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Abstract

The pursuit of software security and reliability hinges on the identification and elimination of
software vulnerabilities, a challenge compounded by the vast and evolving complexity of modern
systems. Fuzzing has emerged as an indispensable technique for bug discovery, owing to its ability to
automate the rapid generation and execution of test cases. However, its effectiveness is constrained
by the quality of metrics employed for evaluation and optimization. This dissertation posits that for
effective bug discovery in increasingly complex systems, fuzzing techniques must employ tailored
metrics that capture application-specific features such as state and semantics.

The dissertation first addresses a glaring gap in the fuzzing landscape—the lack of standardized
benchmarks for fuzzer evaluation—through M A G M A, a fuzzer benchmark with ground-truth
metrics. M A G M A enables objective assessment of fuzzer performance across diverse software
targets by leveraging real-world bugs, instrumented to provide bug-centric metrics. Through
rigorous experiments, set up over 200,000 CPU-hours and involving state-of-the-art mutation-based
fuzzers, M A G M A highlights the limitations of using crash counts as the de facto evaluation metric,
and provides a unified platform for an accurate evaluation and comparison of fuzzers.

The second project, I G O R, addresses the inefficacy of crash de-duplication techniques, which
typically suffer from bug-count inflation and conflation. Igor builds on the insight that a bug cannot
be triggered without executing its code. Through a process of test case minimization and execution
trace matching, we introduce a metric for crash de-duplication that goes beyond code coverage
and call stacks. By employing control-flow graph similarity comparisons over minimized execution
traces, I G O R demonstrates its capability to accurately group crashes, reducing “unique” bug counts
by an order of magnitude compared to existing techniques.

The penultimate project, TA N G O, addresses the inadequacy of traditional code coverage
metrics in exploring the state spaces of complex systems like language parsers and video games.
By incorporating “state” as a first-class citizen, TA N G O enhances the fuzzer’s ability to navigate
complex systems. State inference led to the discovery of previously undetected bugs, and it also
highlighted a novel observation: code coverage is insufficient for describing state. Through our
evaluation, TA N G O reveals that fuzzers which rely solely on code coverage could potentially spend
upwards of 80% of their time duplicating their efforts in the face of stateful targets.

Finally, S E N S E I aims to help fuzzers at incrementally exploring targets by fuzzing parsers in
isolation and using those results to bootstrap the fuzzing of more complex targets. By leveraging
the rich and specific domain knowledge encoded in Wireshark dissectors, S E N S E I incorporates
parser-specific metrics to guide fuzzing in the direction of high-quality and diverse inputs, to aid
the exploration of network protocol implementations.

Collectively, these projects introduce novel metrics and methodologies for fuzzer development
and evaluation. They provide empirical evidence supporting the thesis that tailored metrics are key
to effective and successful fuzzing.
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Résumé

La recherche de sécurité et de fiabilité logicielle repose sur l’identification et l’élimination des
vulnérabilités logicielles, un défi exacerbé par la vaste et évolutive complexité des systèmes modernes.
Le fuzzing est apparu comme une technique indispensable pour la découverte de bugs, grâce à sa
capacité d’automatiser la génération et l’exécution rapide de cas de test. Cependant, son efficacité
est limitée par la qualité des métriques utilisées pour l’évaluation et l’optimisation. Cette thèse
postule que, pour une découverte efficace de bugs dans des systèmes de plus en plus complexes, les
techniques de fuzzing doivent utiliser des métriques sur mesure qui capturent des caractéristiques
spécifiques aux applications telles que l’état et la sémantique.

La dissertation commence par mettre en lumière un manque flagrant dans le paysage du
fuzzing—l’absence de benchmarks standardisés pour l’évaluation des fuzzers—à travers M A G M A,
un benchmark de fuzzer avec des métriques de vérité terrain. M A G M A permet une évaluation
objective de la performance des fuzzers sur diverses cibles logicielles en exploitant des bugs réels,
instrumentés pour fournir des métriques centrées sur les bugs. À travers des expériences rigoureuses,
mises en place sur 200,000 heures-CPU et impliquant des fuzzers à base de mutations de pointe,
M A G M A met en évidence les limites de l’utilisation des comptages de crashs comme métrique
d’évaluation par défaut, et fournit une plateforme unifiée pour une évaluation et une comparaison
précises des fuzzers.

Le deuxième projet, I G O R, aborde l’inefficacité des techniques de déduplication des crashs,
qui souffrent généralement d’inflation et de conflation des comptes de bugs. Igor s’appuie sur
l’aperçu qu’un bug ne peut pas être déclenché sans exécuter son code. À travers un processus de
minimisation de cas de test et d’appariement de traces d’exécution, nous introduisons une métrique
pour la déduplication de crash qui va au-delà de la couverture de code et des piles d’appels. En
employant des comparaisons de similarité de graphes de flux de contrôle sur des traces d’exécution
minimisées, I G O R démontre sa capacité à regrouper avec précision les crashs, réduisant les comptes
de bugs «uniques» d’un ordre de grandeur par rapport aux techniques existantes.

L’avant-dernier projet, TA N G O, aborde l’insuffisance des métriques traditionnelles de couverture
de code pour explorer les espaces d’états de systèmes complexes comme les analyseurs de langage
et les jeux vidéo. En incorporant «l’état» en tant que citoyen de première classe, TA N G O améliore
la capacité du fuzzer à naviguer dans des systèmes complexes. L’inférence d’état a conduit à la
découverte de bugs auparavant non détectés, et elle a également mis en évidence une observation
nouvelle : la couverture de code est insuffisante pour décrire l’état. À travers notre évaluation,
TA N G O révèle que les fuzzers qui s’appuient uniquement sur la couverture de code pourraient
potentiellement passer plus de 80% de leur temps à dupliquer leurs efforts face à des cibles étatiques.

Enfin, S E N S E I vise à aider les fuzzers à explorer de manière incrémentielle les cibles en fuzzant
les analyseurs isolément et en utilisant ces résultats pour amorcer le fuzzing de cibles plus complexes.
En tirant parti de la riche et spécifique connaissance du domaine encodée dans les dissecteurs
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Wireshark, S E N S E I intègre des métriques spécifiques aux analyseurs pour guider le fuzzing dans la
direction d’entrées de haute qualité et diversifiées, pour aider à l’exploration des implémentations
de protocoles réseau.

Collectivement, ces projets introduisent de nouvelles métriques et méthodologies pour le
développement et l’évaluation des fuzzers. Ils fournissent des preuves empiriques soutenant la thèse
que des métriques sur mesure sont la clé d’un fuzzing efficace et réussi.
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Chapter 1

Introduction

Testing can only prove the presence of
bugs, not their absence.

Edsger W. Dijkstra

Software is written—for the most part—by humans, who are notorious for making mistakes.
Mistakes in software give rise to bugs: alterations in the source code that may manifest as unexpected
behavior, ranging from benign rounding errors all the way to complete system compromise. Software
testing is the practice of assessing, analyzing, and probing a piece of software in search of bugs.

Fuzz testing—hereinafter referred to as fuzzing—is a search-based software testing technique,
which has stood out in its bug-finding ability, owing to its speed, soundness, scalability, and
accessibility. What sets fuzzing apart from other software testing techniques is that fuzz tests are
concretely executed. Since any detected fault is proven through the input that triggered it, the
findings of fuzzers are sound by construction, as long as they are reproducible, i.e., the system
and its environment are deterministic. Concrete execution also implies speed, seeing as the target
under test is evaluated at the speed it can process its inputs, while mostly running on bare-metal
hardware. Fuzzing is yet another embarrassingly parallel problem, whereby multiple fuzzer instances
can be dispatched to scale up the testing throughput. And over the past decade, fuzzing research
has produced countless artifacts, of which AFL++ is a noteworthy mention due to its active
development and its straightforward interface, providing ease of access to fuzzing and bringing it
one step closer to large-scale adoption.

Grey-box fuzzing, a variant which incorporates runtime feedback for guiding exploration, is
the most prominent form of fuzzing. The availability of feedback, often with little impact on
performance, enables fuzzers to efficiently explore intricate systems, the most famous example
being its ability to craft valid JPEGs “out of thin air” [172]. While several types of feedback
have been explored, code coverage has proven to be the most effective and remains the metric of
choice in most state-of-the-art fuzzers. The motivating intuition for code coverage is that “a bug
cannot be triggered without executing the buggy code”. Maximizing code coverage thus serves as
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Chapter 1. Introduction

a proxy objective for finding bugs: the more code is covered, the more likely that buggy code is
executed, and that bugs are triggered. Further, code coverage became, and continues to be, the
primary performance metric for comparing fuzzers. However, within this reasoning lies one flawed
assumption that hinders the ability of fuzzers to explore complex systems, namely that bugs exist
only in code.

1.1 Fuzzing Roadblocks

To prepare a system for fuzzing, it must consume input and yield observable output. A fuzzer
would then sample the input space and execute the system with the chosen inputs, incorporating
the output as feedback for its progress. The first and foremost challenge then resides in how
to sample the–practically infinite–input space in a finite amount of time while maximizing the
fuzzer’s performance. To reduce the time spent executing a program with invalid inputs, a fuzzer
that targets such software would have to craft inputs that diversify the explored behavior of the
target, with “invalid input” being only one such behavior. This entails generating inputs with some
knowledge of what the target expects as input.

In the context of software systems, namely those that accept byte sequences as inputs, the
primary roadblocks to overcome take the form of (a) magic bytes, (b) structured formats, and
(c) data transformations, among others.

For instance, a PNG image parser expects the first 8 bytes to be a fixed sequence. A fuzzer that
is uniformly sampling bytes has a 1 in 264 chance of selecting this sequence at random. Considering
that the placement of the sequence within the input is also subject to randomness, the chances of
it landing at the start are almost infinitely slim. To tackle this problem, RedQueen [12] collects
feedback on the value comparisons made during execution, and through a process of matching
and elimination, finds locations in the input where one operand of the comparison can be patched
to match the other. This approach also allows RedQueen to patch in dynamic values such as
calculated checksums. Alternatively, LAF [71] relies on compile-time program transformations to
split multi-byte comparisons down to their constituents. This enables the fuzzer to incrementally
solve the magic byte comparison by sampling from a space of 256 bytes at a time. Leveraging code
coverage, the fuzzer can then observe when a single-byte comparison succeeds, and builds upon it
to find the next bytes.

The PNG format specifies the structure of the image file and the chunks within it. For example,
it defines the layout of each chunk and the order in which chunks must appear in a valid image.
Stemming from the same issue of an infinite input space, the challenge of randomly generating valid
chunks or sequences of them presents a harder obstacle to fuzzers. FormatFuzzer [43] incorporates
machine-readable specification, in the form of binary dissectors, into the input generation process.
By transforming the dissectors into generators, it enables the fuzzer to generate mostly-valid inputs
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without manually writing the specification. Other approaches have also been explored to tackle
different formats. Mimid [60] infers context-free grammars implemented in parsers by tracking
accesses to input bytes and reconstructing the parse trees. Google also explored experimental
venues on LLM-aided fuzzing [55], whereby artificial neural networks, trained on vast amounts of
code and text mined from the Internet, are used to create input generators and invocation wrappers
for a given code base. Despite not being completely principled or understood, LLM prompting
techniques have proven effective and may continue to find their way into fuzzing and other domains
in systems security.

A PNG image also encodes pixels as a DEFLATE-compressed byte stream, which would then
require the fuzzer to generate valid byte blocks that can be correctly decompressed. Without
encoding that knowledge in the fuzzer, it would be next to impossible for it to pass this hurdle.
Although practical solutions resort to disabling compression in the PNG parser, such solutions are
not comprehensive, and may render some functionality in the parser unreachable, and hence, not
testable. Fuzztruction [17] circumvents this requirement by relying on other programs that already
encode this domain knowledge: generators. By fuzzing a PNG generator, such as a photo editor,
it introduces an intermediate layer that transforms entropy into mostly valid inputs: instead of
sampling the input bytes directly, it samples mutations to be applied to the generator program
itself and executes it to yield mutated inputs.

1.2 The Fuzzing Frontier

Leveraging the knowledge that has been accrued through the latest research, state-of-the-art fuzzers
can pass the first set of hurdles with relative ease. However, while there is no shortage of bugs
found by fuzzers, they remain unable to effectively test complex systems, as they face a new set of
challenges: (a) performance evaluation; (b) bug identification; (c) and stateful exploration.

1.2.1 Performance Evaluation

As a software testing technique, fuzzing’s main objective is to discover bugs. An ideal objective for
fuzzers would then be to maximize the number of triggered bugs, allowing for “partial triggers”
as the fuzzer approaches a bug. However, formulating the objective in this manner would require
knowledge of the bugs present in the system under test, defeating the purpose of testing. To that
end, code coverage is the most prevalent metric of choice for measuring the fuzzer’s progress and
incorporating it as feedback.

Research is an incremental process, building upon what succeeds and learning from what fails.
Evaluating the performance of a fuzzer serves as a measure of the fuzzer’s success and determines its
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role and its impact. As such, to foster healthy research in fuzzing, it is imperative that assessments
are performed in a sound and accurate manner. Code coverage has been adopted as the metric of
choice for evaluating and comparing the performance of fuzzers. While fuzzers are free to choose
which proxy metric they optimize for exploring the target and finding bugs, relying on one such
metric to rank fuzzers does not yield sound results. A fuzzer that maximizes code coverage is
naturally more likely to outrank another that optimizes for a different metric, such as data-flow
coverage. Instead, we should use an objective metric that accurately measures fuzzer performance
in alignment with their initial goal: finding bugs. The paradoxical nature of this metric can be
avoided by assuming ground-truth knowledge of the bugs, in the context of a fuzzing benchmark.
By introducing known bugs into a target, and means to measure when they are triggered, we can
develop a benchmark where fuzzers are scored based on the bugs they find and how fast they found
them. In Chapter 2, we introduce the challenges in designing a fair benchmark and provide a suite
of real targets with real bugs and performance metrics based in ground truth.

1.2.2 Bug Identification

In short, a bug is a deviation from expected behavior. Although comprehensive, this definition
is too loose to form a basis for a bug detection tool. The passive voice in “expected behavior”
implies that there is an implicit counterpart: who is the expecting agent? For the most part, that
refers to the developer who maintains the system in question. It is also possible that expectations
are set by the model of the system (e.g., finite state machines or context-free grammars) or the
framework within which the system is built, such as the instruction set architecture (ISA), the
operating system (OS), or the semantics of the programming language.

Implicitly-validated behaviors

Example 1.1

ISA CPU OS Program Specification

mov [rax], 1

Success

TLB miss

Access error

Page swap

Unmapped
Unprivileged

Valid object

Out-of-bounds
Use-after-free

. . .

Signal handler

Initialize
counter

Escalate
privileges

Figure 1.1 – Different views of a bug across the execution stack. The validity of a behavior
depends on the expectations set by the observer.
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The output of a fuzzer is typically a proof-of-concept file (PoC) which encodes the input and
conditions needed to reproduce a bug detected in testing. It is then crucial that fuzzers are able to
detect when a fault has occurred, i.e., when a bug has been triggered; otherwise, its output is void
and its progress is lost. However, the lack of a clear definition for a bug makes it difficult to detect
it reliably.

Further reading: Sanitizers

Earlier fuzzers, which mainly targeted user-space processes in Linux and were written in
memory-unsafe languages like C/C++, resorted to crashes as indicators of bugs. Such
crashes typically occur due to unmapped or unprivileged memory accesses, or due to the
execution of invalid instructions, all indicating that something has gone awry. Although the
C/C++ standards define the notion of objects and their liveness (e.g., function-local vs
global variables), they do not enforce checks for their memory safety policies. As such, not
all memory safety bugs can be detected through crashes, and many bugs could be lost in
fuzzing.

To remedy that, later advancements in compilers introduced sanitizers: runtime mechanisms
for enforcing language semantics, backed by compile-time instrumentation. AddressSani-
tizer (ASan) is one such mechanism, where object bounds and lifetimes are tracked, and
memory accesses are augmented with validity checks, to reduce the likelihood that a violation
goes undetected. Yet, these sanitizers can only enforce language-specific semantics. A bug
in the logic of the program cannot be detected through such means.

Sanitizers widened the scope of bugs that could be detected by fuzzers for a relatively low cost,
but they had an unintended side-effect: overwhelming developers with bug reports. Despite those
sanitizers providing context-rich summaries to help developers in triaging crashes, it remains a
fact that they enforce language-level policies rather than the programmer’s expectations (or the
reference specification). A single bug in the implementation can manifest as many, seemingly-
different violations detected by the sanitizer. As a result, developers are left to triage hundreds
or thousands of bug reports, many of which are duplicates resulting from the same root cause.
De-duplicating crashes is the process of grouping PoCs that result from the same bug. Given that
the bug is not known a priori, proxy metrics are again used to approximate the root cause. A
study by Klees et al. [83] reports that de-duplicated bug counts can still inflate true bug counts
by anywhere between 66× to 6339× when using stack hashes or coverage profiles, respectively.
Fuzzers’ inability to discern true bugs represents a challenge to their usability and impacts their
effectiveness in securing real and complex systems. We tackle this issue in Chapter 3, where we
propose and evaluate a technique for grouping and de-duplicating crashes based on execution trace
clustering. The key insight is that if two PoCs share the same root cause, they must execute the
same buggy code.
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1.2.3 Stateful Exploration

Fuzzing stateful systems requires special consideration: observed behavior is only reproducible in
the context of the current state. State adds a new dimension to the operations of a fuzzer. Further,
any interaction with the system may alter its state. This introduces a new challenge to fuzzers:
state explosion. To ensure reproducibility of results, a fuzzer must keep track of the current state
and the sequence of interactions made within it. This entails recognizing when a state transition
took place, as well as maintaining the set of explored states and dedicating sufficient resources for
exploring them.

There is often no explicit definition of a state in the implementation of a protocol or a
specification. State is rather the sum and summary of the system’s runtime behavior and how it
processes inputs. Despite not having direct access to state-aware feedback, it is possible for a fuzzer
to observe the behavior of a system and make conclusions based on how it handles inputs under
different conditions. State inference is the subject of Chapter 4, where we develop a state-aware
metric through active invocation and learning of the system’s behavior.

1.3 Going Beyond Coverage

Thesis Statement

Fuzzing is a search for bugs guided by feedback metrics. For simple targets, executing buggy
code is often sufficient to trigger faulty behavior, and code coverage excels at guiding the
fuzzer towards such bugs. However, to assess and improve the efficacy of fuzzers on more
complex systems, specialized metrics that capture application-specific information, such as
system state and bug semantics, are instrumental for targeting bugs embedded deeply in the
code.

In this dissertation, we address the problems encountered when using code coverage as the
objective metric in fuzzing. By tackling the challenges arising from incorporating other metrics, we
present novel techniques for improving fuzzers through accurate performance evaluation, path-based
crash de-duplication, and state-aware exploration.

1.3.1 Improving Performance Evaluation through Ground-truth Benchmarks

High scalability and low running costs have made fuzz testing the de facto standard for discovering
software bugs. Fuzzing techniques are constantly being improved in a race to build the ultimate
bug-finding tool. However, while fuzzing excels at finding bugs in the wild, evaluating and comparing
fuzzer performance is challenging due to the lack of metrics and benchmarks. For example, crash
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count—perhaps the most commonly-used performance metric—is inaccurate due to imperfections
in de-duplication techniques. Additionally, the lack of a unified set of targets results in ad hoc
evaluations that hinder fair comparison.

In Chapter 2, we tackle these problems by developing M A G M A, a ground-truth fuzzing bench-
mark that enables uniform fuzzer evaluation and comparison. By introducing real bugs into real
software, M A G M A allows for the realistic evaluation of fuzzers against a broad set of targets. By
instrumenting these bugs, M A G M A also enables the collection of bug-centric performance metrics
independent of the fuzzer. M A G M A is an open benchmark consisting of seven targets that perform a
variety of input manipulations and complex computations, presenting a challenge to state-of-the-art
fuzzers.

We evaluate seven widely-used mutation-based fuzzers (AFL, AFLFast, AFL++, FairFuzz,
MOpt-AFL, honggfuzz, and SymCC-AFL) against M A G M A over 200,000 CPU-hours. Based
on the number of bugs, reached, triggered, and detected, we draw conclusions about the fuzzers’
exploration and detection capabilities. This provides insight into fuzzer performance evaluation,
highlighting the importance of ground truth in performing more accurate and meaningful evalua-
tions.

1.3.2 Simplifying Bug Identification through Crash De-duplication

The output of a fuzzer is a set of proof-of-concept (PoC) test cases for all observed “unique”
crashes. It costs developers substantial efforts to analyze each crashing test case. This mostly
manual process has led to the number of reported crashes out-pacing the number of bug fixes.
Automatic crash de-duplication techniques, which mostly rely on coverage profiles and stack hashes,
are supposed to alleviate these pressures. However, these techniques both inflate actual bug counts
and falsely conflate unrelated bugs [83]. This hinders, rather than helps, developers, and calls for
more accurate techniques.

The highly-stochastic nature of fuzzing means that PoCs commonly exercise many program
behaviors that are orthogonal to the crash’s underlying root cause. This diversity in program
behaviors manifests as a diversity in crashes, contributing to bug-count inflation and conflation.
Based on this insight, Chapter 3 details our proposal for I G O R, an automated dual-phase crash
de-duplication technique. By minimizing each PoC’s execution trace, we obtain pruned test cases
that exercise the critical behavior necessary for triggering a bug. Then, we use a graph similarity
comparison to cluster crashes based on the control-flow graph of the minimized execution traces,
with each cluster mapping back to a single, unique root cause.

We evaluate I G O R against 39 bugs resulting from 254,000 PoCs, distributed over 10 programs.
Our results show that I G O R accurately groups these crashes into 48 uniquely identifiable clusters,
while other state-of-the-art methods yield bug counts at least one order of magnitude larger.

7



Chapter 1. Introduction

1.3.3 Guiding Stateful Exploration with State-aware Metrics

While coverage-guided fuzzing excels at code discovery, its effectiveness falters when applied to
complex systems. One such class of complex systems is persistent targets whose behavior depends
on the state of the system, where discovering new states is key to comprehensive testing. Code
coverage alone is not enough to describe the state of a system. This makes it difficult for an
evolutionary fuzzer to optimize for state discovery when the feedback is not correlated with the
objective.

Chapter 4 introduces TA N G O, an extensible framework for state-aware fuzzing. Our design
incorporates “state” as a first-class citizen in all operations, enabling TA N G O to fuzz complex
targets that otherwise remain out-of-scope. Inspired by hypothesis testing and system identification,
we present state inference, a cross-validation technique that distills portable coverage metrics to
reveal hidden path dependencies in the target. State awareness in turn allows us to aggregate
feedback from different paths while maintaining state-specific operation. We leverage TA N G O to
fuzz stateful targets ranging from language parsers to video games, demonstrating the flexibility of
our framework in exploring complex systems. Using state inference, we employ an active learning
process to shrink the scheduling queue of a fuzzer by over 80% through identifying functionally-
equivalent paths. We extend current state-of-the-art fuzzers, AFL++ and Nyx-Net, with state
feedback from TA N G O. During our evaluation, fuzzers using our technique uncovered two new
bugs in yajl and dcmtk.

1.3.4 Going Further

The bulk of this dissertation tackles the aforementioned three challenges at the fuzzing frontier.
Finally, in Chapter 5, we outline a proposal for future work, where we present the challenges still
encountered in the efficient exploration of network protocol servers, mainly addressing the obstacles
impeding the generation of high-quality inputs. We propose a design for a fuzzing pipeline that
incorporates domain knowledge encoded in Wireshark dissectors, by leveraging them as oracles for
the quality of generated inputs. To incorporate feedback from both the dissector and the target,
we apply multi-objective optimization, which allows the fuzzer to find inputs that simultaneously
maximize target coverage while improving the quality and validity of the generated inputs. While
this portion of the dissertation remains as future work, it underscores our conclusion, from previous
chapters, that metrics are pivotal for the efficacy of fuzzers against complex systems.
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This dissertation thus tackles the shortcomings of existing metrics in fuzzing, through the
introduction of application-specific metrics tailored for the fuzzer’s objective. We summarize our
contributions as follows:

• With M A G M A [64], we explore ways to interpret and assess the output of fuzzers by introducing
accurate ground-truth metrics to measure their performance as a function of the discovered
bugs.

• Through I G O R [75], we present an approach for extending access to bug-specific metrics
beyond the context of a benchmark and into the realm of software in-the-wild.

• We also develop TA N G O1 to tackle the challenges put forth by stateful targets through a
state-aware fuzzing framework that accounts for the target’s state as another dimension to
the fuzzer’s operations.

• Finally, to better guide a fuzzer’s incremental problem-solving in the face of complex targets,
we propose S E N S E I2, a dual-phase fuzzing architecture that leverages domain knowledge
encoded in open-source parsers to generate high-quality inputs and guide the exploration of
full-fledged network systems.

1 TA N G O is currently under submission.
2 We present S E N S E I as future work, outlining its design and preliminary evaluation.

9





Chapter 2

M A G M A: A Ground-Truth Fuzzing Bench-
mark

Not everything that can be counted counts,
and not everything that counts can be
counted.

William Bruce Cameron

Fuzzing has become a cornerstone technique for automated bug discovery in software systems.
A crucial challenge lies in evaluating and comparing the performance of different fuzzers: fair
metrics and representative workloads. This chapter aims to highlight the limitations of prevalent
metrics like crash counts and code coverage, emphasizing the need for more robust evaluation
methods. It also introduces the challenges of crafting more accurate and fair benchmarks for
fuzzing, and how we tackle them in the development of our own benchmark, M A G M A.

Hypothesis 1

The goal of fuzzers is to find bugs. To properly evaluate fuzzers, the use of classical
metrics like code coverage and crash counts is insufficient, and metrics that accurately depict
bug-finding ability are necessary.

The contents of this chapter are adapted from Hazimeh et al. [64].
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Fuzzing is a widely-used dynamic bug discovery technique. A fuzzer procedurally generates
inputs and subjects the target program (the “target”) to these inputs with the aim of triggering a
fault (i.e., discovering a bug). Fuzzing is an inherently sound but incomplete bug-finding process
(given finite resources). State-of-the-art fuzzers rely on crashes to mark faulty program behavior.
The existence of a crash is generally symptomatic of a bug (soundness), but the lack of a crash does
not necessarily mean that the program is bug-free (incompleteness). Fuzzing is wildly successful in
finding bugs in open-source [4] and commercial off-the-shelf [9, 10, 132] software.

The success of fuzzing has resulted in an explosion of new techniques claiming to improve
bug-finding performance [104]. In order to highlight improvements, these techniques are typically
evaluated across a range of metrics, including: (i) crash counts; (ii) ground-truth bug counts; and/or
(iii) code-coverage profiles. While these metrics provide some insight into a fuzzer’s performance,
we argue that they are insufficient for use in fuzzer comparisons. Furthermore, the set of targets
that these metrics are evaluated on can vary wildly across papers, making cross-fuzzer comparisons
impossible. Each of these metrics has particular deficiencies.

Crash counts The simplest fuzzer evaluation method is to count the number of crashes triggered
by a fuzzer, and compare this crash count with that achieved by another fuzzer (on the same
target). Unfortunately, crash counts often inflate the number of actual bugs in the target [83].
Moreover, deduplication techniques (e.g., coverage profiles, stack hashes) fail to accurately identify
the root cause of these crashes [19, 83].

Bug counts Identifying a crash’s root cause is preferable to simply reporting raw crashes, as
it avoids the inflation problem inherent in crash counts. Unfortunately, obtaining an accurate
ground-truth bug count typically requires extensive manual triage, which in turn requires someone
with extensive domain expertise and experience [114].

Code-coverage profiles Code-coverage profiles are another performance metric commonly used
to evaluate and compare fuzzing techniques. Intuitively, covering more code correlates with finding
more bugs. However, previous work [83] has shown that there is a weak correlation between
coverage-deduplicated crashes and ground-truth bugs, implying that higher coverage does not
necessarily indicate better fuzzer effectiveness.

The deficiencies of existing performance metrics calls for a rethinking of fuzzer evaluation
practices. In particular, the performance metrics used in these evaluations must accurately measure
a fuzzer’s ability to achieve its main objective: finding bugs. Similarly, the targets that are used to
assess how well a fuzzer meets this objective must be realistic and exercise diverse behavior. This
allows a practitioner to have confidence that a given fuzzing technique will yield improvements
when deployed in real-world environments.
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To satisfy these criteria, we present M A G M A, a ground-truth fuzzer benchmark based on
real programs with real bugs. M A G M A consists of seven widely-used open-source libraries and
applications, totalling 2 MLOC. For each M A G M A workload, we manually analyze security-relevant
bug reports and patches, reinserting defective code back into these seven programs (in total, 118
bugs were analyzed and reinserted). Additionally, each reinserted bug is accompanied by a light-
weight oracle that detects and reports if the bug is reached or triggered. This distinction between
reaching and triggering a bug—in addition to a fuzzer’s ability to detect a triggered bug—presents
a new opportunity to evaluate a fuzzer across multiple dimensions (again, focusing on ground-truth
bugs).

The remainder of this chapter presents the motivation behind M A G M A, the methodology
behind M A G M A’s design and choice of performance metrics, implementation details, and a set of
preliminary results that demonstrate M A G M A’s utility. We make the following contributions:

• A set of bug-centric performance metrics for a fuzzer benchmark that allow for a fair and
accurate evaluation and comparison of fuzzers.

• A quantitative comparison of existing fuzzer benchmarks.
• The design and implementation of M A G M A, a ground-truth fuzzing benchmark based on

real programs with real bugs.
• An evaluation of M A G M A against seven widely-used fuzzers.

2.1 Background

This section introduces fuzzing as a software testing technique, and how new fuzzing techniques
are currently evaluated and compared against existing ones. This aims to motivate the need for
new fuzzer evaluation practices.

2.1.1 Fuzzing

A fuzzer is a dynamic testing tool that discovers software flaws by running a target program (the
“target”) with a large number of automatically-generated inputs. Importantly, these inputs are
generated with the intention of triggering a crash in the target. This input generation process
is dependent on the fuzzer’s knowledge of the target’s input format and program structure. For
example, grammar-based fuzzers (e.g., Superion [160], Peach [44], and QuickFuzz [61]) leverage
the target’s input format (which must be specified a priori) to intelligently craft inputs (e.g., based
on data width and type, and on the relationships between different input fields). In contrast,
mutational fuzzers (e.g., AFL [171], Angora [29], and MemFuzz [33]) require no a priori knowledge
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of the input format. Instead, mutational fuzzers leverage preprogrammed mutation operations to
iteratively modify the input.

Fuzzers are classified by their knowledge of the target’s program structure. For example,
whitebox fuzzers [52, 54, 125] leverage program analysis to infer knowledge about the program
structure. In comparison, blackbox fuzzers [8, 165] blindly generate inputs in the hope of discovering
a crash. Finally, greybox fuzzers [29, 98, 171] leverage program instrumentation (instead of program
analysis) to collect runtime information. Program-structure knowledge guides input generation in a
manner more likely to trigger a crash.

Importantly, fuzzing is a highly stochastic bug-finding process. This randomness is independent
of whether the fuzzer synthesizes inputs from a grammar (grammar-based fuzzing), transforms
an existing set of inputs to arrive at new inputs (mutational fuzzing), has no knowledge of that
target’s internals (blackbox fuzzing), or uses sophisticated program analyses to understand the
target (whitebox fuzzing). The stochastic nature of fuzzing makes evaluating and comparing fuzzers
difficult. This problem is exacerbated by existing fuzzer evaluation metrics and benchmarks.

2.1.2 The Current State of Fuzzer Evaluation

The rapid emergence of new and improved fuzzing techniques [104] means that fuzzers are constantly
compared against one another, in order to empirically demonstrate that the latest fuzzer supersedes
previous state-of-the-art fuzzers. To enable fair and accurate fuzzer evaluation, it is critical that
fuzzing campaigns are conducted on a suitable benchmark that uses an appropriate set of metrics.
Unfortunately, fuzzer evaluations have so far been ad hoc and haphazard. For example, Klees et
al.’s study of 32 fuzzing papers found that none of the surveyed papers provided sufficient detail to
support their claims of fuzzer improvement [83]. Notably, their study highlights a set of criteria
that should be adopted across all fuzzer evaluations. These criteria include:

Performance metrics: How the fuzzers are evaluated and compared. This is typically one of the
approaches previously discussed (crash count, bug count, or coverage profiling).

Targets: The software being fuzzed. This software should be both diverse and realistic so that a
practitioner has confidence that the fuzzer will perform similarly in real-world environments.

Seed selection: The initial set of inputs that bootstrap the fuzzing process. This initial set of
inputs should be consistent across repeated trials and the fuzzers under evaluation.

Trial duration (timeout): The length of a single fuzzing trial should also be consistent across
repeated trials and the fuzzers under evaluation. We use the term trial to refer to an instance
of the fuzzing process on a target program, while a fuzzing campaign is a set of N repeated
trials on the same target.

Number of trials: The highly-stochastic nature of fuzzing necessitates a large number of repeated
trials, allowing for a statistically sound comparison of results.
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Table 2.1 – Summary of existing fuzzer benchmarks and our benchmark, M A G M A. We characterize
benchmarks across two dimensions: the targets that make up the benchmark workloads and the
bugs that exist across these workloads. For both dimensions we count the number of workloads/bugs
(#) and classify them as Real or Synthetic. Bug density is the mean number of bugs per workload.
Finally, ground truth may be available (✓), available but not easily accessible (◗), or unavailable
(✗).

Benchmark Workloads Bugs Bug Density Ground truth# Real/Synthetic # Real/Synthetic

BugBench [99] 17 R 19 R 1.12 ◗

CGC [26] 131 S 590 S 4.50 ◗

Google FTS [58] 24 R 47 R 1.96 ◗

Google FuzzBench [57] 21 R − − − −
L AVA - M [40] 4 R 2265 S 566.25 ✓

UniFuzz [93] 20 R ? R ? ✗

Open-source software − R ? R ? ✗

M A G M A 7 R 118 R 16.86 ✓

Klees et al.’s study demonstrates the need for a ground-truth fuzzing benchmark. Such a
benchmark must use suitable performance metrics and present a unified set of targets.

Existing Fuzzer Benchmarks

Fuzzers are typically evaluated on a set of targets sourced from one of the following benchmarks.
These benchmarks are summarized in table 2.1.

The L AVA - M [40] test suite (built on top of coreutils-8.24) aims to evaluate the effec-
tiveness of a fuzzer’s exploration capability by injecting bugs in different execution paths. However,
the LAVA bug injection technique only injects a single, simple bug type: an out-of-bounds memory
access triggered by a “magic value” comparison. This bug type does not accurately represent
the statefulness and complexity of bugs encountered in real-world software. We quantify these
observations in section 2.5.3.

In contrast, the Cyber Grand Challenge (CGC) [26] sample set provides a wider variety of bugs
that are suitable for testing a fuzzer’s fault detection capabilities. Unfortunately, the relatively
small size and simplicity of the CGC’s synthetic workloads does not enable thorough evaluation of
the fuzzer’s ability to explore complex programs.

BugBench [99] and the Google Fuzzer Test Suite (FTS) [58] both contain real programs with
real bugs. However, each target only contains one or two bugs (on average). This sparsity of
bugs, combined with the lack of automatic methods for triaging crashes, hinders adoption and
makes both benchmarks unsuitable for fuzzer evaluation. In contrast, Google FuzzBench [57]—the
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successor to the Google FTS—is a fuzzer evaluation platform that relies solely on coverage profiles
as a performance metric. As previously discussed, this metric has limited utility when evaluating
fuzzers on their bug-finding capability. UniFuzz [93]—which was developed concurrently but
independently from M A G M A—is similarly built on real programs containing real bugs. However, it
lacks ground-truth knowledge and it is unclear how many bugs each target contains. Not knowing
how many bugs exist in a benchmark makes fuzzer comparisons challenging.

Finally, popular open-source software (OSS) is often used to evaluate fuzzers [22, 83, 90, 102,
121, 159]. Although real-world software is used, the lack of ground-truth knowledge about the
triggered crashes makes it difficult to provide an accurate, verifiable, quantitative evaluation. First,
it is often unclear which software version is used, making fair cross-paper comparisons impossible.
Second, multiple software versions introduce version divergence, a subtle evaluation flaw shared
by both crash and bug count metrics. After running for an extended period, a fuzzer’s ability to
discover new bugs diminishes over time [20]. If a second fuzzer later fuzzes a new version of the
same program—with the bugs found by the first fuzzer appropriately patched—then the first fuzzer
will find fewer bugs in this newer version. Version divergence is also inherent in UniFuzz, which
builds on top of older versions of OSS.

Crashes as a Performance Metric

Most, if not all, state-of-the-art fuzzers implement fault detection as a crash listener. A program
crash can be caused by an architectural violation (e.g., division-by-zero, unmapped/unprivileged
page access) or by a sanitizer (a dynamic bug-finding tool that generates a crash when a security
policy violation—e.g., object out-of-bounds, type safety violation—occurs [148]).

The simplicity of crash detection has led to the widespread use of crash count as a performance
metric for comparing fuzzers. However, crash counts have been shown to yield inflated results,
even when combined with deduplication methods (e.g., coverage profiles and stack hashes) [19,
83]. Instead, the number of bugs found by each fuzzer should be compared: if fuzzer A finds more
bugs than fuzzer B , then A is superior to B . Unfortunately, there is no single formal definition
for a bug. Defining a bug in its proper context is best achieved by formally modeling program
behavior. However, deriving formal program models is a difficult and time-consuming task. As such,
bug detection techniques tend to create a blacklist of faulty behavior, mislabeling or overlooking
some bug classes in the process. This often leads to incomplete detection of bugs and root-cause
misidentification, resulting in a duplication of crashes and an inflated set of results.
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2.2 Desired Benchmark Properties

Benchmarks are important drivers for computer science research and product development [18].
Several factors must be taken into account when designing a benchmark, including: relevance;
reproducibility; fairness; verifiability; and usability [2, 82]. While building benchmarks around these
properties is well studied [2, 18, 79, 82, 99, 129, 135, 150], the highly-stochastic nature of fuzzing
introduces new challenges for benchmark designers.

For example, reproducibility is a key benchmark property that ensures a benchmark produces
“the same results consistently for a particular test environment” [82]. However, individual fuzzing
trials vary wildly in performance, requiring a large number of repeated trials for a particular
test environment [83]. While performance variance exists in most benchmarks (e.g., the SPEC
CPU benchmark [150] uses the median of three repeated trials to account for small variations
across environments), this variance is more pronounced in fuzzing. Furthermore, a fuzzer may
actively modify the test environment (e.g., T-Fuzz [121] and FuzzGen [72] transform the target,
while Skyfire [159] generates new seed inputs for the target). This is very different to traditional
performance benchmarks (e.g., SPEC CPU [150], DaCapo [18]), where the workloads and their
inputs remain fixed across all systems-under-test. This leads us to define the following set of
properties that we argue must exist in a fuzzing benchmark:

Diversity (P1): The benchmark contains a wide variety of bugs and programs that resemble real
software testing scenarios.

Verifiability (P2): The benchmark yields verifiable metrics that accurately describe performance.
Usability (P3): The benchmark is accessible and has no significant barriers for adoption.

These three properties are explored in the remainder of this section, while section 2.3 describes
how M A G M A satisfies these criteria.

2.2.1 Diversity (P1)

Fuzzers are actively used to find bugs in a variety of real programs [4, 9, 10, 132]. Therefore, a
fuzzing benchmark must evaluate fuzzers against programs and bugs that resemble those encountered
in the “real world”. To this end, a benchmark must include a diverse set of bugs and programs.

Bugs should be diverse with respect to:

Class: Common Weakness Enumeration (CWE) [109] bug classes include memory-based errors,
type errors, concurrency issues, and numeric errors.
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Distribution: “Depth”, fan-in (i.e, the number of paths which execute the bug), and spread (i.e.,
the ratio of faulty-path counts to the total number of paths).

Complexity: Number of input bytes involved in triggering a bug, the range of input values which
triggers the bug, and the transformations performed on the input.

Similarly, targets (i.e, the benchmark workloads) should be diverse with respect to:

Application domain: File and media processing, network protocols, document parsing, cryptogra-
phy primitives, and data encoding.

Operations performed: Parsing, checksum calculation, indirection, transformation, state man-
agement, and data validation.

Input structure: Binary, text, formats/grammars, and data size.

Satisfying the diversity property requires bugs that resemble those encountered in real-world
environments. Both L AVA - M and Google FuzzBench fail this requirement: the former contains
only a single bug class (an out-of-bounds memory access), while FuzzBench does not consider bugs
as an evaluation metric. BugBench primarily focuses on memory corruption vulnerabilities, but also
contains uninitialized read, memory leak, data race, atomicity, and semantic bugs (totalling nine
bug classes). Conversely, Google FTS and FuzzBench satisfy the target diversity requirement: both
contain workloads from a wide variety of application domains (e.g., cryptography, image parsing,
text processing, and compilers).

Ultimately, real programs are the only source of real bugs. Therefore, a benchmark designed to
evaluate fuzzers must include real programs with a variety of real bugs, thus ensuring diversity and
avoiding bias (e.g., towards a specific bug class). Whereas discovering and reporting real bugs is
desirable (i.e, when OSS is used), performance metrics based on an unknown set of bugs (with an
unknown distribution) make it impossible to compare fuzzers. Instead, fuzzers should be evaluated
on workloads containing known bugs for which ground truth is available and verifiable.

2.2.2 Verifiability (P2)

Existing ground-truth fuzzing benchmarks lack a straightforward mechanism for determining a
crash’s root cause. This makes it difficult to verify a fuzzer’s results. Crash count, a widely-used
performance metric, suffers from high variability, double-counting, and inconsistent results across
multiple trials (see section 2.1.2). Automated techniques for deduplicating crashes are not reliable,
and hence should not be used to verify the bugs discovered by a fuzzer. Ultimately, a fuzzing
benchmark should provide a set of known bugs for which ground truth can be used to verify a
fuzzer’s findings.
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While the CGC sample set provides crashing inputs—also known as a proof of vulnerability
(PoV)—for all known bugs, it does not provide a mechanism for determining the root cause of a
fuzzer-generated crash. Similarly, the Google FTS provides PoVs (for 87 % of bugs) and a script
for triaging and deduplicating crashes. This script parses the crash report or looks for a specific
line of code at which to terminate program execution. However, this approach is limited and does
not allow for the detection of complex bugs (e.g., where simply executing a line of code is not
sufficient to trigger the bug).

In contrast to the CGC and Google FTS benchmarks, for which ground truth is available but not
easily accessible, L AVA - M clearly reports the bug triggered by a crashing input. However, L AVA - M

does not provide a runtime interface for accessing this information. Unless a fuzzer is specialized to
collect L AVA - M metrics, it cannot monitor progress in real-time. Thus, a post-processing step is
required to collect metrics. Finally, Google FuzzBench relies solely on coverage profiles (rather than
fault-based metrics) to evaluate and compare fuzzers. FuzzBench dismisses the need for ground
truth, which we believe sacrifices the significance of the results: more coverage does not necessarily
imply higher bug-finding effectiveness.

Ground-truth bug knowledge allows for a fuzzer’s findings to be verified, enabling accurate
performance evaluation and allowing meaningful comparisons between fuzzers. To this end, a
fuzzing benchmark must provide easy access to ground-truth metrics describing the bugs a fuzzer
can reach, trigger, and detect.

2.2.3 Usability (P3)

Fuzzers have evolved from simple blackbox random-input generation to complex control- and
data-flow analysis tools. Each fuzzer may introduce its own instrumentation into a target (e.g.,
AFL [171]), run the target in a specific execution engine (e.g., QSYM [170], Driller [152]), or
provide inputs through a specific channel (e.g., libFuzzer [98]). Fuzzers come in a variety of
forms (described in section 2.1.1), so a fuzzing benchmark must not exclude a particular type of
fuzzer. Additionally, using a benchmark must be manageable and straightforward: it should not
require constant user intervention, and benchmarking should finish within a reasonable time frame.
The inherent randomness of fuzzing complicates this, as multiple trials are required to achieve
statistically-meaningful results.

Some existing benchmark workloads (e.g., those from CGC and Google FTS) contain multiple
bugs, so it is not sufficient to only run the fuzzer until the first crash is encountered. However, the
lack of easily-accessible ground truth makes it difficult to determine if/when all bugs are triggered.
Moreover, inaccurate deduplication techniques mean that the user cannot simply equate the number
of crashes with the number of bugs. Thus, additional time must be spent triaging crashes to obtain
ground-truth bug counts, further complicating the benchmarking process.
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In summary, a benchmark should be usable by fuzzer developers, without introducing insur-
mountable or impractical barriers to adoption. To satisfy this property, a benchmark must thus
provide a small set of targets with a large number of discoverable bugs, and it must provide a
usable framework that measures and reports fuzzer progress and performance.

2.3 M A G M A: Approach

We present M A G M A, a ground-truth fuzzing benchmark that satisfies the previously-discussed
benchmark properties. M A G M A is a collection of seven targets with widespread use in real-world
environments. These initial targets have been carefully selected for their diversity and the variety
of security-critical bugs that have been reported throughout their lifetimes (satisfying P1).

Importantly, M A G M A’s seven workloads contain 118 bugs for which ground truth is easily
accessible and verifiable (satisfying P2). These bugs are sourced from older versions of the
seven workloads, and then forward-ported to the latest version contained within M A G M A. Finally,
M A G M A imposes minimal requirements on the user, allowing fuzzer developers to seamlessly
integrate the benchmark into their development cycle (satisfying P3).

For each workload, we manually inspect bug and vulnerability reports to find bugs that are
suitable for inclusion in M A G M A (e.g., ensuring that the bug affects the core codebase). For these
bugs, we reintroduce (“inject”) each bug into the latest version of the code through a process we
call forward-porting (see section 2.3.2). In addition to the bug, we also insert minimal source-code
instrumentation—a canary—to collect data about a fuzzer’s ability to reach and trigger the bug
(see section 2.3.3). A bug is reached when the faulty line of code is executed, and triggered when
the fault condition is satisfied. Finally, M A G M A provides a runtime monitor that runs in parallel
with the fuzzer to collect real-time statistics. These statistics are used to evaluate the fuzzer (see
section 2.3.4).

Fuzzer evaluation is based on the number of bugs reached, triggered, and detected. M A G M A’s
instrumentation only yields usable information when the fuzzer exercises the instrumented code,
allowing us to determine whether a bug is reached. The fuzzer-generated input triggers a bug
when the input’s dataflow satisfies the bug’s trigger condition(s). Once triggered, the fuzzer should
flag the bug as a fault or crash, enabling us to assess the fuzzer’s bug detection capability. These
metrics are described further in section 2.3.3.

Finally, M A G M A provides a fatal canaries mode. In fatal canaries mode, the program is
terminated if a canary’s condition is satisfied (similar to L AVA - M). The fuzzer then saves this
crashing input for post-processing. Fatal canaries are a form of ideal sanitization, in which triggering
a bug immediately results in a crash, regardless of the nature of the bug. Fatal canaries allow
developers to evaluate their fuzzers under ideal sanitization assumptions without incurring additional
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Table 2.2 – The targets, driver programs, bug counts, and evaluated features incorporated into
M A G M A. The versions used are the latest at the time of writing.

Target Drivers Version File type Bugs Magic
values

Recursive
parsing Compression Checksums Global

state
libpng read_fuzzer, readpng 1.6.38 PNG 7 ✓ ✗ ✓ ✓ ✗

libtiff read_rgba_fuzzer,
tiffcp

4.1.0 TIFF 14 ✓ ✗ ✓ ✗ ✗

libxml2
read_memory_fuzzer,
xml_reader_for_file_fuzzer,
xmllint

2.9.10 XML 18 ✓ ✓ ✗ ✗ ✗

poppler pdf_fuzzer,
pdfimages, pdftoppm

0.88.0 PDF 22 ✓ ✓ ✓ ✓ ✗

openssl

asn1, asn1parse,
bignum, bndiv, client,
cms, conf, crl, ct,
server, x509

3.0.0 Binary blobs 21 ✓ ✗ ✓ ✓ ✓

sqlite3 sqlite3_fuzz 3.32.0 SQL queries 20 ✓ ✓ ✗ ✗ ✓

php exif, json, parser,
unserialize

8.0.0−dev Various 16 ✓ ✓ ✗ ✗ ✗

sanitization overhead. This mode increases the number of executions during an evaluation, reducing
the cost of evaluating a fuzzer but sacrificing the ability to evaluate a fuzzer’s detection capabilities.

2.3.1 Target Selection

M A G M A contains seven targets, which we summarize in table 2.2. In addition to these seven
targets (i.e., the codebases into which bugs are injected), M A G M A also includes 25 drivers (i.e.,
executable programs that provide a command-line interface to the target) that exercise different
functionality within the target. Inspired by Google OSS-Fuzz [4], these drivers are sourced from
the original target codebases (as drivers are best developed by domain experts).

M A G M A’s seven targets were selected for their diversity in functionality (summarized qualitatively
in table 2.2). Inspired by benchmarks in other fields [18, 76, 127, 129], we apply Principal Component
Analysis (PCA) to quantify this diversity. PCA is a statistical analysis technique that transforms
an N -dimensional space into a lower-dimensional space while preserving variance as much as
possible [117]. Reducing high-dimensional data into a set of principal components allows for the
application of visualization and/or clustering techniques to compare and discriminate benchmark
workloads.

We apply PCA as follows. First, we use an Intel Pin [100] tool to record instruction traces for
K = 284 subjects (i.e., a library wrapped with a particular driver program [98, 105]): four from
L AVA - M, 14 from the FTS, 25 from M A G M A, and 241 from the CGC [155]. Each trace is
driven by seeds provided by the benchmark (exercising functionality—and hence code—that would
be explored by a fuzzer) and contains instructions executed by both the subject and any linked
libraries. Second, instructions are categorized according to Intel XED, a disassembler built into
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Figure 2.1 – Scatter plots of benchmark scores over the first four principal components (which
account for ∼60 % of the variance in the benchmark workloads). Each point corresponds to a
particular subject in a benchmark.

Pin. A XED instruction category is “a higher level semantic description of an instruction than
its opcodes” [70]. XED contains N = 94 instruction categories, spanning logical, floating point,
syscall, and SIMD operations (amongst others). We use these categories as an approximation of
the subject’s functionality. Third, we create a matrix X , where xi j ∈ X (i ∈ [1, N ] and j ∈ [1,K ]) is
the mean number of instructions executed in a particular category for a given subject (over all seeds
supplied with that subject). Finally, PCA is performed on a normalized version of X . The first four
principal components, which in our case account for 60 % of the variance between benchmarks, are
plotted in a two-dimensional space in fig. 2.1.

Figure 2.1 shows that the four L AVA - M workloads are tightly clustered over the first four
principal components. This is unsurprising, given that the L AVA - M workloads are all sourced
from coreutils and hence share the same codebase. In contrast, both the CGC and M A G M A

provide a wide-variety of workloads. For example, openssl—which contains a large amount of
cryptographic and networking code—appears distinct from the main clusters in fig. 2.1. The CGC’s
TAINTEDLOVE workload is similarly distinct, due to the relatively large number of floating point
operations performed.

2.3.2 Bug Selection and Insertion

M A G M A contains 118 bugs, spanning 11 CWEs (summarized in fig. 2.2; the complete list of bugs
is given in table A.1). Compared to existing benchmarks, M A G M A has both the second-largest
variety of bugs (by CWE) and second-largest “bug density” (the ratio of the number of bugs to the
number of targets) after the CGC and L AVA - M, respectively. While the CGC has a wider variety of
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Figure 2.2 – Comparison of benchmark bug classes. The y-axis uses a log scale. A complete list of
M A G M A bugs is presented in table A.1.

bugs, its workloads are not indicative of real-world software (in terms of both size and complexity).
Similarly, while L AVA - M’s bug density (566.25 bugs per target) is an order-of-magnitude larger
than M A G M A’s (16.86 bugs per target), L AVA - M is restricted to a single, synthetic bug type.

Importantly, M A G M A contains real bugs sourced from bug reports and forward-ported to the
most recent version of the target codebase. This is in contrast to existing fuzzing benchmarks (e.g.,
BugBench, Google FTS) that rely on old, unpatched versions of the target codebase. Unfortunately,
using older codebases limits the number of bugs available in each target (as evident by the low bug
densities in table 2.1). In comparison, forward-porting—which is synonymous to back-porting fixes
from newer codebases to older, buggy releases—does not suffer from this issue, making M A G M A’s
targets easily extensible.

Forward-porting begins with the identification—from the reported bug fix—of the code changes
that must be reverted to reintroduce the bug. Bug-fix commits can contain multiple fixes to
one or more bugs, so disambiguation is necessary to prevent the introduction of unintended bugs.
Alternatively, bug fixes may be spread over multiple commits (e.g., if the original fix did not
cover all edge cases). Following the identification of code changes, we identify what program
state is involved in evaluating the trigger condition. If necessary, we introduce additional program
variables to access that state. From this state, we determine a boolean expression that serves as
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a light-weight oracle for identifying a triggered bug. Finally, we identify a point in the program
where we inject a canary before the bug can manifest faulty behavior. This canary helps measure
our fuzzer performance metrics, discussed in the following section.

2.3.3 Performance Metrics

Fuzzer evaluation has traditionally relied on crash counts, bug counts, and/or code-coverage profiles
for measuring and comparing fuzzer performance. While the problems with crash counts and code-
coverage profiles are well known (see section 2.1.2), in our view, simply counting the number of
bugs discovered is too coarse-grained. Instead, we argue that it is important to distinguish between
reaching, triggering, and detecting a bug. Consequently, M A G M A uses these three bug-centric
performance metrics to evaluate fuzzers.

Reached bugs

Definition 2.1 A reached bug refers to a bug whose oracle was called, implying that the
executed path reaches the context of the bug, without necessarily triggering a fault. This is
where coverage profiles fall short: simply covering the faulty code does not mean that the
program is in the correct state to trigger the bug.

Triggered bugs

Definition 2.2 A triggered bug refers to a bug that was reached, and whose triggering
condition was satisfied, indicating that a fault occurred. Whereas triggering a bug implies
that the program has transitioned into a faulty state, the symptoms of the fault may not
be directly observable at the oracle injection site. When a bug is triggered, the oracle only
indicates that the conditions for a fault have been satisfied, but this does not imply that the
fault was encountered or detected by the fuzzer.

Source-code instrumentation (i.e., the canary) provides ground-truth knowledge and runtime
feedback of reached and triggered bugs. Each bug is approximated by (a) the lines of code patched
in response to a bug report, and (b) a boolean expression representing the bug’s trigger condition.
The canary reports: (i) when the line of code is reached; and (ii) when the input satisfies the
conditions for faulty behavior (i.e., triggers the bug). Section 2.4.4 discusses how we prevent
canaries from leaking information to the system-under-test.

Finally, we also draw a distinction between triggering and detecting a bug. Whereas most
security-critical bugs manifest as a low-level security policy violation for which state-of-the-art
sanitizers are well-suited (e.g., memory corruption, data races, invalid arithmetic), other bug classes
are not as easily observed. For example, resource exhaustion bugs are often detected long after
the fault has manifested, either through a timeout or an out-of-memory error. Even more obscure
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are semantic bugs, whose malfunctions cannot be observed without a specification or reference.
Consequently, various fuzzing techniques have been developed to target these bug classes (e.g.,
SlowFuzz [123] and NEZHA [122]). Such advancements in fuzzer techniques may benefit from an
evaluation which includes the bug detection rate as another dimension for comparison.

2.3.4 Runtime Monitoring

M A G M A provides a runtime monitor that collects real-time statistics from the instrumented target.
This provides a mechanism for visualizing the fuzzer’s progress and its evolution over time, without
complicating the instrumentation.

The runtime monitor collects data about reached and triggered bugs (section 2.3.3). Because
this data primarily relates to the fuzzer’s program exploration capabilities, we post-process the
monitor’s output to study the fuzzer’s fault detection capabilities. This is achieved by replaying the
crashing inputs (produced by the fuzzer) against the benchmark canaries to determine which bugs
were triggered and hence detected. Importantly, it is possible that the fuzzer produces crashing
inputs that do not correspond to any injected bug. If this occurs, the new bug is triaged and added
to the benchmark for other fuzzers to discover.

2.4 Design and Implementation Decisions

M A G M A’s unapologetic focus on fuzzing (as opposed to being a general bug-detection benchmark)
necessitates a number of key design and implementation choices. We discuss these choices here.

2.4.1 Forward-Porting

Forward-Porting vs. Back-Porting

In contrast to back-porting bugs to previous versions, forward-porting ensures that all known bugs
are fixed, and that the reintroduced bugs will have ground-truth oracles. While it is possible that
the new fixes and features in newer codebases may (re)introduce unknown bugs, forward-porting
allows M A G M A to evolve with each published bug fix. Additionally, future code changes may render
a forward-ported bug obsolete, or make its trigger conditions unsatisfiable. Without verification,
forward-porting may inject bugs which cannot be triggered. We use fuzzing to reduce this possibility,
reducing the cost of manually verifying injected bugs. A fuzzer-generated PoV demonstrates that the
bug is triggerable. Bugs that are discovered this way are added to the list of verified bugs, helping
the evaluation of other fuzzers. While this approach may skew M A G M A towards fuzzer-discoverable
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bugs, we argue that this is a nonissue: any newly-discovered PoV will update the benchmark, thus
ensuring a fair and balanced bug distribution.

Manual Forward-Porting

All M A G M A bugs are manually introduced. This process involves: (i) searching for bug reports;
(ii) identifying bugs that affect the core codebase; (iii) finding the relevant fix commits; (iv) recog-
nizing the bug conditions from the fix commits; (v) collecting these conditions as a set of path
constraints; (vi) modeling these path constraints as a boolean expression (the bug canary); and
(vii) injecting these canaries to flag bugs at runtime. The complexity of this process led us to reject
a wholly-automated approach; automating bug injection would likely result in an incomplete and
error-prone technique, ultimately yielding fewer bugs of lower quality. Moreover, an automated
approach still requires manual verification of the results. Dedicating human resources to the
forward-porting process maximizes the correctness of M A G M A’s bugs.

To justify a manual approach, we enumerate the scopes (i.e., code blocks, functions, modules)
spanned by each bug fix and use these scopes as a measure of bug-porting complexity (scope
measures for all bugs are given in table A.1). While a simple bug-porting technique works well for
fixes with a scope of one, the bug-porting technique must become more advanced as the number
of scopes increases (e.g., it must handle interprocedural constraints). Of the 118 M A G M A bugs,
34 % had a scope measure greater than one.

Finally, our manual porting process was heavily reliant on prose; in particular, by the comments
and discussions contained within bug reports. These discussions provide valuable insight into
(a) developers’ intent, and (b) the construction of precise trigger conditions. Additionally, function
names (particularly those from the standard library) provide key insight into the code’s objective,
without requiring in-depth analysis into what each function does. An automated technique would
require either: (i) an in-depth analysis of such functions, likely resulting in path explosion; or
(ii) inference of bug conditions and function utilities via natural language processing (NLP). Both
of these approaches are too complex to be included in the scope of M A G M A’s development and
would likely require several years of research to be effective.

2.4.2 Weird States

When a fuzzer generates an input that triggers an undetected bug, and execution continues past
this bug, the program transitions into an undefined state: a weird state [42]. Any information
collected after transitioning to a weird state is unreliable. To address this issue, we allow the fuzzer
to continue the execution trace, but only collect bug oracle data before and until the first bug is
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triggered (i.e., transition to a weird state). Oracles do not signify that a bug has been executed;
they only indicate whether the conditions required to execute a bug are satisfied.

Example 2.1 highlights the interplay between weird states. It shows two bugs: an out-of-bounds
write (bug 1) and a division-by-zero (bug 2). When tmp.len == 0, the condition for bug 1 (line 5)
remains unsatisfied, logging and triggering bug 2 instead (lines 6 and 7, respectively).

When tmp.len > 16, bug 1 is logged and triggered on lines 4 and 5, and tmp.len is overwritten
by a non-zero value, leaving bug 2 untriggered.

However, bug 1 is triggered when tmp.len == 16, overwriting tmp.len with the NULL termi-
nator and setting its value to 0 (on a Little-Endian system). This also triggers bug 2, despite the
input not explicitly specifying a zero-length str.

Escaping semantics

Example 2.1

1 void libfoo_baz(char *str) {
2 struct { char buf[16]; size_t len; } tmp;
3 tmp.len = strlen(str);
4 magma_log(1, tmp.len >= sizeof(tmp.buf)); // Bug 1: possible OOB write in strcpy()
5 strcpy(tmp.buf, str);
6 magma_log(2, tmp.len == 0); // Bug 2: possible div-by-zero
7 int repeat = 64 / tmp.len;
8 }

Listing 2.1 – Weird states can result in execution traces which do not exist in the context of
normal program behavior.

2.4.3 A Static Benchmark

Much like other widely-used performance benchmarks—e.g., SPEC CPU [150] and DaCapo [18]—
M A G M A is a static benchmark that contains realistic workloads. These benchmarks assume that if
the system-under-test performs well on the benchmark’s workloads, then it will perform similarly
on real workloads. While realistic, static benchmarks are susceptible to overfitting. Overfitting can
occur if developers tweak the system-under-test to perform better on a benchmark, rather than
focusing on real workloads.

Overfitting could be overcome by dynamically synthesizing a benchmark (and ensuring that the
system-under-test is unaware of the synthesis parameters). However, this approach risks generating
workloads different from real-world scenarios, rendering the evaluation biased and/or incomplete.
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While program synthesis is a well-studied topic [15, 62, 72], it remains difficult to generate large
programs that remain faithful to real development patterns and styles.

To prevent overfitting, M A G M A’s forward-porting process allows targets to be updated as they
evolve in the real-world. Each forward-ported bug requires minimal code changes: the addition of
M A G M A’s instrumentation and the faulty code itself. This makes it relatively straightforward to
update targets, including introducing new bugs and new features. For example, two undergraduate
students without software security experience added over 60 bugs in three new targets over a single
semester. These measures ensure that M A G M A remains representative of real, complex targets
and suitable for fuzzer evaluation.

2.4.4 Leaky Oracles

Introducing oracles into the benchmark may leak information that interferes with a fuzzer’s
exploration capability, potentially leading to overfitting (as discussed in section 2.4.3). For example,
if oracles were implemented as if statements, fuzzers that maximize branch coverage could detect
the oracle’s branch and hence generate an input that satisifies the branch condition.

One possible solution to this leaky oracle problem is to produce both instrumented and
uninstrumented target binaries (with respect to M A G M A’s instrumentation, not any instrumentation
that the fuzzer injects). The fuzzer’s input would be fed into both binaries, but the fuzzer would
only collect the data it needs (e.g., coverage feedback) from the uninstrumented binary. The
instrumented binary would collect canary data and report it to the runtime monitor. This approach,
however, introduces other challenges associated with duplicating the execution trace between
two binaries (e.g., replicating the environment, maintaining synchronization between executions),
greatly complicating M A G M A’s implementation and introducing runtime overheads.

Instead, we use always-evaluate memory writes, whereby an injected bug oracle evaluates
a boolean expression representing the bug’s trigger condition. This typically involves a binary
comparison operator, which most compilers (e.g., gcc, clang) translate into a pair of cmp and set
instructions embedded into the execution path. The results of this evaluation are then shared with
the runtime monitor (section 2.3.4). This process is demonstrated in listings 2.2 and 2.3.
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1 void magma_log(int id, bool cond) {
2 extern struct magma_bug *bugs;
3 extern bool faulty; // init := false
4 bool mask = faulty ^ 1;
5 bugs[id].reached += 1 & mask;
6 bugs[id].triggered += cond & mask;
7 faulty = faulty | cond;
8 }

Listing 2.2 – M A G M A instrumentation.

1 void libfoo_bar() {
2 // uint32_t a, b, c;
3 magma_log(BUG_ID,
4 (a == 0) | (b == 0));
5 // possible divide-by-zero
6 uint32_t x = \
7 c / (a * b);
8 }

Listing 2.3 – Instrumented example.

Listing 2.2 shows M A G M A’s canary implementation. The always-evaluated memory accesses
are shown on lines 5 and 6. The faulty flag addresses the problem of weird states (section 2.4.2),
and disables future canaries after the first bug is encountered.

Listing 2.3 shows an example program instrumented with a canary. A call to magma_log is
inserted (line 3) prior to the execution of the faulty code (line 7). Compound trigger conditions—i.e.,
those including the logical and and or operators—often generate implicit branches at compile-time
(due to short-circuit compiler behavior). To avoid leaking information through coverage, we provide
custom x86-64 assembly blocks to evaluate these logical operators in a single basic block (without
short-circuit behavior). We revert to C’s bitwise operators (& and |)—which are more brittle and
susceptible to safety-agnostic compiler passes [149]—when the compilation target is not x86-64.

Although this approach may introduce memory access patterns that are detectable by taint
tracking and other data-flow analysis techniques, statistical tests can be used to infer whether the
fuzzer overfits to these access patterns. By repeating the fuzzing campaign with the uninstrumented
binary, we can verify if the results vary significantly.

2.4.5 Proofs of Vulnerability

In order to increase confidence in the injected bugs, a proof of vulnerability (PoV) input must be
supplied for every bug, verifying that the bug can be triggered. The process of manually crafting
PoVs, however, is arduous and requires domain-specific knowledge, both about the input format
and the target program, potentially bringing the bug-injection process to a grinding halt.

When available, we extract PoVs from public bug reports. When no PoV is available, we launch
multiple fuzzing campaigns against these targets in an attempt to trigger each injected bug. Inputs
that trigger a bug are saved as a PoV. Bugs which are not triggered, even after multiple campaigns,
are manually inspected to verify path reachability and satisfiability of trigger conditions.
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2.4.6 Unknown Bugs

Because M A G M A uses real-world programs, it is possible that bugs exist for which no ground-truth
is available (i.e., an oracle does not exist). A fuzzer might inadvertantly trigger these bugs and
(correctly) detect a fault. Due to the imperfections in automated deduplication techniques, these
crashes are not included in M A G M A’s metrics. Instead, such crashes are used to improve M A G M A

itself. The bug’s root cause can be determined by manually studying the execution trace, after
which the bug can be added to the benchmark.

2.4.7 Fuzzer Compatibility

Fuzzers are not limited to a specific execution engine under which they analyze and explore a
program. For example, some fuzzers (e.g., Driller [152], T-Fuzz [121]) leverage symbolic execution
(using an engine such as angr [146]) to explore the target. This can introduce (a) incompatibilities
with M A G M A’s instrumentation, and (b) inconsistencies in the runtime environment (depending
on how the symbolic execution engine models the environment).

However, the defining trait of most fuzzers, in contrast to other types of bug-finding tools,
is that they concretely execute the target on the host system. Unlike benchmarks such as the
CGC and BugBench—which aim to evaluate all bug-finding tools—M A G M A is unapologetically a
fuzzing benchmark. This includes whitebox fuzzers that use symbolic execution to guide input
generation, provided that the target is executed on the host system (SymCC [128] is one such
fuzzer that we include in our evaluation).

We therefore impose the following restriction on the fuzzers evaluated by M A G M A: the fuzzer
must execute the target in the context of an OS process, with unrestricted access to OS facilities
(e.g., system calls, libraries, file system). This allows M A G M A’s runtime monitor to extract canary
statistics using the operating system’s services at relatively low overhead/complexity.

2.5 Evaluation

2.5.1 Methodology

We evaluated several fuzzers in order to establish the versatility of our metrics and benchmark suite.
We chose a set of seven mutational fuzzers whose source code was available at the time of writing:
AFL [171], AFLFast [22], AFL++ [49], FairFuzz [90], MOpt-AFL [102], honggfuzz [153],
and SymCC-AFL [128]. These seven fuzzers were evaluated over ten identical 24 h and 7 d
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fuzzing campaigns for each fuzzer/target combination. This amounts to 200,000 CPU-hours of
fuzzing.

To ensure fairness, benchmark parameters were identical across all fuzzing campaigns. Each
fuzzer was bootstrapped with the same set of seed files (sourced from the original target codebase)
and configured with the same timeout and memory limits. M A G M A’s monitoring utility was
configured to poll canary information every five seconds, and fatal canaries mode (section 2.3) was
used to evaluate a fuzzer’s ability to reach and trigger bugs. All experiments were run on one of
three machines, each with an Intel® Xeon® Gold 5218 CPU and 64 GB of RAM, running Ubuntu
18.04 LTS 64-bit. The targets were compiled for x86-64.

AddressSanitizer (ASan) [143] was used to evaluate detected bugs. Crashing inputs (generated
by fatal canaries) were validated by replaying them through the ASan-instrumented target. Although
this evaluation method measures ASan’s fault-detection capabilities, it still highlights the bugs that
fuzzers can realistically detect when fuzzing without ground truth.

2.5.2 Time to Bug

We use the time required to find a bug as a measure of fuzzer performance. As discussed in
section 2.3.3, M A G M A records the time taken to both reach and trigger a bug, allowing us to
compare fuzzer performance across multiple dimensions. Fuzzing campaigns are typically limited to
a finite duration (we limit our campaigns to 24 h and 7 d, repeated ten times), so it is important
that the time-to-bug discovery is low.

The highly-stochastic nature of fuzzing means that the time-to-bug can vary wildly between
identical trials. To account for this variation, we repeat each trial ten times. Despite this repetition,
a fuzzer may still fail to find a bug within the alloted time, leading to missing measurements. We
therefore apply survival analysis to account for this missing data and high variation in bug discovery
times. Specifically, we adopt Wagner’s approach [157] and use the Kaplan-Meier estimator [77] to
model a bug’s survival function. This survival function describes the probability that a bug remains
undiscovered (i.e., “survives”) within a given time (here, 24 h and 7 d trials). A smaller survival
time indicates better fuzzer performance.

2.5.3 Experimental Results

Figures 2.3 and 2.4 and tables A.2 and A.3 present the results of our fuzzing campaigns.
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Figure 2.3 – The mean number of bugs (and standard deviation) found by each fuzzer across ten
24 h campaigns.

Bug Count and Statistical Significance

Figure 2.3 shows the mean number of bugs found per fuzzer (across ten 24 h campaigns). These
values are susceptible to outliers, limiting the conclusions that we can draw about fuzzer performance.
We therefore conducted a statistical significance analysis of the collected sample-set pairs to calculate
p-values using the Mann-Whitney U-test. P-values provide a measure of how different a pair of
sample sets are, and how significant these differences are. Because our results are collected from
independent populations (i.e., different fuzzers), we make no assumptions about their distributions.
Hence, we apply the Mann-Whitney U-test to measure statistical significance. Figure 2.4 shows
the results of this analysis.

The Mann-Whitney U-test shows that AFL, AFLFast, AFL++, and SymCC-AFL performed
similarly against most targets (signified by the large number of red and white cells in fig. 2.4),
despite some minor differences in mean bug counts (shown in fig. 2.3). Figure 2.4 shows that, in
most cases, the small fluctuations in mean bug counts are not significant, and the results are thus
not sufficiently conclusive. One oddity is the performance of AFL++ against libtiff. Figure 2.3
reveals that AFL++ scored the highest mean bug count compared to all other fuzzers, and fig. 2.4
shows that this difference is statistically significant.
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Figure 2.4 – Significance of evaluations of fuzzer pairs using p-values from the Mann-Whitney
U-Test. We use p < 0.05 as a threshold for significance. Values greater than 0.05 are shaded red.
Darker shading indicates a lower p-value, or higher statistical significance. White cells indicate that
the pair of sample sets are identical.

On the other hand, FairFuzz [90] displayed significant performance regression against
libxml2, openssl, and php. While the original evaluation of FairFuzz claims that it achieved
the highest coverage against xmllint, that improvement was not reflected in our results.

Finally, honggfuzz and MOpt-AFL performed significantly better than all other fuzzers in
three out of seven targets. Additionally, honggfuzz was the best fuzzer for libpng as well. We
attribute honggfuzz’s performance to its wrapping of memory-comparison functions, which provides
comparison progress information to the fuzzer (similar to Steelix [92]).

Time to Bug

In total, during the 24 h campaigns, 74 of the 118 M A G M A bugs (62 %) were reached. Addition-
ally, 43 of the 54 verified bugs (79 %)—i.e., those with PoVs—were triggered. Notably, no single
fuzzer triggered more than 37 bugs (68 % of the verified bugs). These results are presented in
table A.2. Here, bugs are sorted by the mean trigger time, which we use to approximate “difficulty”.
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The long bug discovery times (19 of the 43 triggered bugs—44 %—took on average more
than 20 h to trigger) suggests that the evaluated fuzzers still have a long way to go in improving
program exploration. However, while many of the M A G M A bugs are difficult to discover, table A.2
highlights a set of 17 “simple” bugs that all fuzzers find consistently within 24 h. These bugs
provide a baseline for detecting performance regression: if a new fuzzer fails to discover these bugs,
then its program exploration strategy should be revisited.

Most of the bugs in table A.2 were reached by all fuzzers. SymCC-AFL was the worst
performing fuzzer in this regard, failing to reach nine bugs (the highest amongst the seven evaluated
fuzzers). Interestingly, most bugs show a large difference between reach and trigger times. For
example, only the first three bugs listed in table A.2 were triggered when first reached. In contrast,
bugs such as MAE115 (from openssl) take 10 s to reach (by all fuzzers), but up to 20 h (on average)
to trigger. This difference between time-to-reach and time-to-trigger a bug provides another feature
for determining bug “difficulty”: while control flow may be trivially satisfied (as evidence by the
time to reach a bug), bugs such as MAE115 may require complex, stateful data-flow constraints.

The longer, 7 d campaigns in table A.3 reveal a peculiar result: while honggfuzz was faster to
trigger bugs during the 24 h campaigns, MOpt-AFL was faster to trigger 11 additional bugs after
24 h, making it the most successful fuzzer over the 7 d campaigns. Notably, honggfuzz failed to
trigger any of these 11 bugs. This highlights the importance of long fuzzing campaigns and the
utility of M A G M A’s survival time analysis for comparing fuzzer performance.

Figure 2.5 plots four survival functions for three M A G M A bugs (AAH018, JCH232, and AAH020).
These plots illustrate the probability of a bug surviving a 24 h fuzzing trial, and are generated by
applying the Kaplan-Meier estimator to the results of ten repeated fuzzing trials. Dotted lines
represent survival functions for reached bugs, while solid lines represent survival functions for
triggered bugs. Confidence intervals are shown as shaded regions. Figure 2.5a shows the time to
reach bug AAH018 (libtiff ). Notably, this bug was not triggered by any of the seven evaluated
fuzzers. Thus, the probability of bug AAH018 “surviving” 24 h (i.e., not being triggered) remains
at one. In comparison, fig. 2.5b shows the differences in the time taken to reach and trigger bug
JCH232 (sqlite3). Here, honggfuzz is the best performer, because the bug’s probability of survival
approaches zero the fastest. Notably, the variance is much higher compared to bug AAH018 (as
evident by the larger confidence intervals). Finally, figs. 2.5d and 2.5c compare the probability of
survival for bug AAH020 (libtiff ) across two driver programs: tiffcp and read_rgba_fuzzer.
The former is a general-purpose application, while the latter is a driver specifically designed as a
fuzzer harness. While the bug is reached relatively quickly by both drivers, the fuzzer harness is
clearly superior at triggering the bug, as it is faster across all fuzzers. This result supports our
claim in section 2.3.1 that domain experts are most suitable for selecting and developing fuzzing
drivers.

Again, it is clear that honggfuzz outperforms all other fuzzers (in both reaching and triggering
bugs), finding 11 additional bugs not triggered by other fuzzers. In addition to its finer-grained
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(a) Bug AAH018 (libtiff with read_rgba_fuzzer).
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(d) Bug AAH020 (libtiff with read_rgba_fuzzer).

Figure 2.5 – Survival functions for a subset of M A G M A bugs. The y-axis is the survival probability
for the given bug. Dotted lines represent survival functions for reached bugs, while solid lines
represent survival functions for triggered bugs. Confidence intervals are shown as shaded regions.

instrumentation, honggfuzz natively supports persistent fuzzing. Our experiments show that
honggfuzz’s execution rate was at least three times higher than that of AFL-based fuzzers using
persistent drivers. This undoubtedly contributes to honggfuzz’s strong performance.

Achilles’ Heel of Mutational Fuzzing

AAH001 (CVE-2018-13785, shown in listing 2.4), is a divide-by-zero bug in libpng. It is triggered
when the input is a non-interlaced 8-bit RGB image with a width of 0x55555555. This “magic
value” is not encoded anywhere in the target, and is easily calculated by solving the constraints
for row_factor == 0. However, mutational fuzzers struggle to discover this bug type. This is
because mutational fuzzers sample from an extremely large input space, making them unlikely
to pick the exact byte sequence required to trigger the bug (here, 0x55555555). Notably, only
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honggfuzz, AFL, and SymCC-AFL were able to trigger this bug. SymCC-AFL was the fastest
to do so, likely due to its constraint-solving capabilities.

Magic Value Identification

AAH007 is a dangling pointer bug in libpng, and illustrates how some fuzzer features improve
bug-finding ability. To trigger this bug, it is sufficient for a fuzzer to provide a valid input with an
eXIF chunk (which remains unmarked for release upon object destruction, leading to a dangling
pointer). Unlike the AFL-based fuzzers, honggfuzz is able to consistently trigger this bug relatively
early in each campaign. We posit that this is due to honggfuzz replacing the strcmp function with
an instrumented wrapper that incrementally satisfies string magic-value checks. SymCC-AFL also
consistently triggers this bug, demonstrating how whitebox fuzzers can trivially solve constraints
based on magic values.

Semantic Bug Detection

AAH003 (CVE-2015-8472) is a data inconsistency in libpng’s API, where two references to the
same piece of information (color-map size) can yield different values. Such a semantic bug does
not produce observable behavior that violates a known security policy, and it cannot be detected
by state-of-the-art sanitizers without a specification of expected behavior.

Semantic bugs are not always benign. Privilege escalation and command injection are two of
the most security-critical logic bugs that are still found in modern systems, but they remain difficult
to detect with standard sanitization techniques. This observation highlights the shortcomings of
current fault detection mechanisms and the need for more fault-oriented bug-finding techniques
(e.g., NEZHA [122]).

1 void png_check_chunk_length(png_ptr, length) {
2 size_t row_factor = png_ptr->width // uint32_t
3 * png_ptr->channels // uint32_t
4 * (png_ptr->bit_depth > 8? 2: 1)
5 + 1
6 + (png_ptr->interlaced? 6: 0);
7

8 if (png_ptr->height > UINT_32_MAX/row_factor) {
9 idat_limit = UINT_31_MAX;

10 }
11 }

Listing 2.4 – Divide-by-zero bug in libpng. Input undergoes non-trivial transformations to trigger
the bug.
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Table 2.3 – Overheads introduced by L AVA - M compared to coreutils-8.24. These overheads
denote increases in LLVM IR instruction counts, object file sizes, and average runtimes when
processing seeds generated from a 24 h fuzzing campaign. The total number of unique bugs
triggered across all 10 trials/fuzzer is also shown, with the best performing fuzzer highlighted in
green.

Target Bugs Overheads (%) Total bugs triggered (#)
LLVM IR Size Runtime afl aflfast afl++ moptafl fairfuzz honggfuzz symccafl

base64 44 107.9 57.2 9.7 1 0 48 0 3 33 0
md5sum 57 60.2 46.1 9.5 0 1 40 1 1 29 0
uniq 28 63.6 27.8 11.6 3 0 29 1 0 13 3
who 2136 1786.7 2409.1 42.9 1 1 819 1 1 750 1

Comparison to L AVA - M

In addition to our M A G M A evaluation, we also evaluate the same seven fuzzers against L AVA - M,
measuring (a) the overheads introduced by L AVA - M’s bug oracles, and (b) the total number of
bugs found by each fuzzer (across a 24 h campaign, repeated 10 times per fuzzer). These results—
presented in table 2.3—show that L AVA - M’s most iconic target, who, accounts for 94.3 % of
the benchmark’s bugs. This high bug count reduces the amount of functional code (compared to
benchmark instrumentation) in the who binary to 5.3 %, impeding a fuzzer’s exploration capabilities.
Notably, we found that the evaluated fuzzers spent (on average) 42.9 % of their time executing
oracle code in who (this percentage is based on the final state of the fuzzing queue, and may not
represent the runtime overhead of all code paths). Finally, the bug counts found by each fuzzer
show a clear bias towards fuzzers with magic-value detection capabilities (due to L AVA - M’s single,
simple bug type, per section 2.1.2).

2.5.4 Discussion

Ground Truth and Confidence

Ground truth enables us to determine a crash’s root cause. Unlike many existing benchmarks,
M A G M A provides straightforward access to ground truth. While ground truth is available for all 118
bugs, only 45 % of these bugs have a PoV that demonstrate triggerability. Importantly, only bugs
with PoVs can be used to confidently measure a fuzzer’s performance. Regardless, bugs without
a PoV remain useful: any fuzzer evaluated against M A G M A can produce a PoV, increasing the
benchmark’s utility. Widespread adoption of M A G M A will increase the number of bugs with PoVs.
Notably, table A.3 shows that running the benchmark for longer indeed yields more PoVs for
previously-untriggered bugs. We leave it as an open challenge to generate PoVs for these bugs.
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Beyond Crashes

While M A G M A’s instrumentation does not collect information about detected bugs (detection is a
characteristic of the fuzzer, not the bug itself), it does enable the evaluation of this metric through
a post-processing step (supported by fatal canaries).

In particular, bugs should not be restricted to crash-triggering faults. For example, some
bugs result in resource starvation (e.g., unbounded loops or mallocs), privilege escalation, or
undesirable outputs. Importantly, fuzzer developers recognize the need for additional bug-detection
mechanisms: AFL has a hang timeout, and SlowFuzz searches for inputs that trigger worst-case
behavior. Excluding non-crashing bugs from an evaluation leads to an under-approximation of real
bugs. Their inclusion, however, enables better bug detection tools. Evaluating fuzzers based on
bugs reached, triggered, and detected allows us to classify fuzzers and compare different approaches
along multiple dimensions (e.g., bugs reached allows for an evaluation of path exploration, while
bugs triggered and detected allows for an evaluation of a fuzzer’s constraint generation/solving
capabilities). It also allows us to identify which bug classes continue to evade state-of-the-art
sanitization techniques (and to what degree).

M A G M A as a Lasting Benchmark

M A G M A leverages software with a long history of security bugs to build an extensible framework
with ground truth knowledge. Like most benchmarks, the widespread adoption of M A G M A defines
its utility. Benchmarks provide a common basis through which systems are evaluated and compared.
For instance, the community continues to use L AVA - M to evaluate and compare fuzzers, despite
the fact that most of its bugs have been found, and that these bugs are of a single, synthetic type.
M A G M A aims to provide an evaluation platform that incorporates realistic bugs in real software.

2.6 M A G M A Summary

M A G M A is an open ground-truth fuzzing benchmark that enables accurate and consistent fuzzer
evaluation and performance comparison. We designed and implemented M A G M A to provide
researchers with a benchmark containing real targets with real bugs. We achieve this by forward-
porting 118 bugs across seven diverse targets. However, this is only the beginning. M A G M A’s
simple design and implementation allows it to be easily improved, updated, and extended, making
it ideal for open-source collaborative development and contribution. Increased adoption will only
strengthen M A G M A’s value, and thus we encourage fuzzer developers to incorporate their fuzzers
into M A G M A.
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We evaluated M A G M A against seven popular open-source mutation-based fuzzers (AFL,
AFLFast, AFL++, FairFuzz, MOpt-AFL, honggfuzz, and SymCC-AFL). Our evalua-
tion shows that ground truth enables systematic comparison of fuzzer performance. Our evaluation
provides tangible insight into fuzzer performance, why crash counts are often misleading, and how
randomness affects fuzzer performance. It also brought to light the shortcomings of some existing
fault detection methods used by fuzzers.

Despite best practices, evaluating fuzz testing remains challenging. With the adoption of ground-
truth benchmarks like M A G M A, fuzzer evaluation will become reproducible, allowing researchers
to showcase the true contributions of new fuzzing approaches.

39





Chapter 3

I G O R: Crash De-duplication Through
Root-Cause Clustering

Chaos is order yet undeciphered.

José Saramago

This chapter delves into the challenges of accurately identifying and grouping software bugs
when dealing with fuzzer-generated bug reports. It scrutinizes the limitations of current sanitizers
and automatic crash de-duplication methods, which often overwhelm developers with redundant or
misleading information. Through I G O R, we introduce a novel technique for crash de-duplication
based on execution trace clustering, aimed at mitigating bug-count inflation and aiding developers
in the triage process.

Hypothesis 2

To trigger a bug, it is necessary to execute its code. Bug-triggering inputs can thus be
distinguished by the code they execute.

The contents of this chapter are adapted from Jiang et al. [75].
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The main focus of software-testing research is finding bugs. Maximizing bug discovery is a key
subject of interest across the development stack, from the physical layer [28, 120, 130, 163] to the
application layer [12, 29, 98, 133, 153, 171]. The assumption “we can always afford to fix bugs”
powers the drive for bug-finding techniques that yield large numbers of crashes in short time frames,
the most prominent of which is fuzz testing. Big players in the software industry also motivate this
movement, providing open-access reporting platforms [7, 53, 111] and bug bounties for their large
user-bases. With little incentive to triage crashes, users and software testers frequently submit raw
findings/crash-dumps, leaving it to software maintainers to bear the weight of distilling crashes
and fixing bugs. With more crashes reported, more time is spent on crash triage and pruning
duplicate reports, leaving maintainers with less time for fixing bugs and improving software quality.
Large fuzzing farms (e.g., ClusterFuzz [56], OSS-Fuzz [142])—which run around the clock and
automatically submit crash reports—exacerbate this problem. For example, as of late April 2021,
there were 979 open Linux kernel bugs, with the earliest submitted in November 2017 (based on
syzbot statistics [59]).

Solutions to this problem range from collaborative, where maintainers rely on the community to
provide actionable analysis in their reports, to systematic, where heuristics are used over large crash
dumps to filter out redundancies and duplicates [3, 34, 36, 80, 167]. These heuristics typically rely
on dynamic program behaviors to identify root causes and answer the question “given a crashing
test case, what is the most likely cause for the crash?” For example, Aurora [19] presents a
root cause identification method based on delta debugging [174]: both faulty and benign test cases
are executed and a disjunction in program behaviors marks the bug. In contrast, crash bucketing
(cf. grouping) shifts the focus from pinpointing the cause of a crash to grouping crashes based
on their root cause. Crash bucketing answer the question “given a number of crashing test cases,
which crashes trigger the same bug?” Crash bucketing techniques are widely used in practice [83]
and rely on crash sites, coverage profiles, or stack hashes, to cluster crashes.

Crash Sites All bugs crash at a particular program location. These crash sites (e.g., the address
stored in the instruction pointer at the time of crash) serve as a coarse-grain bug identifier.
Unfortunately, crash sites are imprecise and lead to bug misclassification (e.g., for use-after-free
bugs, objects may be arbitrarily reused, triggering a broad set of “unique” crashes). Crash sites
both under- and over-estimate bug counts and are not used in practice.

Coverage Profiles Coverage-guided fuzzers commonly use their coverage data to uniquely identify
crashes. For example, AFL [171] considers crashes that exercise new control-flow edges or omit
common edges as “unique”. The fine-grained nature of edge coverage makes it sensitive to small
changes in control-flow and causes crash count inflation; slight modifications in the path to a bug
result in a new crash. Coverage profiles overestimate bug counts by 2–3 orders of magnitude [83].
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Stack Hashes Stack hashes provide function-sensitive labels for crashes and are commonly used
by fuzzers (e.g., honggfuzz [153]) and fuzzing farms (e.g., ClusterFuzz [56]) alike. Stack hashing
accumulates (the last N) function calls (on the stack) leading to the crash site, hashing these traces
to form unique bug identifiers. Compared to coverage profiling, stack hashing is more coarse-grained
and results in fewer crash buckets. However, stack hashes are prone to misclassification, both
over- and under-approximating the number of bugs (the former is due to different paths to the
crash site [19, 37], while the latter is due to bugs sharing the same call sequence). Stack hashes
overestimate bug counts by 1–2 orders of magnitude [83].

Inaccurate crash grouping techniques (such as those previously described) waste precious
developer time. In particular, bug identifiers (e.g., coverage profiles, stack hashes) are susceptible
to fluctuations in program behavior. Coverage-guided fuzzers—which typically aim to maximize
code coverage—amplify such fluctuations, yielding many crashing test cases that exercise “noisy”
code extraneous to the underlying root cause. This noise impedes control-flow-based de-duplication
techniques, inflating bug counts. Moreover, accurate bug classification relies on identifying a bug’s
characteristic trigger. Identifying this trigger in a partial execution trace is made difficult if (a) the
trigger is missing from the execution trace (e.g., if the trace is too coarse-grained), and/or (b) the
execution trace contains extraneous elements (e.g., if the trace is too fine-grained). This calls for a
new approach to crash grouping; one that removes noise from the execution trace—to accurately
group paths—and preserves critical control-flow information—to accurately isolate different root
causes.

Whereas a coverage-maximizing strategy is ideal for finding bugs through fuzzing, we propose
that the counterpart—coverage-minimizing fuzzing—is key to minimizing an execution trace and
enabling effective crash grouping. We make crash labels more precise by trimming unnecessary
execution trace elements (i.e., noise), leading to more concise de-duplication. We also address the
shortcomings of stack hashes (which operate at function-call granularity) by using control-flow
graphs (CFG) for a more complete view of a crash’s execution trace. Using CFGs preserves critical
control-flow information and allows for aggressive pruning of redundant (executed) code, leading
to more accurate crash grouping.

We present I G O R1, a dual-phase crash de-duplication technique that leverages a coverage-
reduction fuzzer and a CFG similarity metric to cluster crashes by their critical behaviors. By
simplifying each crash’s execution trace, we obtain test cases that exercise the minimized behavior
necessary for triggering a bug. Then, we perform a graph similarity comparison over the CFGs of
all minimized execution traces to group them into closely-packed clusters, each mapping back to a
unique root cause.

1 In Terry Pratchett’s Ankh-Morpork, the Igors are a group of humble professional servants (often to mad scientists)
that are proficient transplant surgeons.
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We answer the following research questions:

RQ1 What constitutes ideal crash grouping and why is it not achievable in practice?
RQ2 How strong is the effect of dense execution traces on crash-count inflation, and can sparsity

promote precision?
RQ3 What metric is best suited for capturing and isolating root causes?

We make the following contributions:

• a coverage-reduction fuzzer which applies a minimizing fitness function over the collected
edge coverage to shrink test cases;

• a new metric for crash grouping, based on control flow graph similarity using the Weisfeiler-
Lehman Subtree Kernel algorithm [85]; and

• a ground-truth benchmark for evaluating crash grouping techniques, containing 52 CVEs2

and 254,000 crashing test cases from 14 real world programs (generated over 58.7 CPU-years
of fuzzing).

3.1 Background

Crash bucketing groups test cases to isolate a crash’s root cause. Accurate crash bucketing requires:
(i) grouping together crashes with the same root cause (minimizing type I errors); (ii) creating
new groups for crashes with different root causes (minimizing type II errors); and (iii) capturing
accurate bug context. Capturing accurate bug context requires complete modeling and analysis of
program behavior. However, existing modeling/analysis techniques (e.g., symbolic execution) do
not scale [16]. Instead, practical crash bucketing relies on error-prone heuristics. Reducing these
errors requires (a) behavioral metrics that correlate with bug context, and (b) execution trace
trimming to minimize noise.

3.1.1 Behavioral Metrics

Bug context is the critical set of program behaviors accumulated and leading up to the crash
site. Capturing bug context is key to accurate crash grouping. However, approximating program
behavior is a three-way trade-off between sensitivity, accuracy, and scalability. On the upper end
of the sensitivity spectrum, full path coverage (control and data flow) is the most precise: each
test case exercises a unique path. This metric thus has a minimal type II error rate, achieving high
accuracy in distinguishing different bugs. However, its precision also results in fine-grained grouping
2 In this chapter, when two programs share a CVE, we count it as two CVEs
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of crashes, and thus boasting a high type I error rate and a low accuracy in identifying similar
root causes. Collecting precise path coverage is also infeasible in practice due to the large state
space most programs have, and the scalability challenges that arise from this. On the other end of
the spectrum, in singling out what program behavior led to a crash, Boolean function coverage is
imprecise: it only captures the set of functions possibly involved in triggering a crash, and does so
without conserving the order of code execution. Test cases resulting from the same bug or from
different bugs are likely to display identical coverage, thus reducing type I error rates but raising
those of type II. Nevertheless, Boolean function coverage requires minimal resources to measure
and collect, improving scalability.

Research Context

According to Dhaliwal et al. [39], 80 % of the root causes of a bug are located on the call stack at
the time of the crash. Several research projects have taken this notion and explored different stack
hashing techniques [24, 27, 36, 81, 86, 136, 138]. Stack hashing is fast and easy to deploy, and is
suitable for large-scale campaigns to batch-process a large number of test cases, but is prone to
both type I and II errors and lacks high-quality classification.

Execution traces can also be used to classify test cases. This approach typically uses binary
translation [100] or interposition [115]. Several taint-based approaches have also looked into
classifying test cases as a form of crash analysis. For example, CrashFilter [73] automatically
classifies a failing test case based on static taint analysis. RETracer[35] recovers early program
state from a memory dump based on a reverse taint analysis, after which an analyst manually
groups test cases. REPT [34] extends RETracer and achieves a more accurate classification result
by reconstructing the data flow. Finally, POMP [167] classifies crashes from the perspective of the
different contributions of data flow to program crashes.

These taint-based methods group crashes from the perspective of data flow. They are more
precise than stack hashing. However, taint-based methods often do not scale to complex programs
as they need to record a detailed program trace, which quickly exceeds several 100 GiBs for even
simple programs, and require complex symbolic reasoning over paths that use tainted input data to
make control-flow decisions. Taint-based methods can be effective if the bug only depends on data
flow and not on control flow decisions based on tainted input data [29, 133, 162].

Challenges

Due to the complexity of control flow paths in programs, methods based on call stacks or crash
sites cannot distinguish between different and similar bugs, resulting in a high mis-identification
rate [83]. In practice, finding the balance between sensitivity, accuracy, and scalability requires
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identifying which behavioral metric most closely correlates to the root cause. We conclude from
our results that minimized execution traces give the best insight into bug triggers, making them
amenable for similarity matching.

Dubious crashes

Example 3.1

1 char *buggy_concat(char *dst, const char *src) {
2 size_t dst_len = strlen(dst), src_len = strlen(src);
3 // Common bug: No room for null terminator
4 char *new_dst = (char *) malloc(dst_len + src_len);
5 if (!new_dst) return NULL;
6 strcpy(new_dst, dst); // Crash site 1: when src_len == 0
7 strcpy(new_dst + dst_len, src); // Crash site 2: when src_len > 0
8 return new_dst;
9 }

Listing 3.1 – Two crash sites observed for the same bug.

Listing 3.1 illustrates how a single bug can manifest as a crash in multiple locations, breaking
location- and call-stack- based grouping tools. new_dst is allocated on line 4 without
accounting for the C-string null terminator. If src is an empty string, the allocated space
can fit dst, but strcpy appends the null terminator, causing a crash due to an out-of-bounds
write at line 6. Otherwise, the space allocated for src in new_dst would accommodate for the
overflow in the first copy, but a similar crash would be observed when copying src on line 7.

1 char *buggy_strdup(const char *src) {
2 size_t len = strlen(src);
3 char *dst = (char *) malloc(len + 1); // Bug 1: no check for NULL
4 for (size_t i = 0; i <= len + 1; i++) // Bug 2: off-by-one OOB access
5 dst[i] = src[i]; // Common crash site
6 return dst;
7 }

Listing 3.2 – Two bugs sharing the same crash site.

In contrast, listing 3.2 shows how different vulnerabilities can crash at the same location. In
the first bug on line 3, the function fails to verify that the allocation succeeded, allowing for
dst to be a nullptr. In the second bug on line 4, the loop bounds are off by one, copying
one more byte past the null terminator on the heap. Both bugs manifest when a write access
to dst is made at line 5. In other words, it is impossible to distinguish between the two bugs
solely based on the crash location.
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3.1.2 Test Case Reduction

Imperfections in behavioral metrics can be amplified by extraneous data points in the recorded
execution trace. While reducing the sensitivity of the metric can improve its resilience against noisy
measurements, this only addresses a symptom of the noise but not its source: entropy. In their
study on fault localization, Christi et al. [31] showed that the accuracy of localization benefits
greatly from reduced test cases. Test case reduction refers to continuously reducing the size of the
crashing input, under the premise that the same crash is always triggered. In practice, streamlined
test cases improve the software development process; e.g., in vulnerability mining, a minimized
test case improves mutation efficiency and guides the process towards interesting behaviors; and in
crash analysis, it eliminates extraneous bytes to simplify control flow leading up to the crash.

Research Context

The two main methods used in test case reduction are delta debugging [174] and taint analysis [97].

Delta debugging is a popular approach that automatically minimizes test cases by using two
algorithms: simplification and isolation [108]. The former continuously shrinks the size of the
original input file until it cannot find a smaller file that crashes the program, and the latter searches
for a passing input, which will become a failing input again after satisfying additional constraints.
The most popular test case simplification tool for fuzzing campaigns, afl-tmin [171], is based on
this principle.

Taint analysis is a method that marks accessed registers and memory as tainted when the
program crashes, and then tracks the source of the taint to mark all crash-related components in
the input, thereby reducing the crashing test case to the relevant bytes. In general any forward
or backward taint analysis can be used [32], but in practice, the length of the input or trace is
often prohibitive. Long traces and complex inputs result in over-tainting or under-tainting along
with difficulties of keeping control of the control-flow dependencies given the synthetic input. In
practice, the application of taint analysis to crash grouping is limited.

Challenges

Aurora [19] is a root-cause identification method that leverages delta debugging to distinguish
between critical and benign execution traces resulting from a crash. The process begins with a crash
diversification phase where the faulty input is mutated to generate both crashing and non-crashing
test cases. However, diversification carries the risk of introducing new bugs that are unrelated to
the root cause under study. This is because Aurora follows an exploratory fuzzing process (i.e.,
increasing coverage) to generate new inputs.
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Test case minimization may also introduce new bugs unrelated to the original bug. This is
combated with a stricter fitness function: only a subset of the original trace must be executed,
heavily limiting exploration. While this does not provide a guarantee against the introduction of
new bugs, our evaluation shows that the error rate is negligible in practice. In comparison to AFL’s
crash mode [171]—which shares the fuzzer’s fitness function—I G O R introduces 90 % fewer false
positives.

The problem of minimizing crashes is also non-convex. Typically, the fitness function for test
case reduction is the size of the input (in bytes). We instead propose minimizing the size of
program’s execution trace, thus reducing the execution complexity, rather than the input’s size.
Pruning the execution trace of a crashing test case can yield more concise inputs that exercise the
same desired program behavior. A bug is triggered by a subset of all possible execution traces, and
through a minimization function over the input space, a critical path to the root cause can be
found and used to triage the crash. However, program behavior is complex, and a hill-climbing
minimization process is likely to converge to a local minimum. Intuitively, traces that converge to
different local minima may suggest different root causes, further complicating analysis. However,
we found that combining this process with a clustering procedure led to minor variations in traces
being overlooked in favor of the global trace overlap.

3.1.3 Our Approach: I G O R

While existing methods provide an initial step at reducing the large number of crashing test cases
requiring triage, the type I and type II errors that these methods introduce result in uncertainty
and may even increase developer effort and/or cause missed bugs. We address this imprecision by
introducing a dual-phase approach for crash analysis. This approach builds on a key observation:
each bug has a core behavior that must be executed to trigger the bug. A technique that extracts
and matches this behavior can distil the large amount of crashes into a precise set of unique
bugs. While analyzing large numbers of crashing test cases (together with their ground-truth), we
observed that test cases for the same bug partially overlap in essential phases of their execution
trace; the bug trigger. Our technique, I G O R, extracts an approximation of bug triggers and then
leverages topological graph matching to group similar test cases into bug classes. This dual-phase
approach for efficient and effective crash grouping through root-cause analysis thus combines and
extends two important areas of research: test case reduction—minimizing and simplifying test
cases—and crash grouping—determining if two inputs trigger the same or different bugs. Broadly
speaking, I G O R leverages test case reduction to simplify the execution traces observed by the test
cases, so that we can group crashes based on similarities in their coverage (i.e., we improve the
latter by leveraging the former).

48



3.2. I G O R Design

IgorFuzz

Recording Execution 
Traces

Control Flow Graph 
Constructor

Similarity Calculator

Trace Generator

Similarity MatrixConcise Traces

Graph Analyzer

Crashes

Clustered Crashes

Iterate #Clusters

Spectral Clustering

Silhouette Score

Intermediate
Clustering Result

Cluster Builder

Minimized Pocs

Labeled 
Control Flow Graph

Data Preprocessing

Figure 3.1 – I G O R overview.

3.2 I G O R Design

Figure 3.1 depicts the main components and workflow of I G O R. Starting with a set of crashing
test cases, the preprocessing stage reduces unnecessary analysis costs by leveraging sampling and
afl-tmin. Following this, the trace generator (I G O R F U Z Z) records and minimizes the execution
traces of each preprocessed test case. The graph analyzer then constructs control-flow graphs from
the minimized traces and extracts graph similarity metrics that describe each test case. Finally, the
cluster builder classifies the test cases into separate groups, each identifying a unique root cause,
and leverages a validation loop to find an optimal clustering configuration.

3.2.1 Data Preprocessing

I G O R’s key objective is to distil crashing, proof-of-concept test cases (PoC) into unique bugs.
To be practical, I G O R must scale with increasing numbers of PoCs. However, minimizing and
grouping several hundred thousands PoCs is time-consuming. Therefore, we employ a two-stage
preprocessing phase to reduce processing cost while maintaining accuracy. First, we sample the
PoC corpus to reduce the number of analyzed test cases. Second, we leverage afl-tmin as an
initial test-case size minimization tool, allowing I G O R F U Z Z to converge to a solution faster.

Sampling Although stack hashing is generally imprecise, it is rare that two different root causes
overlap in the entire call stack. In other words, one bug may result in many diverse stack hashes
but one stack hash generally only maps to one bug. In our dataset, only six (of 71) bug pairs in
three programs contain shared stack hashes. We leverage this observation to reduce the PoC corpus
by grouping PoCs based on their full-length call stack hashes. If there are many PoCs mapping to
the same unique stack hash, we only process the 50 most diverse PoCs. This allows us to remove
highly-similar PoCs that map to the same bug, lowering the cost of processing without impacting
precision.
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Minimization Minimized test cases benefit fuzzing in two ways: (i) the reduced size of the input
leads to faster parsing and processing by the target, yielding higher fuzzing throughput; and (ii) by
removing extraneous bytes from the input, the fuzzer’s mutations are more likely to modify bytes
critical to the behavior of the program. The case of minimum-coverage fuzzing is no different and
can thus be improved by preprocessing test cases to remove extraneous bytes. We achieve this with
the aid of afl-tmin [171], a lightweight test case reduction tool included with AFL. Although
afl-tmin focuses exclusively on reducing the length of the input (i.e., this is the sole metric it
optimized for), it indirectly shortens the length of the execution trace, further assisting I G O R F U Z Z

in finding a minimal PoC. Afl-tmin also allows us to merge PoCs that reduce to identical byte
sequences. Using afl-tmin in the second preprocessing stage increases I G O R F U Z Z’s effectiveness
in exploring shorter execution traces. As discussed in section 3.1.2, afl-tmin may introduce new
bugs. However, uncovering a new bug during minimization with afl-tmin is rare: in our evaluation,
only one out of the 5,531 PoCs triggered a different bug after minimization through afl-tmin.
Our evaluation shows that the other nine PoCs (for the same bug) remain correct, allowing I G O R

to correctly cluster the nine PoCs to that root cause. While we lost one PoC (out of 5,531) during
minimization, enough PoCs remained to correctly identify all unique bugs. This effectively means
that we did not introduce any false negatives in our evaluation through afl-tmin.

3.2.2 I G O R F U Z Z: Minimum-Coverage Fuzzing

Coverage-guided fuzzing typically incorporates feedback to maximize code coverage and to trigger
crashes. The highly-stochastic nature of fuzzers means that they often find many diverse test cases
that trigger the same bug. This results in extraneous execution traces that amplify the imprecision
of the underlying metric and hampers clustering.

The intuition behind minimum-coverage fuzzing is that a bug only manifests when the faulty
code is executed. Minimizing the code executed before reaching faulty code reduces the amount of
state that the developer has to analyze during debugging. Given a mechanism to measure what
code was executed when a bug is triggered, and a mechanism to sort the measurements across
different samples, it is possible to find the minimal code trace required to trigger the bug, which
we identify as the shortest bug-triggering path (with the absolute minimum code trace being
the empty set). This observation accounts for the possibility that a bug can be triggered through
different paths. Through fuzzing, we perform a search over the state space in the vicinity of the
different bug paths, with the objective of finding the shortest (simplest) execution trace. Since
fuzzing is a dynamic technique, it is inevitable that multiple suboptimal solutions will be found;
however, our evaluation shows that the different solutions display features that are similar enough
to be grouped under the same root cause.

Ideally, the single shortest path to a bug is its best identifier. An oracle that determines the
shortest path would solve the crash grouping problem, as all PoCs for the same bug would reduce to
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the same path. Reducing an arbitrary PoC to the minimal path is challenging, because it requires
determining the shortest path that still satisfies all of the bug context’s constraints. In practice,
this results in long execution traces that exceed the capabilities of today’s solvers. For example,
the shortest paths in our evaluation contained over 91,000 basic blocks (in LibPNG), while the
shortest execution trace contained up to 22,563,000 basic blocks (in Poppler).

Existing test case reduction techniques use an objective function that favors a smaller input
size. This is an artifact of bug reporting guidelines, which typically require a minimum working
example as a PoC. However, reducing the input size does not always translate to reduced trace
complexity. To highlight this effect, we conduct a study on afl-tmin using five targets and ten
bugs. While test cases generally reduce in size, this does not necessarily guarantee a reduction
in the length of the execution trace. For example, afl-tmin reduces OpenSSL’s x509 input size
by 41.10 %, while only pruning 4.83 % of CFG edges. Moreover, although afl-tmin reduces the
input size of pdfimages by 82.45 % (on average), 15.18 % of the test cases execute more edges
after reduction by afl-tmin. This demonstrates that a smaller input size does not guarantee a
simpler execution trace. See table B.4 and section B.3 for our full results.

Similar to vulnerability mining, fuzzing provides an opportunity for an efficient and scalable
process that finds simpler inputs which exercise similar behavior. To reduce the complexity of the
execution trace, we propose a new type of fuzzer with subtly different goals than existing fuzzers.
The fitness function in our fuzzer, I G O R F U Z Z, favors a simpler execution trace, by exercising
fewer edges while still crashing the target at the same location.

The goal of reduction is to find simpler test cases that trigger the same bug. Multiple bugs can
share the same crash site, and minimized test cases present the risk of triggering different bugs at
the same location. However, in practice, the probability of simplified test cases triggering different
bugs is insignificant. It is important to distinguish the use of crash sites between grouping and
simplifying crashes. When grouping based on crash sites, inputs are diverse and presumably exercise
different program behaviors. Due to this noise, misclassified bugs will be common. However, when
simplifying a test case based on its crash site, we reduce the complexity of the execution trace
while exercising similar program behavior. This minimizes the likelihood of the new derived test
case triggering a different bug.

State-of-the-art fuzzers aim for maximal coverage to aid bug discovery. Existing work in
maximizing coverage can be grouped into three areas: seed retention strategies [51, 133, 159,
165], seed selection strategies [22, 29, 41], and seed scheduling strategies [21, 22, 168]. We
guide the design of I G O R F U Z Z based on insights from these three areas and modify a generic
feedback-guided greybox fuzzer such as the one presented by Böhme et al. [22]. Algorithm 1 outlines
our coverage-minimizing algorithm and fig. 3.2 gives an example of I G O R F U Z Z’s effectiveness.
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Algorithm 1 I G O R F U Z Z algorithm
1: procedure FuzzTest(Prog,Seeds)
2: Queue ← Seeds
3: while true do
4: for input in Queue do
5: if ¬isWorthFuzzing(input) then
6: continue
7: mutated ← Mutate(input)
8: if ¬isInteresting(mutated) then
9: continue

10: mutated.score ← calcScore(Prog,mutated)
11: addToQueue(mutated)
12: procedure isFavorite(input)
13: return trimsDisjunctEdges(input)
14: procedure isWorthFuzzing(Prog, input)
15: return isFavorite(input) or isLarger(input.score)
16: procedure isInteresting(Prog, input)
17: return isCrashing(input) and

(hasSmallerBitmapSize(input) or
isEdgePruned(input) or
hasSmallerHitCountSum(input))

18: procedure calcScore(Prog, input)
19: score ← input.score
20: if executesFaster(Prog, input) then
21: score ← calcScoreFast(input)
22: if hitsFewerEdges() then
23: score ← calcScoreSimple(input)
24: return score

Seed Retention Principles

We modify the isInteresting method so that it only retains crashing test cases. We also
introduce two complementary rules for seed retention:

Rule 1 The seed does not exercise a common edge (i.e., at least one edge is no longer executed,
although overall coverage may increase).

Rule 2 The seed exercises some edges with fewer hit counts (i.e., at least one edge is executed
fewer times and no edge is executed more times).

Through a hill-climbing optimization process over the coverage space, I G O R F U Z Z incrementally
approaches a minimal execution trace. To reduce the risk of converging at local minima and to
promote diversification, I G O R F U Z Z retains seeds that meet any of the two rules. Note that it does
not suffice to measure if the new input executes strictly fewer edges than the original input, as
I G O R F U Z Z may get stuck at a local minimum from which it cannot easily escape. Rule 1 therefore
prioritizes a seed that prunes common edges, but permits it to execute more edges if at least one
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Figure 3.2 – Function-call graph of tiffcp. This figure shows the nodes and edges removed
(highlighted in red) or added (highlighted in green) by I G O R F U Z Z.

previous edge is no longer executed. Rule 2 minimizes hit counts to simplify loops and recursive
function calls. Together these rules drive coverage downwards, one removing edges (but potentially
adding new ones), the other reducing edge counts. Note that at any point in time, multiple seeds
are being scheduled for mutation depending on the seed selection principles below.

Seed Selection Principles

To achieve a higher efficiency at exploring the coverage space of a target, AFL [171] marks the
seeds which exercise disjunct sets of edges as favorites. By finding a minimal set over the sets of
edges executed by each seed (e.g., as performed by Karp [78]), AFL determines the seeds which are
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more likely to increase coverage in different directions of the code and more favourably mutates
those seeds. Previous research on seed selection [66] also validates this strategy: the fewer and
more distinct the seeds are, the better the fuzzer is able to maximize coverage.

In contrast to AFL’s approach, I G O R F U Z Z attempts to minimize coverage by favoring seeds
which trim disjunct sets of edges. New seeds that trim groups of edges are more likely to prune
those edges from the execution trace upon further mutation. For that reason, we mark such seeds
as favorites and assign them higher energy.

Seed Energy Scheduling

Seed energy determines how many times a seed will be fuzzed after it is selected. Higher seed
energy results in more mutations and executions. By mutating seeds with a smaller number of
recorded edges, I G O R F U Z Z can process inputs faster and is more likely to discover even simpler
PoCs. We use a greedy heuristic to allocate more energy to seeds with a shorter execution length.

We also dynamically allocate energy to different seeds based on their coverage profile. We
assign more energy to seeds with shorter execution paths. Not only do we assign more energy to
simpler seeds, but we also ensure that the assigned energy is biased towards larger reductions in
coverage.

Fuzzing Output Selection Criteria

To explore different code regions, fuzzing typically employs a meta-heuristic optimization over
the target’s coverage space. During the search process, fuzzing naturally encounters solutions
that diverge from the original objective. In the context of I G O R F U Z Z, that objective is finding
the simplest PoC that triggers the same initial bug. With the help of BitmapSize—which
AFL++ [49] uses to show how many unique edges were activated—we pick the simplest PoC by
finding the PoC whose bitmap size is the smallest. Despite limiting search to the vicinity of the
original execution trace, it is inevitable that other bugs are triggered. To filter out those erroneous
solutions, we rely on crash sites as the penultimate selection criterion, and among the remaining
seeds, we select the PoC with the smallest bitmap size. According to our evaluation, I G O R F U Z Z

has a low probability of discovering crashes caused by a different bug (section 3.4.5).

3.2.3 Test Case Similarity Measurement

Existing approaches for measuring test case similarity leverage information available at the crash
site (e.g., the call stack, instruction pointer, register contents). A fundamental limitation of these
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approaches is that a bug may cause the program to crash in many different locations, resulting in
an over-approximation of the unique bug count. Backward slicing may alleviate this problem by
tracing the flow of the crashing condition to its origin. Unfortunately, backward slicing does not
apply to all types of vulnerabilities (e.g., in a use-after-free vulnerability, the location where data is
reused can be independent from where it is freed). Moreover, scaling backward slicing to large
and complex program traces across 100,000 basic blocks is an unsolved problem. Studying the
limitations of current approaches led us to the following insight: all crashes that are due to the
same bug must have a (partially) overlapping execution trace. Furthermore, methods for analyzing
the topological structure of the execution trace can be used to extract a signal for crashes of the
same bug.

The program execution trace is a sampled sequence of program addresses sorted by their
execution order. To calculate their similarity, existing approaches leverage Levenshtein Distance [169]
and Longest Common Subsequences [67]. Unfortunately, program loops increase the difference
between execution traces, limiting the utility of these techniques. Even if these execution traces
come from crashes of the same root cause, their sequence similarity is low. However, collapsing the
execution trace onto a graph means that control-flow similarity is no longer affected by different
loop iteration counts. Thus, our approach uses graph topology to calculate similarity between
traces.

Control-flow Graphs (CFG)

Control-flow graphs describe the execution process of a program. A node in a CFG represents a
program address, and edges connect two successive addresses. To construct the CFG, we sample the
execution trace at a predefined granularity. On one end of the spectrum, fine-grain instruction-level
traces introduce redundant nodes into the CFG, since edges between consecutive instructions
are implicitly captured by the sequential nature of program execution. Additionally, recording
instruction-level traces imposes scalability challenges, rendering the approach intractable. On the
other end of the spectrum, function traces are easily collected, but they are coarse-grained and can
overlook key behaviors in the program that capture the bug context. Basic block-level granularity
provides a balance between precision and scalability, and we use it to construct the CFGs for
similarity matching.

Execution traces contain noise that must be filtered. There are two types of noise: (i) code
executed in external shared libraries (e.g., glibc); and (ii) superfluous code after the program’s
crashing point (e.g., ASan’s crash handler). Since we focus on a specific target program, the
execution trace of external code is unnecessary. Thus, we filter any addresses that are outside our
target code. Sanitizers detect bugs early by introducing additional software guards. When a bug is
detected, the sanitizer executes additional code to collect and report information. This information
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collection and reporting adds unnecessary noise and is filtered as well. We discuss how we filter
these two types of noise (during the execution and after the bug trigger) in section 3.3.

Calculating Graph Similarity

After recording traces, we construct a CFG for calculating graph similarity. Efficient graph similarity
estimation has been studied extensively [84], and the results show that kernel methods are most
suitable for estimating graph structure similarity. At present, most kernel methods for graph similarity
estimation include two types: graph embedding and graph kernel. The former leverages traditional
vector-wise kernel algorithms based on dimensional reduction of input graphs, which leads to a
loss of structural information. The latter directly performs kernel algorithms in a high-dimensional
Hilbert space, so that the structural information of graphs remains intact.

After surveying different graph kernels (e.g., labelled graphs, weighted graphs, or directed
graphs), we found that the Weisfeiler-Lehman Subtree Kernel algorithm demonstrated the highest
ability to differentiate test cases of varying root causes while assigning high similarity measurements
to test cases of the same root cause. Thus, we adopt the Weisfeiler-Lehman Subtree Kernel to
estimate the similarity between CFGs. The Weisfeiler-Lehman Subtree Kernel algorithm requires
the nodes of a graph to be labelled. We use the basic block addresses (from the execution trace)
as node labels.

3.2.4 Bug Clustering

Fuzzers are highly non-deterministic in how they discover bugs and paths through the target
program. The fuzzer may discover one or more crashes for a bug, but it is not known a priori how
many crashes it will find. Consequently, I G O R cannot know how many bugs are discovered during
a fuzzing campaign. For example, a given set of 100 crashes may map to 100 bugs with one crash
each, one bug with 100 crashes, or anything in between. The key challenges for clustering are to
(a) discover the exact number of bugs, and (b) assign crashes to the correct bug. As stated above,
the number of expected clusters is not known and must be inferred during clustering. Our approach
determines the number of clusters by running the clustering process multiple times, refining the
assumed number of bugs based on a heuristic (see section 3.2.4).

Data Characteristics

The Weisfeiler-Lehman Subtree Kernel algorithm produces a similarity matrix Ms; let Md = 1−Ms,
where Md is the corresponding distance matrix. We build our clustering algorithm on the two
matrices.
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Figure 3.3 – Distribution of samples for x509. The suffixes ‘a’ and ‘b’ indicate two call stacks for
one CVE.

The matrices Ms and Md are not sufficient to determine the distribution of samples. Multi-
dimensional Scaling (MDS) [23] is an algorithm for dimensionality reduction. It projects high
dimensional data to a lower dimensional space by finding abstract Cartesian coordinates in the
lower dimensional space that keeps the distance between samples almost unchanged. We leverage
MDS to visualize the distribution of samples in a two-dimensional plane.

We analyze distributions based on these visualizations. For example, fig. 3.3 shows how samples
of x509 are distributed across the Cartesian plane. The shapes of clusters are not spherical,
indicating that k-means-like methods are not suitable, and we therefore rely on alternative methods
to recognize clusters of arbitrary shapes.

I G O R leverages the silhouette score [134] to describe the quality of cluster structures. By
simplifying test cases, the samples tend to have better cluster structure, see fig. 3.7.

Clustering Algorithm

DBSCAN [46] is a density-based clustering algorithm that uses a similarity/distance matrix. The
DBSCAN algorithm takes two parameters, ϵ and Mi nP t s, that define the density threshold. The
primary challenge is how to determine these parameters. Although heuristics exist [137, 139],
changes in the density distribution of samples result in a failure of the clustering process. Alternative
algorithms like OPTICS [6] and HDBSCAN* [25] perform hierarchical analysis to obtain better
results. However, they still require predefined density descriptive parameters, which are must be
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tuned when analyzing new programs (because the samples’ density distribution varies between
programs).

We found that the Spectral Clustering [101] algorithm addresses the parameter-tuning challenges
brought on by the high-dimensional information stored in the Weisfeiler-Lehman Subtree Kernel
similarity matrices. Spectral Clustering takes only one parameter: the number of clusters. Given
the number of clusters and a similarity matrix, Spectral Clustering builds a graph Laplacian on
the basis of the similarity matrix. Eigenvectors of the graph Laplacian are calculated to realize
dimensionality reduction. Then, the algorithm automatically groups samples into the designated
number of clusters in a lower dimensional space.

Since the real number of clusters is unknown, we need a metric for evaluating the clustering
result. For this purpose, we again use the silhouette score. Liu et al. [96] describe different
clustering validation measures. In their study, they indicate that the optimal cluster number can be
determined by maximizing the value of the silhouette score.

As the silhouette score is undefined when there is only one cluster, we assume that there
are at least two clusters among the dataset. Then we enumerate the number of clusters to run
the clustering process, and calculate the silhouette score of the result. Afterwards, we select the
clustering result with the highest silhouette score. However, this approach may undercount the
number of clusters. We therefore develop a heuristic to decide if we need to repeat clustering based
on the number of full-length crash call stacks: for less than 20 call stacks, running the clustering
process once suffices, while for more than 20 call stacks, we cluster twice. Tables 3.1 and B.5 show
our experimental results based on this heuristic.

Misclustering for single-bugs

The presence of tightly interspersed sub-clusters indicates that there is likely only one cluster. The
minimum number of detectable clusters is two. If there is only one, then the number of clusters
is raised artificially during enumeration to find a higher silhouette score. It is rare in practice for
a fuzzing campaign to find hundreds of test cases for only one vulnerability. After thousands of
CPU hours of fuzzing, we have never observed this case. In this case, using current crash grouping
methods—e.g., stack bucketing—is sufficient.

To mitigate against this rare situation, I G O R compares its cluster result with a call-stack based
approach (e.g., afl-collect). If I G O R reports more clusters than afl-collect, we indicate to
the analyst that they should refer to the afl-collect results.
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3.3 Implementation

Our prototype of I G O R demonstrates the practical feasibility of our approach. We briefly explain
important implementation details in the following sections. We implement I G O R F U Z Z on top of
AFL++, record execution traces using Intel Pin, and develop several Python scripts that orchestrate
gdb to select and filter execution traces. We construct CFGs from traces using NetworkX [63],
visualize them with Graphviz [45], and calculate graph similarity using GraKeL [147]. The clustering
phase leverages scikit-learn [118]. Our implementation consists of approximately 1,000 lines of
C++ code and 2,500 lines of Python code, along with several small scripts.

Recording Execution Traces and Noise Filtering We developed smart-tracer, a trace
recorder based on Intel Pin that records execution traces at function call-, basic block-, and
instruction-level granularity. During post-processing, we filter out function calls (a) into auxiliary
code (e.g., calls into libc), and (b) that occur after the crash is triggered (e.g., sanitizer information
collection).

CFG Similarity Metric The filtered traces are first used to construct the CFG. Then, we use
this CFG to calculate graph similarity using the Weisfeiler-Lehman Subtree Kernel algorithm.

Clustering The clustering procedure runs up to fifteen times by default, enumerating the number
of clusters from 2 to 16, and (re)calculating the silhouette score each time. This process outputs
the clustering result with the highest silhouette score. Finally, a post-clustering scatter diagram is
created to help analysts visually assess the quality of the clustering result.

3.4 Experimental Evaluation

We evaluate I G O R on 12 servers running Ubuntu 18.04 LTS, each with 200 GiB of RAM and an
Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz with 40 cores. We source our benchmark dataset from
58.7 CPU-years of fuzzing campaigns. The I G O R-specific evaluation took 6,143.7 CPU-hours and
30 human-days across all presented experiments. The I G O R F U Z Z evaluation took 5,531CPU-hours.
Importantly, this is not necessarily indicative of the actual time required for minimization: we
run I G O R F U Z Z one hour for each sampled PoC (5,531 CPU-hours in total) to show the changes
over time. In practice, we would let I G O R F U Z Z run for 15 min per PoC (we demonstrate this in
section 3.4.4); thus minimizing all 5,531 PoCs requires 1,382.75 CPU-hours. Compared to the
total cost of fuzzing, minimization is negligible and consumes less than 0.3 % of the length of a
fuzzing campaign.
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3.4.1 Benchmarks

We evaluate I G O R on the Magma benchmark [64] and the MoonLight dataset [65, 66]. These
benchmarks contain 52 CVEs that belong to 14 target programs, containing more than 254,000
crashing PoCs that map to 39 unique bugs. We exclude four programs containing only a sin-
gle CVE: pdftotext (Poppler), exif (PHP), client (OpenSSL), and libxml2_xml_read
_memory_fuzzer (LibXML). As discussed in section 3.2.4, I G O R falls back to afl-collect in
this case (we still report these results in section B.2). Additionally, we exclude (a) two CVEs that
result in prohibitively large trace files (over 10 GiB per PoC), and (b) six CVEs that are duplicates,
semantically equivalent, or partial fixes to one of the 39 unique bugs (see section 3.5.3 for details).
We augment these benchmarks with precise ground-truth data that verifies the root cause for each
PoC.

Following the methodology outlined by Klees et al. [83], we map crashes to bugs through
the patches that fix the crash (when applied). Importantly, both the Magma and the MoonLight
datasets contain targets with multiple bugs. Unfortunately, multiple bugs (in a single target) may
interfere with each other (e.g., a bug may mask/enable other bugs that would not manifest in a
normal program execution). To minimize the risk of interference, we relabel our initial PoC dataset
according to the patches that disable the crash. We show this process in fig. 3.4.

Figure 3.4 – Tagging PoCs by applying patches.

Starting with an unpatched version of the target, we apply patches one at a time, each time
processing the entire PoC corpus to flag changes in crash status. If a change is detected, that patch
is considered a ground-truth label for the PoC, and is used for measuring the performance of our
clustering method. We manually verified the completeness of patches in fixing the root cause of a
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crash. For each crash in our benchmark, we label root cause and call-stack hash. Our ground-truth
data allows us to determine whether crashes are grouped correctly (i.e, if they correspond to specific
CVEs).

3.4.2 Summary of Results

Table 3.1 – Evaluation results. B represents the number of unique bugs in the program, N the
number of samples in one experiment, C the number of unique crash sites, S the number of unique
full-length call stacks, and K the number of clusters I G O R generates. The Top Frame, BFF-5,
honggfuzz, and afl-collect columns show crash grouping scores obtained by comparing call
stacks of length 1, 5, 7, and full-length. P, IP and F are abbreviations of Purity, Inverse Purity,
and F-measure, respectively. Finally, cut-off represents the running time we limit I G O R F U Z Z’s
minimization for a single PoC. The best performing entries are highlighted.

Program B N C S K Top Frame (%) BFF-5 (%) honggfuzz (%) afl-collect (%) cut-off
(mins)

I G O R (%)
P IP F P IP F P IP F P IP F P IP F

pdfimages 3 410 12 23 3 48 63 47 62 47 62 47 62 15 100 100 100
3 100 100 100 100 30 99 99 99

pdftoppm 3 161 5 2 95 98 95 98 95 98 15 69 100 803 2 100 100 100 100 100 100 30 70 100 80

tiffcp 5 991 3 20 6 85 89 80 88 76 74 88 67 68 88 67 68 15 100 98 99
6 30 100 99 99

tiff2pdf 3 385 2 8 3 92 91 89 89 93 89 94 89 94 15 98 98 98
3 99 99 99 30 98 98 98

x509 2 150 3 2 75 83 75 83 15 100 100 1002 2 100 100 100 100 100 100 100 100 30 100 100 100

png_read 2 150 3 2 72 81 72 81 72 81 72 81 15 100 100 1002 2 100 100 100 100 30 100 100 100

xmllint 8 1581 14 901 14 78 59 64 78 55 62 78 55 62 79 3 4 15 96 67 77
18 30 97 66 77

char2svg 5 1087 20 67 8 66 72 14 20 14 20 14 20 15 100 67 79
8 100 100 100 100 30 100 67 79

sox (MP3) 4 260 8 4 63 74 58 71 58 71 58 71 15 100 100 1006 4 100 100 100 100 30 100 100 100

sox (WAV) 4 356 6 8 4 67 77 66 76 66 76 66 76 15 100 100 100
4 100 100 100 100 30 100 100 100

Table 3.1 shows the results of I G O R’s clustering evaluation with different I G O R F U Z Z cut-off
times. Cut-off refers to the time we allow I G O R F U Z Z to minimize a single PoC. Here we only
report 15 min and 30 min cut-off times, but we provide results for the other cut-off times in table B.5
in section B.4.

For I G O R, we report clustering results for basic-block-level traces. We also evaluate I G O R’s
clustering results at function-call (cheap and least precise) and instruction level (expensive and
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most precise) granularity. While the results are similar across the three tracing granularity, we see a
correlation between better results and bugs with a larger number of crash sites. Specifically, our
results indicate that I G O R should switch to instruction-level tracing when the number of crash
sites exceeds ∼ 20 (e.g., for xmllint and char2svg).

While grouping crashes based on stack hashes is common practice, different tools use different
stack depths. For example, afl- collect hashes all stack frames, honggfuzz leverages the last
seven stack frames, and CERT BFF [69] uses the last five frames. We compare I G O R against
these three configurations and a baseline of a single stack frame (called “Top Frame” in table 3.1).
To measure classification quality, we calculate precision, recall, purity [5, 151], inverse purity [5]
and F-measure [88, 151]. These metrics are all standard approaches from the machine learning
community.

Our results show that—compared to Top Frame, BFF-5, honggfuzz, and afl-collect—I G O R

achieves the highest F-measure in 90 % of our experiments (and is 20 % off in the remaining 10 %)
and achieves higher purity and inverse purity scores in most cases. From a quick glance at table 3.1,
it may appear that crash sites are the best grouping method, but crash sites are often not unique
because different bugs crash at the same program location (see the unique bug addresses in the
crash address column in section B.2).

We also assess the loss of precision caused by our bug count inference process (which may be
inaccurate in itself). We rerun the clustering process with ground-truth bug count, and compare
these counts to the results of clustering that relies on an inferred bug count. Table B.5 (in
section B.4) shows that I G O R’s results are as accurate as the ground-truth bug counts.

3.4.3 Test Case Reduction

We evaluate I G O R F U Z Z (over all 39 bugs) to demonstrate its ability to remove redundant paths
traversed by each PoC. For each bug we use afl-cmin to select representative PoCs from our
corpus and run I G O R F U Z Z for 15 min. Per section 3.4.4, we found that 15 min is sufficient for
each minimization. Figure 3.5 shows the mean edge count (i.e., the fuzzer’s bitmap size) executed
by the newly-minimized PoC, while fig. B.3 shows how I G O R F U Z Z reduces traces across three
dimensions (basic block counts, edge counts, and trace length). Due to space constraints, we limit
our results to these figures.

Figure 3.5 shows that the bitmap size monotonically decreases over time. We found that the
length of the reduction process is proportional to the length of the program trace executed by the
PoC. Larger bitmaps provide more opportunities for shrinkage, as evident from the topmost plots
in fig. 3.5. The larger the bitmap size of the initial PoC, the slower the compression process.
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Figure 3.5 – Bitmap size (number of edges) trend over time.

The mean values in fig. 3.5 ignore outliers. Figure 3.6 highlights how I G O R reduces outliers for
CVE-2016-5314. Figure 3.6 shows that the interquartile range drops significantly after I G O R F U Z Z’s
trace reduction. Furthermore, the outliers’ bitmap size gradually converges to the mean, and the
number of outliers continues to decrease over time (until they disappear completely).

3.4.4 Graph Similarity After Minimization

We cluster and compare the original and reduced PoCs to assess whether I G O R F U Z Z improves
similarity analysis. This involves recording execution traces of the target program and calculating
similarity based on the CFGs constructed from these traces.

Our results (across our ten target programs) demonstrate that coverage-reduction fuzzing
makes PoCs more distinguishable. For example, fig. 3.7 shows the distribution of CFGs before and
after performing coverage-reduction fuzzing on tiffcp. The cluster contains four vulnerabilities.
Per section 3.4.4, because the bug-irrelevant paths have not been pruned, the test cases of different
vulnerabilities are not distinguishable; they are combined with each other, resulting in nine clusters
and a surplus of five misclassified bugs.

Clustering precision greatly improves after using I G O R F U Z Z to shrink PoCs. Per section 3.4.4,
clustering shrunken PoCs leads to an accurate grouping of the 842 test cases into four clusters
(based on their root causes). Table 3.2 shows the change in silhouette score before and after
reduction.
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Figure 3.6 – Box plot of bitmap size for CVE-2016-5314.

Data distribution affects the results of the cluster [139]. Unfortunately, this distribution of data
cannot be predicted in many real-world scenarios. We study I G O R’s ability to process different data
distributions, and our results show I G O R achieves ideal results under different data distributions
(see section B.1).

Suitable Cut-off Time

The time/cost tradeoff is an important factor for determining the practicality of I G O R. Given
more time, I G O R F U Z Z can generate more concise PoCs, and our results show that pruning more
bug-irrelevant paths leads to more accurate clustering results. Our results also show that each
time I G O R’s running time is doubled, we achieve a higher (mean) silhouette score (indicating more
bug-irrelevant paths are pruned). But improving silhouette scores results in diminishing returns
(considering performance of the second stage). After reaching a threshold, the cluster structure is
highly identifiable and clustering results no longer improve.

According to our silhouette scores (table 3.2), I G O R F U Z Z increases the average silhouette
score by 14.4 % during the first 15 min (the 0 min column corresponds to the time before any
reduction has occurred). The next two intervals increase the average silhouette score by only 1.8 %
and 0.5 %, respectively. This yields minimal benefits for clustering. We use the minimized PoCs
generated by these three cut-off times for clustering (see tables 3.1 and B.5). These results show
that although longer times will give us more precise results, it is sufficient to run I G O R F U Z Z

with 15 min. Therefore, we suggest 15 min as the default cut-off time.
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Table 3.2 – Silhouette scores.

Program 0 min (%) 15 min (%) 30 min (%) 60 min (%)

pdfimages 52.9 70.2 70.0 69.4
pdftoppm 59.0 80.2 80.0 79.0
tiffcp 33.2 70.2 73.9 77.4
tiff2pdf 66.0 70.6 70.7 71.2
x509 76.9 94.1 94.3 94.6
png_read 68.5 96.6 96.6 97.7
xmllint 38.3 49.1 55.3 54.7
char2svg 44.5 53.7 53.8 54.0
sox (MP3) 78.1 74.6 81.1 81.3
sox (WAV) 83.1 85.0 86.6 88.0
Average 60.0 74.4 76.2 76.7

(a) Original distribution. (b) Distribution after reduction.

Figure 3.7 – Data distribution before and after reduction.

3.4.5 Verifying Minimization Results

Here we answer a key minimization question: does a minimized PoC trigger the same bug as the
original PoC? We label a result a false positive if the minimization process discovers a new bug with
a different root cause and this root cause replaces the original test case. We verify minimization
results via the process described in section 3.4.1 (i.e., by successively applying patches).

We designed two experiments from two perspectives. First, we verify whether a minimized PoC
introduces an error. We recorded zero false positives out of our 5,535 minimized PoCs. Secondly,
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we checked whether errors (i.e., PoCs triggering a new bug) were generated during fuzzing. If there
are many error seeds in the queue, I G O R F U Z Z may be misled by these error seeds, and generate
more error seeds during the fuzzing process. The number of queues containing error seeds (namely,
“error queues”) is shown in fig. 3.8. This figure shows the number of error queues among all the
queues of their corresponding programs. Only 2.10 % of all 5,531 queues contain errors. This shows
that I G O R F U Z Z has a low probability of introducing errors during the reduction process. Further,
we also studied the proportion of error seeds in the error queues and found, with the exception
of xmllint, this proportion is less than 10 % (see section B.4). This means I G O R F U Z Z will not
waste time on error seeds. Although errors appeared during minimization in these programs, it does
not affect the correctness of I G O R F U Z Z’s output (due to our seed selection principles, detailed in
section 3.2.2). According to our evaluation results, all errors were filtered out successfully.

Figure 3.8 – Queue error rate.

3.5 Case Studies

We now present three case studies that—while challenging for classic crash grouping techniques—
demonstrate the effectiveness of I G O R. These case studies include: (i) assessing the accuracy of
CVEs; (ii) highlighting rare crashes; and (iii) detecting semantically equivalent bugs.
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3.5.1 Assessing CVE Accuracy

Software maintainers manually analyze reported PoCs, assigning CVEs according to their root cause.
However, a recent study [95] shows that even software developers misjudge root causes when faced
with a large number of PoCs, resulting in imprecise CVEs where either different vulnerabilities are
assigned the same CVE or different CVEs are assigned to the same vulnerability. I G O R’s benchmark
includes both cases.

For CVE-2016-102691 and CVE-2016-102692 (tiffcp), we sampled 400 PoCs and grouped
them according to the root cause. I G O R clusters these PoCs into two distinct groups. After
verification, we discovered that there are indeed two different vulnerabilities. As the functions
executed before the crash are similar, the developer mistakenly classified these two vulnerabilities
into one category.

For CVE-2019-8354 and CVE-2019-8366 (SoX), I G O R clusters 57 PoCs into a single group.
These two CVEs have different crash addresses and call stacks, but the developer confirmed
that these two vulnerabilities are indeed caused by the same root cause, the assigned CVEs are
duplicates.3

For CVE-2015-9290 and CVE-2015-9381 (char2svg), we found that their patches both partially
fix the same vulnerability. I G O R correctly clusters the corresponding 41 PoCs into a single group.

These three scenarios demonstrate how I G O R successfully highlighted the inaccuracy of assigned
CVEs (inaccurate CVEs are labelled with superscripts in section B.2).

3.5.2 High-value Needles in Test Case Haystacks

Fuzzers cannot guarantee a similar number of PoCs for each bug. For bugs that are harder to
find (e.g., due to deeper code depth, or harder trigger conditions), the number of PoCs generated
by the fuzzer is often small. Such rarely-triggered bugs may be lost because crash grouping may
wrongly merge them with other bugs.

I G O R ensures that such rare PoCs are correctly analyzed. By first bucketing PoCs based on the
crash address, I G O R detects crash locations with few PoCs and uses AFL’s crash mode to amplify
them. In our current implementation, I G O R amplifies the number of PoCs at crash locations with
fewer than ten PoCs to at least 50.

As an example, we study CVE-2016-5314 (tiffcp). Consider our analysis for trial 3 in table B.1.
If we instead limit the number of PoCs for CVE-2016-5314 to three, then this CVE is subsumed by
another CVE. When we amplify the three test cases to 50, the CVE is successfully separated.
3 https://gitlab.alpinelinux.org/alpine/aports/-/issues/10523
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3.5.3 Detecting Semantically Equivalent Bugs

Our benchmark distinguishes vulnerabilities based on unique patches. If the patch used to eliminate
the failing test case is different, it is considered to be a different vulnerability. Based on this rule,
we found that I G O R’s result misclassifies PoCs for char2svg. The char2svg PoCs come from
eight CVEs with a different patch for each CVE, indicating that these are eight different bugs (see
section B.2).

However, we discovered that I G O R groups the PoCs from CVE-2014-9663, CVE-2014-9669,
and CVE-2015-9383 into a single group. We reviewed the corresponding code and patches in
char2svg, and found that these three CVEs share the same semantic root cause. Specifically, we
found that all three CVEs check whether FT_INVALID is too short to avoid heap-buffer-overflows
and all three patches are in the same source file. There are six similarly named functions that
validate the input (e.g., tt_cmap4_validate, tt_cmap8_validate, tt_cmap10_validate). All
six functions are buggy, and share the same root cause. The developer first committed the patch for
CVE-2014-9669, in which five of the six vulnerable functions were fixed. The forgotten vulnerable
function, tt_cmap4_validate, was fixed in the patch for CVE-2014-9663 ten days later. However,
the patch for CVE-2014-9669 is an incomplete fix, because it misses one aspect of FT_INVALID.
This went unnoticed until CVE-2015-9383 was reported, and the patch for CVE-2015-9383 finally
correctly fixes this bug.

We argue that these three CVEs fix the same single bug from a semantic point of view: the same
bug condition is shared among all three CVEs, and can be described as “as long as FT_INVALID is
too short, it will cause the same variable be over-flowed”. I G O R noticed that the control flow of
the three CVE are indeed similar when they trigger the bug and, thus, I G O R grouped them into a
single bucket.

3.6 Limitations

Using silhouette score to determine the number of clusters is not guaranteed to distinguish all
clusters. Therefore, after the initial clustering is completed, it is necessary to manually review
the clustering results. If there are still gaps between samples within the same cluster, it indicates
that a second clustering process is required to obtain more reasonable clusters. Additionally, when
there is only one bug, intra-class differences are regarded as inter -class differences. The clustering
algorithm then may divide the input samples into a large number of clusters. I G O R will invoke
afl-collect to group the crashes when it finds the group number given by itself is larger than
that of afl-collect. In this case, I G O R falls back to the precision of afl-collect.
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I G O R F U Z Z requires more computing resources than simple stack hashing. We argue that
the increased precision of I G O R is worth the additional computation cost (less than 0.3 % in our
experiments) due to the large amount of saved developer cost.

3.7 Related Work

Crash bucketing builds on a diverse background in fuzzing, test case reduction, crash grouping,
crash de-duplication, and fault localization. We highlight how I G O R compares against these areas.

3.7.1 Test Case Reduction

Afl-tmin [171], a popular test case minimizer, removes as much data as possible from a seed
while keeping the target in a crashing state. While fast and easy to use, it has limitations: although
it can significantly reduce the input size, it cannot effectively reduce the number of edges that the
program executes before crashing. Compared to afl-tmin, our method emphasizes the reduction
of the execution trace instead of input size, which means the vulnerability trigger becomes more
direct after the reduction. MacIver et al. [103] presented internal reduction by manipulating the
behavior of the generator that produced them. Its input and purpose is different from ours, as it
tries to shrink redundant operation of input and keep the same behavior, while we want to execute
fewer edges before the program crashes.

3.7.2 Crash Grouping and De-duplication

Crash grouping reduces the crash analysis cost by leveraging specific metrics to measure the affinity
between test cases, grouping similar test cases in one group.

Chen et al. [30] calculate edit distances and coverage profiles between test cases to group
them. Both Tonder et al. [154] and Pham et al. [126] utilize symbolic execution technique to
collect crash constraints to assist grouping. Molnar et al. [110] introduces fuzzy stack hashing by
collecting multiple crash metrics and then hashing these information together as a grouping metric.
Holmes et al. [68] proposes an alternative to crash grouping: if two failing test cases can be fixed
by applying the same mutant, those two tests are likely related to the same root cause.

CrashLocator [166] discovers faulty functions that do not reside in the crash stack by expanding
the given crash stack based on a function call graph. Although this method also takes advantage of
static call graphs, it only uses them to recover traces, while our method uses dynamic call graphs
to measure the similarity of PoCs.
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ReBucket [36] proposed a method for clustering duplicate crash reports based on call stack
similarity, the problem with this method is that it only relies on the local information at the time of
the crash, when categorizing vulnerabilities with more number of call stacks at the time of the crash,
it is easy to divide the PoCs that have same root cause into multiple different groups. Besides, the
inputs of ReBucket are crash reports, but our inputs are PoCs, so the application scenarios of the
two systems are different. SPIRiT [156] combines various methodologies to compute a specialized
test case distance measurement, and drives a customized hierarchical test suite clustering algorithm
that groups similar test cases together.

The primary difference between our method and the existing methods for crash grouping is
that I G O R evaluates the similarity of executions of a program from a global perspective by utilizing
the simplified execution trace, while the aforementioned ones mainly focus on local features of
programs.

3.7.3 Fault Localization

The purpose of fault localization is to determine the root cause of bugs through crashes or core dump
files. Statistical methods and Delta debugging are the main two technical solutions. Aurora [19]
is a representative work of fault location based on statistical methods. Similar to ours, it uses crash
mode to increase the number of test cases. The difference is that Aurora collects both crash
and non-crash test cases and locates root cause by comparing them. The risk of this method is
that crash mode does not guarantee that the generated test cases are still caused by the same
vulnerability. When the crash sample is caused by other vulnerabilities, this method will cause false
positive. Xu et al. [167] propose a method for locating the root cause through data flow analysis,
the key of this method is to recover the data flow from core dumps automatically to provide
richer debugging information and reduce the difficulty of manual analysis. Zamfir et al. [173] uses
execution traces to help developers locate the root cause. CrashLocator [166] locates faults based
on call stack. REPT [34] uses reverse debug to locate fault. Kim [81] uses multiple crashes to
diagnosis root cause from the perspective of crash graphs.

3.8 I G O R Summary

Fuzzing has become ubiquitous and is today’s key driver for bug discovery. Unfortunately, the
number of reported crashes outpaces developers’ ability to triage and fix bugs. Nonetheless, the
number of crashes is generally an over-approximation of the total number of bugs, and crash
grouping can drastically reduce the burden on developers. Existing approaches are light-weight
but prone to misclassification. We argue for trading little computational time to effectively reduce
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the number of crashes by two orders of magnitude, close to the number of real bugs, lightening
developer workload.

Our approach, I G O R, prunes bug-irrelevant paths and calculates the shortest bug-triggering
path using a novel coverage reduction fuzzing approach. Crashes are then grouped based on the
topological similarities between the CFGs of minimized execution traces.

Our evaluation demonstrates that I G O R outperforms existing approaches, resulting in the most
precise bug clusters for 90 % of our evaluated programs. Based on a ground-truth comparison, we
show that I G O R groups crashes of various root causes and vulnerability types precisely.
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Chapter 4

T A N G O: Extracting Higher-Order Feed-
back through State Inference

The real voyage of discovery consists not in
seeking new landscapes, but in having new
eyes.

Marcel Proust

This chapter addresses the unique challenges of fuzzing stateful systems, where traditional
coverage-guided techniques often fall short, since behavior depends on current and past interactions.
We introduce TA N G O, an extensible framework for state-aware fuzzing that treats state as a
first-class citizen of the fuzzing process. By leveraging a novel cross-validation technique called
state inference, we aim to uncover hidden path dependencies that better guide the exploration of
complex, stateful systems.

Hypothesis 3

The state of a system influences its behavior. Stateless feedback metrics are thus insufficient
for the effective fuzzing of stateful systems, and state can be approximated by observing
patterns in the system’s behavior.

The contents of this chapter are adapted from a paper under submission to IEEE EuroSP’24.

73



Chapter 4. T A N G O: Extracting Higher-Order Feedback through State Inference

Fuzzing is largely an exploratory process. Coverage-guided fuzzing excels at finding bugs as
long as the feedback on covered code is strongly tied to the explored functionality in the target.
While this intuition holds true for simple programs that accept a single input throughout their
life cycle, systems of interest often do not exist in isolation, whereby the effects of consuming an
input persist beyond the lifetime of that input. The behavior of such stateful systems is not solely
described by the amount of covered code.

State

Definition 4.1 State is the sum and summary of a system’s past operations and interactions
at runtime, represented through its memory contents, and driving its future behavior.
Stateful fuzzing is thus the branch of fuzzing that targets systems by accounting for their
state, often through ensuring interactive communication between the fuzzer and the target,
as opposed to the singular-input approach of traditional fuzzing.

State is encoded largely in data, and it influences how the system reacts to inputs. Yet,
state-of-the-art fuzzers continue to rely only on code coverage guidance when evaluating stateful
systems. To explore the vast state space more effectively, the search should be guided by state-aware
metrics.

Behavior as a state indicator

Example 4.1
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(a) Given labeled cells, a fuzzer can
systematically explore the maze.





(b) Without labels, cells can still be
identified by their surroundings.

Figure 4.1 – Exploring a maze is an example of a stateful process. Knowledge of the currently
occupied cell guides a fuzzer towards new locations.

74



We motivate stateful fuzzing with the example in fig. 4.1a. If a fuzzer had access to the last
reached cell as feedback, it can leverage that knowledge to prioritize paths which uncover new
cells, as is the case of coverage-guided fuzzers. A stateless fuzzer would mutate a path—from the
set of interesting paths it had already found—and execute it in one shot. The mutated path may
or may not introduce moves along the way that would render the rest of the path uninteresting
(e.g., walking into a wall). In contrast, a stateful fuzzer would select an interesting path as a prefix,
follow it, then generate a move in some direction. The key difference between the two fuzzers
is that the latter explores the maze incrementally, whereas the former performs a random walk.
The stateful fuzzer is then more likely to solve the maze earlier, since it wastes fewer iterations on
invalid moves.

However, in the absence of labels, a fuzzer may be misguided. Consider the example of an
unlabeled maze in fig. 4.1b. In a running session, we assume the fuzzer can request one move at a
time, and its feedback is restricted to “whether or not the player moved”. Without knowledge of
the current cell, the fuzzer attributes the feedback only to the last generated move. For instance, if
the fuzzer arrives at cell 28 through an upward move from 27, it would consider «upward» as an
interesting direction, and may select it more often. Yet, whether or not a player can move depends
not only on the attempted move, but also on its surroundings. In another iteration, if the fuzzer
starts from cell 5, moving upward would yield no interesting results. Unaware of its surroundings,
the fuzzer quickly exhausts the set of interesting behaviors it can observe, and proceeds with a
random walk for the rest of the campaign.

Nonetheless, such boolean feedback can still be used to model the player’s local surroundings.
Having found a few initial paths, the fuzzer can infer characteristics of the cells it has arrived at by
trying out, at each path, all the different interesting moves it has discovered so far. This allows it
to label each path by the set of possible single-step moves from the cell at the end of that path.
In essence, the fuzzer would measure the response pattern of each cell to a set of known inputs.
This allows it to group its known paths by their common characteristics, e.g., paths which lead
to a cell in a vertical corridor. A complete exploration would yield the classification represented
in fig. 4.1b: cells are annotated by the possible set of paths that can be followed through one move
from each cell. All paths known to the fuzzer then fall into one of 14 categories (colors), based on
their surroundings. Increasing the number of steps-ahead yields a more accurate classification such
that, in the limit, each path maps uniquely to its cell’s original label. Through this process, the
fuzzer can leverage a uni-dimensional metric to extrapolate multidimensional feedback for guiding
stateful exploration.

In this chapter, we propose state inference to address the challenges arising from fuzzing
stateful systems. State inference is a technique to produce groupings of snapshots that occupy the
same implicit system state, based on similarities between input-response pairs1. The key idea is

1 Response refers to a measured observable property of the system, i.e. through instrumentation and feedback, as
opposed to network server reply messages.
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to cross-test inputs snapshots against inputs and observe their behavior to determine a mapping
between snapshots and states. In practice, we find that seed queues are often biased to a subset of
the functional groups discovered by the fuzzer. State inference achieves an average reduction of
80% in the size of a fuzzer’s scheduling queue by grouping together program paths which display
equivalent behavior when subsequently probed with different inputs. By enabling the fuzzer to
benefit from the knowledge that different snapshots share the same state, the fuzzer can better
model the relations between snapshots and distribute energies more equally among the inferred
states. As a result, the fuzzer can schedule from the state queue first, to ensure an even exploration,
and cycle faster through discovered behavior; e.g., with 10 states describing 50 snapshots, the
fuzzer can cycle through the state queue 5 times as fast. This novel technique offers a more
hands-off and effective approach to stateful fuzzing, paving the way for improved security testing
of complex systems.

We implemented state inference on top of TA N G O, our versatile framework for stateful fuzzing.
Additionally, we extended current state-of-the-art fuzzers with feedback from TA N G O. Our
evaluation reveals that state exploration is significantly improved with state feedback when fuzzing
targets such as network servers, streaming parsers, and DOOM (see section C.2). We summarize
our key contributions as follows:

• Design of TA N G O, a framework for fuzzing stateful systems in a state-aware manner.
• Introducing the concept of state inference, which enables the identification of snapshot groups

that belong to the same state based on their responses to inputs.
• Implementation of state-aware scheduler extensions, for AFL++ and Nyx, that leverage inferred

states to reduce wait times and to disperse feedback.
• Careful evaluation of our approach, comparing its performance with existing fuzzing techniques

and demonstrating its effectiveness in analyzing complex systems.
• Open-source access to our framework and results to foster adoption and provide value to the

research community.

4.1 Background

Previous work on stateful fuzzing reveals the benefit of state labels on fuzzer performance. IJON [11]
is an annotation framework that allows fuzzers to incorporate complex state into their feedback loop.
It was used to fuzz Mario Bros. in a process not too different from exploring a maze: knowledge
of the last reached location guides the fuzzer towards unexplored regions. Manually annotating a
target requires effort and is often skipped in favor of readily-available feedback like code coverage.
While alternative techniques attempt to extract state variables from certain types of targets, with
certain properties, and varying success [14, 112, 131], code coverage remains the preferred mode
of instrumentation.
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CLOSED WAIT_USER WAIT_PASS

AUTHED DATA_XFER

start accept() USER

PASS (correct)

PASS (incorrect)

<CTRL_CMD>

QUIT

<DATA_CMD>

done

Figure 4.2 – A simplified FTP server state diagram.

Further, stateful fuzzers such as AFLNet [124], SNPSFuzzer [91], and Nyx [140],introduce a
key feature for exploring complex systems: resumability. It entails the ability to restore the target to
a certain state and use that state as a starting point for further fuzzing. They achieve that through
restore points, referred to as snapshots, which span different granularities, from whole-system
VM snapshots, through process restore points, to record-and-replay techniques. Essentially, at
each snapshot, the target occupies an implicit state as a result of the path traversed by the input.
Perfect resumability ensures reproducibility of behaviors in their respective states, and it allows the
fuzzer to efficiently explore different paths without loss of progress.

The complexity of fuzzing stateful targets arises from their dependence on the system’s state.
Seeds generated due to interesting feedback represent paths through the target from which later
fuzzing iterations can continue. This presents an opportunity for path explosion that quickly
degrades the performance of a fuzzer. The key to tackling path explosion in stateful fuzzing lies in
more efficient scheduling, which faces three core challenges:

Feedback Attribution: The fuzzer gradually develops a model of the target through collected
feedback, incorporating it into its input generation for further exploration. Consider the example of
an FTP server in fig. 4.2. If the fuzzer initially sends a correct sequence of USER-PASS commands,
it ends up in the AUTHED state, where control and data transfer commands are accepted. Now in
the AUTHED state, the fuzzer sends a control command, e.g. PWD, and receives positive feedback
reinforcing the use of PWD in future iterations. However, the PWD command is only valid in an
authenticated session context. Starting the session with any command other than USER yields a
completely different behavior. Thus, without accounting for state, the fuzzer’s model of the target
receives conflicting or misleading feedback.

Exploration: The discovery of an interesting input can expose many new paths to the fuzzer, since
that input may set up the context required to traverse those paths. Following the FTP example, if
the fuzzer saves the USER-USER-PASS-PWD sequence as an interesting input, it may apply further
mutations to it, leading to an input like jUnK-PASS-PWD. Unaware of the state set up by the USER
command, the fuzzer mutates and destroys that part of the input, trapping itself in an error path.
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To avoid this loss of progress, the fuzzer should treat previous inputs as part of the state setup.
Seen differently, the history of interactions should be considered as one way to restore the current
state in the target, e.g. through record-and-replay. Fuzzing is then performed incrementally along
one path of exploration. Note that, while generating invalid inputs is equally important in fuzzing,
this methodology does not rule out the possibility of doing so. To test for an invalid command,
it suffices to start from an empty prefix path, or alternatively, only mutate past a selected prefix.
This ensures that the state set up by the prefix is not destroyed.

Soundness: If an input triggers a crash, it may not be sufficient to generate a reproducer from that
input alone, since the target may have crashed due to previously accumulated state. To guarantee
the soundness and reproducibility of crashes, the fuzzer must produce an input that accounts for
that state build-up. This requires the fuzzer to track the history of consumed inputs within the
lifetime of the target, keeping in mind that fuzzers typically generate millions of inputs.

These core challenges can be addressed by treating “state” as a first-class citizen and anchoring
the fuzzer’s operations around it. Introducing this new dimension to fuzzing requires careful
consideration and handling in the form of snapshot management, state modeling, and state-aware
behavior.

4.1.1 Snapshot Management

For stateful fuzzing, it suffices that the target persists between successive fuzzing iterations. This
allows the target to build up state through processing the consumed inputs. Nevertheless, to
tackle the aforementioned challenges with feedback attribution, exploration, and soundness, stateful
fuzzers typically divide their progress into increments by taking snapshots. Through these snapshots,
the fuzzer can then save and restore a previously discovered path.

Feature

Definition 4.2 A feature is a measurable quantity that is influenced by state (e.g., edge
hit count).

Feature map

Definition 4.3 A feature map is a mapping from a feature identifier (e.g. edge label) to
its measured value.

When fuzzing stateful targets, it is common to maintain a tree of snapshots, where each node
has successors representing other snapshots. The tree is constructed by appending new snapshots
as children of the current node being fuzzed whenever new features, e.g., control-flow edges, are
discovered. Stateful fuzzers, such as Nyx-Net [141], AFLNet [124], NSFuzz [131], and SGFuzz [14],
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have built on this idea, employing different approaches to managing their snapshot tree. Nyx-Net
maintains an implicit tree by backtracking input sequences and injecting snapshot commands
along the path. Its snapshot tree is then encoded in the input corpus itself. In contrast, fuzzers
like SGFuzz, AFLNet, and NSFuzz attempt to approximate the protocol state graph by explicitly
constructing a tree based on observed changes in state labels. Nodes then represent unique values
of the state variable or response code, and within each node, the system maintains a set of inputs
that allow the fuzzer to restore the target to a snapshot of that state. The approximate state graph
is then obtained by merging tree nodes with overlapping state labels.

4.1.2 State Modeling

State is a semantic identifier of the system’s dynamic nature. Any event or interaction with the
system may update its state and modify its behavior. This abstract definition does not expose a
direct measure of state, because more often than not, there is none. Although some implementations
observe global variables as explicit state identifiers, this does not constitute a generic abstraction
over states, as there are often other contributing factors.

In practice, the state of a system boils down to variable memory contents which influence
its responses. In the case of computer software, the contents of the call stack, the heap, or
function-local variables all factor into the state of the system. While there are attempts at isolating
and capturing those variables as state feedback [14, 112, 131], there is no one-size-fits-all method
for precisely measuring state without under-approximation or over-approximation. It is often easier
for a developer who is familiar with the target to specify their own definition of state that fits the
testing goals they are trying to achieve.

State Identification: Recovering the behavioral model of a system is not straightforward. To
recover states and the relations between them, AFLNet requires patching the target to augment
its responses such that state identifiers are explicitly indicated through the response codes. It
also requires that the fuzzer is aware of how those identifiers can be extracted from the received
responses. Alternatively, SGFuzz and NSFuzz instrument global variables as state indicators, but
they often require manual effort to filter out noise by adding irrelevant variables to an elaborate
ignore-list. They also fundamentally assume that state can be consolidated to global variables,
when in fact, it can span any mechanism for managing persistent memory contents, such as the call
stack, function-local variables, or heap objects. On the other end of the spectrum, Nyx-Net foregoes
state identification and relies solely on its high reset rates to explore more of the input space,
following the blackbox fuzzing school of thought that favors execution speed over introspection.

It is crucial to note that fuzzing is a stochastic process geared toward evaluating the implemen-
tation, not the specification. While prior knowledge of the protocol state graph can help guide
the fuzzer to explore unvisited states, it is not a characteristic property of the implementation,
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L0:
WAIT_USER

L1:
WAIT_PASS

L2:
WAIT_PASS

L3:
AUTHED

L′
3:

AUTHED

USER USER PASS

PASS

PASS

Figure 4.3 – A snapshot tree constructed for an FTP server.

which may hide implicit states or diverge from the prescribed protocol. Although such divergence
is interesting for fault detection, it is only discernible where the specification is available, or when a
baseline is used for comparison (as is the case of differential testing [106]). A fuzzer cannot know
what it does not know. In the absence of a specification, it suffices that the fuzzer schedules its
exploration more evenly across the observed feature space. Precise state recovery is thus orthogonal
to fuzzing; response codes and state variable annotations are just other forms of feedback about
the features that the fuzzer has discovered.

Response-based Grouping: Fuzzers that rely on annotations as state feedback—including global
variables [14, 112, 131], response codes [124], or manual labels [11]—typically incorporate it as a
signal for grouping distinct snapshots. In the lack of a grammar specifying what transitions are
valid at each state, the value provided by these annotations to an evolutionary fuzzer is thus limited
to the grouping of snapshots among distinct behaviors. This reduces the load on the scheduler
by iterating over states rather than snapshots and allows the fuzzer to aggregate feedback from
fuzzing snapshots within the same state. We observe that it is then sufficient to recover groupings
among snapshots which display similar behavior to bootstrap the evolutionary fuzzing process.

Consider again the example of the FTP server in fig. 4.3. When the fuzzer first sends the
USER command, it takes a snapshot L1 (in the WAIT_PASS state), since it observes new feedback
relating to the discovery of a new command. The fuzzer then follows with USER again, taking
a new snapshot L2 due to executing the error handler in WAIT_PASS, and it remains in that
state. Sending the PASS command then results in L3 (in the AUTHED state). The fuzzer has now
discovered a path to the AUTHED state as USER-USER-PASS. Notably, the fuzzer discovered the
WAIT_PASS state “twice”, but the AUTHED state only once. Depending on the type of feedback
collected by the fuzzer, it may also be incapable of discovering the USER-PASS sequence from L1,
since the feedback for discovering the PASS command had already been attributed to L3, and it is
no longer considered an interesting signal for taking a snapshot. In effect, the discovery of the
USER-PASS sequence was over-shadowed by USER-USER-PASS due to overlapping feedback. This
phenomenon likely occurs many times throughout the campaign, stacking up the snapshots and
diluting the scheduling pool.
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Yet, despite L1 and L2 traversing different paths in the target, we know they represent the same
state: the target expects a PASS in either case to transition to the next state. If we assume L3 was
never created, and we send PASS at L1, we would discover AUTHED again and would create a
snapshot L′

3. Conveniently, through this approach, the fuzzer discovers a shortcut to AUTHED
which involves the minimal number of commands required to reach it.

This observation is not limited to authentication routines but generalizes to any stateful system
whose behavior is primarily influenced by its inputs. At each snapshot, the system occupies some
implicit state. By probing the system with different inputs and measuring its responses, we can
develop a model of the state it is in. If two snapshots share the same responses across all tested
inputs, we can then consider them as belonging to the same state, as far as the fuzzer is concerned.

4.1.3 State-aware Operation

A stateful target is one whose behavior changes depending on the state of the system, implying
that inputs consumed by the target must be generated by accounting for the current state. Beyond
using snapshots as a prefix for incremental exploration, none of the mentioned state-of-the-art
fuzzers incorporates state into its operations, such as mutator schedules or state-specific dictionaries.
Incorporating feedback in a state-specific manner helps develop a more accurate model of the
target in each state, better guiding the fuzzer for exploring further within each state. Granted,
feedback can become overwhelming for the fuzzer [48, 50, 158]. State-dependent feedback can
be even more challenging to handle, as the target’s behavior evolves dynamically, necessitating
that feedback be incorporated dynamically as well. Nonetheless, to make the most of the collected
feedback, a state-aware fuzzer should treat state as a distinct dimension for its operations across
all phases of the fuzzing process.

4.2 State Inference

Inspired by system identification and hypothesis testing, state inference models the behavior of the
target through its responses to a set of inputs.

Response

Definition 4.4 A response is a value instance of the feature map obtained by executing
the target with a given input.

At each snapshot, the target occupies a unique hidden state that drives its behavior and
influences its response to inputs. For a stateful system, we posit that two instances of the system
occupy the same state—as far as the fuzzer is concerned—if both instances share the same response
pattern across all tested inputs, given a sufficient number of samples. We use this insight to
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(b) One example of a corresponding snapshot tree
constructed by the fuzzer. Each node is annotated
with the implicit state that the system occupies at
that snapshot. Nodes are colored according to the
equivalence states they belong to after subsump-
tion.

Figure 4.4 – An example application of the state inference procedure on a simple FSM-based
system.

develop a systematic approach for evaluating snapshots, grouping them by their observable response
patterns, and extrapolating relations among them to guide exploration. This grouping yields a
hierarchy of states and snapshots that enables fairer and more targeted seed scheduling.

This process requires additional executions to probe the target along all the interesting paths
discovered by the fuzzer. Fortunately, the benefits can outweigh the overhead costs due to the
non-linearity of exercising new coverage: while fuzzing iterations grow in linear time, new features
are only discovered in exponential time [20]. This means that, as the fuzzing campaign progresses,
the cost of state inference is amortized over the time spent by the fuzzer between successive
coverage findings. In the meantime, the fuzzer can leverage the learned state model and the
relations between snapshots for better input and mutator scheduling. As we discuss in section 4.3,
the overhead of processing new features tapers off, while still allowing the fuzzer to benefit from
the refined feedback. Coverage-guided fuzzing is an evolutionary learning process, and as with
any learning algorithm, filtering out the noise from the data comes with a cost but an even higher
reward.

4.2.1 Cross-Pollination

In the process of generating and testing inputs, the fuzzer discovers and records those that trigger
new features within the target. Working under this assumption, every recorded input is guaranteed
to elicit a response in at least one snapshot, that which was active at the time the input was first
discovered. Using the battle-tested mechanism of a cumulative global feature map, where observed
features are only considered interesting the first time they are encountered, the fuzzer is incapable
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of rediscovering the same feature across different contexts. In other words, if the same behavior
can be triggered along different paths, only one of those paths can be discovered by the fuzzer.
Through cross-pollination, we aim to discover these hidden capabilities by re-applying the same
input at different contexts (i.e., snapshots) and observing overlaps in feedback.

Capability

Definition 4.5 A snapshot is said to have a capability when the response to an input
measured in that snapshot matches the expected response, under the null hypothesis that
two snapshots in the same state cannot be distinguished based on their responses.

We illustrate this procedure with an example: consider the system with the state graph
prescribed in fig. 4.4a. After some simulated rounds of fuzzing, we arrive at the snapshot tree
depicted in fig. 4.4b. Whereas the fuzzer observed unique features—namely, state transitions in
the system’s FSM—that resulted in this snapshot tree, we note that multiple snapshots occupy the
same state. Unaware of this overlap, the fuzzer would schedule each of these snapshots individually
and would integrate feedback into state-agnostic models. This results in duplicate efforts, as the
fuzzer wastes many cycles on testing the same states along different paths. However, given this
initial snapshot tree, the fuzzer can leverage cross-pollination to discover hidden relations between
snapshots, allowing it to better model their overlap and optimize its exploration.

We define the response pattern of an input applied at a snapshot as the set of features triggered
while executing that input. Given enough input samples, the behavior of a snapshot can be modeled
by measuring its different response patterns. Conveniently, the fuzzer is continuously searching for
inputs which trigger a non-empty set of unique features, recording those as new snapshots in the
tree. This provides the cross-testing process with an initial corpus of interesting inputs. We leverage
these recorded inputs, whose response patterns in the parent snapshot are known, to cross-test the
behavior of all snapshots. Repeated application of this procedure throughout the fuzzing campaign
ensures that snapshots are assessed against an increasing amount of representative samples, while
avoiding the need to generate new samples solely for the purpose of cross-testing, as that part is
covered by the fuzzing process itself.

If a snapshot can generate the same response pattern as the input’s parent snapshot, we say that
the snapshot is capable of reproducing that response. To discover the capabilities of all snapshots,
we iterate over all inputs in the snapshot tree and apply them at every snapshot, measuring its
response pattern, and recording its ability to reproduce the original response. In constructing the
snapshot tree, every response pattern is associated with an edge between a parent and a child
snapshot. As such, if a snapshot is capable of a response, it is equivalent to having an edge between
that snapshot and the corresponding child node in the snapshot tree. To record capabilities, we
thus extend the tree’s adjacency matrix into a capability matrix. We dub this process of exploring
capabilities as cross-pollination.
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Figure 4.5 – The capability matrix AC (left), which is obtained after cross-pollination by uncovering
edges—marked in blue—between snapshots. With subsumption, we group up nodes which mutually
overlap in capabilities. Finally, we collapse the matrix onto a graph of equivalence states that
model the relations between snapshots (right).

Capability matrix

Definition 4.6 A capability matrix is a matrix of Snapshots×Responses → Capability,
where non-empty cells store the input that triggers a known response.

The cross-pollination procedure constructs a directed bipartite graph, GC = (L,R,E ), where L is
the set of all snapshot nodes, R is the set of responses associated with inputs from the snapshot
tree, and E is the set of edges mapping L to R, each carrying the enabling input, representing the
capability of each snapshot in replaying a response. The number of responses is r = |R| = |L|−1 = l−1,
since every snapshot is associated with a response except the root. The adjacency matrix of the
snapshot tree is a starting point for a capability matrix, AC . By looping over the snapshots and
inputs, we iteratively extend the capability matrix with new edges. Dismissing the first empty
column, AC : L×R has the dimensions l×r , and the adjacency matrix of GC then has the dimensions
(l + r )× (l + r ) and is defined as:

BC : L×R =
[

0l ,l AC

0r,l 0r,r

]
Since BC is an upper right diagonal matrix, it is then practical to only consider AC in the following
steps. In implementation, it also helps to keep the original dimensions of the adjacency matrix
(l × l) as depicted in fig. 4.5. It should be noted that this simplification implies that, in applying
subsumption and collapse, matching involves only the outward edges in AC , i.e., row-wise matching.
However, in the general case of a full adjacency matrix, matching should be applied over both
outward and inward edges.
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4.2.2 Subsumption and Elimination

The populated capability matrix provides insight into which snapshots overlap in behavior, and
consequently, how distinct snapshots are. This knowledge is essential for better guiding the scheduler
towards exploring unique functionality without duplicating efforts and stalling progress. To find
that overlap, we develop the subsumption operator over graph vertices (≺). In short, a node u is
subsumed by v iff v can replace u without affecting reachability, i.e., v has at least all the same
edges as u. This implies that, in the adjacency matrix, where u is present along either axis, v is
also present. In the context of the capability graph GC , and its matrix AC , v must overlap u where
the successors of u are concerned.

Capability graph

Definition 4.7 If we transform the extended capability matrix into a vertex adjacency
matrix by replacing the columns (responses) with the snapshots which were first attributed
to discovering those responses, we can construct a capability graph based on this adjacency
matrix.

Taking fig. 4.5 as an example, we observe that {L0,L1,L5}, {L2,L3,L8}, {L4,L7}, and {L6} form
sets of snapshots with mutually overlapping responses. Each set of snapshots is then called an
equivalence state. Notably, equivalent snapshots may traverse different paths through the system
and thus cannot be pruned solely through power schedules [22], since state information is not
captured by code coverage alone.

In practice, a fuzzer may also encounter snapshots whose response sets are proper subsets of
others’ response sets. From the fuzzer’s perspective, such snapshots are less capable and thus
not worth dedicating a scheduling slot for, despite having non-conforming behavior. Any response
elicited in that snapshot can be reproduced in another having at least one additional capability.

To formalize the approach, we propose the following definitions:

N□(u)

The □-neighborhood of u, where □ ∈ {+,−} represents outward and inward directions,
respectively.

u ⪯□ v ⇐⇒ N□(u) ⊆ N□(v)

u is □-subsumed by v .
u ≺□ v ⇐⇒ (u ⪯□ v)∧ (v ⪯̸□ u)

u is strictly □-subsumed by v .
u ⪯ v ⇐⇒ (u ⪯+ v)∧ (u ⪯− v)

u is subsumed by v .
u ≺ v ⇐⇒ (u ⪯+ v)∧ (u ≺□ v)

u is strictly subsumed by v , for any □ ∈ {+,−}.
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u ∼□ v ⇐⇒ (u ⪯□ v)∧ (v ⪯□ u)

u and v are □-equivalent.
u ∼ v ⇐⇒ (u ∼+ v)∧ (u ∼− v)

u and v are equivalent.

For each proposed operator op, we can construct a set of vertices u ∈U which satisfy u op v

as: opv = {u ∈U |u op v}. Of particular interest are the equivalence sets ∼v and strict subsumption
sets ≺v .

To extract the sets of equivalence states from a capability matrix, it suffices to construct the
set of out-equivalence sets:

S̃ = {∼+
v |v ∈ L}

Each element in S̃ represents an equivalence state, a set of snapshots that overlap in behavior. To
further reduce the number of states, the fuzzer calculates the set of non-empty strict subsumption
sets:

Š = {≺v ̸=φ|v ∈ L}

Following that, any snapshot belonging to any set in Š can be safely eliminated from all sets in S̃,
without loss of capabilities. Alternatively, to avoid inadvertently losing quality inputs, we choose
to include strictly subsumed snapshots in the equivalence states of the subsuming nodes. This
ensures that the fuzzer experiences the same reduction in state counts while maintaining access to
all interesting snapshots.

4.2.3 Colorful Collapse

After subsumption and elimination, we obtain a reduced set S̃ of equivalence states S̃i . Within
each state lies a collection of snapshots that share the same behavior across all tested inputs; the
set of 〈input,response〉 pairs is called the capability set of the state.

Capability set

Definition 4.8 The capability set of a snapshot is the set of 〈input,response〉 pairs
constructed from the non-empty columns along the snapshot’s row in the capability matrix.

In applying an input Ia,b from the capability set at any snapshot in S̃i , we can reproduce the
response pattern which, if non-empty, was initially displayed by applying that input to the active
snapshot La in the snapshot tree. By construction, that input led to the addition of a new child
snapshot Lb . We can then say that all snapshots in S̃i can reach Lb through Ia,b , because they all
elicit the same characteristic response of Lb .
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This is directly observed when the capability matrix AC is cast to an adjacency matrix of
snapshots, as depicted in fig. 4.5. To simplify the aggregation of snapshots, such that scheduling
and feedback are performed at the state level, we can collapse the adjacency matrix through vertex
contraction [119] over S̃i .

Since the capability matrix specifies the response of every snapshot to a single input, we consider
those as first-order responses; recall that in the maze analogy, we also limited the inference to
one step away from each cell. Behavior of the snapshot after applying the first input can only be
modeled by further cross-testing, along an additional dimension, to obtain capability tensors of
higher-order responses. However, going beyond the first order significantly increases the overhead
of state inference and may only partition the snapshot groupings even further; its added value
is higher accuracy. Fuzzing is often tolerant to errors, due to the dampening effect of random
sampling.

The collapsed matrix models the first-order relations between states. In our procured example,
this matrix recovers the original state graph presented in fig. 4.4a. While certainly desirable, this
was mainly driven by two factors:

Lossless features: Transitions in the snapshot tree coincide with those in the state graph; there
are exactly 8 of each. This implies that the feature feedback to the fuzzer was capable of capturing
these state transitions, without a loss in accuracy or precision. While it is not a coincidence that
our tailored example displayed this behavior, it is unlikely that features are lossless in practice. The
nature of the feedback (e.g., code or data coverage) dictates the accuracy and precision of the
response patterns. In the FSM example, the fuzzer also managed to explore all transitions through
different generated inputs. However, completeness is not guaranteed under fuzzing.

Smooth transitions: In constructing the snapshot tree, the fuzzer encountered only new features
at any active snapshot, corresponding to triggering only unseen transitions in the state graph. Had
the fuzzer triggered multiple transitions in the target without observing new features, then the
edge to the next recorded snapshot is not guaranteed to overlap a transition in the state graph.
In effect, the fuzzer would have discovered a path through the state graph, rather than a single
transition; yet, it would record it as one edge in the snapshot tree. It is similarly difficult to achieve
“smoothness” in practice. In the maze analogy, we enforced smoothness by limiting the fuzzer to
one move at a time.

To mitigate the imprecision and inaccuracy of feedback, and to avoid misguiding the fuzzer
with false assumptions about state equivalence, we propose to maintain the original snapshot tree
and color it with state labels. This ensures that implicit state build-up in equivalent snapshots
is not lost during collapse, and that consequent application of the state inference process does
not compound the errors, but rather reduces them as more response patterns are measured and
evaluated. This also allows us to iteratively collapse the same matrix to obtain a minimal recovered
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Figure 4.6 – The capability matrix of the second round, with m = 4 new snapshots. The shaded
quadrant Q A contains the populated matrix from the previous round. The QB and QD quadrants
are overlaid with edges—marked in green—from the latest adjacency matrix. QC is always initially
empty, since new snapshots are only successors of old ones.

model of state relations, on average obtaining a further 10% reduction in the number of states in
practice, atop the 80% reduction due to subsumption.

4.2.4 Successive Rounds of Inference

After applying state inference, we obtain a capability matrix which carries the fruits of cross-
pollination, along with a collapsed matrix which models the relations between labeled snapshots.
This labeling, however, is static, and applies only to the cross-tested snapshots. As the fuzzer
progresses, it will discover more snapshots which remain unclassified and do not benefit from the
results of state inference. It is then necessary that the process is continuously applied throughout
the fuzzing campaign.

One straightforward approach is through batching: for every batch of m new snapshots, we
re-apply the inference routine, extending and updating the capability matrix from the previous
round. We illustrate the state of the extended capability matrix of the second application round
in fig. 4.6. Note that entries in quadrant Q A need not be revisited, since capabilities are assumed
to be reproducible. After overlaying discovered edges from the latest snapshot tree onto the new
capability matrix, we can continue to apply the state inference procedure as prescribed. Alternatively,
batching can be scheduled in time slots, e.g. every N minutes, accommodating for the non-linear
increase in coverage by performing inference on the new snapshots generated since the last run. An
adaptive hybrid approach can combine the two strategies to reduce the startup cost of inference
and maximize information gain throughout a fuzzing campaign.
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While we present our approach as an independent step post-discovery, it can actually benefit
from continuous integration with the fuzzing campaign. The fuzzer spends much of its time
generating inputs that do not trigger new features. Nonetheless, the feedback is often non-empty:
these uninteresting inputs likely elicit known response patterns which may overlap those of other
snapshots. This observation allows the fuzzer to dynamically extend the capability matrix at a
minimal cost: the computational overhead of matching.

4.3 Overhead, Optimizations, and Trade-offs

To uncover hidden capabilities, state inference relies on cross-validation, a technique notoriously
known for its quadratic complexity. For every batch of m new snapshots, given n existing ones,
the fuzzer must perform additional executions on the order of O (m ×n).

In particular, we define the following quantities:

Time-step k: the point in time at which the kth application round of state inference is performed.
Snapshots nk = nk−1 +m = m ×k +n0 = mk

States sk = sk−1 + α m =αmk
average reduction ratio

Cross-tests ck = ck−1 + m(2nk−1 +m −1) = n2
k −nk

additional executions per round

Applying state inference in batches of m new snapshots requires that the fuzzer discovers m

new features. But coverage growth is linear in exponential time [20]: to discover m new features,
the fuzzer spends on the order of exp(m) more time than for the last batch. Hence, during the kth
step, at time tk , the total number of cross-tests performed is O (log2(tk )). Meanwhile, the fuzzer
generates and tests new inputs in linear time, diminishing the ratio of time spent on state inference
as:

lim
t→∞

log2(t )

t
= 0

As the fuzzer continues to progress, the overhead cost of state inference is amortized over the
executions performed between rounds. In the meantime, it reaps the benefits of modeling state
relations in scheduling and in generation. We assess these costs and benefits through our evaluation
in sections 4.5.2 and 4.5.3.

The ramp up cost of state inference is, however, high. A fuzzer finds the most coverage in
the first few epochs of the campaign, necessitating frequent rounds of cross-testing. Whereas the
overhead tapers off at the tail, the initial costs can overwhelm the fuzzer, making it spend most of
its time in the beginning just on inference, and bringing its progress to a slow halt. The cost of
ramping up greatly varies with initial seed coverage, the complexity of the target, and the execution
speed, among other variables.
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To address the ramp up cost, we propose several optimizations that reduce the overhead of
state inference, at the cost of some accuracy in grouping snapshots. The prescribed cross-testing
procedure requires that all cells of fig. 4.6 outside of Q A be tested for adjacency. We propose
several optimizations (one for each quadrant) to introduce savings in the form of skipped tests,
thereby reducing the number of resets and executions required for each round of inference.

4.3.1 State Broadcast (OB )

If we were to assume that inferred states in Q A are correct once constructed, then cross-testing the
capabilities of individual snapshots within the same state becomes unnecessary. Working under
that assumption, equivalent snapshots always have the same capabilities, which we can evaluate as
a property of the state they belong to. For a state with N snapshots, it thus suffices to perform
at most m cross-tests, instead of m ×N . Discovered capabilities in QB are then broadcast to all
snapshots within a state, reducing the number of cross-tests:

c̃k = c̃k−1 +m(nk−1 + sk−1 +m −1)

= mk

[
α+1

2
m(k +1)−αm −1

]

The approximate reduction in total cross-tests is then:

(1−α)
k −1

2k
;when 1

m
≪ 1

In applying state broadcast as an optimization, the overhead of inference is distributed among
states, rather than snapshots. This results in higher prediction accuracy for “uncommon states”,
i.e., those with fewer snapshots, which are arguably of more interest to the fuzzer. Beyond the first
round of state inference (k > 1), cross-pollinating states—instead of snapshots—yields an overall
reduction of 1

2 (1−α) in the number of cross-tests performed. Thus, we make a trade-off in reducing
the initial and overall cost of state inference, at the risk of mislabeling snapshots.

4.3.2 Response Fingerprinting (OC )

After one round of state inference, we obtain a capability matrix in Q A. Each state and its associated
capability set serve as labeled data for training a decision tree (DT) classifier. Such a classifier
can optimally divide the input space, enabling us to primarily cross-test inputs which maximize
information gain, reducing the number of tests in QC .
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We fit a DT over this training data to infer response fingerprints: minimal subsets of capability
sets which are characteristic identifiers of states. The DT classifier yields a binary tree, where each
internal node tests for a capability, such that nodes closer to the root yield higher information gain.
Leaf nodes consequently carry a value indicating the most likely candidate state.

Following this procedure, for each new snapshot in the inference batch (QC ), we traverse the
DT from the root and query it for the next capability to test, until we hit a leaf node. At this
point, the candidate state is identified. The tested capabilities along the path form a subset of the
capability set of the candidate. Nonetheless, to reduce false positives, and to satisfy the rules of
subsumption, we extend the testing to all non-empty responses in the candidate’s capability set.

Consider the second round in fig. 4.6. We fit a DT over the capability sets of S̃0 : 〈L1,L2〉 and
S̃1 : 〈L3〉. In this simplistic example, a test on any of {L1,L2,L3} is enough to yield a classification.
With the given labels, it is thus sufficient to perform one test, instead of four, to classify a new
snapshot. A snapshot that passes the test has a capability set that matches that of S̃1, making
it at least equivalent. However, failing the test implies an empty capability set, yet the classifier
would predict S̃0. To properly test for equivalence, we must test against S̃0’s entire capability set
in the least (for a total of three tests). This allows us to properly classify L5 in fig. 4.6. Note
that, if the capability set of a new snapshot Lu matches that of the candidate state S̃v using DT
classifiers, we can only infer that S̃v ⪯+ Lu, since we do not have information about what we did
not test. Whether or not S̃v ≺ Lu, the result is then the same: a state S̃w = S̃v ∪ {Lu}. Combined
with coloring, this approach ensures that state inference remains consistent under sparsity. On
average, the reduction in the total number of crosstests is expressed as

1

4k

[
(k −2)(1+ α−1

k
)+αk

]

4.3.3 Test Extrapolation (OD)

With response fingerprinting, we can reduce the number of tests to be done in the QC quadrant
of fig. 4.6. However, QD remains to be fully tested. Building on top of the DT’s predictions, we
can leverage QB to extrapolate which tests in QD need to be applied. Instead of cross-testing all
m new snapshots against each other, we can reduce the cost of inference by extrapolating tests
from the new state capabilities.

After finding a candidate state to which each snapshot belongs, we populate QB to explore
the new capabilities of pre-labeled snapshots (i.e., those in Q A). We follow that by testing new
snapshots only against the new capabilities of their candidate states. As with response fingerprinting,
this process ensures correct subsumption conditions, minimizing the risk of mislabeling snapshots.
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4.4 T A N G O: The Framework

State inference extends the fuzzer’s knowledge base with information about the behavior of the
target, which could be leveraged for improving its exploration through (a) higher scheduling
efficiency over states; (b) training of state-specific models for inputs and mutators; and (c) better
approximation of state relations. Nonetheless, the technique introduces new definitions and requires
components which are not explicit in existing fuzzers or frameworks, such as snapshots, states, and
transitions. To assess and evaluate the feasibility and benefits of state inference, a whole re-write
and restructuring of the typical fuzzing workflow is needed. The lack of an existing framework for
state-aware fuzzing and the inflexibility of existing monolithic fuzzers motivated the design and
development of TA N G O: a modular and extensible state-aware fuzzing framework.

4.4.1 Workflow
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Figure 4.7 – The general workflow of the TA N G O framework.

Anchored around the notion of state-sensitivity, TA N G O generalizes over the traditional fuzzer
architecture and offers a flexible environment for developing tailor-made fuzzers of stateful systems.
The workflow is presented in fig. 4.7. In the context of a fuzzing Session, we 1 iteratively
step through a Strategy that governs the exploration and exploitation efforts of the fuzzer.
Provided with knowledge of the current state of the system, 2 the Strategy chooses a
target state to fuzz and invokes the Generator to construct a candidate input, suitable for
application under that state. The former then 3 forwards the input to the Explorer, which
4 ensures that the system occupies the target state, then 5 executes the input through its

Driver. With the help of the Tracker, 6 peeking into the new state of the system enables
the Explorer to record any observed changes. The latter then 7 forwards its findings over
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a callback to the Session, which 8 broadcasts any updates to concerned components, thus
closing the feedback loop.

4.4.2 Implementation

TA N G O is implemented in Python 3.11, for its flexibility and ease-of-use. It presented a good
back-end for developing TA N G O as a research-oriented tool for implementing and evaluating stateful
fuzzing techniques.

AsyncIO: Async I/O is a form of cooperative scheduling, where the application specifies when
control is returned to the scheduler. We built TA N G O as an asynchronous application to enable
graceful suspension of the fuzzer and extent its compatibility to event-driven systems, such as
DOOM.

Built-in Extensions: TA N G O ships with a set of complementary modules that enable it to fuzz
x86_64 processes on Linux-based systems, reload state through replayed inputs, measure and
classify SanitizerCoverage feedback, communicate over standard file descriptors and network sockets,
train state-specific mutators, and perform state inference. The various extensions are summarized
in section C.1.

Hotpluggable Inference: We implemented state inference both as a strategy for use in TA N G O,
and as a plug-in to third-party fuzzers such as AFL++ and Nyx-Net. We slightly augment the
scheduling routines of those fuzzers to incorporate the inference results generated by TA N G O

during a fuzzing campaign and provide them with state-specific feedback.

4.5 Evaluation

State inference is a mechanism for distilling behavioral patterns of the target through cross-testing its
snapshots against different inputs, to identify functionally-distinct states. To assess the effectiveness
of this technique and pinpoint its potential use cases, we address the following research questions
through distinct evaluation campaigns:

RQ1 What is the cost of cross-testing?
RQ2 How well do fuzzers distribute cycles to functionally-distinct snapshots?
RQ3 What is the potential reduction expected in queue sizes?
RQ4 How does code coverage correlate to state coverage in evaluating stateful fuzzers?
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4.5.1 Experimental Setup

To quantify the cost and benefits of a new technique, it must be compared against a baseline
where only key features are different. These features must then be tested individually. Since we
implemented state inference on top of TA N G O, we perform the parametric analysis with TA N G O

itself as the baseline, by toggling new features and sweeping over parameters. This enables us to
measure the induced effect of each new aspect by changing one variable at a time, discounting the
possible variances from runtime effects, implementation artifacts, or a richer set of mutators and
schedulers, such as those available in AFL++ [49].

To that end, we tackle RQ1 through a set of experiments on TA N G O - I N F E R, a version of
TA N G O configured to use state inference as a strategy. Furthermore, to assess the potential ineffi-
ciencies of scheduling functionally-equivalent snapshots (RQ2), we dispatch a set of campaigns to
state-of-the-art stateful fuzzers, collect their seed queues, and replay them through TA N G O - I N F E R

to find functional groupings among the fuzzers’ snapshots and analyze the skew of snapshots in
explored states. Additionally, for RQ3, we use the results of state inference on fuzzer queues to
approximate the expected reduction ratio α encountered across different targets. Finally, to assess
the practical advantage of state inference, we set up augmented fuzzing campaigns on top of
state-of-the-art baselines, where state inference is run periodically to condense the seed queue. To
answer RQ4, we report the achieved coverage with and without inference, and we measure the
benefit of state inference as the proportion of equivalence states discovered uniquely by each fuzzer.

We perform evaluations against version-anchored targets from the ProFuzzBench [113] suite,
in addition to a set of three stateful parsers: libexpat, yajl, and llhttp. While parsers are
traditionally considered stateless, our evaluation highlights their stateful nature, as well as TA N G O’s
flexibility in fuzzing diverse data channels. We run 24-hour campaigns, each with five trials to
account for randomness.

4.5.2 Empirical Overhead

During inference, the target is reset, and inputs are executed for cross-testing every cell in the
capability matrix. To assess the overhead of this operation, we measure the time spent by the
fuzzer and the number of tests performed, across varying settings of batch size m and enabled
optimizations.

Figure 4.8 shows the evolution of overhead as a function of time. At the start of a fuzzing
campaign, coverage grows rapidly, resulting in a high rate of snapshots and frequent invocations of
state inference. Initial seed coverage results in many snapshots being generated within the first few
epochs, further contributing to the spike in startup inference cost. As exploration speed tapers
off, the fuzzer continues to generate and execute inputs, progressively spending less of its time
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Figure 4.8 – The median overhead of state inference as the proportion of time spent cross-
testing, when optimizations are disabled (left) and enabled (right), as a function of time (logscale).
Measurements are repeated for increasing values of batch size m. Scatter plots along the curves
indicate the frequency of inference rounds: the lower m is, the more frequently inference is performed.
The line shows the expected overhead trend in the absence of optimizations.

on cross-testing. However, it leverages the knowledge gained from previous applications of state
inference to schedule its exploration more evenly across the functionally-distinct snapshot groups.
As discussed in section 4.2.4, it is essential to continuously apply inference on new snapshots.
Otherwise, the fuzzer regresses in the direction of high-density regions [22].

Optimizations to state inference reduce the ramp-up cost and allow the fuzzer to resume
normal operation faster. Figure 4.9 breaks down the trade-off between the introduced savings
and the sacrificed accuracy. Rather surprisingly, the impact on accuracy is limited, even with all
optimizations enabled. For a batch size of m = 50, enabling all optimizations yields over 80% in
savings, while still guaranteeing around 90% prediction accuracy. This explains the accelerated
drop in overhead seen in fig. 4.8: with optimization, overhead time drops below 20% by the 4-hour
mark, compared to the 24-hour interval observed when optimizations are disabled. Figure 4.9 also
highlights the effects of utilizing larger batches: they serve as a stronger basis for making correct
predictions, bearing in mind alternative strategies for accommodating to the non-linear nature of
exploration (see section 4.2.4).

One notable outlier is dnsmasq ($), which seems to introduce the most frequent misses.
Optimizations rely heavily on the results of previous rounds of state inference. If a grouping is
incorrectly established, it could remain divergent for the lifetime of the fuzzing campaign, especially
since, in our implementation, matching is not error-tolerant. In the case of dnsmasq, the inherently
stateless nature of the DNS protocol dictates that there is no functional difference when processing
successive inputs. However, if the fuzzer falsely generates distinct groupings, then future rounds of
inference, and optimizations within them, could propagate the errors (unless groups are merged
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Figure 4.9 – The hit accuracy of optimizations as a function of introduced savings. We fix the
batch size to m = 50 (left) to observe the effect of each optimization setting. We also measure the
effect of a varying batch size (right) with all optimizations enabled.

again under subsumption). Throughout our evaluations, nondeterminism and instability of the
targets were the leading cause for providing misleading feedback to the fuzzer. The precision of
the feedback metric—in our case, code coverage—and its non-correlation with program state also
pose as a source of inaccuracy, which could be alleviated through error tolerance.

4.5.3 Snapshots in Biased Queues

Whenever an evolutionary fuzzer encounters interesting coverage, it saves the input that caused
it in its seed queue. For stateful fuzzers, these seeds serve as snapshots to restore the target to
the reached state. To quantify the benefits that seed scheduling through state inference could
provide, we measure the distribution of fuzzer-generated snapshots across functionally-distinct
equivalence states. If we assume that a state-unaware fuzzer selects seeds from the queue with a
uniform distribution (i.e., it assumes that seeds are evenly spread across target functionality), then
we can assess the “surprise” [144] of sampling uniformly from a skewed population. We calculate
D̂K L(S||U), the Kullback-Leibler divergence [87], of the observed Snapshot-in-state distribution
against a Uniform reference, normalized by log (N ), where N is the total number of snapshots
observed in each campaign.

In this experiment, we run AFLNet, Nyx-Net, and TA N G O - I N F E R against compatible targets,
collect their seed queues, and apply state inference to extract snapshot groupings. We present the
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Figure 4.10 – Normalized values of the Kullback-Leibler divergence from uniformity of observed
snapshot-to-state distributions, illustrated through notched box-plots at 95% CI. Divergence is
calculated individually, for each seed queue, and data points are then overlaid as a % scatter plot.
The size of each marker is proportional to the number of snapshots N , normalized by the maximum
number of snapshots observed for its target across all campaigns.

results in fig. 4.10. A value D̂K L = 0 indicates that sampling the seed queue uniformly yields results
consistent with sampling a uniformly-distributed population, i.e., where there are equally as many
snapshots for every equivalence state discovered by the fuzzer. On the other end of the spectrum,
D̂K L = 1 implies that uniform sampling yields the highest surprise: whereas the fuzzer would expect
to be exploring different functionalities by cycling through its queue, it is likely tunnel-visioned by a
majority equivalence state. We observe that most measurements with a significant N possess high
divergence from uniformity. A fuzzer that samples its seed queue uniformly would be hindered by
duplicate efforts and a self-reinforcing equivalence state.

On the other hand, while fuzzers generally employ more complex seed scheduling mechanisms [22,
94, 145], those do not represent a replacement to state awareness. A schedule that prioritizes
snapshots unequally based on observed feedback inherently disregards the possible overlap of those
snapshots with others in their equivalence state. Equivalent snapshots exercise overlapping behavior,
insofar as cross-testing has not identified discrepancies that necessitate subdividing the group
into distinct functionalities. However, since fuzzing is incomplete, it may be that now-equivalent
snapshots may diverge in the future, given that they are sufficiently scheduled. A non-uniform
scheduling strategy may starve those snapshots of the time needed to explore their potential
capabilities, often in favor of the first one which uncovered interesting features.
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Figure 4.11 – The distributions of discovered snapshots that undergo state inference and the
resulting reduction ratio α = states/snapshots. The split kernel density plots display the estimated
probability density of the number of processed snapshots (left) and the corresponding reduction
ratio (right), whose data points from each campaign are denoted by % and o respectively.

4.5.4 Reduction Ratio α

The main advantage of state inference is condensing the seed queue into functionally-distinct
islands. This allows seed scheduling to be more balanced and reduces redundant exploration of the
same code regions. To assess the effect of state inference on queue size reduction, we measure the
number of snapshots generated by every campaign, and the corresponding number of discovered
groupings. In fig. 4.11, we report the reduction ratio α as the number of groupings (states) to the
number of snapshots.

We observe that dnsmasq is again a notable exception: most measurements yield an almost zero
reduction ratio. This serves as confirmation that state inference correctly identified the statelessness
of the DNS server in most experiments. Otherwise, the average reduction ratio is around 20%,
i.e., the queue is five times smaller. Combined with the results from section 4.5.2, this suggests
that, during later fuzzing stages, the fuzzer can cycle through its queue five times as fast, at a
diminishing cost.

The skewed distribution of seeds in fuzzing queues, combined with the potential for condensing
a queue down to 20% its original size, suggests that state-of-the-art fuzzers could benefit from
applying state inference to prune their queues and avoid tunnel vision towards high-density regions.
Continuous incremental application also ensures that new snapshots are incorporated and that the
fuzzer avoids regression towards non-uniformity.
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Figure 4.12 – Cross-inference results showing the distribution of overlapping and unique behaviors
discovered by stateful fuzzers with and without state inference.

4.5.5 Case Study on Cross-Inference

We implement state inference as a hotpluggable component to introduce state-aware scheduling to
two existing fuzzers: AFL++ (for the streaming parsers) and Nyx-Net (for the network servers).
The fuzzer and TA N G O share one physical core throughout the campaign. TA N G O continuously
checks for new inputs in the fuzzer’s seed queue and applies inference, exporting its results for use
by the fuzzer’s scheduler. TA N G O is also configured to export any interesting inputs it discovers
during cross-testing, further reducing its effective overhead.

We measure the code coverage achieved by both the unmodified and the augmented variants
of the fuzzers, and we present those in fig. 4.13. Since code coverage alone cannot capture
state information, we leverage state inference as a performance metric, through a process we call
cross-inference. Seeds obtained from two competing fuzzers are used to construct a snapshot tree,
upon which state inference is applied. We interpret the overlap and disjunction of those snapshots
in equivalence states as a measure of state coverage: states where all snapshots of fuzzer B
are subsumed by snapshots of fuzzer A are considered unique to A, without loss of generality.
Otherwise, we consider them overlapping. The results of this experiment are illustrated in fig. 4.12.

The experiments yield an interesting result: despite both fuzzers attaining similar code coverage,
state inference revealed distinctions in uncovered functionality, favoring the state-guided fuzzers.
The additional code covered by the unmodified fuzzers may not directly translate to state coverage:
“novel” paths may belong to the same equivalence state. Through our evaluation, state-guided
fuzzers uncovered two new bugs: a heap buffer overflow in dcmtk and a heap out-of-bounds read
in yajl.
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Figure 4.13 – Edge coverage collected from Nyx-Net (for network servers) and AFL++ (for parsers)
when running with and without the state inference extension. Plots show the mean coverage of
five campaigns, overlaid with the 95% CI.

4.6 Scope

In essence, state inference provides labels for snapshots with distinct behaviors. While it does not
come for free, its scope of application, through TA N G O or otherwise, spans multiple aspects of the
fuzzing stack:

Queue distillation: By applying state inference to an existing seed queue, we can identify the
smallest subset of seeds which exercises the most unique functionality. At its core, subsumption
presents a mechanism for solving the set cover problem, however while preserving cover membership
in the form of equivalence states.
Seed minimization: While seeds are typically minimized to achieve the same coverage map,
state inference offers an alternative selection criterion: functional equivalence. This offers larger
opportunities for minimization, as it expands the search to possibly smaller inputs within the same
state.
Out-of-band scheduling: While TA N G O’s flexibility provides a solid framework for prototyping
research concepts in stateful fuzzing, it is not optimized for production. However, more mature
fuzzers can still benefit by concurrently applying batched inference on their queues, leveraging state
awareness while continuing to fuzz at optimal speeds.
State extraction: State inference could also offer a more systematic, less parametric approach to
identifying state variables. By processing labeled snapshots, we can search for patterns in memory
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contents that best fit the provided groupings (i.e., overlaps within states and disjunctions among
them).
Performance metric: To assess the performance of a fuzzer relative to a baseline, it is possible
to perform cross-inference: test one fuzzer’s queue against the other’s pre-labeled seeds, in both
directions. This approach highlights distinctions in explored behavior by either fuzzer, providing a
meaningful measure of performance more suitable for evaluating stateful fuzzers.

4.7 Related Work

State-aware fuzzing: AFLNet [124] was among the first to tackle the problem of fuzzing network
targets while allowing state to accumulate. However, its requirement to manually annotate server
responses hindered adoption. Alternative techniques presented in SGFuzz [14], NSFuzz [131], and
StateAFL [112] addressed this issue through more automated, albeit less precise techniques for
state extraction. Nonetheless, those works focused on extracting state, not as a way to generate
protocol-compliant inputs, but as a labeling mechanism for discovered inputs. State inference in
TA N G O makes this mechanism more explicit by exploring functional overlaps.
Seed scheduling: While seed scheduling is a well-researched problem in fuzzing [66, 145, 158],
state inference is the first to address it in the context of stateful systems. Existing techniques do
not account for persistent effects of executing seeds; they perform their analysis retrospectively.
In contrast, state inference runs a prospective analysis, finding overlaps in the traces of inputs
executed after the seed instead.

4.8 T A N G O Summary

Research on stateful fuzzing continued where its stateless counterpart left off. While much of
the progress on the latter was of great benefit to this field, it still managed to imprint methods
and assumptions that are otherwise not suited for stateful fuzzing. In this chapter, we re-assess
the definition of states and how they fit into the fuzzing stack. We present a method to identify
semantic behavior through the use of portable metrics, in a technique we dub "State Inference". In
the process, we design and implement TA N G O, a state-aware fuzzing framework for bootstrapping
research in this domain. Through evaluation, we identify a key observation: fuzzers could potentially
spend upwards of 80% of their time being tunnel-visioned or duplicating their efforts. By applying
our technique, fuzzers can leverage state awareness for more optimal scheduling, at a diminishing
amortized cost. State inference is also applicable in other stages of the fuzzing cycle, from seed
minimization and distillation, through unsupervised state extraction, to better-grounded performance
evaluation.
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Chapter 5

S E N S E I: Input Structure-Aware Fuzzing
through Selective Feedback

When all you have is a hammer, everything
looks like a nail.

Abraham Maslow

Systems of interest are often complex and stateful. To find bugs in them requires well-guided
exploration as well as effective input mutation. We aim to tackle the challenges in fuzzing
network servers through protocol-specific feedback and parser-guided input generation by leveraging
Wireshark dissectors. This chapter serves as an outline for future work in this direction.

Hypothesis 4

Generating high quality inputs is pivotal to a fuzzer’s ability to explore a complex system.
In the lack of a specification, domain knowledge encoded in consumer programs can be
leveraged to guide input generation.
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In evolutionary fuzzers, exploration is guided by feedback and executed through input selection
and scheduling. Starting from an initial population of seeds, inputs are generated through mutation
and cross-over, and filtered based on feedback. This mechanism enables domain-specific exploration
without domain-specific knowledge, simply by maximizing an objective function, which is commonly
code coverage. Despite its simplicity, this genetic algorithm can only be effective if (a) the feedback
correlates with the objective, and (b) the mutations drive exploration towards the objective.

The true objective of a fuzzer is to find bugs, but without knowing where the bugs are, it is
impossible to define a meaningful objective function. Instead, fuzzers optimize a proxy metric
that correlates with the distance to bugs, which is predominantly code coverage: the more code is
covered, the closer we are to buggy code and to triggering bugs. But code coverage does not tell
the whole story.

Bugs in data

Example 5.1 Consider a fuzzing target which implements the following Python script:

1 # Extract first characters from user's name
2 name = input("What's your name?")
3 try:
4 offset = int(input("Until where would you like to extract?"))
5 except ValueError ex:
6 # if user inputs something other than a number
7 raise RuntimeError("I need a number!") from ex
8 for i in range(offset):
9 print(name[i])

A bug exists on line 9, where i could have a value outside the bounds of the input name.

The developer decides to deploy their script as an executable, so they embed a Python
interpreter into their binary. For simplicity, let’s assume the interpreter is implemented as:

1 uint8_t *bytecode = /*...*/ ;
2 size_t sz = /*...*/ , pc = 0;
3 while (pc >= 0)
4 process_instruction(bytecode, sz, &pc);

process_instruction() looks up the current instruction in a table of pre-compiled
functions and merely calls the function with its arguments.

From the fuzzer’s perspective, the code it is fuzzing is that of the interpreter’s. Within the
first loop, code coverage would essentially be saturated. However, that would translate to
executing only the first instruction of the Python script. For the rest of the execution, and
in subsequent iterations, the fuzzer would not detect any new coverage. Consequently, its
progress is hampered, since maximizing code coverage does not translate to exploring more
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functionality in the target, where functionality is defined here in the bytecode data. The
search space to be covered by a fuzzer is vast and limitless, so a guided search is key for
effective exploration. If the observed metric was otherwise the value of pc, then it would
have correlated better with the proxy objective of covering more Python code.

The performance of a fuzzer depends on the feedback it observes. But feedback from complex
targets can be noisy : such targets often implement auxiliary functionalities and error-handling
routines which could misguide the fuzzer and drive exploration away from points of interest. Without
domain knowledge, it is not possible to distill the metrics of interest from the feedback. Nonetheless,
domain knowledge can be readily available, as is the case of network protocol dissectors.

Dissectors, such as those in Wireshark, are information-dense: they encode domain knowledge
by mainly implementing the parsing semantics of the protocol. Error-handling is minimal, and
inputs are not processed past the point of parsing. Dissectors are also fast, as they run only in
user-space. Additionally, they use a unified API for parsing, which is easy to instrument, and the
instrumentation would be transferable. Wireshark ships with over a thousand different dissectors,
making them a good source of feedback for input generation in fuzzers.

5.1 Background

Fuzzing owes its bug-finding advantage largely to its search mechanisms: genetic algorithms and
hill-climbing. Through genetic mutations, a fuzzer ensures a constant stream of diverse, yet
well-selected inputs that are likely to discover new behaviors in the target. Hill-climbing then
drives the fuzzer in the direction of maximizing a certain objective, which is most commonly code
coverage.

The genetic algorithm in fuzzing simply adds a new input to the population of interesting
inputs whenever it discovers any new behavior, namely in the case of code coverage, whenever,
e.g., a new line of code or block of instructions has been executed for the first time. The fuzzer
has no insight into what that newly-found code is relevant for, or if it is searching in the “right”
direction, i.e., generating inputs that are more likely to trigger bugs. As is often the case, fuzzers
get stuck in shallow code regions due to the fact that structured inputs are fragile: a small mutation
might invalidate the entire structure, setting the fuzzer back at the early stages of parsing. In that
case, a fuzzer is then less likely to be able to break through the parsing component, and is more
amenable to exploring other adjacent code regions that cover, e.g., error-handling of invalid inputs.
Unable to discriminate, the fuzzer would then inadvertently search in the direction of more invalid
inputs to cover more cases in the error-handling code. While there’s certainly merit to covering all
code—meaning that error-handling code is not guaranteed to be error-free and is possibly worth
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exploring—it is often the case that we are interested in more complex behaviors in the target, which
typically lie past the parsing stage.

Error paths are not the only source of noise in the fuzzer’s feedback channel. In the target,
components and routines that process the input, prepare the output, or set up internal state, all
contribute to the collected feedback. Without being selective about which feedback sources to
listen to, or without the ability to assess the relevance of each source to its goal of finding bugs, the
fuzzer is overwhelmed with information, which hinders its search progress. Component boundaries
are seldom well-defined in software or accessible to the fuzzer. Lacking domain knowledge and
manual annotations, it is not possible for the fuzzer to scope out relevant parts from the feedback.

Domain Knowledge

Definition 5.1 Domain knowledge refers to auxiliary information that is not typically
encoded in the source code, but is rather available either through written specification or the
developer’s intent.

While knowledge of component boundaries is not available to the fuzzer, the specification of
the input format is directly encoded in the parsing component, and with access to that knowledge
(through, e.g., coverage over the parser’s code), the fuzzer can generate inputs that better represent
the specification.

It follows from these constraints that the most fitting target to fuzz in order to generate valid
inputs would be a dedicated parsing component, or in other words, a byte stream dissector. One
such source of dissectors is Wireshark, a network protocol analyzer that implements dedicated
parsers for message types and binary structures of over 1,500 network protocols and file formats.

In this chapter, we explore the use of dissectors as a selective source of feedback for guiding
the exploration of more complex targets.

5.2 Dissector-guided Fuzzing

We propose a design for a fuzzer that leverages dissectors for exploration and mutation. Our design
builds on top of two pillars:

Co-evolutionary Exploration To guide the fuzzer in exploring a target, we leverage the dissector
as an oracle for the quality of an input before it is sent to the target. While the main goal is to
explore and evaluate the target, exploring the dissector provides more direct access to high-quality
inputs. Dissectors implement the parsing logic of a protocol, leaving out most of the remaining
functionality to the complete implementations. Our design opts for co-evolution of exploration
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in both the target and the dissector, enabling us to fuzz the dissector in-breadth, to cover the
different input formats, and the target in-depth, to exercise the different functionalities.

Multi-objective Optimization Dissectors are information-rich and follow a unified API for parsing.
Knowledge of the parser’s state and progress is readily available and provides good metrics for
input quality, e.g., parsed fields, enum coverage, input byte coverage, and dissector code coverage,
among many others. Since these metrics are often interdependent, the fuzzer would benefit from
maximizing them simultaneously. While fuzzers mostly implement single-objective evolution, recent
works [107, 161, 175] have explored the incorporation of multi-objective optimization in fuzzers.
We leverage it in our design to optimize all the different metrics for the simultaneous exploration
of both the target and the fuzzer.

We implement S E N S E I as a two-stage fuzzing pipeline: Specialization and Generalization
(later referred to as S and G, respectively). In the Specialization stage, we fuzz a Wireshark
dissector, using dissector-specific metrics, namely (i) parse-tree coverage; (ii) input coverage; and
(iii) dissector code coverage.

Wireshark dissectors consume a sequence of bytes and dissect it into a parse tree. At the root
of the tree is the byte sequence itself, the root field, from which sub-fields stem out to form the
tree structure. Each field, i.e., node, has a certain type (e.g., checksum or bit field) specific to the
dissector, and holds a part of the input byte sequence. Parse-tree coverage thus represents the
parsed fields and the different nesting levels. Higher parse-tree coverage implies parsing a diverse
set of fields at different depths.

An input with high parse-tree coverage could suffer from a large size: to cover many different
fields, the fuzzer may search in the direction of larger inputs, possibly inserting redundant or
un-parsed bytes in the process. These bytes increase the size of the input and could slow down its
transmission to and processing in the target. To coerce the fuzzer to reduce unutilized bytes in the
input, we maximize input coverage, representing the ratio of parsed bytes to the total number of
bytes in the sequence. Maximizing input coverage alone is also disadvantageous: an input of length
one could have 100% input coverage without exploring any interesting fields in the dissector.

Finally, dissector coverage provides an indicator of the different aspects of the input grammar,
e.g., different packet types and edge cases, allowing the fuzzer to explore more of the grammar to
trigger interesting functionalities in the target. However, as with the other metrics, maximizing
code coverage alone does not come without disadvantages: the fuzzer may get tunnel-visioned by
one packet type or field type, as it covers more and more edge cases and triggers longer processing
paths, without making meaningful progress in exploring the input grammar.

During Specialization, we simultaneously optimize all these metrics through multi-objective
optimization. We opt for the NSGA-II [38] algorithm, as its mode of operation coincides with
our optimization goals: it drives exploration towards Pareto-optimal solutions while ensuring the
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diversity of selected solutions along the different objectives. The output of this stage is a set
of grammar-optimized inputs that serve as high-quality seeds for bootstrapping the next stage,
Generalization. In the Generalization stage, we employ an off-the-shelf fuzzer, compatible with the
target, e.g., a stateful fuzzer like Nyx-Net [141]. The output of S is continuously synchronized
with G, as both stages run simultaneously to make progress in both the dissector and the target.

5.3 Preliminary Evaluation and Limitations

We implemented S E N S E I’s Specialization stage as a libFuzzer stub, where we modified the runtime
of the fuzzer to incorporate feedback collected from the dissector by hooking its API. Then, we
set up the pipeline from S to G through an inotify-enabled observer that copies the interesting
inputs saved in the queue of S into a synchronization directory for G, applying any necessary
transformations in the process (e.g., converting the raw inputs to a structure understood by
Nyx-Net).

A preliminary evaluation revealed a major limitation of the two-stage approach: the fuzzer in
G does not have access to dissector-specific metrics from S upon which the interesting-ness of
the inputs was decided. As such, using only code coverage to justify whether or not a seed should
be imported, G ends up discarding most seeds from S. We found that, of the hundreds of seeds
generated by S, around 10–20 were imported into G on average, greatly impacting the efficacy of
this two-stage architecture.

Furthermore, the lack of synchronization from G to S could equally impact progress on the
dissector. The target fuzzed in G is likely to incorporate a more comprehensive parser which encodes
finer details of the input grammar as it is often required to be standard-compliant. Dissectors, on
the other hand, are implemented with looser requirements, as the specificities of the different fields
are not critical to the functional operation of the dissector. This could leave the S fuzzer struggling
in exploring the dissector, as it tries to make large steps towards the next “best solution”, whereas
the G fuzzer can explore the input space through more incremental steps. Providing S with access
to these intermediate solutions from G could equally bootstrap exploration of the dissector.

5.4 Future Work

Dissectors encode a plethora of information, of which we covered a part through the metrics we
introduced earlier. To make full use of the domain knowledge accessible to the fuzzer, we propose
two architectural changes to S E N S E I that aim to better incorporate dissector-specific feedback
into the fuzzing process.
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Input

Feedback

Input

Feedback
Unified Scheduling

Synchronous Fuzzing

Figure 5.1 – Transforming the two-stage pipeline into a unified architecture. Changes are represented
through deletions and additions to the work-flow of the pipeline. Unification achieves synchronization
and information sharing between the two stages.

5.4.1 Unified Scheduling

The two-stage pipeline design imposes an inherent limitation: the two fuzzers operate independently
without sharing feedback. This drawback impacts the effectiveness of the fuzzing process, since
(a) the fuzzers run concurrently, possibly contending on available compute resources; and (b) the
first stage poses an overhead with diminishing return, due to the restricted synchronization process.

To address these drawbacks, we propose unifying the two stages into one fuzzing loop, as
illustrated in fig. 5.1. In this configuration, the scheduler oversees both the dissector and the target
and incorporates all collected feedback into one global multi-objective search over the input space,
optimizing for both input quality and exploration of the target. Instead of having the two stages
run concurrently and independently, a unified design would run them sequentially, enabling the
fuzzer to collect feedback about the same input from both stages. This change also limits the
overhead of the first stage to the execution cost of that input, which is typically very small, due to
the simplicity and compactness of dissector code.

5.4.2 Type-Aware Mutations

We can extract an additional aspect about parsed fields, which is their shape and type information.
By hooking the accessor functions to the input byte sequence, we can intercept the read requests
made by the dissector and query the fuzzer to generate data tailored to the field being parsed.

In this approach, the dissector is first invoked to initiate the parsing process. Whenever the input
buffer is accessed, parsing is suspended, and the fuzzer receives information about the requested
field. By applying type-aware mutations, the fuzzer generates a value for that field and sends it
back to the dissector, which resumes parsing and repeats the exchange until termination. This
process is further illustrated in fig. 5.2.
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Chapter 5. S E N S E I: Input Structure-Aware Fuzzing through Selective Feedback

Dissector Fuzzer

field<id, type, size, offset>

tvb_wait()
d = parse(FLOAT);

...
if (d > 0.f)

s = parse(STRINGZ);

inp[offset] = gen(
id, type, size);<partial input>

tvb_update()

feedback<parsed, bytes, coverage>

FIN

...

return; execute(inp);

Figure 5.2 – On-demand type-aware input generation.

5.5 Related Work

Multi-objective Optimization State-of-the-art fuzzers continue to use single-objective genetic
algorithms. However, multi-objective optimization in fuzzing has been the subject of research
in recent years. Co-evolution is the most common approach, where multiple sets of test inputs
concurrently evolve through distinct fitness functions. For instance, AFL-HR [107] utilizes a
specialized fitness metric, known as headroom, to identify vulnerabilities. It then employs a co-
evolutionary algorithm to prioritize test inputs based on both code coverage and headroom metrics.
Other metrics like memory usage [164] and execution counts [89] have also been incorporated into
co-evolutionary models. FuzzFactory [116] offers a framework for instrumenting and co-evolving
various domain-specific goals. The approach adopted by MobFuzz [175] more closely resembles our
goals, achieving true simultaneous multi-objective optimization.

Generator and Consumer Guidance The idea of leveraging domain knowledge encoded in parsers
like file dissectors, or generators like network clients, is not novel. Namely, FormatFuzzer [43]
provides a transpiler that converts dissector specifications, for the 010 Editor commercial software,
into a structure-aware generator. Fuzztruction [17] leverages domain knowledge encoded in file
generators by modeling those generators themselves as a “structure-aware” mutation function. By
injecting faults into the generators themselves, the fuzzer introduces mutations into the input
generation routines, yielding semi-valid inputs that probe deeper into the target.

Network Protocol Fuzzing Stateful fuzzing, especially for network protocols, presents many new
challenges. State identification and scheduling by itself can be a major hurdle for fuzzers, as we
saw in chapter 4. But state scheduling alone is not sufficient, since the fuzzer is still tasked with
finding new inputs to explore different states. Previous research in this direction, by Fan et al. [47]
and by Zhao et al. [176], focused on learning the message grammars and sequences from recorded
traffic. Other research directions [1, 74] tackled grammar extraction from textual specifications for
guiding input generation in fuzzers.
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5.6. Upcoming Challenges

To our knowledge, leveraging domain knowledge in Wireshark dissectors, combined with multi-
objective optimization, is a novel research area, yet it holds merit, based on the results of previous
incremental work in this direction.

5.6 Upcoming Challenges

In implementing and evaluating this design, it is inevitable that obstacles will be encountered:

Instrumentation Although the dissectors follow a unified API provided by Wireshark, the set
of provided functions is large and complex. To correctly hook each function and collect
the relevant parameters from it may require a great deal of manual effort. Nonetheless, it
would be a one-time cost, since the instrumentation is then transferable across all dissectors.
Another hurdle in instrumentation could be the unavailability of some field metadata at
the time the data is requested through the TVB, i.e., the function call does not provide all
the information available to the parser. To address that, it might be necessary to perform
data-flow tracking within the dissector, in the vicinity of TVB-accessors, to identify sources
and sinks and map the requested data to the field it will eventually populate. An alternative
approach would be to “speculatively execute” the dissector past the data request—by giving
it dummy bytes—and observe which fields it populates next, ensuring that the dummy data
matches the data placed in the field.

Scheduling In employing multi-objective optimization, the fuzzer would have to balance its
exploration and exploitation efforts across all optimized metrics. This would require a careful
formulation of the power schedules, targeting high-value inputs while avoiding tunnel vision
by diversifying the exploration of less optimal inputs. It’s important to note that dissectors
and targets may respond very differently across the observed metrics, and that the choice of
the optimization algorithm should be made to ensure adaptivity of the fuzzer under different
configurations. For instance, following the naïve approach of assigning static weights to
different metrics could bias the fuzzer towards some targets that respond well to maximizing
a certain metric, while hindering its ability to effectively explore other targets where that
metric is of much less significance.

Statefulness The challenges arising from stateful fuzzing compound on top of the ones mentioned
here so far. Although Wireshark dissectors are written for inspecting and analyzing the
traffic from network protocols, they mainly target the parsing of protocol messages, encoding
little information about the protocol state or expected behavior. Some dissectors provide
expert info to encode additional information, such as the validity of a TCP segment sequence
number or the lack of a response for an ICMP request. However, this interface is mostly ad
hoc and does not follow a specific format from which data can be directly extracted. As such,
extracting state information from dissectors may not be possible, or at least not reliably.
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Chapter 6

Summary

Fuzzing’s utility has been well-recognized for automating test case generation; however, its efficacy
is often impeded by the limitations of the underlying progress and performance metrics. To that
end, this work undertakes three projects—M A G M A, I G O R, and TA N G O—that offer targeted
advancements in metrics used for fuzzer evaluation and development.

M A G M A addresses the lack of standard benchmarks for fuzzer evaluation by introducing an
objective assessment platform based in ground-truth. Using real-world bugs and carefully-designed
metrics, M A G M A reveals the shortcomings of relying solely on crash counts or code coverage for
fuzzer performance comparison.

I G O R focuses on refining crash de-duplication techniques. By employing a novel metric based
on control-flow graph similarity comparisons over minimized execution traces, I G O R demonstrates
its effectiveness in reducing inflated unique bug counts and distilling bug reports, thereby enabling
faster development and triaging cycles.

TA N G O delves into the exploration of state spaces in complex systems. By incorporating state
as an explicit metric, TA N G O enhances a fuzzer’s ability to navigate stateful systems. This effort
also reveals that traditional code coverage metrics are inadequate for dealing with stateful systems,
often causing fuzzers to be inefficient in scheduling their seed queues.

Collectively, these projects underscore the importance of employing intricate metrics that go
beyond crash counts and code coverage. They offer empirical proof that optimizing for such
metrics results in more effective fuzzing across a spectrum of software systems. Advanced metrics,
capturing deeper aspects of state and semantics, are thus pivotal for enhancing the efficacy of
fuzzing techniques in increasingly complex software landscapes.
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Chapter 7

Closing Thoughts

Over the past decade, research on fuzzing has witnessed a shift in philosophies:

• Fuzzing is a random walk → Fuzzing is a guided search
• Targets are programs → Targets are systems
• Inputs are bytes → Inputs are data

What started out as random bit flips in CLI inputs later evolved into data-type- and system-type-
agnostic testing. Nowadays, fuzzers are used to assess the security of systems spanning autonomous
cars, smart contracts, embedded systems, video games, you name it. The complexity of the systems
that fuzzers are exposed to has skyrocketed, yet, we continue to rely on simplistic feedback that
stands no chance for capturing the intricacies and complexities of those systems. In short, we are
asking too much of current fuzzers.

The contemporary challenges to fuzzing, as outlined in this dissertation, reveal a fundamental
weakness in our approach to fuzzing: we assume fuzzers are intelligent, when in fact, they are not.

In detecting bugs, sanitizers provide a good indicator for violations of language semantics.
Countless memory corruption bugs have been found and fixed as a result of sanitization, leading to
the conclusion that memory safety bugs are the most abundant. But that begs the question, whether
the real distribution of bugs is actually shifted towards memory safety, or whether our observations
are biased by the lack of tooling to identify other bug types. There is certainly no shortage of
semantic and logic bugs, as evident in recent years with exploits like that in log4j and side-channel
attacks in CPUs wreaking havoc at a global scale. It is important to reiterate the nature of bugs:
they are deviations from expected behavior. Without setting proper expectations, classes of bugs
beyond memory and type safety will continue to elude us. We need smarter decision-making, and
more informed fuzzers.

If we want to target complex systems in reasonable time, some “intelligent” decision-making
ought to be incorporated into fault detection, exploration strategies, and distilling feedback. That
could come either from human-in-the-loop design, or outsourced to the rather advanced ML tools
that we have nowadays, and which continue to prove their impact in real-world applications.
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Appendix A. M A G M A Bugs and Reports

Table A.1 – The bugs injected into M A G M A, and the original bug reports. Of the 118 bugs, 78
bugs (66%) have a scope measure of one. Although most single-scope bugs can be ported with an
automatic technique, relying on such a technique would produce fewer and lower-quality canaries.
PoVs of (∗)-marked bugs are sourced from bug reports.

Bug ID Report Class PoV Scopes

lib
pn

g

AAH001 CVE-2018-13785 Integer overflow, divide by zero ✓ 1
AAH002∗ CVE-2019-7317 Use-after-free ✓ 4
AAH003 CVE-2015-8472 API inconsistency ✓ 2
AAH004 CVE-2015-0973 Integer overflow ✗ 1
AAH005∗ CVE-2014-9495 Integer overflow, Buffer overflow ✓ 1
AAH007 (Unspecified) Memory leak ✓ 2
AAH008 CVE-2013-6954 0-pointer dereference ✓ 2

lib
tiff

AAH009 CVE-2016-9535 Heap buffer overflow ✓ 1
AAH010 CVE-2016-5314 Heap buffer overflow ✓ 1
AAH011 CVE-2016-10266 Divide by zero ✗ 2
AAH012 CVE-2016-10267 Divide by zero ✗ 1
AAH013 CVE-2016-10269 OOB read ✓ 1
AAH014 CVE-2016-10269 OOB read ✓ 1
AAH015 CVE-2016-10270 OOB read ✓ 4
AAH016 CVE-2015-8784 Heap buffer overflow ✓ 1
AAH017 CVE-2019-7663 0-pointer dereference ✓ 1
AAH018∗ CVE-2018-8905 Heap buffer underflow ✓ 1
AAH019 CVE-2018-7456 OOB read ✗ 1
AAH020 CVE-2016-3658 Heap buffer overflow ✓ 2
AAH021 CVE-2018-18557 OOB write ✗ 2
AAH022 CVE-2017-11613 Resource Exhaustion ✓ 2

lib
xm

l2

AAH024 CVE-2017-9047 Stack buffer overflow ✓ 2
AAH025 CVE-2017-0663 Type confusion ✓ 1
AAH026 CVE-2017-7375 XML external entity ✓ 1
AAH027 CVE-2018-14567 Resource exhaustion ✗ 1
AAH028 CVE-2017-5130 Integer overflow, heap corruption ✗ 1
AAH029 CVE-2017-9048 Stack buffer overflow ✓ 2
AAH030 CVE-2017-8872 OOB read ✗ 2
AAH031 ISSUE #58 (gitlab) OOB read ✗ 1
AAH032 CVE-2015-8317 OOB read ✓ 2
AAH033 CVE-2016-4449 XML external entity ✗ 1
AAH034 CVE-2016-1834 Heap buffer overflow ✗ 2
AAH035 CVE-2016-1836 Use-after-free ✓ 2
AAH036 CVE-2016-1837 Use-after-free ✗ 1
AAH037 CVE-2016-1838 Heap buffer overread ✓ 2
AAH038 CVE-2016-1839 Heap buffer overread ✗ 1
AAH039 BUG 758518 Heap buffer overread ✗ 1
AAH040 CVE-2016-1840 Heap buffer overflow ✗ 1
AAH041 CVE-2016-1762 Heap buffer overread ✓ 1

po
pp

ler

AAH042 CVE-2019-14494 Divide-by-zero ✓ 1
AAH043 CVE-2019-9959 Resource exhaustion (memory) ✓ 1
AAH045 CVE-2017-9865 Stack buffer overflow ✓ 4
AAH046 CVE-2019-10873 0-pointer dereference ✓ 2
AAH047∗ CVE-2019-12293 Heap buffer overread ✓ 1
AAH048 CVE-2019-10872 Heap buffer overflow ✓ 3
AAH049 CVE-2019-9200 Heap buffer underwrite ✓ 1
AAH050 Bug #106061 Divide-by-zero ✓ 1
AAH051∗ ossfuzz/8499 Integer overflow ✓ 1
AAH052 Bug #101366 0-pointer dereference ✓ 1
JCH201 CVE-2019-7310 Heap buffer overflow ✓ 1
JCH202 CVE-2018-21009 Integer overflow ✗ 1
JCH203 CVE-2018-20650 Type confusion ✗ 2
JCH204 CVE-2018-20481 0-pointer dereference ✗ 1
JCH206 CVE-2018-19058 Type confusion ✗ 2
JCH207 CVE-2018-13988 OOB read ✓ 1
JCH208 CVE-2019-12360 Stack buffer overflow ✗ 1
JCH209 CVE-2018-10768 0-pointer dereference ✓ 1
JCH210 CVE-2017-9776 Integer overflow ✓ 1
JCH211 CVE-2017-18267 Resource exhaustion (CPU) ✗ 1
JCH212 CVE-2017-14617 Divide-by-zero ✓ 1
JCH214 CVE-2019-12493 Stack buffer overread ✗ 3

Bug ID Report Class PoV Scopes

op
en

ss
l

AAH054 CVE-2016-2842 OOB write ✗ 5
AAH055 CVE-2016-2108 OOB read ✓ 5
AAH056 CVE-2016-6309 Use-after-free ✓ 1
AAH057 CVE-2016-2109 Resource exhaustion (memory) ✗ 2
AAH058 CVE-2016-2176 Stack buffer overread ✗ 2
AAH059 CVE-2016-6304 Resource exhaustion (memory) ✗ 3
MAE100 CVE-2016-2105 Integer overflow ✗ 1
MAE102 CVE-2016-6303 Integer overflow ✗ 1
MAE103 CVE-2017-3730 0-pointer dereference ✗ 1
MAE104 CVE-2017-3735 OOB read ✓ 1
MAE105 CVE-2016-0797 Integer overflow ✗ 2
MAE106 CVE-2015-1790 0-pointer dereference ✗ 2
MAE107 CVE-2015-0288 0-pointer dereference ✗ 1
MAE108 CVE-2015-0208 0-pointer dereference ✗ 1
MAE109 CVE-2015-0286 Type confusion ✗ 1
MAE110 CVE-2015-0289 0-pointer dereference ✗ 1
MAE111 CVE-2015-1788 Resource exhaustion (CPU) ✗ 1
MAE112 CVE-2016-7052 0-pointer dereference ✗ 1
MAE113 CVE-2016-6308 Resource exhaustion (memory) ✗ 2
MAE114 CVE-2016-6305 Resource exhaustion (CPU) ✗ 1
MAE115 CVE-2016-6302 OOB read ✓ 1

sq
lit

e3

JCH214 CVE-2019-9936 Heap buffer overflow ✗ 1
JCH215 CVE-2019-20218 Stack buffer overread ✓ 1
JCH216 CVE-2019-19923 0-pointer dereference ✓ 1
JCH217 CVE-2019-19959 OOB read ✗ 1
JCH218 CVE-2019-19925 0-pointer dereference ✗ 1
JCH219 CVE-2019-19244 OOB read ✗ 2
JCH220 CVE-2018-8740 0-pointer dereference ✗ 1
JCH221 CVE-2017-15286 0-pointer dereference ✗ 1
JCH222 CVE-2017-2520 Heap buffer overflow ✗ 2
JCH223 CVE-2017-2518 Use-after-free ✓ 1
JCH225 CVE-2017-10989 Heap buffer overflow ✗ 1
JCH226 CVE-2019-19646 Logical error ✓ 2
JCH227 CVE-2013-7443 Heap buffer overflow ✓ 1
JCH228 CVE-2019-19926 Logical error ✓ 1
JCH229 CVE-2019-19317 Resource exhaustion (memory) ✓ 1
JCH230 CVE-2015-3415 Double-free ✗ 1
JCH231 CVE-2020-9327 0-pointer dereference ✗ 3
JCH232 CVE-2015-3414 Uninitialized memory access ✓ 1
JCH233 CVE-2015-3416 Stack buffer overflow ✗ 1
JCH234 CVE-2019-19880 0-pointer dereference ✗ 1

ph
p

MAE002 CVE-2019-9021 Heap buffer overread ✗ 1
MAE004 CVE-2019-9641 Uninitialized memory access ✗ 1
MAE006 CVE-2019-11041 OOB read ✗ 1
MAE008 CVE-2019-11034 OOB read ✓ 1
MAE009 CVE-2019-11039 OOB read ✗ 1
MAE010 CVE-2019-11040 Heap buffer overflow ✗ 1
MAE011 CVE-2018-20783 OOB read ✗ 3
MAE012 CVE-2019-9022 OOB read ✗ 2
MAE014 CVE-2019-9638 Uninitialized memory access ✓ 1
MAE015 CVE-2019-9640 OOB read ✗ 2
MAE016 CVE-2018-14883 Heap buffer overread ✓ 2
MAE017 CVE-2018-7584 Stack buffer underread ✗ 1
MAE018 CVE-2017-11362 Stack buffer overflow ✗ 1
MAE019 CVE-2014-9912 OOB write ✗ 1
MAE020 CVE-2016-10159 Integer overflow ✗ 2
MAE021 CVE-2016-7414 OOB read ✗ 2
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Table A.2 – Mean bug survival times—both Reached and Triggered—over a 24-hour period, in
seconds, minutes, and hours. Bugs are sorted by “difficulty” (mean times). The best performing
fuzzer is highlighted in green (ties are not included).

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH037 10.00s 20.00s 10.00s 10.00s 10.00s 45.50s 5.00s 15.00s 5.00s 15.00s 5.00s 15.00s 10.00s 25.50s 7.86s 20.86s
AAH041 15.00s 21.00s 10.00s 10.00s 15.00s 48.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 15.00s 30.00s 12.14s 22.00s
AAH003 10.00s 16.00s 10.00s 11.00s 10.00s 15.00s 5.00s 10.00s 5.00s 10.00s 5.00s 10.00s 10.00s 1.58m 7.86s 23.86s
JCH207 10.00s 1.12m 5.00s 1.57m 10.00s 1.94m 5.00s 2.05m 5.00s 1.60m 5.00s 1.42m 10.00s 1.62m 7.14s 1.62m
AAH056 15.00s 14.57m 10.00s 14.43m 15.00s 19.49m 10.00s 13.07m 10.00s 11.27m 10.00s 8.17m 15.00s 17.80m 12.14s 14.11m
AAH015 32.50s 1.57m 10.00s 13.50s 27.00s 17.50m 1.18m 34.59m 52.00s 10.84m 1.07m 10.86m 15.07m 1.02h 2.76m 19.55m
AAH055 15.00s 40.86m 10.00s 2.71m 15.00s 3.62h 10.00s 25.01m 10.00s 2.24h 10.00s 6.36h 15.00s 2.44h 12.14s 2.26h
AAH020 5.00s 2.32h 5.00s 2.12h 5.00s 31.62m 5.00s 2.01h 5.00s 55.17m 5.00s 49.92m 5.00s 11.22h 5.00s 2.85h
MAE016 10.00s 1.57m 5.00s 10.00s 10.00s 5.79m 5.00s 3.97m 5.00s 4.93m 5.00s 2.21h 24.00h 24.00h 3.43h 3.78h
AAH052 15.00s 3.17m 15.00s 14.10m 15.00s 45.03m 10.00s 3.94h 10.00s 10.56h 10.00s 12.02h 15.00s 5.28m 12.86s 3.95h
AAH032 15.00s 3.38m 5.00s 2.06m 15.00s 1.65h 10.00s 3.22h 10.00s 34.19m 10.00s 9.67h 15.00s 12.95h 11.43s 4.02h
MAE008 15.00s 1.42h 10.00s 9.73h 15.00s 1.44m 10.00s 1.14m 10.00s 1.54m 10.00s 12.08h 24.00h 24.00h 3.43h 6.76h
AAH022 32.50s 54.98m 10.00s 34.86m 27.00s 3.47h 1.18m 9.38h 52.00s 5.66h 1.07m 14.04h 15.07m 15.25h 2.76m 7.04h
MAE014 15.00s 1.11h 10.00s 4.11h 15.00s 14.52m 10.00s 5.58m 10.00s 8.28m 10.00s 21.83h 24.00h 24.00h 3.43h 7.36h
JCH215 2.14m 3.24h 15.00s 40.97m 22.30m 11.97h 2.37h 15.67h 48.87m 11.51h 3.23h 9.86h 1.85h 18.08h 1.24h 10.15h
AAH017 5.19h 5.20h 22.32h 22.32h 13.97h 13.97h 19.84h 19.84h 8.67h 9.20h 5.92h 5.92h 9.92h 9.92h 12.26h 12.34h
JCH232 4.87h 4.87h 43.86m 1.66h 14.87h 20.02h 19.82h 19.82h 14.93h 17.21h 6.23h 10.31h 21.81h 21.81h 11.89h 13.67h
AAH014 12.48h 12.48h 24.00h 24.00h 13.06h 13.06h 6.34h 6.34h 24.00h 24.00h 18.46h 18.46h 10.68h 10.68h 15.57h 15.57h
JCH201 15.00s 14.65h 10.00s 24.00h 15.00s 19.48h 10.00s 16.82h 10.00s 12.98h 10.00s 14.02h 15.00s 14.27h 12.14s 16.60h
AAH007 15.00s 24.00h 5.00s 57.00s 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 23.12m 11.43s 17.20h
AAH008 15.00s 16.51h 10.00s 3.65h 15.00s 23.40h 10.00s 19.44h 10.00s 19.66h 10.00s 15.28h 15.00s 23.43h 12.14s 17.34h
AAH045 20.00s 3.33h 13.50s 1.13h 20.00s 24.00h 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h 20.00s 24.00h 16.93s 17.78h
AAH013 24.00h 24.00h 4.05h 4.05h 13.88h 13.88h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 19.70h 19.70h
AAH024 15.00s 9.05h 10.00s 9.27h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 19.76h
JCH209 14.40m 14.41m 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 20.61h 20.61h
MAE115 15.00s 22.64h 10.00s 20.96h 15.00s 24.00h 10.00s 21.32h 10.00s 23.33h 10.00s 21.97h 15.00s 10.13h 12.14s 20.62h
AAH026 15.00s 20.88h 10.00s 7.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 21.13h
AAH001 15.00s 22.57h 10.00s 17.70h 15.00s 24.00h 10.00s 22.60h 10.00s 24.00h 10.00s 24.00h 15.00s 14.58h 12.14s 21.35h
MAE104 15.00s 15.53h 10.00s 24.00h 15.00s 24.00h 10.00s 21.81h 10.00s 17.60h 10.00s 24.00h 24.00h 24.00h 3.43h 21.56h
AAH010 21.35h 21.97h 12.53h 16.40h 14.59m 20.34h 10.18m 24.00h 24.00h 24.00h 13.81h 21.79h 4.76h 24.00h 10.98h 21.79h
AAH016 18.68h 19.66h 24.00h 24.00h 22.59h 22.59h 24.00h 24.00h 17.61h 19.83h 19.89h 19.97h 24.00h 24.00h 21.54h 22.01h
JCH226 23.20h 23.72h 4.09h 10.93h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 21.04h 22.09h
JCH228 12.33h 18.10h 2.47h 20.05h 22.07h 24.00h 22.57h 22.60h 24.00h 24.00h 18.78h 24.00h 22.66h 23.80h 17.84h 22.36h
AAH035 15.00s 19.34h 10.00s 24.00h 21.50s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 19.00s 24.00h 13.64s 23.33h
JCH212 15.00s 24.00h 10.00s 20.42h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 23.49h
AAH025 22.22h 22.22h 22.48h 22.48h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.53h 23.53h
AAH053 24.00h 24.00h 35.00s 21.80h 24.00h 24.00h 30.00s 24.00h 29.50s 24.00h 26.00s 24.00h 24.00h 24.00h 10.29h 23.69h
AAH042 39.50s 21.93h 20.00s 24.00h 39.50s 24.00h 40.00s 24.00h 34.50s 24.00h 31.00s 24.00h 45.00s 24.00h 35.64s 23.70h
AAH048 15.00s 24.00h 10.00s 22.72h 16.50s 24.00h 15.00s 24.00h 10.50s 24.00h 10.00s 24.00h 20.00s 24.00h 13.86s 23.82h
AAH049 15.00s 22.82h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 23.83h
AAH043 25.00s 22.91h 16.80h 24.00h 2.41h 24.00h 25.00s 24.00h 20.00s 24.00h 20.00s 24.00h 25.00s 24.00h 2.75h 23.84h
JCH210 30.00s 23.07h 20.00s 24.00h 33.00s 24.00h 30.00s 24.00h 25.00s 24.00h 25.00s 24.00h 32.50s 24.00h 27.93s 23.87h
AAH050 25.00s 24.00h 16.80h 23.71h 29.00s 24.00h 24.00h 24.00h 20.00s 24.00h 20.00s 24.00h 29.00s 24.00h 5.83h 23.96h
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Appendix A. M A G M A Bugs and Reports

Table A.2 – Mean bug survival times (cont.). None of these bugs were triggered by the seven
evaluated fuzzers.

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH054 10.00s 24.00h 5.00s 24.00h 10.00s 24.00h 5.00s 24.00h 5.00s 24.00h 5.00s 24.00h 10.00s 24.00h 7.14s 24.00h
MAE105 10.00s 24.00h 5.00s 24.00h 10.00s 24.00h 5.00s 24.00h 5.00s 24.00h 5.00s 24.00h 10.00s 24.00h 7.14s 24.00h
AAH011 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
AAH005 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
JCH202 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
MAE114 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH029 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH034 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH004 16.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.29s 24.00h
MAE111 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 20.00s 24.00h 12.86s 24.00h
AAH059 20.00s 24.00h 10.00s 24.00h 17.00s 24.00h 15.00s 24.00h 15.00s 24.00h 10.00s 24.00h 20.00s 24.00h 15.29s 24.00h
JCH204 18.00s 24.00h 20.00s 24.00h 15.50s 24.00h 15.00s 24.00h 15.00s 24.00h 10.00s 24.00h 20.00s 24.00h 16.21s 24.00h
AAH031 20.00s 24.00h 15.00s 24.00h 42.00s 24.00h 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h 25.00s 24.00h 21.00s 24.00h
AAH051 25.00s 24.00h 10.00s 24.00h 42.50s 24.00h 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h 30.00s 24.00h 23.93s 24.00h
MAE103 33.00s 24.00h 28.00s 24.00h 33.00s 24.00h 27.50s 24.00h 25.00s 24.00h 20.00s 24.00h 31.00s 24.00h 28.21s 24.00h
JCH214 33.50s 24.00h 45.00s 24.00h 36.00s 24.00h 31.00s 24.00h 26.50s 24.00h 25.00s 24.00h 35.00s 24.00h 33.14s 24.00h
JCH220 4.38m 24.00h 11.50s 24.00h 22.04m 24.00h 2.09h 24.00h 54.77m 24.00h 3.12h 24.00h 2.28h 24.00h 1.26h 24.00h
JCH229 4.53m 24.00h 16.00s 24.00h 24.62m 24.00h 2.80h 24.00h 1.07h 24.00h 3.23h 24.00h 2.32h 24.00h 1.42h 24.00h
AAH018 41.88m 24.00h 4.00m 24.00h 5.77h 24.00h 3.17h 24.00h 59.96m 24.00h 36.01m 24.00h 1.85h 24.00h 1.88h 24.00h
JCH230 4.02m 24.00h 22.50s 24.00h 1.07h 24.00h 3.31h 24.00h 1.36h 24.00h 3.56h 24.00h 5.57h 24.00h 2.13h 24.00h
AAH047 25.00s 24.00h 16.80h 24.00h 2.41h 24.00h 25.00s 24.00h 20.00s 24.00h 20.00s 24.00h 25.00s 24.00h 2.75h 24.00h
JCH233 8.31m 24.00h 12.02m 24.00h 6.16h 24.00h 3.87h 24.00h 1.98h 24.00h 3.59h 24.00h 5.17h 24.00h 3.02h 24.00h
JCH223 16.59m 24.00h 30.50s 24.00h 1.19h 24.00h 3.89h 24.00h 1.33h 24.00h 4.03h 24.00h 10.60h 24.00h 3.05h 24.00h
JCH231 21.88m 24.00h 36.00s 24.00h 2.44h 24.00h 3.96h 24.00h 1.41h 24.00h 4.05h 24.00h 10.62h 24.00h 3.27h 24.00h
MAE006 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 24.00h 24.00h 3.43h 24.00h
MAE004 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 24.00h 24.00h 3.43h 24.00h
JCH222 1.75h 24.00h 21.97m 24.00h 18.91h 24.00h 15.17h 24.00h 13.39h 24.00h 18.87h 24.00h 20.82h 24.00h 12.75h 24.00h
AAH009 14.61h 24.00h 20.62h 24.00h 24.00h 24.00h 5.67h 24.00h 19.45h 24.00h 17.62h 24.00h 23.42h 24.00h 17.91h 24.00h
JCH227 24.00h 24.00h 20.58h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.51h 24.00h
JCH219 23.41h 24.00h 23.22h 24.00h 24.00h 24.00h 24.00h 24.00h 23.79h 24.00h 24.00h 24.00h 24.00h 24.00h 23.77h 24.00h
JCH216 23.48h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.93h 24.00h
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Table A.3 – Mean bug survival times over a 7-day period.

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH037 10.00s 20.00s 15.00s 15.00s 10.00s 45.50s 10.00s 20.00s 10.00s 20.00s 10.00s 21.00s 10.00s 25.50s 10.71s 23.86s
AAH041 15.00s 21.00s 15.00s 15.00s 15.00s 48.00s 15.00s 20.50s 15.00s 20.00s 15.00s 21.00s 15.00s 30.00s 15.00s 25.07s
AAH003 10.00s 16.00s 15.00s 17.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 10.00s 1.58m 10.71s 26.86s
JCH207 10.00s 1.12m 10.00s 2.16m 10.00s 1.94m 10.00s 2.02m 10.00s 3.73m 10.00s 2.96m 10.00s 1.62m 10.00s 2.22m
AAH056 15.00s 14.57m 15.00s 19.65m 15.00s 19.49m 15.00s 16.75m 15.00s 14.69m 15.00s 11.16m 15.00s 17.80m 15.00s 16.30m
AAH015 32.50s 1.57m 15.00s 21.50s 27.00s 17.50m 1.40m 59.27m 1.12m 8.00m 1.23m 13.34m 15.07m 1.02h 2.87m 23.04m
AAH020 5.00s 2.32h 5.00s 2.37h 5.00s 31.62m 5.00s 2.40h 5.00s 49.68m 5.00s 49.06m 5.00s 11.22h 5.00s 2.93h
AAH052 15.00s 3.17m 18.00s 15.09m 15.00s 45.03m 15.00s 3.83h 15.00s 6.17h 15.00s 13.78h 15.00s 5.28m 15.43s 3.56h
AAH022 32.50s 54.98m 15.00s 19.83m 27.00s 3.47h 1.40m 19.31h 1.12m 3.54h 1.23m 11.50h 15.07m 15.63h 2.87m 7.81h
AAH055 15.00s 40.86m 15.00s 4.07m 15.00s 3.62h 15.00s 4.17h 15.00s 1.74h 15.00s 71.84h 15.00s 2.44h 15.00s 12.08h
AAH017 13.22h 13.23h 66.80h 66.84h 13.97h 13.97h 13.88h 14.38h 6.78h 6.78h 3.50h 3.53h 9.92h 9.92h 18.30h 18.38h
AAH032 15.00s 3.38m 10.00s 2.70m 15.00s 1.65h 15.00s 51.23h 15.00s 15.81m 15.00s 67.23h 15.00s 36.05h 14.29s 22.36h
MAE016 10.00s 1.57m 10.00s 15.00s 10.00s 5.79m 10.00s 2.38m 10.00s 6.25m 10.00s 3.13h 168.00h 168.00h 24.00h 24.49h
JCH215 2.14m 3.24h 23.50s 2.42h 22.30m 13.00h 1.87h 45.83h 21.33m 15.91h 48.42m 38.01h 1.85h 85.15h 45.45m 29.08h
MAE008 15.00s 1.42h 15.00s 14.11h 15.00s 1.44m 15.00s 3.87m 15.00s 2.25m 15.00s 33.70h 168.00h 168.00h 24.00h 31.05h
JCH201 15.00s 17.54h 15.00s 140.14h 15.00s 20.53h 15.00s 11.25h 15.00s 13.41h 15.00s 13.95h 15.00s 14.27h 15.00s 33.01h
MAE014 15.00s 1.11h 15.00s 55.08m 15.00s 14.52m 15.00s 4.37m 15.00s 10.03m 15.00s 154.13h 168.00h 168.00h 24.00h 46.38h
AAH014 14.52h 14.52h 122.24h 122.24h 13.06h 13.06h 18.54h 18.54h 143.74h 143.74h 75.78h 75.78h 38.20h 38.20h 60.87h 60.87h
JCH232 4.87h 4.87h 44.67m 2.35h 26.08h 48.03h 83.73h 117.35h 31.74h 50.30h 34.90h 101.98h 105.04h 117.65h 41.01h 63.22h
MAE115 15.00s 61.48h 15.00s 109.18h 15.00s 133.93h 15.00s 47.46h 15.00s 32.83h 15.00s 94.71h 15.00s 10.13h 15.00s 69.96h
AAH008 15.00s 32.45h 15.00s 3.39h 15.00s 141.24h 15.00s 25.27h 15.00s 126.02h 15.00s 117.94h 15.00s 55.21h 15.00s 71.65h
JCH209 14.40m 14.41m 168.00h 168.00h 63.14h 63.14h 62.32h 62.33h 44.40h 44.41h 154.76h 154.76h 49.70h 49.72h 77.51h 77.51h
MAE104 15.00s 57.64h 15.00s 168.00h 15.00s 109.74h 15.00s 114.85h 15.00s 51.48h 15.00s 40.27h 168.00h 168.00h 24.00h 101.43h
AAH010 41.60h 44.03h 22.39h 42.87h 14.59m 121.14h 14.80m 168.00h 139.00h 150.52h 39.15h 136.06h 19.16h 65.62h 37.40h 104.04h
JCH228 16.37h 35.61h 6.97h 60.72h 94.73h 117.15h 128.84h 153.74h 58.00h 111.25h 104.22h 126.98h 129.87h 146.81h 77.00h 107.47h
AAH007 15.00s 168.00h 10.00s 1.56m 15.00s 167.02h 15.00s 163.55h 15.00s 168.00h 15.00s 168.00h 15.00s 23.12m 14.29s 119.28h
AAH045 20.00s 3.33h 20.00s 21.44m 20.00s 168.00h 20.00s 168.00h 20.00s 164.38h 20.00s 168.00h 20.00s 164.86h 20.00s 119.56h
AAH013 168.00h 168.00h 2.40h 2.40h 13.88h 13.88h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 122.33h 122.33h
AAH016 49.04h 50.76h 140.25h 141.75h 44.30h 137.79h 81.63h 146.06h 110.77h 125.20h 120.45h 120.48h 154.66h 155.00h 100.16h 125.29h
AAH001 15.00s 152.17h 15.00s 12.17h 15.00s 168.00h 15.00s 144.94h 15.00s 168.00h 15.00s 168.00h 15.00s 76.79h 15.00s 127.15h
AAH024 15.00s 9.05h 15.00s 52.37h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 128.77h
AAH026 15.00s 77.04h 15.00s 15.91h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 133.28h
JCH226 54.49h 87.37h 3.58h 19.05h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 152.61h 168.00h 168.00h 168.00h 126.10h 135.20h
AAH049 15.00s 45.24h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 150.46h
JCH210 30.00s 63.56h 25.00s 155.54h 33.00s 168.00h 35.00s 168.00h 30.00s 168.00h 33.50s 168.00h 32.50s 168.00h 31.29s 151.30h
AAH035 15.00s 83.58h 15.00s 168.00h 21.50s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 19.00s 168.00h 16.50s 155.94h
JCH212 15.00s 168.00h 15.00s 94.40h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 157.49h
JCH227 68.10h 121.28h 110.51h 158.09h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 145.52h 159.91h
AAH025 139.13h 139.13h 155.04h 155.04h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 162.02h 162.02h
AAH043 25.00s 126.83h 168.00h 168.00h 16.81h 168.00h 26.50s 168.00h 25.00s 168.00h 25.00s 168.00h 25.00s 168.00h 26.41h 162.12h
AAH048 15.00s 168.00h 15.00s 128.38h 16.50s 168.00h 20.00s 168.00h 15.00s 168.00h 15.00s 168.00h 20.00s 168.00h 16.64s 162.34h
AAH050 25.00s 143.70h 151.20h 159.73h 29.00s 168.00h 33.61h 168.00h 28.00s 168.00h 29.00s 168.00h 29.00s 168.00h 26.41h 163.35h
JCH216 69.76h 142.55h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 153.97h 164.36h
AAH046 75.34h 149.74h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 154.76h 165.39h
AAH042 39.50s 151.53h 24.00s 168.00h 39.50s 168.00h 45.00s 168.00h 40.00s 168.00h 39.50s 168.00h 45.00s 168.00h 38.93s 165.65h
AAH009 21.86h 157.44h 104.71h 168.00h 125.76h 168.00h 6.48h 168.00h 56.27h 168.00h 29.35h 168.00h 24.07h 168.00h 52.64h 166.49h
JCH223 16.59m 158.18h 31.50s 168.00h 1.19h 168.00h 5.90h 168.00h 2.57h 168.00h 1.47h 168.00h 11.94h 168.00h 3.34h 166.60h
AAH029 15.00s 166.95h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 167.85h
JCH229 4.53m 167.67h 24.00s 168.00h 24.62m 168.00h 2.09h 168.00h 49.24m 168.00h 49.67m 168.00h 2.32h 168.00h 56.19m 167.95h
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Appendix A. M A G M A Bugs and Reports

Table A.3 – Mean bug survival times (cont.).

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH054 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h
AAH011 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h
MAE105 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 15.00s 168.00h 10.00s 168.00h 10.71s 168.00h
AAH005 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
JCH202 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
MAE114 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
AAH034 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
AAH004 16.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.14s 168.00h
MAE111 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 20.00s 168.00h 15.71s 168.00h
AAH059 20.00s 168.00h 15.00s 168.00h 17.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 18.86s 168.00h
JCH204 18.00s 168.00h 24.00s 168.00h 15.50s 168.00h 20.00s 168.00h 20.00s 168.00h 19.00s 168.00h 20.00s 168.00h 19.50s 168.00h
AAH031 20.00s 168.00h 22.50s 168.00h 42.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 25.00s 168.00h 24.21s 168.00h
AAH051 25.00s 168.00h 15.00s 168.00h 42.50s 168.00h 25.00s 168.00h 25.00s 168.00h 15.00s 168.00h 30.00s 168.00h 25.36s 168.00h
JCH214 33.50s 168.00h 53.50s 168.00h 36.00s 168.00h 35.00s 168.00h 31.00s 168.00h 30.00s 168.00h 35.00s 168.00h 36.29s 168.00h
MAE103 33.00s 168.00h 1.05m 168.00h 33.00s 168.00h 40.00s 168.00h 33.50s 168.00h 30.00s 168.00h 31.00s 168.00h 37.64s 168.00h
JCH220 4.38m 168.00h 19.50s 168.00h 22.04m 168.00h 1.78h 168.00h 46.76m 168.00h 49.27m 168.00h 2.28h 168.00h 52.36m 168.00h
AAH018 41.88m 168.00h 5.81m 168.00h 5.77h 168.00h 1.72h 168.00h 1.60h 168.00h 1.40h 168.00h 1.85h 168.00h 1.88h 168.00h
JCH230 4.02m 168.00h 41.00s 168.00h 1.07h 168.00h 5.67h 168.00h 1.16h 168.00h 1.14h 168.00h 5.57h 168.00h 2.10h 168.00h
JCH233 8.31m 168.00h 23.55m 168.00h 6.16h 168.00h 11.84h 168.00h 1.44h 168.00h 2.41h 168.00h 5.17h 168.00h 3.93h 168.00h
JCH231 21.88m 168.00h 35.00s 168.00h 2.44h 168.00h 5.99h 168.00h 5.22h 168.00h 1.69h 168.00h 11.96h 168.00h 3.95h 168.00h
MAE006 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 168.00h 168.00h 24.00h 168.00h
MAE004 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 168.00h 168.00h 24.00h 168.00h
AAH047 25.00s 168.00h 168.00h 168.00h 16.81h 168.00h 26.50s 168.00h 25.00s 168.00h 25.00s 168.00h 25.00s 168.00h 26.41h 168.00h
JCH222 1.75h 168.00h 39.17m 168.00h 113.15h 168.00h 151.50h 168.00h 57.91h 168.00h 71.58h 168.00h 136.02h 168.00h 76.08h 168.00h
JCH219 72.02h 168.00h 168.00h 168.00h 162.32h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 153.48h 168.00h
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Appendix B. I G O R Extended Results

B.1 Robustness under Non-uniformity

Clustering precision is impacted by the data distribution [139]. However, the number of crashes and
test cases is unknown for each bug, which means that we cannot guarantee a uniform distribution
of test cases across unique bugs. Therefore, whether accurate clustering results can still be obtained
under different data distributions is a key indicator to measure the effectiveness of our method.
Tables B.1 and B.2 show the clustering results of I G O R under different test case distributions.

Selecting tiffcp as the target program, we alter the number of test cases of five bugs
respectively, the test case distribution in trial 1 is the same as what it is in table 3.1, the distribution
in trial 2 is roughly inverse to trial 1, with a decrease in total number, while in trial 3, the test
cases are evenly distributed. Based on trial 3, we alter the number of bugs. The results show that
I G O R is stable against varying test case distributions.

Table B.1 – Clustering results of tiffcp with different sample distribution.

Bug Samples
Trial 1 Trial 2 Trial 3

CVE-2016-5314 341 50 100
CVE-2016-102691 251 90 100
CVE-2016-102692 149 200 100
CVE-2015-8784 50 278 100
CVE-2019-7663 200 100 100
Result

Sum 991 718 500
Purity (%) 99.4 99.4 99.6
Inverse Purity (%) 99.4 99.4 99.6
F-measure (%) 99.4 99.4 99.6

Table B.2 – Clustering results of tiffcp with randomly sampled bugs. The notation A-E represent
the bug ID of the corresponding position in section B.2. The Clusters column represents the
number of clusters generated by I G O R; the P, IP and F columns are the same as in table 3.1.

Trial Bugs Statistics
A B C D E Clusters P (%) IP (%) F (%)

1 ✓ ✓ ✓ ✓ ✓ 5 99.6 99.6 99.6
2 ✓ ✓ ✓ ✓ 4 99.7 99.7 99.7
3 ✓ ✓ ✓ 3 99.3 99.3 99.3
4 ✓ ✓ 2 100 100 100
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Figure B.1 – afl-tmin’s side effect and I G O R’s ability to mitigate against it. The colored dots
show individual test cases, the blue line indicates mean bitmap size and light blue the error band.

B.2 Data Set Statistics

We surveyed our dataset and counted the number of unique crash addresses and call stacks. These
results are presented in section B.2.

B.3 I G O R F U Z Z Mitigates afl-tmin Limitation

As a dual-phase crash de-duplication technique, I G O R requires that the control flow of each PoC
is concise after the first phase, so that the second phase can get more precise clustering results.
Clustering directly after afl-tmin, i.e., without I G O R F U Z Z results in low precision as afl-tmin
is non-monotonic and provides inadequate control flow reduction. I G O R F U Z Z mitigates these
limitations.

During our evaluation, we found that afl-tmin may increase a PoC’s bitmap size, e.g., in
OpenSSL’s x509 corpus (CVE-2016-2108). We selected ten seeds with the largest change in bitmap
size being processed by afl-tmin to demonstrate this phenomenon. As shown in fig. B.1, the
bitmap size of the ten PoCs rose in the first 20 seconds, which corresponds to the reduction process
of afl-tmin. This indicates that as afl-tmin deletes bytes from a PoC file, the corresponding
bitmap size does not always decrease monotonically. If we pass the afl-tmin-reduced PoCs to
the second phase of I G O R, we may worsen results because the control flow of the PoCs contains
additional bug-irrelevant paths.
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However, I G O R F U Z Z mitigates this limitation. The blue line in the same figure shows mean
bitmap size of the ten PoCs during reduction. Taking the afl-tmin-reduced PoCs as input,
I G O R F U Z Z reduced the bitmap size monotonically, and all of the ten PoCs finally got smaller
bitmap size than their original size.

In summary, afl-tmin sometimes increases the bitmap size, which contradicts the requirement
of I G O R’s first phase. I G O R F U Z Z mitigates this issue by focusing on bitmap size reduction rather
than input size reduction, making it more practical to do classification.

B.4 I G O R F U Z Z Does Not Waste Time on Error Seeds

To study the minimization process of error introducing PoCs, we explicitly selected all the queues
generated during the minimization process of the error PoCs, analyzing the change in the proportion
of the error seed in all seeds over time. According to the evaluation result shown in fig. B.2,
the proportion of error seeds is small, which accounts for less than 10 % in three programs, and
the lowest is tiffcp, which is only 0.93 %. Except for xmllint, the proportion of erroneous seeds
decreases over time, which means the effect of error seed on minimization is ever decreasing and
minimization mainly explores the paths near the original vulnerability.

Figure B.2 – Seed error rate. In this figure, the bars in faded colors indicate total number of
generated seeds in error queues (including normal seeds and error seeds); the bars in dark colors
are total number of error seeds in error queues.
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Error seeds occupy a significant proportion in the queue of xmllint, but the proportion decreases
over time. We analyzed the reasons for the relatively high error seed in the queue of xmllint: The
length of the PoCs from xmllint is much shorter than the length of PoCs of other programs, and the
code depth of the vulnerability is relatively shallow. The short seed length combined with shallow
bugs makes it likely for a fuzzer to discover alternate bugs through only small mutations.

Still, error seeds occupy a relatively small proportion in the queues overall and individually,
which means that they have a small probability of being further mutated. After manual debugging,
we found that the crash addresses of these error seeds are all different from those of the original
PoCs. Therefore, even if a small part of the error seed is generated during the minimization, all
these errors will be eliminated by our selection criteria (see details in section 3.2.2).
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basic blocks                edges                    trace len.

(a)

basic blocks               edges                    trace len.

(b)

basic blocks               edges                    trace len.

(c)

basic blocks              edges                    trace len.

(d)

basic blocks               edges                    trace len.

(e)

Figure B.3 – Comparison in three dimensions (basic blocks, edges, and trace length) before and
after reduction with I G O R F U Z Z.
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Table B.3 – Statistics of unique crash addresses and unique call stacks. When the crash address
count is given as n/m, n is the number of crash addresses, while m is the number of non-unique
crash addresses. The bug IDs of a specific program with superscript ∗ or + share the same underlying
vulnerability. There are two unique underlying bugs assigned the same CVE—CVE-2016-10269.
We use subscripts to distinguish them.

Target Program Bug ID Crash addrs Call stacks

Poppler

pdftoppm
CVE-2017-14617 1 1
CVE-2019-7310 1 3
Bug #101366 1 1

pdfimages

CVE-2017-9865 1 1
CVE-2018-10768 1 1
CVE-2019-7310 1 2
CVE-2017-9776 10 21

libtiff tiffcp

CVE-2015-8784 1 1
CVE-2019-7663 2/2 4
CVE-2016-102691 3/2 5
CVE-2016-102692 2/2 3
CVE-2016-5314 1 7

PHP exif CVE-2018-14883 13 50

OpenSSL
client CVE-2016-6309 1 1

x509 CVE-2016-2108 1 2
CVE-2017-3735 1 1

libxml2 xml_read_mem CVE-2017-9047 3 28

libpng png_read CVE-2013-6954 1 2
CVE-2018-13785 1 1

libxml2 xmllint

CVE-2015-8317 15/10 204
CVE-2015-7497 1/1 198
CVE-2016-1835 1 3
CVE-2016-1836 1/1 5
CVE-2016-1762 6/3 245
CVE-2016-3627 3 3
CVE-2015-7942 1 1
CVE-2015-7499∗ 1/1 1
CVE-2015-7498∗ 7/6 242

libtiff tiff2pdf
CVE-2019-14973 3/1 6
CVE-2017-17973 1/1 1
Bug #C 1 1

Poppler pdftotext CVE-2019-12293 1 3

FreeType char2svg

CVE-2014-9663∗ 1 4
CVE-2015-9290+ 1 1
CVE-2014-9658 2 8
CVE-2014-9669∗ 11/1 23
CVE-2014-2240 1 23
CVE-2014-9659 2 3
CVE-2015-9383∗ 3/1 4
CVE-2015-9381+ 1 1

SoX(MP3) sox

CVE-2019-8355 2 3
CVE-2019-8357 5/2 5
CVE-2019-8354∗ 1/1 1
CVE-2019-8356∗ 1/1 2
CVE-2017-18189 1 1
CVE-2019-13590 1 1

SoX(WAV) sox

CVE-2019-8355 2 3
CVE-2019-8357 5/1 5
CVE-2019-8354∗ 1/1 1
CVE-2019-8356∗ 1/1 2
CVE-2017-11332 1 1
CVE-2017-18189 1 1
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Table B.4 – PoC shrink rate with afl-tmin: PoC length, bitmap size, edges hit count, and side
effects are listed.

Program Bug Samples Median Mean Variance Negative
len % map % hit % len % map % hit % len map hit map % hit %

x509 CVE-2016-2108 100 24.14 4.94 6.28 41.10 4.83 22.57 0.165 0.002 0.103 15 12
CVE-2017-3735 100 0 15.61 7.13 3.25 15.73 6.57 0.021 0.001 0.006 0 19

png_read CVE-2018-13785 80 1.23 17.48 1.93 2.81 14.43 3.80 0.010 0.009 0.034 1.25 36.25
CVE-2013-6954 100 14.37 0.13 -0.69 21.58 1.33 -1.27 0.054 0.0009 0.016 18 65

pdftoppm
Bug #101366 91 99.11 5.88 36.62 82.45 12.17 33.97 0.118 0.021 0.090 15.18 12.04
CVE-2019-7310 100 0 -1.06 16.12 0 0.85 11.11 0 0.006 0.088 53.5 39.5
CVE-2017-14617 97 96.05 5.81 32.35 96.31 8.06 31.36 0.0001 0.003 0.030 2.53 4.56

pdfimages CVE-2017-9865 83 98.20 13.52 12.57 65.18 12.41 5.50 0.199 0.003 0.049 1.20 34.93

tiffcp

CVE-2016-5314 341 0.78 11.85 18.12 14.40 12.56 19.33 0.086 0.002 0.006 0 0
CVE-2016-102691 251 10.71 16.32 24.15 14.22 16.16 24.97 0.031 0.001 0.002 0 0
CVE-2016-102692 149 1.25 15.08 20.20 10.50 15.13 19.85 0.045 0.001 0.002 0 0
CVE-2015-8784 50 1.25 15.56 21.08 13.57 19.76 25.54 0.066 0.012 0.026 0 2
CVE-2019-7663 200 10.71 20.23 32.96 37.33 19.72 38.39 0.134 0.004 0.024 1.5 0
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Table B.5 – Evaluation results (0 and 60 min I G O R F U Z Z running time, the “*” in the cut-off time
column indicates clustering results that ground-truth bug labels are assigned).

Program B N C S K Top Frame (%) BFF-5 (%) honggfuzz (%) afl-collect (%) cut-off
(mins)

I G O R (%)
P IP F P IP F P IP F P IP F P IP F

pdfimages 3 410 12 23
2

48 63 47 62 47 62 47 62
0 88 94 87

3 60 100 100 100100 100 100 100
* 99 99 99

pdftoppm 3 161 5
2

95 98 95 98 95 98
0 70 99 79

2 60 69 100 803 100 100 100 100 100 100
* 100 100 100

tiffcp 5 991 3 20
17

85 89 80 88 76 74 88 67 68 88 67 68
0 98 65 77

5 60 100 100 100
* 90 90 92

tiff2pdf 3 385 2 8
3

92 91 89 89 93 89 94 89 94
0 98 98 98

3 60 98 98 9899 99 99
* 98 98 98

x509 2 150 3
2

75 83 75 83
0 100 100 100

2 60 100 100 1002 100 100 100 100 100 100 100 100
* 100 100 100

png_read 2 150 3
2

72 81 72 81 72 81 72 81
0 100 100 100

2 60 100 100 1002 100 100 100 100
* 100 100 100

xmllint 8 1581 14 901
4

78 59 64 78 55 62 78 55 62 79 3 4
0 72 95 77

19 60 97 63 74
* 94 74 82

char2svg 5 1087 20 67
6

66 72 14 20 14 20 14 20
0 90 67 71

9 60 100 67 79100 100 100 100
* 86 67 69

sox (MP3) 4 260 8
4

63 74 58 71 58 71 58 71
0 100 100 100

4 60 100 100 1006 100 100 100 100
* 100 100 100

sox (WAV) 4 356 6 8
4

67 77 66 76 66 76 66 76
0 100 100 100

4 60 100 100 100100 100 100 100
* 100 100 100
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C.1 Built-in Extensions

Components in TA N G O are left open for customization, to accommodate for arbitrary stateful
systems beyond network services. The framework also encourages re-usability by providing com-
ponents with fixed interfaces, as well as a dynamic component discovery subsystem to ensure
that specialized co-dependent modules are instantiated together. Through its supplementary
profiling module, TA N G O also enables instrumentation of the fuzzer’s own functions and variables,
to improve debuggability of the fuzzer’s operations and to better attribute feature changes to
improvements in performance.

C.1.1 ptrace-d processes

To ensure synchronicity between the fuzzer and the running process, we use ptrace with seccomp
filters to place catchpoints over the relevant I/O syscalls where necessary, e.g., read, dup, close,
and poll, among others. Synchronization allows the target to return control to the fuzzer as soon
as it becomes ready, instead of busy-waiting and degrading throughput. Moreover, it guarantees
reproducibility of results: by encoding the relevant sequences of syscalls into its saved inputs,
the fuzzer can reliably reproduce states and coverage measurements, leaving little for the OS to
influence when data is delivered to the target.

In addition, to increase fuzzer throughput and exploit the redundancy of resets, TA N G O leverages
ptrace to dynamically inject a forkserver at runtime, just after setting up the communication
channel in the target. This relieves the loader of the heavy initialization phase of many network
services.

C.1.2 Container isolation

Fuzzing is an embarrassingly parallel process, and it is commonly employed by launching multiple
concurrent campaigns on capable machines. When fuzzing network services, this can introduce
the problem of overlapping socket bind addresses, since a server’s configuration parameters are
often identical across campaigns. We therefore isolate each fuzzer instance in a Linux network
namespace, allowing them to communicate with their target without aliasing other instances.

We also leverage mount namespaces to achieve filesystem isolation. Some targets may store
persistent state through local files, influencing other instances of the target across resets. To avoid
that, we mount an overlay filesystem on top of a tmpfs mount point for storing instance-local
data. Then, upon reset, we clear the upper filesystem of the overlay, effectively destroying any
persistent state left by the target.
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C.1.3 Record-and-replay

TA N G O ships with a default loader which implements a record-and-replay mechanism for loading
snapshots. Under the reasonable assumption that the target is deterministic, such a loader can
reliably reproduce paths by relaunching or forking the target and re-applying a saved input. More
sophisticated snapshot-ing methods exist [141] which can be ported for use under TA N G O; however,
this remains out of scope of the current extensions.

C.1.4 SanitizerCoverage

In our study on state inference, we primarily model features as code coverage profiles, classified
into AFL-style bins. To achieve that, TA N G O implements a CoverageTracker which sets
up a shared memory region for communicating coverage updates and extracting feature sets. The
tracker is equipped with C-based bindings for performing the binning and hashing with minimal
impact on the fuzzer’s critical path.

C.1.5 socket+stdio

TA N G O includes a demonstrative set of channels, to communicate with the target over network
sockets, such as TCP and UDP, as well as standard input. These channels extend the ptrace
functionality to synchronize the state of the socket or file in the target with its counterpart in
the fuzzer. By capturing syscalls such as bind and accept, we inject a forkserver at the latest
stage in initializing the target. This achieves around a 50x increase in fuzzing throughput over the
non-optimized implementation, since socket setup is often expensive, and otherwise, the fuzzer
may only successfully connect to the target by reattempting the operation until it no longer fails.

C.1.6 Adaptive mutators

We implement an adaptive model for applying havoc mutators that balances exploration and
exploitation using the Exp3 [13] algorithm for distributing rewards and assigning probabilities. For
each snapshot, we maintain a set of weights describing the probability that a mutator is chosen in
that state. Provided a comprehensive set of mutators, this approach accommodates for an evolving
target by adjusting and applying the probabilities in selecting the next mutator, based on how well
each one performs in the state context.
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C.2 Case Study: DOOM

TA N G O is a framework for building state-aware fuzzers, and the main witness of its merit would
be using it to develop a state-aware fuzzer for a complex stateful system. In the spirit of hacker
culture, we opted to answer the question “Can it run DOOM?” with a resounding “Yes!”, using
TA N G O.

C.2.1 Setup

To add support for DOOM, we extended the following interfaces:

Driver: We implemented an X11Channel component which sends keystroke events to a process’s
window, through a public Python library, python3-xlib.

Generator: We extended the input base class with a set of instructions including Activate,
Kill, Move, Reach, Rotate, and Shoot. These govern how the player character interacts with
its environment, and they are later used by the input generator and the exploration strategy to
maneuver around the map and overcome obstacles.

We limited the functionality of the input generator to selecting a possible outgoing or incoming
transition of the current state and passing it on to the mutator, which mainly mutates the direction
and duration of movement, to explore the level. We also provided it with two helper functions that
can yield the correct sequence of commands to follow a path or to aim and shoot at a moving
target by incorporating live feedback.

Tracker: We implemented state feedback as a shared-memory struct populated by DOOM and
accessed by TA N G O. The struct contains all basic user properties such as location, weapons, ammo,
pickups, enemies in sight, and doors or switches within reach. Two states are considered equivalent
if they have the same player position. We attached extended state variables to each state that
describe the pickups collected along the current path, and state attributes describing the current
location (e.g. if it is a slime pit or a secret level).

To avoid having a unique state for every single position on the map, the level is divided into a
grid of cells, representing the granularity of feedback, as shown in fig. C.1a.

Loader: We extended the loader’s two main functions: restarting the target and loading a state.
Restarts are simple, as they’re only a matter of terminating and relaunching the process. Loading a
state is slightly more complex: without a means of snapshotting, actions must be replayed to reach
a certain known location, given that the state graph contains at least one path to it. However, a
downside of this approach is that nearby states (locations) may be reachable through a bee-line
movement, whereas the input generated and discovered by the fuzzer to transition between these
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(a) Grid view of the DOOM map as seen by TA N G O.

(b) Heatmap of the visited cells during the first 10 minutes of
fuzzing the E1M1 level of DOOM.

(c) Heatmap of the visited cells after 30 minutes of fuzzing. The
fuzzer had figured out a path to the finish and continues to repeat
it to achieve the lowest completion time.

Figure C.1 – The progress of TA N G O in playing DOOM. Red shading implies higher hit counts.
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two states may involve redundancies that impact fuzzer throughput. Another downside is that if the
current location and the target location are close to each other, yet are far enough from the spawn
location, restarting the level from that location would be inefficient. The player may simply need to
move a few steps in the direction of the target to reach it. Moreover, continuously restarting the
target breaks the immersion of the fuzzer “playing” the game, and it would instead spend much of
its time replaying actions from the start. To avoid that, we implemented path-finding algorithms,
based on the state graph explored by the fuzzer, to move between two locations using a sequence
of Reach instructions. In essence, to load a state, a path to it from the current state is calculated,
and Reach instructions are performed piece-wise along every transition in the path.

Strategy: Finally, to tie it all together, we implemented a ZoomStrategy component that schedules
states based on a convex hull of the explored locations, and prioritizes locations on the perimeter,
that are furthest from the start.

In addition, the strategy implements an event observer task that is responsible for reacting to
urgent events such as enemy sighting or stepping in slime pits. By preempting the fuzzer’s main
loop, the strategy minimizes the reaction time to increase the survivability of the player.

C.2.2 Results

With these extensions, TA N G O consistently manages to finish the E1M1 level of DOOM, on
difficulty 3, in 10 to 40 wall-clock minutes. The main factor contributing to this variability is
perimeter exploration. As can be seen in fig. C.1b, in one recorded fuzzing session, the fuzzer
encountered a big undiscovered area on the left side of the map, and dedicated a significant amount
of time to exploring it. It also managed to discover the path up the stairs to the higher platform,
where it found a level 1 armor pickup. In other runs, due to the stochastic nature of the fuzzing
process, it may miss that area completely and continue exploring in the immediate direction of the
exit door, achieving a lower overall finish time in the process.

Having found the armor pickup, TA N G O maintains a record of it in its later exploration stages.
As can be seen in fig. C.1c, its path to the finish line includes going up the stairs, picking up the
armor boost, and returning back on another path to the exit room.

Regardless of the overall finish time, once TA N G O finds the path to the exit, it consistently
manages to follow it in 3 to 4 in-game minutes. While far from typical speed-runs for this level,
which have hit as low as 9 seconds, it is still a formidable achievement to be able to explore the
state space of a DOOM level and manage to finish it in a sensible amount of time.
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