8) 8.(1) 20.(5) 3.2(7) 5.(5) 10.(8) 6.7(7) 6.(4)

Site number 17 18 19 20 21 22 23 24
Ωm/2π [MHz] 2.571 2.611 2.648 2.672 2.708 2.749 2.796 2.836
Γm/2π [Hz] 16.(3) 9.(8) 39.(0) 20.(5) 18.(6) 10.(3) 8.(9) 18.(1)

Table 8.6: 2D mechanical modes parameters

193



Chapter 8 Topological lattices realized in superconducting circuit optomechanics

8.10.4 Measurement of optomechanical coupling rate

In order to measure ηk
i g0,i , the effective optomechanical coupling rate between collective

microwave mode k and mechanical oscillator i , we characterize the mechanical sideband

induced by a resonant microwave drive. In contrast to the measurement of the optomechanical

damping rate, we set the drive power so that the cooperativity can be about 1 to minimize

the measurement backaction on the phonon occupation. We measure the power spectrum

density (PSD) of the upper sideband signal and integrate the PSD to obtain the total power.

From Eq. (2.63), the sideband power (Toth et al., 2017) scaled to photon flux is given by

nsb = Gk κk
2

κtot

κk
tot(η

k
i g0,i )2nk

c

Ω2
m,i +κk

tot
2

/4
nm,i , (8.59)

where Gk is the gain of the full measurement chain from the device, κk
2 is the external coupling

rate to the output line, and nm,i is the phonon occupation of mechanical oscillator i . The

intracavity photon number with the resonant drive is explicitly described as

nk
c =

4κk
1

κk
tot

2 Rk nd,in, (8.60)

where Rk is the transmittance between the device and a microwave source used for the drive,

κk
1 is the external coupling rate to the input line, and nd,in is the drive power scaled to photon

flux at the output of the microwave source. From the scattering parameters based on the

input-output formalism (A. A. Clerk et al., 2010), the transmitted drive power scaled to photon

flux is give by

nd,out = Gk 4κk
1κ

k
2

κk
tot

2 Rk nd,in, (8.61)

where we assume that the gain Gk and transmittance Rk does not have frequency dependence

between the drive and the mechanical sideband. Using Eqs. (8.59), (8.60), and (8.61), we

obtain

nsb

nd,out
=

(ηk
i g0,i )2

Ωm,i
2 +κk

tot
2

/4
nm,i . (8.62)

Note that all the parameters that would be challenging to obtain experimentally, except for the

effective optomechanical coupling rate ηk
i g0,i , are canceled out in this expression, enabling

us to determine the coupling rate.

We calibrate the phonon occupation nm,i by increasing the temperature of the environment

for the device so that the mechanical oscillator can be thermalized, i.e. nm,i ≈ kBT /ℏΩm,i ,

where T is the base temperature of the dilution refrigerator. Figure 8.28a shows the PSD of the

mechanical sideband of mechanical mode i = 6 induced by the resonant drive to collective
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a b

dc

Figure 8.28: Measurement of optomechanical coupling rate. a, Power spectrum density (PSD)
of the upper mechanical sideband with the different base temperatures of the dilution refrig-
erator. The black lines are the Voigt function fits to extract the total power of the sideband. b,
Normalized total power of the mechanical sideband as a function of the nominal phonon oc-
cupation, calculated from the base temperature. The dots are the experimental results and the
line is the linear fit to the data in the higher temperature region (dark blue). c,d Single-photon
optomechanical coupling rate at site i for the 1D chain and 2D lattice, respectively. The lines
are inverse square root fits.

microwave mode k = 10 of the 1D chain. Since the minimum resolution bandwidth of the

spectrum analyzer is comparable with the mechanical linewidth, we extract the total power of

the mechanical Lorentzian peak by fitting the PSD with a Voigt function with the Gaussian

bandwidth corresponding to the resolution bandwidth. Figure 8.28b shows the sideband

power normalized by the transmitted drive power as a function of the nominal phonon

occupation calculated by kBT /ℏΩm,i . In the region of the higher temperature, the normalized

sideband power follows linearly the nominal phonon occupation, so that we can assume it is

thermalized. By fitting the slope in this region, the effective optomechanical coupling rate can

be extracted as

(ηk
i g0,i )2 =

∂(nsb/nd,out)

∂nm,i

(
Ωm,i

2 +κk
tot

2
/4

)
, (8.63)
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where all the remaining parameters are determined from independent measurements. Us-

ing the data shown in Fig. 8.28b, the optomechanical coupling rate between the collective

microwave mode and the mechanical oscillator is found to be (ηk
i g0,i )/2π = 2.2 Hz for k = 10

and i = 6. Using the known participation ratio ηk
i , the optomechanical coupling rate at site i is

found to be g0,i /2π = 12 Hz for i = 6.

Since all the participation ratio ηk
i are determined as discussed in Sec. 8.5.1, all the optome-

chanical coupling rate g0,i are determined as follows. Form the optomechanical damping

rate, the unnormalized participation ratio η̃k
i is experimentally obtained by Eq. (8.28). Using

the relation described in Eq. (8.29), the relative optomechanical coupling rate at site i can be

determined as

ḡ0,i =
g0,i∑
i g0,i

=

(
η̃k

i /ηk
i

)
∑

i

(
η̃k

i /ηk
i

) . (8.64)

We obtain the relative coupling rate using the modeshapes for k = 10 of the 1D chain. From

the mechanical sideband measurement, we have already known one of the optomechanical

coupling rate, i.e. g0,i ′ for i ′ = 6 in our case. Thus, the optomechanical coupling rate at site i is

determined as

g0,i =
ḡ0,i

ḡ0,i ′
g0,i ′ . (8.65)

Figure 8.28c shows all the optomechanical coupling rate between the bare microwave mode

and the mechanical oscillator at site i of the 1D chain. We apply the same measurement

and analysis for the 2D lattice. All the optomechanical coupling rates in the 2D lattice are

determined as shown in Fig. 8.28d.

As shown in Figs. 8.28c and d, the single-photon optomechanical coupling rates are fitted well

to the inverse of the square root of the mechanical frequency. This can be interpreted by the

fact that the zero-point fluctuation of motion of a mechanical oscillator is proportional to the

inverse of the square root of the mechanical frequency, i.e. xZPF =
√
ℏ/(2meffΩm), where meff

is the effective mass (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014).
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9 Cryogenic electro-optic interconnect
for superconducting devices

The encoding of information onto optical fields via electro-optical modulation is the back-

bone of modern telecommunication networks (Winzer, Neilson, and Chraplyvy, 2018). The

approach is based on optical fibers and offers vast bandwidth and low-loss transport. As a

result, optical fibers are now replacing electrical cables in short-range communications within

data centers (Kachris and Tomkos, 2012; Q. Cheng et al., 2018; Blumenthal et al., 2000). Optical

interconnects based on silicon photonics have, in particular, been developed to address the

high power consumption of electrical interconnects (Thomson et al., 2016), and these inter-

connects could also potentially be used for on-board chip-to-chip communication (Sun et al.,

2015; Miller, 2000). Similar challenges exist in the development of superconducting quantum

circuits (Devoret and R. J. Schoelkopf, 2013; Martinis, Devoret, and Clarke, 2020; Blais, Girvin,

and Oliver, 2020), where the electrical connections required to interface with qubits introduce

heat load, limiting the scaling of superconducting qubit technology (Arute et al., 2019). As the

number of qubits is scaled up (Krinner et al., 2019), it will be necessary to increase the number

of microwave control and readout lines, while preserving the base temperature and protecting

the qubits from thermal noise.

In contrast to coaxial cables, optical fibers have superior thermal insulation, reducing the

heat load per line by two orders of magnitude (Fig. 9.1c). Optical fibers additionally exhibit

ultra-low signal losses (of about 0.2 dB/km), compared to the losses of coaxial cables at GHz

frequencies (about 3 dB/m). Furthermore, thermal noise is completely negligible at optical

frequencies. Optical fibers could therefore provide a solution to scaling the number of lines

without the concomitant heating.

For such an approach, transducers that can convert input microwave signals to the optical

domain at low temperatures and with low-noise are required, and quantum-coherent inter-

faces between the microwave and optical domains are being developed (Lauk et al., 2020;

Lecocq, Quinlan, et al., 2020). To date, quantum coherent conversion schemes based on

piezo-electromechanical (Jiang, Patel, et al., 2019; Jiang, Sarabalis, et al., 2019), magneto-

optical (Bartholomew et al., 2019), and optomechanical (Higginbotham et al., 2018; Forsch

et al., 2020; Arnold et al., 2020; Andrews et al., 2014; Chu and Gröblacher, 2020; Mirhosseini,
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Sipahigil, et al., 2020a) coupling have been developed. In addition, schemes based on cavity

electro-optics (Tsang, 2010) have been demonstrated using bulk (Rueda, Sedlmeir, Collodo,

et al., 2016; Rueda, Sedlmeir, Kumari, et al., 2019; Hease et al., 2020) or integrated (L. Fan

et al., 2018; McKenna et al., 2020; Holzgrafe et al., 2020) microwave cavities coupled via the

Pockels effect to an optical cavity mode. However, all these schemes can only transduce

narrow-band microwave signals to the optical domain and cannot replace current cryogenic

semiconductor amplifiers, which are based on high electron mobility transistors (HEMTs) and

used for the readout of GHz microwave signals. Optical interconnects based on broadband

electro-optical modulation could potentially be an attractive alternative to cryogenic semicon-

ductor amplifiers for superconducting quantum circuits (Devoret and R. J. Schoelkopf, 2013;

Martinis, Devoret, and Clarke, 2020; Blais, Girvin, and Oliver, 2020) and hybrid superconduct-

ing devices (A. Clerk et al., 2020). While this approach may yield lower conversion efficiency

compared to systems employing narrow-band resonant cavities, continued improvements

in design, and new material systems, can render it competitive, especially given its relative

simplicity. However, little is known about optical modulation at cryogenic temperatures.

Here, we report a cryogenic electro-optical interconnect based on a commercial titanium-

doped lithium niobate (Ti:LiNbO3) optical phase modulator (Wooten et al., 2000) and detect

microwave signals from a cryogenic circuit. We show that such modulators are compatible

with operation down to 800mK—below the typical 3K operation temperature of conventional

microwave amplifiers based on HEMTs (Pospieszalski et al., 1988; Duh et al., 1988)—and

maintain their room temperature Pockels coefficient.

To demonstrate electro-optical read-out, we perform spectroscopy on a superconducting cir-

cuit optomechanical system and measure optomechanically induced transparency (OMIT) (Weis

et al., 2010; Safavi-Naeini, Alegre, et al., 2011; J. D. Teufel, D. Li, et al., 2011). Furthermore,

we encode thermomechanical sidebands from the microwave domain onto an optical signal

processed at room temperature.

Although our optical readout currently has significantly higher noise, +60dB compared to

the output of a typical HEMT, substantial noise reduction should be attainable by harnessing

recent advances in integrated modulators (C. Wang et al., 2018; He et al., 2019; Thiele et

al., 2020; Chakraborty et al., 2020), such as by increasing the modulator length, or by using

materials with a higher electro-optic coefficient (Abel et al., 2019; Eltes et al., 2019).

Our work highlights the potential of electro-optical modulators for massively parallel readout

for emerging quantum computing (Devoret and R. J. Schoelkopf, 2013; Martinis, Devoret,

and Clarke, 2020; Blais, Girvin, and Oliver, 2020; A. Clerk et al., 2020) or cryogenic classical

computing (A. I. Braginski, 2019) platforms.
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Figure 9.1: Principle of a cryogenic electro-optical interconnect for readout of supercon-
ducting devices. a, Simplified schematic of a conventional readout of a device under test
(DUT) in a dilution fridge using a cryogenic HEMT amplifier. The dashed box indicates an
optional quantum-limited pre-amplifier not used in this work. The devices are interrogated
by input microwave signals that are attenuated to reduce thermal noise, and amplified using
an HEMT amplifier at 3K. b, Principle of a cryogenic electro-optic readout scheme using an
electro-optical phase modulator. The DUT is interrogated using the same microwave input
line, but the microwave signals are converted to the optical domain at 3 K, reducing thermal
load. c, Conducted heat through a typical cryogenic coaxial cable and optical fiber, between
room temperature and 3K. d, Schematic cross-section of a z-cut LiNbO3 electro-optic phase
modulator. e, Microscope photo of the commercial phase modulator used in the experiment,
showing the coupling region between fiber and LiNbO3 chip.

9.1 Principle of Operation of electro-optical transducer

A prototypical measurement setup for a single superconducting device-under-test (DUT) that

operates at the 15mK stage of a dilution refrigerator is shown in Fig. 9.1a. Coaxial cables are

used to transmit output signals to the room temperature, as well as to send control signals

to the cold stages of the fridge. To read out GHz microwave signals, a HEMT amplifier that

operates at the 3K stage and has low-added-noise, expressed as nadd ∼ 10quanta/(s ·Hz), is
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typically used to amplify the DUT output signal for further processing outside the cryostat.

The HEMT amplification also compensates for losses in the cables. HEMTs are not quantum-

limited (Pospieszalski et al., 1988; Duh et al., 1988), therefore Josephson junction-based

pre-amplifiers (Macklin et al., 2015; Siddiqi et al., 2004) that operate at the 15mK stage can

be employed for near-quantum-limited microwave amplification (shown in Fig. 9.1). The

presence of the coaxial cables introduces additional heat load from room temperature into

the cold stages of the refrigerator, which poses a significant barrier to the scalability of such

systems (Krinner et al., 2019).

We replace the HEMT amplifier with a LiNbO3-based optical phase modulator—the workhorse

of modulator technology—to directly transduce the DUT microwave output signal onto side-

bands around the optical carrier field (Fig. 9.1b), detectable using standard homodyne or

heterodyne detection schemes at ambient temperatures. To illustrate the principle of the

readout, we consider the operating principle of a PM. Optical PMs are based on the Pockels

effect (Fig. 9.1d) and induce a phase shift on the input optical field Ein(t ), proportional to the

voltage V (t ) applied on the input microwave port of the device,

Eout(t ) = Ein(t )e−iπV (t )/Vπ ≈ Ein(t )[1− iπV (t )/Vπ], (9.1)

where the half-wave voltage Vπ is the voltage at which the phase shift is π, and typical V (t ) ≪
Vπ is assumed. The relation between microwave (field operator b̂) and optical (field operator

â) photon flux spectral densities (A. A. Clerk et al., 2010), S̄bb and S̄aa respectively, can be

written as (see Sec. 9.1.1 and Appendix B)

S̄aa[ωopt ±ωMW] = G × (S̄bb[ωMW]+nadd) (9.2)

where ωMW and ωopt are the microwave signal and optical carrier frequencies, nadd is the

added noise of the transducer (referred to the input), and the transduction gain G is the

number of transduced optical photons per microwave input photon, given by (see Sec.9.1.1):

G = Popt
ωMW

ωopt

π2Z0

2V 2
π

(9.3)

where Popt is the power of the optical carrier at the output of the PM, and Z0 its input mi-

crowave impedance. In this experiment, we employ a commercial (Thorlabs LN65S-FC), z-cut

traveling wave Ti-doped LiNbO3 PM with specified bandwidth of 10GHz and Vπ = 7.5V at

10GHz (Fig. 9.1e). We use a 1555nm fiber laser as the optical source. The typical incident

optical power on the PM is 15mW. The optical transmission of the PM was reduced during

the first cooldown, and measured at 23%. Additional details on the cryogenic optical setup are

given in Sec.9.5.2.

Previous works investigated the temperature dependence of the electro-optic coefficient and

refractive index of congruent LiNbO3 at low frequencies down to 7K (Herzog, Poberaj, and

Günter, 2008). Commercial x-cut LN modulators were also tested down to 10K, showing a
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Figure 9.2: Cryogenic characterization of a LiNbO3 phase modulator. a, Experimental setup
for low-temperature characterization of the phase modulator. b, plot of Vπ vs. frequency at
800mK. c, Characterization of Vπ at 5GHz vs. temperature from room temperature to 800mK.
d, Measurement of heating due to optical dissipation when the phase modulator is mounted
on the 800mK flange. Plot of the steady state temperature vs. input laser power of the 3K,
800mK, and 15mK flanges. e, Experimental setup for phase shift keying detection. RF signal
from the waveform generator is directly applied on a phase modulator. After homodyne
detection the electrical signal is recorded on a fast oscilloscope. f, Eye-diagram of an optical
signal phase-modulated at a rate of 5GBaud, the bit error ratio is 5×10−5.

slight change in Vπ from its room temperature value (Morse et al., 1994; C. McConaghy et al.,

1996). Ref. (Yoshida, Kanda, and Kohjiro, 1999) discusses the behavior of LiNbO3 modulators

with superconducting electrodes down to 4K. To date, however, such modulators have not

been used in a dilution refrigerator to directly read out a superconducting device.

9.1.1 Quantum mechanical model for a phase modulator.

In the following, we derive a simple quantum description of the phase modulator to establish

the quantum limits in transducing the input microwaves. A more detailed discussion is also

provided in Appendix B. The central assumption is that the linear regime stays valid, for

sufficiently low input microwave powers. As such, the scattering equations linking inputs

to output should be identical in both quantum and classical cases. We can use the known

classical regime as a starting point, with the output optical field amplitude âout expressed as a

function of the input optical field âin as

âout = e−iπV /Vπ âin ≈ (1− iπV /Vπ)âin, (9.4)
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where V is the classical voltage applied at the input and the half-wave voltage Vπ is the

voltage at which the phase modulator applies a phase shift of π. For the quantum model, the

classical fields are replaced by their quantum equivalent. The microwave input becomes V̂ =√
ℏωMWZ0(b̂ + b̂†)/

p
2 with b̂ the annihilation operator for the microwave field at frequency

ωMW traveling on a transmission line of impedance Z0. The optical input is âin =αe−iωoptt +
δâin, where α is the amplitude of the coherent carrier field of frequency ωopt, with |α|2 =

Popt/ℏωopt, and δâin carries the quantum fluctuations of the input optical field. Inserting the

expressions in Eq. (9.4), we can compute δâout = âout −αe−iωoptt , the quantum fluctuations of

the output optical field, given by

δâout = δain − i
p

Ge−iωoptt (b̂ + b̂†) (9.5)

with the transduction gain G given by Eq. (9.3).

To understand the implications of Eq. (9.5) for the quantum noise in the transduction, we

compute the power spectral density of the output optical field,

S out
δâ†δâ[ωopt +ωMW] = S in

δa†δa[ωopt +ωMW] +G(Sb†b[ωMW]+Sbb† [−ωMW]). (9.6)

The first term corresponds to the added quantum noise due to the input optical field. The

second term contains contributions from the microwave frequency ωMW, including both

the signal and noise. The third term contains added microwave noise at frequency −ωMW,

composed of thermal and quantum noise components, respectively nMW
th +1/2.

Thus Eq. (9.6) can be simplified to

S out
δâ†δâ[ωopt +ωMW] = G Sb†b[ωMW]+G

(
nMW

th + 1

2

)
+ 1

2
. (9.7)

We emphasize two limiting cases. When G ≪ 1, as in our experiment, the added noise is

dominated by the input optical quantum noise, the last term in Eq. (9.7). In the opposite limit,

G ≫ 1, the added noise is dominated by the microwave input noise, and the signal-to-noise

ratio is independent of G . In any case, the added noise referred to the input is given by Eq. (9.9).

9.2 Cryogenic Characterization of the optical modulator

To characterize the electro-optic behavior of the device at cryogenic temperatures, we mount

the PM on the 800mK flange of the dilution fridge. We directly drive the microwave port of

the PM at frequency ωMW using a microwave source outside the fridge, generating sidebands

around the optical carrier frequency (Fig. 9.2a). The half-wave voltage Vπ is determined from

the modulation depth MD, defined as the ratio of the power in one of the sidebands to the
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power in the carrier,

Vπ =π

√
Z0PMW

2MD
, (9.8)

where PMW is the power at the microwave input port of the PM. We measure MD by beating the

output optical signal with a local oscillator (LO) with frequency ωopt +ωMW/2+δ, generating

two closely-spaced beatnotes atωMW/2±δ, due to the carrier and the high-frequency sideband.

Using Eq. (9.8) we extract Vπ by sweeping the microwave power and measuring MD. Figure 9.2c

shows Vπ at 5GHz monitored as the fridge is cooled down from room temperature to 800mK,

and Fig. 9.2b shows Vπ at different frequencies at 800mK. Importantly, Vπ does not change

substantially from the room temperature value.

To investigate the effect of heating caused by optical dissipation in the PM, we measured the

steady state temperature of different flanges of the dilution fridge when the PM is mounted

on the 800mK flange. The results are shown in Fig. 9.2d. In Sec.9.5.2, by comparing to a

calibrated heater, we show that these temperature increases can be attributed to optical power

loss within the PM package (and not, e.g, light leakage into the fridge volume). This allows

quantitative comparison with, e.g., heat dissipation due to a HEMT, and suggests reduced

heat load in high optical transmission devices.

To further assess the performance of the PM at 800mK, we also performed a basic telecom-

munication experiment shown in Fig. 9.2e. An arbitrary waveform generator (AWG) directly

drives the PM with a pseudo-random bit sequence at a rate of 5GBaud. We beat the optical

phase-modulated carrier output with its reference arm, effectively forming a Mach-Zehnder

interferometer whose average transmission is tuned to the quadrature point by adjusting the

laser frequency, and detect the electrical signal on the oscilloscope. Figure 9.2f shows an eye

diagram obtained from 8×105 samples. The open eye diagram features no error bits, hence the

upper bound on the bit error ratio is limited by the total amount of measured samples and can

be estimated to be 5×10−5 with 95% confidence level (Keysight, 2018). These measurements

clearly demonstrate that the cryogenic modulator still functions at 800mK.

9.3 Optical readout of coherent microwave spectroscopy

Having established the cryogenic modulation properties, we next carry out a cryogenic in-

terconnect experiment, where the microwave output of a DUT is read out optically. As an

example system, we employ a superconducting electromechanical device in the form of a

mechanically-compliant vacuum gap capacitor parametrically coupled to a superconduct-

ing microwave resonator (Fig. 9.3a–e). These devices have been employed in a range of

quantum electromechanical experiments, such as cooling the mechanical resonator to its

quantum ground state (J. D. Teufel, Donner, D. Li, et al., 2011), strong coupling between

mechanical and microwave modes (J. D. Teufel, D. Li, et al., 2011), squeezing of mechani-

cal motion (Wallucks et al., 2020), and demonstration of the quantum entanglement in the
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Figure 9.3: Electro-optic readout of a coherent microwave spectrum of a superconducting
electromechanical system. a, Experimental setup. Left: dilution fridge, right: optical setup.
(ESA: electrical spectrum analyzer, DUT: device under test, RTA: room temperature amplifier)
b, Electromechanical system used as a DUT. c, Optical micrograph of the LC resonator. d,
Modal diagram of the electromechanical system. e, Scanning electron micrograph of the me-
chanically compliant capacitor. f, Coherent measurement of the electromechanical resonance
for increasing microwave pump powers of (−20,0,5,10,15,20)dBm at the source, from bottom
to top respectively. The probe power is −20 dBm at the source. The estimated total attenuation
from the source to DUT is −70dB. Each trace is normalized to its leftmost, off-resonance data
point. By increasing the pump power, the optomechanically induced transparency window
emerges, and at stronger pump powers the modes get strongly coupled, leading to an avoided
crossing effect. Blue lines correspond to HEMT readout and orange dots to optical readout. g,
the frequency scheme for microwave tones, optical tones, and measured signal after hetero-
dyning. h, high resolution measurement of the transparency window highlighted in f with the
gray box.

mechanical motion (C. Ockeloen-Korppi et al., 2018), as well as implementing mechanically

mediated tunable microwave non-reciprocity (Bernier et al., 2017) and quantum reservoir

engineering (Toth et al., 2017). The microwave resonance (frequency ωc ≃ 2π×8.2GHz and

linewidth κ≃ 2π×3MHz) is coupled to the mechanical resonance (frequencyΩm ≃ 2π×6MHz

and linewidth Γm ≃ 2π×10Hz) of the capacitor via electromechanical coupling (Aspelmeyer,

T. J. Kippenberg, and Marquardt, 2014) (Fig. 9.3d). The electromechanical coupling rate is

g = g0
p

n̄cav, where g0 ≃ 2π×150Hz is independently characterized (Bernier, 2019) and n̄cav

is intracavity microwave photon number, proportional to the microwave pump power. The
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system is inductively coupled to a microwave feed-line, enabling us to pump and read out the

microwave mode in reflection.

To demonstrate the electro-optical readout technique, we perform two-tone spectroscopy and

measure optomechanically induced transparency (OMIT) (Weis et al., 2010; Safavi-Naeini,

Alegre, et al., 2011) on the electromechanical sample, by applying a microwave pump tone on

the lower motional sideband (red-detuned by Ωm from the cavity resonance) and sweeping

a second probe tone across the resonance. The strong pump damps the mechanical mo-

tion, resulting in a wider effective mechanical linewidth, Γeff = Γm +4g 2/κ. The microwave

pump modifies the cavity response due to the electromechanical coupling, resulting in a

transparency window of width Γeff that appears on resonance, which we observe by the probe

(Fig. 9.3g). We performed an OMIT experiment for different pump powers and observed

the mechanical resonance via the transparency feature. In order to electro-optically read

out the coherent response, the optical output is detected in a balanced heterodyne detector,

using a frequency-shifted local oscillator (Fig. 9.3g). Note that the local oscillator phase is

locked to the optical signal, which enables reading out a microwave feature narrower than

the laser linewidth (Fig. 9.3h). To compare the optical and HEMT readouts, the reflected

signal is split and measured simultaneously using both techniques (Fig. 9.3a). Figure 9.3f

shows the OMIT results, with excellent agreement between the optical and HEMT readouts.

At high pump powers, when g ∼ κ, we observe mode splitting as a result of strong coupling

and mode-hybridization between the mechanical and microwave modes (J. D. Teufel, D. Li,

et al., 2011).

9.4 Optical readout of an incoherent microwave spectrum

Next, we employ our scheme to directly read out optically the power spectral density of a

microwave signal emitted by the DUT. For this, we drive the mechanical oscillator into self-

oscillation by pumping the system on its upper motional sideband,ωpump =ωc +Ωm , inducing

a parametric instability (Aspelmeyer, T. J. Kippenberg, and Marquardt, 2014; Marquardt,

Harris, and Girvin, 2006; Carmon et al., 2005). The output microwave spectrum features strong

sidebands around the microwave pump, at integer multiples of the mechanical frequency

(Fig. 9.4a).

Figure 9.4c shows these mechanical signals obtained simultaneously using both our optical

readout and the HEMT amplifier. We use the known properties of the HEMT to estimate the

transduction gain G [Eq. (9.2)] of our optical readout. The blue trace in Fig. 9.4c shows the

HEMT output referred back to its input using its known added noise, nHEMT
add ≃ 8quanta/(s ·Hz),

characterized independently (See Sec.6.5). This calibration yields the HEMT input signal

S, which is also equal to the PM microwave input. The noise in the optically detected

spectrum, referred to the optical output of the PM, is dominated by the optical shot noise,

1quanta/(s ·Hz), for our G ≪ 1. In this calibration, we can obtain G from the optical spectrum

containing the transduced microwave signal GS. The orange trace in Fig. 9.4c shows the
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Figure 9.4: Electro-optic readout of an incoherent microwave spectrum of a superconduct-
ing electromechanical system. a, Frequency-domain picture: a microwave tone pumps the
electromechanical system on the upper motional sideband, inducing a parametric instability
and generating mechanical sidebands equally spaced around the tone by the mechanical reso-
nance frequency Ωm . The phase modulator transfers the microwave spectrum on the optical
signal, which is subsequently mixed with a local oscillator (LO) and detected via heterodyne
detection. b, Measured power spectral densities of the microwave pump (central peak) and
mechanical sidebands detected by the HEMT (blue) and optical (orange) readouts. c, Enlarge-
ment of the gray-shaded area in c, showing the power spectral densities of the on-resonance
mechanical sideband.

optical noise spectrum referred to the microwave input, and Fig. 9.4d shows a zoom-in of

a single sideband. In this calibration, the signal areas in both measurements are equal to

S. Further explanation of this calibration is given in Sec.9.5.1. This yields G ∼ 10−7, in good

agreement with the theoretical value G theory = 3.5×10−7 obtained from Eq. (9.3) using the

measured output optical power, Popt = 1.1mW (optical efficiency of 5%, including losses in

fiber connectors and heterodyne detection setup). We note that the frequency widening of the

optically detected sidebands, observed in Fig. 9.4d, is due to fluctuations in the LO frequency,

caused by the limited bandwidth of the locking setup in conjunction with using a minimal

resolution bandwidth (RBW) of 1Hz in the spectrum measurement. The integrated sideband

power, however, is conserved. Improving the LO locking setup can reduce this effect.

The added noise in the transduction process is (see Sec.9.5.1)

nadd =
1

2G
+nMW

th + 1

2
, (9.9)
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where nMW
th is the average occupation of the thermal photonic bath due to the microwave

fields. This gives nadd ≈ 6×106. The noise floor of the optical measurement in Fig. 9.4c is 60dB

above the HEMT readout. This is due to the very small gain G , caused by the large Vπ and the

limited optical power. However, there is much room for improvement in these parameters.

Ref. (Abel et al., 2019) reported a Vπ-length product of 0.45Vcm in a BaTiO3-based modulator,

thus Vπ ∼ 50mV can be realized in a ∼ 10cm device, possibly using low-loss superconducting

electrodes (Yoshida, Kanda, and Kohjiro, 1999; Holzgrafe et al., 2020). The optical power can

be increased arbitrarily in principle, however, one needs to consider optical losses (mainly

at the fiber-to-chip interfaces) that lead to heating. Considering a device with an improved

optical transmission of 66% and incident power of 15mW, yields Popt ∼ 10mW (commercial

PMs with typical insertion loss < 2dB, (> 63% transmission), at room temperature are already

available).

This scenario achieves G ∼ 5×10−2 [Eq. (9.3)], with nadd ≈ 20 at 3K and 8GHz. Together with

a heat load of ∼ 5mW, this is comparable to the performance of a typical cryogenic HEMT.

However, while improvements to HEMT power consumption have been reported recently (Cha

et al., 2020a; Cha et al., 2020b; Wong et al., 2020), these devices still admit passive heat load

due to the thermally-conducting coaxial cables. In contrast, an important advantage of the

electro-optic approach is the ultra-low passive heat load [10µW per fiber, see Fig. 9.1(c)]. This

allows scaling the number of transducers, in conjunction with time-division multiplexing of

the laser pumps, without incurring additional heat load (Lecocq, Quinlan, et al., 2020).

It is worth mentioning that many experiments utilize a near-quantum-limited pre-amplifier

at the 15mK stage (Fig. 9.1a,b). In this case, the noise added in the second amplification

stage, referred to the input, is ∼(GPAG)−1 (see Sec.9.5.1), where GPA ∼ 102 is the pre-amplifier

gain (Macklin et al., 2015; Siddiqi et al., 2004). Thus, G > G−1
PA suffices to preserve near-

quantum-limited amplification.

9.5 Experimental details and charachtrization

9.5.1 Calibration of the transduction gain

Figure 9.5 illustrates the procedure of experimentally characterizing the transduction gain of

our electro-optic transducer. The microwave signal is split equally into two parts S, fed to the

HEMT amplifier and the PM respectively (Fig. 9.5a). The HEMT added noise is characterized

independently to be nHEMT
add = 8quanta/(s ·Hz). We infer S from the spectrum of the HEMT

amplified signal, referring the noise floor to nHEMT
add (Fig. 9.5b). In the PM branch, the added

noise of the transduction is given by Eq. (9.9). The spectrum is detected using a balanced

heterodyne detector, which adds 1/2quanta/(s ·Hz) of noise (Fig. 9.5c). We can safely neglect

G(nMW
th +1/2) and consider the noise floor of the spectrum referred to the input of the hetero-

dyne detector, i.e. 1quanta/(s ·Hz). This allows us to calculate GS, and finally obtain G with

knowledge of S from the HEMT measurement.
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Figure 9.5: Illustration of the gain characterization procedure. a, Propagation of the DUT
signal through the system. b, Power spectral density of the HEMT output. c, Power spectral
density of the optical heterodyne detector.

When using a quantum-limited pre-amplifiers before the electro-optical transducer (not done

in our experiment), we can model the readout chain as shown in Fig. 9.6b. The total added

noise of the readout chain is

ntotal
add = nPA

add +
nadd

GPA
≃ nPA

add +
1

2GPAG
(9.10)

Therefore when G ≃ 1/GPA, the total added noise will be dominated by nPA
add ∼ 1quanta/(s ·Hz)

(Macklin et al., 2015; Siddiqi et al., 2004) and the readout will be near-quantum-limited.

DUT

Pre-Amp.

GPA G

nadd
PA nadd

EO transducer

Figure 9.6: Schematic signal flow when pre-amplifier is used.

9.5.2 Experimental details and heating measurements.

We use a fiber-coupled lithium niobate PM from Thorlabs, model LN65S, used as-is with

no modifications. Note that the minimum specified operating temperature is 0◦C. The

device sustained several cooldown-warmup cycles with reversible behavior in its optical

transmission. We measured 25% reduction in the optical transmission at cryogenic relative to

room temperature. The PM metallic box was tightly clamped to the flange of the 800mK or

3K stage. We use a Bluefors LD-250 dilution refrigerator. The approximate available cooling

powers of the {15mK,800mK,3K} stages are {12µW,30mW,300mW}.

Figure 9.2c shows the variation of Vπ from room temperature to 800mK, obtained during a

cooldown of the dilution fridge and measured using the default thermometer on the 800mK

flange, located next to the heat exchanger, about 10cm from the PM. In order to rule out
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possible temperature gradients, we mounted a calibrated thermometer next to the PM and

monitored both thermometer readings during cooldown. Figure 9.7a shows the measured

relative temperature difference, which is less than ∼ 5% throughout the cooldown. Note that

this excludes pulse precooling and mixture condensation period when the temperature is

unstable (shown for completeness in Fig. 9.7a).

Figure 9.2d shows the temperature increase of the 15mK, 800mK, and 3mK stages of the

dilution fridge as a function of the optical power incident on the PM, which is mounted on the

800mK stage. We performed a simple measurement to verify that this temperature increase

can be ascribed to light absorbed in the PM body (and not, e.g, light leakage into the fridge

volume), corresponding to the optical transmission (insertion loss) of the PM. We used the

calibrated 120Ω still heater built in the 800mK stage to apply heat directly, we then repeated

the measurement using optical input to the PM as the heating source (as in Fig. 9.2d). Figure

9.7a,b compares the results of this measurement, showing temperature increase in the 3K and

800mK stages (the latter recorded with the two separated thermometers) vs. dissipated power.

In the case of optical heating, the dissipated power is computed directly from the incident

power on the PM and its measured transmission of 23%.

Figure 9.7b,c shows the result of this measurement. The optical heating shows a temperature

increase of 13.3mK/mW (6.5mK/mW) at the 800mK (3K) stage (Fig.9.7a), while the resistive

heating shows a temperature increase of 14.1mK/mW (8.3mK/mW) at the 800mK (3K) stage

(Fig.9.7b). Thus heating due to the operation of the electro-optical interconnect is very similar

to localized, resistive heating.
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Figure 9.7: Heat dissipation and temperature gradients. a, Relative temperature difference
between PM box and heat exchanger, on 800mK flange during a cooldown. The gray data
points correspond to specific periods of pulse precooling and mixture condensation, where
the temperature is unstable. b, Measurement of heating due to optical dissipation when
the phase modulator is mounted on the 800mK flange. c, Measurement of heating using a
calibrated resistive heater mounted on the 800mK flange.
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10 Conclusion and outlook

In this thesis, we introduced a new platform for superconducting circuit optomechanics

that allows us to create and store high-fidelity quantum states of mechanical oscillators,

significantly enhance the mechanical quantum coherence, scale up the number of mechanical

and microwave modes to create lattices of optomechanical systems, explore multi-mode and

collective effects in such lattices, and exploit optomechanical interaction as intrinsic probes

to measure collective mode shapes in large-scale superconducting circuits.

The ultra-coherent electromechanical system can be exploited in quantum sensing applica-

tions (B.-B. Li et al., 2021). The expected on-resonance force sensitivity of our device can be

estimated as
p

SF F =
√

4kBTmeffΓm = 240×10−21
[

Np
Hz

]
which is considerably low compared

with several other optomechanical platforms thanks to the high mechanical quality factor and

the low operating temperature of the device.

The high-fidelity quantum control and measurement of mechanical oscillators with such

extremely low thermal decoherence and pure dephasing rates will benefit the implementation

of qubit-mechanics interfaces (A. Reed et al., 2017), generation of mechanical non-classical

states (Gely and G. A. Steele, 2021a), and can realize long life-time memories for quantum

computation and communication (Wallucks et al., 2020; Pechal, Arrangoiz-Arriola, and Safavi-

Naeini, 2018). Furthermore, such a low quantum decoherence sets the stage to perform

fundamental tests of quantum mechanics in macroscopic scales such as quantum gravity

tests (Y. Liu, Mummery, et al., 2021; Gely and G. A. Steele, 2021b), as well as high fidelity Bell

tests (Marinković et al., 2018; Hong et al., 2017), quantum teleportation (Fiaschi et al., 2021),

or even the search for Dark matter (Carney et al., 2021; Manley et al., 2021).

Particularly, the Diósi-Penrose effect (Penrose, 1996; Diosi, 1987) -as an example of the broader

class of quantum collapse models (Bassi et al., 2013)- is expected to be experimentally re-

solvable in massive and quantum coherent optomechanical systems. In the proposal by

Gely (Gely and G. A. Steele, 2021b), an estimated time scale to observe a general relativity-

induced quantum state decoherence in a mechanical object prepared in a superposition state

is TGR ≃ 1
meff

×3×10−15 [kg·s]. In order to observe such GR-induced state decoherence the
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oscillator should be able to maintain the quantum from thermal decoherence and dephasing

for much longer times, i.e. Tdec ≫ TGR or in other words Γ−1
th ,Γ−1

φ ≫ TGR. Assuming the num-

bers, among all optomechanical platforms to date, our superconducting circuit-based system

is one of the best candidates to satisfy this condition as we have TGR ≃ 1 ms and Tdec ≃ 8 ms

considering 2.3 ng effective mass (see Sec. 3.2). This was not the case for the conventional

circuit electromechanical systems when the decoherence times were substantially shorter.

? ?

Figure 10.1: Gravitational induced time-shift ambiguity in massive mechanical superpo-
sition states. We can imagine a drumhead capacitor -or any other massive mesoscopic
mechanical resonators- prepared in a superposition state of |x↓〉 and |x↑〉. There will be an
ambiguity in time definition at one position depending on the mass distribution of the me-
chanical resonator if we assume a superposition state. this time ambiguity can lead to energy
uncertainty and consequently quantum decoherence of the superposition state (Gely and
G. A. Steele, 2021b).

Another clear path to continue is to integrate the ultra-coherent electromechanical device with

superconducting qubits. A superconducting qubit is known as a low-dissipation microwave

circuit with the nonlinearity brought by Josephson junctions. The Josephson nonlinearity

enables us to generate a nontrivial quantum state in a microwave field, a fundamental source

of quantum information processing. The strong coupling to microwave fields and the flexibility

in circuit design have enabled the field of superconducting qubits to revolutionize quantum

information science, providing not only a promising experimental platform for large-scale

quantum information processing (Barends et al., 2014), but also the possibility to generate

a nonclassical quantum state in a microwave cavity (Vlastakis et al., 2013). The availability

of quantum control of microwave photons together with a theoretical breakthrough about a

hardware-efficient quantum error correction (Leghtas et al., 2013) has provided a new platform

of quantum information processing based on microwave cavities. To realize a large-scale

quantum computation, however, there still remains a challenge in scaling up microwave

cavities because of their bulky structures (Reagor et al., 2016).

Various experimental achievements on microwave optomechanical systems have brought a lot

of attention to realizing a quantum memory based on a mechanical oscillator to help quantum

information processing with superconducting quantum circuits (Pechal, Arrangoiz-Arriola,

and Safavi-Naeini, 2018). The main advantage of mechanical oscillators as a quantum memory

against microwave cavities is that the thermal decoherence rate of a mechanical oscillator is
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Figure 10.2: Integration of electromechanical device with superconducting qubits. a, The
mode diagram of the qubit-mechanics hybrid system is shown as well as the equivalent circuit
(b) and proposed design (c), where a vacuum-gap transmon qubit is coupled to mechanics. d
and e, False colored SEM of a proof-of-concept qubit-electromechanics integration attempt.
The Josephson junction shunted with the parallel plate capacitor is shown by green. Photo
credit: Mahdi Chegnizadeh.

smaller than that of a microwave cavity, enabling us to store a quantum state for a longer time.

By applying elastic strain engineering and soft clamping to a mechanically compliant vacuum

capacitor, the mechanical Q factor is expected to be enhanced even more. Moreover, the size

of a mechanical oscillator is much smaller than that of a microwave cavity, enabling us to save

footprints for a large-scale quantum system.

One of the first milestones in this direction is to demonstrate a high-Q superconducting

qubit formed by a vacuum gap capacitor shunted by a Josephson junction. This will not only

prove that the fabrication process of electromechanical systems is compatible with that for

superconducting qubits, but also demonstrate the availability of a vacuum gap capacitor

for the field of superconducting quantum circuits. This will provide a smaller footprint, less

crosstalk, and a lower dielectric loss in the qubit capacitor for a scalable quantum information

processor based on superconducting qubits.

Demonstration of the first engineerable optomechanical lattice with exceptionally low disorder

was another topic discussed in this thesis. Looking forward, such optomechanical lattices

offer a path to realize proposals exploring the rich physics in multimode optomechanics,

ranging from quench (Raeisi and Marquardt, 2020) and collective (G. Heinrich et al., 2011)

dynamics, to reservoir engineering (Tomadin et al., 2012; Yanay and A. A. Clerk, 2020; Zippilli

and Vitali, 2021). Specifically, by using degenerate mechanical oscillators it is possible to

create collective long-range interactions and observe strong cooperative effects on mechanical

motion (Xuereb, Genes, and Dantan, 2012). Moreover, our system may enable the generation

of highly entangled mechanical states (Akram et al., 2012), and viewed more broadly, it can

be used to explore quantum correlations in topological optomechanical lattices (Peano et al.,

2015; Zangeneh-Nejad and Fleury, 2020; Ludwig and Marquardt, 2013).

213



Chapter 10 Conclusion and outlook

More specifically, the extremely low disorder achieved in our platform allows us to study the

collective dynamics in multiple nearly degenerate mechanical oscillators optomechanically

coupled to a shared microwave resonator. It can be shown that the mechanical oscillators un-

dergo a transition from individual to collective dynamics as their optomechanical interactions

are enhanced (Scigliuzzo et al., 2023). Particularly, the sideband cooling of multimode me-

chanical systems can be achieved, where one collective mechanical mode is efficiently cooled

down while the individual modes retain the large phonon occupations. By optimizing the

circuit optomechanical platform, we may reduce even more the disorder among mechanical

oscillator frequencies, less than 0.1%, and observe the transition from the individual ones to

the collective mechanical mode, and, even further, the strong coupling of the collective me-

chanical mode and the microwave resonator. With the high-quality factor of the mechanical

oscillators, we may be able cool the collective mode close to the quantum ground state. This

system is envisioned to enable the study of the entanglement among multiple macroscopic

mechanical oscillators as well.

...

...

...3N-1

N

3N-1

N

a b c

Figure 10.3: Collective dynamics in superconducting circuit optomechanical chains. a, The
mode diagram of an optomechanical chain with degenerate mechanical modes. b, At high
cooperativities when driving one of the microwave collective modes, the cross-talk between
degenerate mechanical modes result in forming a collective mechanical mode strongly cou-
pled to the driven microwave with the same modeshape, while the other microwave modes
are well optomechanically decoupled from the collective microwave mode. c, Photo of a
prototype optomechanical chain with six modes in a chain. Photo credit: Mahdi Chegnizadeh
and Marco Scigliuzzo.

The last but not the least, We believe that our first proof of concept cryogenic electro-optical

interconnect experiment demonstrates unambiguously the major potential that fiber op-

tical communication paired with efficient electro-optical modulators have for solving the

superconducting interconnect scaling problem. Fiber optical interconnects, as in the case of

data-center interconnect, could provide a viable route to a new generation of readout tech-

niques -that so far, had received little attention. Furthermore, we quantified the gap between

conventional microwave amplifiers and our electro-optical approach. Although our optical

readout scheme results in higher noise compared to the output of a typical HEMT, significant

noise improvements should be feasible by using improved devices with lower Vπ, resulting
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in a near-quantum-limited broadband microwave-to-optical interconnect. The emergence

of new materials such as BaTiO3 (Eltes et al., 2019; Ortmann et al., 2019), BaSrTiO3, KNbO3,

and organic polymers (Dalton, Sullivan, and Bale, 2010) with significantly higher Pockels

coefficients than LiNbO3 may lead to a substantial increase in transduction efficiencies. devel-

oping novel nano-fabrication techniques, exploiting new electro-optic materials specifically

for low temperatures, and improving the design of microwave circuitry to increase the mode

overlap for ultra-efficient integrated electro-optical transducers, reducing their noise figure

below the conventional electrical amplifiers. Realizing such devices also allows the efficient

generation of microwave-optical entangled photons for communication applications (Rueda,

Hease, et al., 2019).
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Appendix A

Supplementary discussions on nano-
fabrication

A.1 Aluminum thin films

As expected, the quality, stress, and roughness of the aluminum thin film used for the top layer

influences both the release step and the low-temperature mechanical quality factor of drum-

heads. Here discuss the effect of deposition and post-deposition techniques to manipulate

such parameters.

A.1.1 Deposition method

Aluminum can be deposited by either electron beam evaporation or sputtering techniques as

physical depositions. The evaporation is done under high vacuum (10−6 −10−8 mBar), where

an electron beam is hitting a crucible to emit Al atoms. The deposition rate is controlled by the

electron-beam power and the distance of the wafer to the crucible. In sputtering, a crucible of

aluminum will be bombarded by plasma Argon ions. The detached Al atoms will be sputtered

on the wafer. Sputtering normally gives better step coverage compared to evaporation. The

deposition rate and film properties can be controlled by argon flow and the source power. The

pressure of the chamber in sputtering is typically around 10−3 mBar, depending on the argon

flow.

A.1.2 Low-temperature stress of aluminum films

Although the aluminum thin film can have compressive stress at room temperature, the

significant difference between the thermal expansion rate of Al and Si results in the shrinking

of Al films faster than Si and induces tensile stress at cryogenic temperatures. The following

relation can estimate the final low-temperature stress of the film:

σAl =σRT
Al +

∫ 300 K

10 mK
Y Al

(T )(α
Al
(T ) −αSi

(T ))dT ≈ 300 MPa+σRT
Al , (A.1)
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Where Y Al is Young’s modulus of aluminum and α is the thermal expansion rate of Al or Si,

respectively. The relatively big difference between two expansion rates (αAl
(20K) = 23.1×10−6/°C

and αSi
(20K) = 2.6× 10−6/°C) results in considerable stress change at lower temperatures as

well as high sensitivity of deposition induced initial stress to the deposition temperature and

thermalization. The initial room temperature stress, σRT
Al , varies depending on the deposition

conditions. The stress of a thin film can be calculated by measuring the change of the wafer’s

bow - i.e., the curvature of the wafer - before and after deposition using the following relation:

σfilm = − Ysub

6(1−νsub)

t 2
sub

tfilm

(
1

Rsub+film
− 1

Rsub

)
, (A.2)

Where ν shows the Poisson’s ratio, t is the thickness, and R is the wafer’s bow. The wafer’s bow

can be measured optically by sweeping a laser on the wafer in stress measurement tool (Toho

Technology® FLX 2320-S).

A.1.3 High temperature aluminum deposition

We explored high temperature evaporation and sputtering of Al to reach to tensile stress at

room temperature. Both evaporator and sputtering tools can deposit at higher temperatures

up to 350 Celsius. We tested deposition of 250 nm Al on Si wafer at 200°C with both methods.

Although both methods resulted in tensile stress of ∼ 30 MPa at room temperature, sputtering

showed an acceptable film quality with Ra = 7 nm while the high temperature evaporation

resulted in color change of the material to white and increasing of the grain size and roughness

to Ra = 50 nm, which indicates compound formation between Al and Si.

A.1.4 High temperature sputtering and surface roughness

We deposited Al at different temperatures with the sputtering tool (Pfeiffer® SPIDER 600)

and measured stress and roughness. Although the film stress increases by temperature, the

roughness and grain size also increases which reduces the quality of the film.

Table A.1: High temperature aluminum sputtering.

T (Celsius) 20 100 200 250 350

σAl (MPa) -53 35 41 47 61
Ra (nm) 2 10 15 17 20

A.1.5 Effect of evaporation rate on surface roughness

We measured the film roughness in the three conditions of room temperature Al evaporation

mentioned below and realized EVA 760 gives us the best film quality. We note that for the

ground state cooling experiment we need to remove the galvanic connection and have to
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Figure A.1: High temperature aluminum deposition. a, Comparison between 200°C sputter-
ing and evaporation. b, Aluminum sputtering at high temperatures. c, SEM of high tempera-
ture aluminum sputtering showing significant increase of grain size by temperature.

deposit the top layer with Plassys® UHV evaporator with 10−8 mBar vacuum which also

demonstrated high mechanical quality factors.

• Alliance-Concept® EVA 760 with 10−6 mBar pressure, 45 cm working distance, and 5 Å/s

deposition rate. Film roughness: Ra = 2.1 nm

• Leybold Optics® LAB 600H with 1.8×10−6 mBar pressure, 100 cm working distance, and

4 Å/s deposition rate. Film roughness: Ra = 3.5 nm

• Leybold Optics® LAB 600H with 1.8×10−6 mBar pressure, 100 cm working distance, and

1 Å/s deposition rate. Film roughness: Ra = 8 nm

A.1.6 Effect of annealing cycle on the stress

The effect of thermal annealing on the aluminum thin film stress has been studied in Gardner

et al. (Gardner and Flinn, 1990). It has been demonstrated that the slow annealing cycle

of the Al-1%Si film with 640 nm thickness after deposition by heating it up to ∼ 200°C and

cooling it down shows a hysteresis behavior in the stress resulting in higher tensile stress at the
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Figure A.2: Effect of annealing on the aluminum stress. Annealing aluminum thin film and
cooling it down adiabatically changes the stress to tensile. 150 nm Al is evaporated on silicon
and sapphire substrates and annealing for about two hours cycle up to 250°C and 400°C
respectively showed stress enhancement to 200 MPa at room temperature. One has to be
careful to run annealing under vacuum to avoid oxidation of the film.

same initial temperature. We investigated this behavior on the pure Al with 150 nm thickness

evaporated by 4 Å/s rate. The result confirmed the same behavior where we could change

the stress of the film deposited on Si or Sapphire wafers from initial compressive stress to

∼ 200 MPa tensile. While this can be a useful technique to engineer the stress after deposition,

we did not manage to use it for the final high-Qm and reproducible devices because of concerns

about the compound formation and oxidation on the Al film. We did not investigate further the

change of roughness and grain size after annealing. However, we qualitatively did not observe

any color change, severe roughness, or reduced transparency of the film after annealing. It is

worth noting that annealing under a weak vacuum to 200°C is often used in the traditional

fabrication process of drumhead capacitors to relax and uniforms stress in such drums before

the release (Tóth, 2018).

A.1.7 Yield stress of aluminum films

The stress-strain relation in materials generally has a linear behavior for small strains, which

is called an elastic regime. By increasing the strain, in some cases, the stress does not scale

linearly anymore, and the material goes to the plastic regime. Increasing the strain further

results in buckling or cracking of the film. The stress which the elastic regime goes to plastic is

called the yield stress. Although the bulk yield stress can be theoretically calculated for some

materials, the experimental values are often lower than the theoretical expectations (Courtney,

2005). The bulk yield stress of Al is calculated ∼ 900 MPa however, the measured values for

the bulk aluminum and its alloys are between 200−400 MPa (Courtney, 2005). These values

also depend on temperature. The low-temperature data on the mechanical properties of bulk
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Al and its alloys can also be found in (Ekin, 2006). It is known that the yield stress in thin

films or nano-structures can be higher than the bulk values approaching the theoretical limit

depending on the thickness and grain size (Richter et al., 2009; Steinwall and Johnson, 1990).

We did not find a systematic study on the yield stress of the sub-micron thin aluminum films

at low temperatures.

Tapering the clamps of the drumhead increases the local stress on the clamps and is expected

to decrease mechanical bending losses (Bereyhi et al., 2019). This enhanced stress should be

below the yield stress to avoid breaking the legs or going to the plastic regime. To observe the

ultimate limit of stress enhancement, we can achieve we made a sweep over the clamping

ratio (CR ≡ the total perimeter of the trench divided by the total perimeter of the clamps) and

cooled down these devices. After warming them up again, we observed drums with CR>4 are

cracked, meaning that the maximum tolerable stress in our design at low temperatures should

be below 1 GPa.

30 μm 2 μm

Figure A.3: Broken clamps and yield stress. SEM and microscope images show an example
of devices after cool down with high clamp ratio (CR=7 for the device shown in the figure).
Due to clamp tapering, the stress increases reaching to the yield stress of the thin film which
results in the crack of the clamp.

A.2 Non-uniformity tolerance

In many applications, we need to design arrays and lattices of coupled identical LC electro-

mechanical circuits. Studying the disorder tolerance in such systems is crucial to understand

the fabrication technique’s limits and to improve it. In the LC circuits with the spiral inductor

and vacuum gap capacitor, the dominant frequency disorder mechanism is the gap size

imperfection which is directly defined by the total non-uniformity of the trench depth and

bottom aluminum layer thickness at the end of the fabrication process. The frequency disorder

between two identical circuits with a central frequency of ωc and target gap size of d can be

written as:

∆ωc

ωc
=
∆d

2d
. (A.3)
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For example, this results in 15 MHz
nm shift of the cavity for a 6 GHz central cavity resonance

frequency and 200 nm gap size. The total non-uniformity tolerance (ϵ ≡gap size variation

divided by the lateral distance) is proportional to the maximum frequency tolerance of the

circuit, ∆ωc, and the maximum lateral distance between two vacuum gap capacitors in the

design, l , expressed by:

ϵ =
2d∆ωc

lωc
. (A.4)

The frequency tolerance is normally defined by the desired mutual coupling between the

identical LCs winch is typically designed greater than 100 MHz in our designs. Considering one

of the designs for the topological lattice project as an example, we required 50 MHz minimum

coupling rate for a 2 mm lattice which results in maximum non-uniformity tolerance of

ϵ≃ 2 nm
mm .

Each step of the fabrication process can in principle, induces non-uniformity. The total non-

uniformity on the final device can be expressed based on the individual step’s non-uniformity

as ϵtot =
√∑

ϵ2
i . Considering our process flow, the main non-uniformity origins are silicon

plasma etching (ϵ< 0.5 nm
mm ), bottom layer aluminum evaporation (ϵ≃ 0.1 nm

mm , for sputtering

it is higher value), LTO SiO2 deposition (ϵ ≃ 0.2 nm
mm ), IBE etch-back (ϵ < 0.1 nm

mm ), and most

importantly CMP, ϵCMP. Considering the above-mentioned example of the topological lattice,

the maximum tolerated CMP non-uniformity should be ϵCMP <
√
ϵ2

tot −
∑

i ̸=CMP ϵ
2
i = 1.9 nm

mm .

This value can be easily achieved in CMP by optimizing the polishing parameters as discussed

in Sec. 4.2.7.

A.3 Sapphire substrate processing

In the early stage of our process development, we investigated implementing the idea of etch-

ing trenches on sapphire substrate, using amorphous Si as a sacrificial layer and planarizing it

with CMP and releasing the drumhead with XeF2 which is an isotropic gas etching, inspired by

the traditional electro-mechanical platform were developed in LPQM-EPFL (Tóth, 2018). The

advantage of sapphire at fist sight was that it is a very resilient material to etchants, has high

Young’s modulus, low thermal expansion rate, and, most importantly, known to have less bulk

dielectric loss for microwave circuits (Read et al., 2022). However, the other side of the coin was

that micro-machining of sapphire is not trivial since it does not react with standard etchants.

We realized that a few chlorine chemistries could be used to plasma-etch sapphire (Jeong

et al., 2002). Among the possible options we tried 20%Cl2-80%BCl3 argon plasma etching

(STS® Multiplex ICP). Although the achieved etch rate was low (37 nm/min) and selectivity

was below one (sapphire:PR ∼ 1:3.5), we managed to etch a few hundred nano-meter depth

trenches with acceptable sidewall angle for our purpose and roughness of Ra = 1.2 nm inside

the trenches.

After making the trench and deposition of the aSi sacrificial layer (sputtering with a good
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0 μm0 μm

20 μm

20 μm

-130 nm

40 nm

400 m

100 nm 200 nm

a

c d

b

Figure A.4: Sapphire substrate processing. a, Cross section SEM of plasma etched trench
in sapphire substrate. The orange color shows the photo resist. b, The AFM topography of a
trench in sapphire. c, d,, Cross section SEM of a sapphire trench covered by amorphous silicon
sacrificial layer after CMP planarization. Due to the low adhesion of the aSi to the substrate,
the sacrificial layer delaminates in the CMP.

step coverage), we tried using CMP to planarize the topography. In this step, we realized

two important challenges. First, because of the hardness of the sapphire wafer, the bow

compensation with the back pressure was challenging, resulting in low uniformity after the

CMP. The second problem was the low adhesion of aSi to the sapphire substrate, which resulted

in the delamination of the sacrificial layer even when we stopped polishing above the wafer

level. Considering such issues, we decided to switch to the high resistivity silicon substrate,

which supports a wide range of standardized micro-machining processes.
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Appendix B

Linear quantum model for electro-
optical phase modulators

In this appendix, we describe the optical output of a phase modulator, taking into account the

quantum aspects of the microwave input. Dr. Nathan Bernier had a substantial contribution

to the development of the theoretical framework described here.

B.1 Quantum model description

We note that only the optical output is relevant in the description, since most low-Vπ mod-

ulators are implemented with a matched load for the microwave input port, such that all

microwaves are absorbed into the device.

The central assumption in the description is that the linear regime is valid for the optical

modulation, which is always the case for sufficiently weak input microwave powers. At the

classical level, we can write the output optical field amplitude âout as a function of the input

optical field âin as

âout = e−iπV (t )/Vπ âin ≈
[

1− iπ
V (t )

Vπ

]
âin, (B.1)

where V is the classical voltage applied at the input and Vπ is the voltage at which the phase

modulator applies a phase shift of π.

For the quantum description, we will simply insert quantum operators instead of classical

fields in B.1. This simple swap is valid in the linear picture as nothing changes in the equation

of motion of the system. For linear systems, the quantum aspects are only relevant as they set

the minimum of random noise in the system. Otherwise, the dynamics transduces input to

output with no distinction for quantum or classical signals. The voltage is described quantum

mechanically as

V =
Vzpp

2
(b̂ + b̂†) (B.2)
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with b̂ the annihilation operator for the traveling microwave field and Vzp the “zero-point

voltage”. Note that since b̂ represents a traveling field, it is not unitless and
〈

b̂†b̂
〉

has units of

number of photons per second and the commutation relations are[
b̂(t ), b̂†(t ′)

]
= δ(t − t ′). (B.3)

This means that Vzp actually has units of voltage per
√

(photon/s). In Sec.B.2, we show that it

corresponds to the RMS amplitude of the voltage of a wave for a unit photon rate. The optical

field is described by

âin =αe−iωct +δâin (B.4)

where α is the amplitude of the coherent carrier field in the optical input at frequency ωc and

δâin carries the quantum fluctuations of the input optical field. Inserting the expressions of

Eq.B.4 in Eq.B.1, we get

δâout = âout −αe−iωct = δâin − i
p

Ge−iωct (b̂ + b̂†) (B.5)

with the microwave-to-optical transduction “gain”

p
G =

παVzpp
2Vπ

. (B.6)

In order to compare the signals in the input to the output, we should compute the quantum

spectral densities of the fields. As a reminder, the spectral densities of a field δâ that contains

only thermal noise with the equivalent occupation n̄th are defined as

S in
δâ†δâ[ω] =

∫ ∞

∞
d t e−iωt 〈δâ†

in(t )δâin(0)
〉

= n̄th,

S in
δâδâ† [ω] =

∫ ∞

∞
d t e−iωt 〈δâin(0)δâ†

in(t )
〉

= n̄th +1,

S̄ in
δâ†δâ[ω] =

1

2

∫ ∞

∞
d t e−iωt

(〈
δâ†

in(t )δâin(0)
〉+〈

δâin(0)δâ†
in(t )

〉)
=

1

2

(
S in
δâ†δâ[ω]+S in

δâδâ† [ω]
)

= n̄th +
1

2

. (B.7)

where S is the standard spectral density and S̄ is the symmetrized spectral density. As

intermediary computations, we obtain〈
δâ†

out(t )δâout(0)
〉

=
〈
δâ†

in(t )δâin(0)
〉+Ge iωct

(〈
b̂†(t )b̂(0)

〉+〈
b̂(t )b̂†(0)

〉)
, (B.8)〈

δâout(0)δâ†
out(t )

〉
=

〈
δâin(0)δâ†

in(t )
〉+Ge iωct

(〈
b̂†(0)b̂(t )

〉+〈
b̂(0)b̂†(t )

〉)
. (B.9)

Note first that the fields δâ and b̂ are not correlated such that all terms of the form
〈
δâ†b̂

〉
cancel, and second that we are neglecting the terms of the form

〈
b̂†b̂†

〉
and

〈
b̂b̂

〉
that in

principle give rise to cyclostationary noise, which normally lies outside the frequency range of
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Electro-optical phase modulator

Optical vacuum noise

Optical carier

Transduced signalMW vacuum noise

Figure B.1: Added noise in electro-optic phase modulation. The microwave input signal has
a vacuum noise of 1/2. The output optical field δâout is shown on the right. The input signal is
amplified by a gain G in two sidebands. The input microwave noise is doubled and amplified
by the same gain. The optical vacuum noise of 1/2 is kept from the input field δâin.

interest.

The symmetrized spectral density of the output can be computed as

S̄δâ†
outδâout

[ω] = S̄δâ†
inδâin

[ω]+G
(
S̄b̂†b̂[ω−ωc]+ S̄b̂†b̂[−(ω−ωc)]

)
(B.10)

If we have a microwave signal at frequency Ω such that S̄b̂†b̂[Ω] is non-trivial, it will be

transduced at frequency ωc +Ω as

S̄δâ†
outδâout

[ωc +Ω] = S̄δâ†
inδâin

[ωc +Ω]+G
(
S̄b̂†b̂[Ω]+ S̄b̂†b̂[−Ω]

)
. (B.11)

The term S̄b̂†b̂[−Ω] should in general contain no signal but increases the noise (in effect

doubling the microwave noise). Note that the definition of the symmetrized density spectrum

in Eq. B.7 does not imply that S̄ [ω] = S̄ [−ω]. We can compute the added noise as

nadded =
1

G
(n̄opt

th + 1

2
)+ n̄MW

th + 1

2
. (B.12)

In our experiment, we are performing a heterodyne measurement of the optical output field

δâout. A heterodyne measurement rather measures the unsymmetrized spectral density

Sδâ†
outδâout

[ωc +Ω] = Sδâ†
inδâin

[ωc +Ω]+G
(
Sb̂†b̂[Ω]+Sbb̂† [−Ω]

)
. (B.13)

In terms of the quantum noise, this is equivalent to the expression with the symmetrized

spectrum density in B.11. The added noise is represented visually in B.1.
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B.2 Computing Vzp and G

In order to compute Vzp and G , we will anchor the quantum model with the classical model.

We assume the microwave input to contain a single Fourier frequency with a voltage

Vin(t ) = V0 cos(Ωt ) (B.14)

where Ω is the microwave frequency of interest and V0 is the amplitude of the voltage oscilla-

tions. Along the polarization axis of interest, the input optical field of amplitude E0 and optical

frequency ωc changes phase such that the optical output is given by

Eout(t ) = E0e−iωct e−iπ
V0
Vπ

cos(Ωt ) (B.15)

≈ E0e−iωct
(
1− i

π

2

V0

Vπ
(e iΩt +e−iΩt )

)
(B.16)

where Vπ is the voltage for which the optical field is phase-delayed by a shift of π. The

approximation for a weak amplitude V0 ≪Vπ is to expand the exponential of the phase delay

to the first order, which results in two sidebands detuned from the carrier by ±Ω.

If we only consider the signal of a single sideband, it can be interpreted as a transduction of

the original microwave signal, of power

PMW =
V 2

0

2Z0
, (B.17)

where Z0 is the characteristic impedance of the input line, which has been converted to an

optical signal of power

P out
opt =

π2

4

V 2
0

V 2
π

P in
opt (B.18)

where P in
opt is the power of the input optical field, proportional to E 2

0 .

The gain G is this conversion rate from microwave to optical field, expressed in number of

photons per second as

G =
P out

opt /(ℏω)

PMW/(ℏΩ)
=
π2

4

Ω

ω

(
P in

opt/
( V 2

π

2Z0

))
. (B.19)

By comparison with B.6, we find that

V 2
zp = ℏΩZ0 (B.20)

using P in
opt = ℏω|α|2. The squared “zero-point voltage” V 2

zp multiplied by a photon rate and

divided by the transmission line impedance Z0 gives the power of the traveling wave; it is the

squared RMS voltage divided by the photon rate.
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