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One day the sun admitted,

I am just a shadow.

I wish I could show you The Infinite Incandescence

that has cast my brilliant image!

I wish I could show,

when you are lonely or in darkness,

the Astonishing Light

of your own Being!

— Hafiz

To Ibrahim. . .
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Abstract

The phenomenon of allostery, a general property in proteins that has been heralded as "the

second secret of life" remains elusive to our understanding and even more challenging to incor-

porate into protein design. One example of allosteric proteins with great therapeutic potential

are G-Protein coupled receptors (GPCRs). GPCRs play a crucial role in regulating numerous

physiological reactions triggered by neurotransmitters, hormones, and various environmental

stimuli. As a result, GPCRs are targets for nearly one-third of all licensed pharmaceutical

drugs. In this thesis, we present a framework to elucidate allosteric signaling applied to GPCRs

as model systems. The framework is based on analyzing dynamics in proteins modeled via

molecular simulations to (1) extract potential allosteric pathways in the protein and (2) quan-

tify protein response to a perturbation. We employ computational protein design coupled with

the aforementioned dynamic analysis to explore the allosteric functions of GPCRs, unveiling

mechanistic relationships between agonist ligand chemistry, receptor sequence, structure,

dynamics, and allosteric signaling across the dopamine receptor family. The framework is

also applied to designed signaling complexes between conformationally dynamic proteins

and peptides in chemokine receptors to shed light on the change of allosteric pathways in

response to the designs. This work is a step forward toward mechanistic understanding of

sequence polymorphism on receptor function and pharmacology, providing valuable insights

for selective drug design and rational receptor engineering for both fundamental research and

therapeutic applications.

Keywords: protein design, allostery, G-Protein Coupled Receptors, molecular dynamics, bio-

engineering, protein dynamics.
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Résumé

Le phénomène de l’allostérie, une propriété générale des protéines qui a été qualifiée de

"second secret de la vie", demeure aujourd’hui une propriété insaisissable et difficile à intégrer

dans la conception que nous avons des protéines. Un exemple de protéines allostériques ayant

un grand potentiel thérapeutique est celui des récepteurs couplés aux protéines G (RCPGs).

Les RCPGs jouent un rôle crucial dans la régulation de nombreuses réactions physiologiques

déclenchées par les neurotransmetteurs, les hormones et autres stimuli environnementaux. En

conséquence, les RCPGs sont la cible d’environ un tiers des médicaments pharmaceutiques

autorisés à ce jour. Dans cette thèse, nous présentons une méthode pour comprendre et

caractériser la signalisation allostérique que nous avons appliqué au système modèle des

RCPGs. Cette méthode repose sur l’analyse de la dynamique des protéines modélisées par des

simulations moléculaires afin (1) de caractériser les voies allostériques potentielles dans la

protéine et (2) de quantifier la réponse de la protéine à diverses perturbations. En combinant

de méthodes computationnelles permettant le design de protéines avec des outils d’analyse de

leurs dynamiques précédemment citées, nous avons explorer les fonctions allostériques des

RCPGs, révélant les relations mécanistiques entre la chimie des ligands agonistes, la séquence,

la structure et la dynamique des récepteurs pour caractériser la signalisation allostérique

de la famille des récepteurs à la dopamine. Cette nouvelle méthode est appliquée à des

complexes de signalisation composés de protéines conformationnellement dynamiques et des

peptides dans les récepteurs aux chimiokines afin de comprendre les modifications des voies

allostériques en réponse aux mutations introduites dans ces systèmes. Ce travail constitue une

avancée vers la compréhension mécanistique de la polymorphie de la séquence sur la fonction

ainsi que sur la pharmacologie des récepteurs, fournissant des informations précieuses pour

la conception sélective de médicaments et l’ingénierie rationnelle des récepteurs, à la fois

pour la recherche fondamentale et les applications thérapeutiques.

Mots clés : conception de protéines, allostérie, récepteurs couplés aux protéines G, dynamique

moléculaire, bio-ingénierie, dynamique des protéines.
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Glossary

β1AR β1 adrenergic receptor, a class A GPCR from the aminergic family

β2AR β2 adrenergic receptor, a class A GPCR from the aminergic family

Agonist a molecule (small or otherwise) that activates a receptor to produce a biological

response

Apo the state in which a protein is not bound to a ligand

ATSM allosteric two state model, a framework to describe the behavior of allosteric proteins

BW Ballesteros-Weinstein, generic numbering scheme for class A GPCRs (1)

cAMP cyclic adenosine monophosphate, a second messenger in many cellular signaling

pathways.

CCR5 chemokine receptor type 5, a class A GPCR

C-term or C-terminus carboxyl terminus

CV collective variable, a structural parameter (or combination of) that can be measured

during a simulation

CXCR2 chemokine receptor type 2, a class A GPCR

CXCR4 chemokine receptor type 4, a class A GPCR

DCCM dynamic cross-correlation map, a matrix of cross-correlations extracted from dy-

namical simulations

DD1R dopamine D1 receptor, a class A GPCR from the aminergic family

DD2R dopamine D2 receptor, a class A GPCR from the aminergic family

EC extracellular

ECL extracellular loop

GDP guanine diphosphate,

Gi G-alpha inhibitory subunit

GPCR G-protein coupled receptor, integral membrane proteins with seven membrane-

spanning domains, or helices

Gp G-protein, a family of enzymes that hydrolyze GTP to GDP

Gq G-alpha q subunit
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Glossary

GRK G-protein coupled receptor kinases

Gs G-alpha stimulatory subunit

Gt Transducin, the G-protein that interacts with rhodopsin and is present in vertebrate

retina rods and cones

GTP guanine triphosphate,

H5 G-protein carboxy-terminal helix 5

IC intracellular

ICL intracellular loop

K L1 Local Kullback-Leibler divergence for one body

KLdiv Kullback-Leibler divergence, a measure of distance between two probability distribu-

tions

M2 mutual divergence, the mutual information equivalent for KLdiv

MCMC Markov-chain Monte Carlo

MD molecular dynamics

MI mutual information, a statistical measure that quantifies the degree of dependency or

information shared between two random variables

MSA multiple sequence alignment

MWC Monod-Wyman-Changeux, one of the first models of allostery (2)

NMA normal mode analysis, used to describe protein fluctuations about an equilibrium

position

NMR nuclear magnetic resonance

N-term or N-terminus Amino terminus, protein sequences start at the N-terminus and end

at the C-terminus

PAM positive allosteric modulator

PCA principal cmponent analysis, a linear dimensionality reduction method

pdf Probability density function

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, a phospholipid naturally found

in eukaryotic cell membranes

PTM post-translational modifiction

RMSD root mean square deviation

RMSF root mean square fluctuation

RU Rosetta units, energy units for the empirical Rosetta forcefield

TM trans-membrane

TMH trans-membrane helix
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Glossary

TRP transient receptor potential

WT wild type
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Introduction

“To know the secrets of life, we must first

become aware of their existence"

— Albert Einstein, The World As I See It

0.2 A brief history of allostery

Heralded as "the second secret of life" (3), allostery is the biological phenomenon where

two or more sites on a single biological molecule are dynamically coupled despite being out

of direct physical interaction range. It regulates a plethora of biomolecular functions, for

example, some of the first discovered allosteric proteins that responded to ligand binding

were hemoglobin (4) and L-threonine deaminase (5) (in addition to many many others (6; 7; 8;

9; 10; 11; 12; 13; 14; 15; 16)). Even though this phenomenon has been known for a long time,

allostery remains rather elusive and its understanding on a molecular level leaves a lot to be

desired.

One example that highlights the importance of allosteric regulation is the disease-causing

mutation in hemoglobin that leads to sickle cell anemia. Hemoglobin has four subunits, each

containing a heme group where oxygen can bind. Allosteric regulation in hemoglobin involves

cooperative binding, meaning that when one oxygen molecule binds to a heme group, it

increases the affinity of the remaining heme groups for oxygen. This enhances the overall

efficiency of oxygen transport in the blood. However, in sickle cell anemia, a single amino acid

substitution occurs in one of the hemoglobin subunits. This mutation replaces a glutamic acid

residue with valine in the β-globin subunit, resulting in the formation of hemoglobin S (HbS,

as opposed to normal adult hemoglobin HbA). HbS has disrupted allosteric regulation, and

when oxygen levels are low, HbS molecules tend to polymerize and form long, rigid structures,

forming the sickle shape and leading to various complications (17). The presence of diseases

caused by allosteric dysfunction opens the possibility of designing allosteric drugs that bind

distant regulatory sites in proteins as opposed to classical orthosteric binding (18).

The first model of allostery was proposed by Monod, Wyman, and Changeux (MWC) who pro-

posed a statistical mechanical model of allostery where the protein switches conformational

state upon ligand binding (2). The model depends on two main tenets: (1) the protein is an
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oligomer involving several subunits, and (2) the existence of a conformational equilibrium

(between at least two states, usually called relaxed (R), and tense (T) states) that is shifted (or

stabilized) by ligands. G-protein coupled receptors (GPCRs, the model system used in this

work) are one of the cases that show allosteric function as monomers (19). In this case, the

different trans-membrane helices are thought of as a "mini-oligomer". In short, the MWC

model was able to capture the essence of allosteric regulation in a multitude of proteins, and

has such found widespread use (20; 21; 22). The MWC model was so influential that it is still

used and reviewed 50 years after its inception (19).

An alternative hypothesis to understand allostery is the sequential model put forward by

Koshland, Nemethy, and Filmer (23). The model is sequential in that the substrate binds to the

molecule in an induced fit fashion, which "induces" the switch from the tense to the relaxed

state.

The next jump in perspective was the dynamics based view of allostery, where the relaxed and

tense states of proteins can be structurally similar or even (almost) identical. The difference

between the two can be discerned by fluctuations of the system upon ligand binding. Cooper

and Dryden (24) performed revolutionary work to advance this view, driving the understanding

of allostery away from a purely structural view to an ensemble view. Under this view, a change

in the population (or the average structure) is not required for allostery to occur; it is rather

the change in the distribution (in terms of frequencies and amplitudes of atomic motions)

around the average structure that drives allostery, affecting the binding affinity at the allosteric

(distant) site (24).

The ensemble view of allostery has been the focus of a great deal of research since the recent

rise of interest in controlling proteins using allostery (25; 26; 27; 28; 29). Other scientists, such

as Cui and Karplus, have argued that the "new view" of allostery, emphasizing “population

shifts,” is, in fact, an “old view” (30), arguing that the idea of a “population shift” was the basis

of the original model of MWC, and that what the "new view" offers is an emphasis on the

intrinsic dynamic nature of proteins.

Coupled with the study of allostery is the concept of frustration (to the extent that there was a

published perspective titled: "Allostery Frustrates the Experimentalist" (31)) we would like to

tell the authors of this perspective that allostery also frustrates the computationalist. A physical

system, such as a protein, is frustrated "when it is impossible to simultaneously optimize

all the possible interactions" (31). Frustration, like allostery, is seen as a general property of

proteins that is crucial for function (32). In essence, the authors reached the conclusion that

measurement of allostery is method dependent, especially allostery due to entropic shifts

without conformational change in single domain proteins (31). In another review that seeks

allosteric networks in PDZ domains, the authors conclude that despite two decades of both

computational and experimental studies on PDZ domains (PDZ domains being a classical

system to study allostery), "our analysis highlights the contradiction between the different

methods and calls for additional work to better understand these allosteric phenomena"
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(33). This sentiment was shared in a recent CECAM (Centre européen de calcul atomique

et moléculaire) workshop in Oct. 2023 concerning allostery, where during a roundtable

discussion, the attendees could not agree on how to store dynamical data that could be used

to learn about allostery in different systems.

0.3 Thesis objectives

Given the challenging nature of studying allostery, we will investigate allostery using an inte-

grated approach that combines computational methods with protein design and experimental

validation in G-protein coupled receptors (GPCRs).

The first step to achieving this objective is finding a model to describe allostery in GPCRs,

which would encapsulate developing an approach to describe this allostery on a residue level,

which would then enable design. The underlying assumption is that allostery takes the form

of pathways that connect the extra-cellular (EC) and intra-cellular (IC) domains of GPCRs (16).

Due to the variability and method dependence of allosteric residue determination (33; 31),

this necessitates developing an multi-faceted approach to tackle the problem from several

angles: (1) allosteric transmission through pathways, (2) quantifying allosteric interactions via

perturbation response far from the perturbation site, and (3) in-silico mutagenesis to assess

stability of the mutant receptor before experimental validation.

To validate the allosteric pathways, we design amino acids along the pathway and observe the

response to the mutation in cell-based assays. The assumption is that given the enormous

design space of a protein the size of a GPCR, the ability to allosterically modify GPCR signaling

supports the validity of the pathway description of allostery in GPCRs.

To bring the work a step closer to real-life application and further validate the underlying

methods. we study ligand specific allosteric pathways with the aim of achieving ligand selective

designs.

The developed methods are used for dynamic characterization of designed receptors and

peptide-receptor complexes, and for quantifying the effects of allosteric modulators on path-

ways, dynamics, and correlations.

Finally, we attempt to connect the proposed allosteric description to genetic variation and

disease causing mutations.

0.4 Thesis structure

In the following chapter (Ch. 1), we review G-protein coupled receptor (GPCR) structure,

activation, and function. We also present the underlying methods used in this work. We finally

review the literature surrounding allostery and methods of studying it, both experimental and
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computational.

The following chapters, which form the bulk of the thesis, are structured by dividing the work

into method development (Part I) and applications of the developed methods (Part II).

Part I presents methods developed as part of my PhD to study allostery. The main contribu-

tion is the software (AlloDy), which quantifies allosteric signals in proteins using molecular

dynamics simulations. Part I presents the architecture of the code, theory behind the method,

and benchmarks. Part I also contains comparisons between metrics extracted using AlloDy

and experimental observables, such as NMR chemical shifts and ligand activation.

Part II presents three major applications to the methods developed in Part I. The first applica-

tion (Ch. 3) uses the concept of allosteric pathways to engineer ligand specific responses in

dopamine receptors and explains the observed experimental effects using a combination of

perturbation response and pathway models. The second application (Ch. 4) uses the concept

of allosteric pathways to explain how peptide-ligand receptor designs attain potent signaling

responses through dynamic conformational ensembles in chemokine receptors. The third

application (Ch. 5) compares genetic variation and single nucleotide variants (SNVs) with

allosteric and evolutionary scores.

Finally, in the last chapter, we summarize the major findings as well as the contributions of

this thesis, discuss the limitations of the study, and propose directions for future research.
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1 Literature Review

“Everything that living things do can be understood in terms of

the jigglings and wigglings of atoms.”

— Richard Feynmann

1.1 G-protein coupled receptors activation and function

G protein-coupled receptors (GPCRs) represent one of the most diverse and ubiquitous super-

families of cell surface receptors in eukaryotic organisms. These receptors play a pivotal role

in cellular communication by transducing extracellular signals into intracellular responses,

thus serving as key molecular switches in numerous physiological processes. The discovery

and characterization of GPCRs have not only revolutionized our understanding of signal

transduction but have also unlocked exciting prospects for drug discovery and therapeutic

intervention.

The sheer diversity of GPCRs is striking, with over 800 different GPCR genes identified in the

human genome (around 3% of protein encoding genes). This diversity is reflected not only in

their ligand specificity but also in their tissue distribution and functional roles. GPCRs serve a

wide variety of physiological functions, from sensing the environment through rhodopsin and

olfactory receptors to mood regulation through dopamine and serotonin receptors to immune

system regulation via chemokine receptors (Fig. 1.1). Given the scope of the processes they

regulate, they are involved in many diseases and thus are very attractive drug targets, being

the targets of 34% of FDA approved drugs (34).

1.1.1 In-vivo function

As integral membrane proteins, GPCRs serve at the frontier of the cell. They sense external

cues about the environment and then activate cellular responses. These external stimuli can

be light (photons), small molecules, peptides, or even other proteins, making GPCRs highly

diverse receptors in terms of both stimulus and function (35) (Fig. 1.1a).
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Canonical signaling of GPCRs, as is suggested by their name, happens through coupling and

activation of G-proteins (also known as guanine nucleotide-binding proteins). The G-protein

binds to a GPCR, and then the GPCR acts as a guanine nucleotide exchange factor, exchanging

guanosine diphosphate (GDP, inactive state G-protein) to a guanosine triphosphate (GTP,

active state G-protein). G-protein are heterotrimers containing an α, a β, and a γ subunit,

and upon nucleotide exchange, the α subunit dissociates from the βγ subunit and each

elicits further downstream signaling (Fig. 1.2). Given that GPCRs regulate many different

physiological processes, this variability is visible in G-proteins as well. There are 16 different

Gα subtypes, divided into 4 general classes: Gαs , Gαi /o , Gαq/11, and Gα12/13. Gαs is the

stimulatory G-protein which activates various adenylyl cyclases that then stimulate cyclic

adenosine monophosphate (cyclic AMP, or cAMP) production from adenosine triphosphate

(ATP). Gαi , on the other hand, is the inhibitory G-protein that inhibits adenylyl cyclase

activation (36)(and thus cAMP production). Gαq stimulates phospholipase C (PLC) leading to

downstream calcium release from the endoplasmic reticulum into the cytoplasm via second

messenger signaling (37). Finally, Gα12/13 are involved in regulation of the actin cytoskeleton

through Rho family GTPase signaling (38). Traditionally, GPCRs are seen to have "cognate"

G-protein pairing, where a GPCR is selective to a specific G-protein subtype. Recent evidence

has shown that many GPCRs have a level of promiscuity, coupling to and activating more than

one G-protein subtype (39; 40; 41), as seen in Fig. 1.1b. This complicates attempts to elucidate

physiological effects of every G-protein pathway. In effect, GPCR activation can lead either

to stimulation of inhibition of cAMP production, calcium ion release into the cytoplasm, or

cytoskeleton regulation, all of which have a wide range of effects in cells.

Gβγ acts functionally as a monomer as it is a tightly bound heterodimer where the subunits

have not been shown to function separately (42). The Gβγ complex plays two main roles:

when it is bound in the heterotrimeric complex, it is a negative regulator that increase Gα’s

affinity to GDP (43) (and thus favoring the inactive state of Gα). After GDP-GTP exchange,

Gβγ separates from Gα and signals on its own as a dimer (44) (Fig. 1.2). Gβγ has been shown

to regulate a diverse array of downstream effectors such as G protein-gated inward rectifier

channels (GIRKs) (45), adenylyl cyclase (46), phospholipase C (47; 48), calcium channels (49),

and gene transcription (50).

Another important intracellular binding partner of GPCRs is the arrestin family. Contrary to

the diversity of G-proteins, the human genome encodes only four arrestin genes, two of which

are visual arrestins (arrestin-1 and arrestin-4) specific for rhodopsin and cone opsins, and

the other two (named β-arrestin 1 and 2) interact with the majority of GPCRs (51). Arrestins

function mainly in receptor desensitization and internalization. After heterotrimeric G-protein

activation, GPCRs can be desensitized as a form of adaptation to a persistent stimulus for

example. The first step is phosphorylation of the active receptor by G protein coupled receptor

kinases (GRKs), which increases arrestin affinity for GPCR binding. Upon binding the receptor,

arrestin impedes G protein signaling by occluding the intracellular binding site and targets

GPCRs for internalization by linking the receptor to internalization machinery, such as clathrin

(52; 53). This would lead either to receptor degradation or recycling back to the membrane
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ℎ𝜈(a)

(b)

Figure 1.1: GPCR ligand diversity and promiscuity of intracellular binding partners. (a) GPCRs
can bind/sense a wide array of ligands such as small molecules (pink), light (tan), or pep-
tides/proteins (purple). (b) GPCRs can signal through various types of G-proteins, where some
receptors have higher G-protein specificity, while other are more promiscuous and can bind
to different G-protein subtypes. The arrows are colored in reference to the different receptors,
where the arrow thickness represents strength of signaling of a receptor with a G-protein
subtype.

(54). Arrestins have also been shown to play a role as regulators of multiple signaling pathways

(55)
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Figure 1.2: GPCR signaling through the G-protein pathway: Top formation of agonist and
GDP bound ternary complex. The resting state refers to the GDP-bound G-protein. Right
nucleotide exchange step, where a GDP is exchanged for a GTP in the G-protein α subunit.
Bottom dissociation of G-protein subunits from the receptor and from each other, yielding
a Gα subunit and a tightly bound Gβγ dimer. Left Activation of GTPase followed by GTP
hydrolysis, allowing for the regeneration of the active form of the Gα subunit, which will
re-associate with a Gβγ dimer, forming the resting trimer which could bind to GPCRs again. A
ligand bound receptor can activate more than a single G protein before shutting down.
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Figure 1.3: (a) GPCR agonism: classes of drugs are classified according to their effect compared
to a high efficacy endogenous ligand. Full agonist have the highest signal seen with an
experimental assay. Partial agonists have positive signals that are lower than full agonists.
Antagonists bind the reeptor but have no effect on activity. Inverse agonists lower the basal
activity of the receptor. (b) GPCR biased signaling: An example of biased signaling where
both ligands 1 and 2 activate the same receptors, but ligand 1 prefers downstream effector
pathway 1 (for example, a G-protein) while ligand 2 activates pathway 2 more strongly (for
example, a β-arrestin pathway)

1.1.2 GPCR activation

In recent years, we have gone a long way in understanding the molecular underpinnings

of GPCR activation due to the number of active GPCR structures that have been discovered

(56; 57; 58; 59; 60; 61; 62) coupled with NMR (63; 64; 65) and computational studies (especially

MD simulations (66)). One of the simplest models of GPCR activation is that agonist binding

stabilizes the receptor in its active state, and this conformation favors interaction with either a

G-protein orβ-arrestin. Deeper investigation shows that GPCRs are not simple on/off switches,

however, as most GPCRs exhibit some basal activity even in the absence of a ligand. This

indicates that there is an equilibrium between active and inactive populations. In this context,

an agonist is a ligand that favors the active state and increases the downstream activation

beyond the basal level, and depending on how much it increases the activity, it could be

categorized as a full or partial agonist (Fig. 1.3a).

An inverse agonist does the exact opposite, reducing the activity below the basal level, thus

favoring an inactive conformation of the GPCR. Antagonists, while not affecting the basal activ-

ity, compete with agonists and inverse agonists for the ligand binding site, and thus favor the

"neutral" state of the GPCR. Since GPCRs can bind to either a G-protein (or several G-proteins,
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depending on the GPCR (39; 40)) or β-arrestin down-streaming pathways, agonists could

possibly stimulate both pathways equally or preferably toward one pathway in a phenomenon

known as biased agonism (67; 68).

GPCR activation as a function of ligand concentration is traditionally represented as a dose

response curve (more details are given in Sec. 1.3.1). The response of the ligand resembles

a sigmoid curve that can be essentially described with three quantities, the basal activity

(response at zero concentration of any ligand), the maximum response (compared to an

endogonous ligand), also known as efficacy, and the half response ligand concentration EC50,

also known as potency.

1.1.3 Biased signaling

As previously mentioned, GPCRs can bind more than one type of intracellular binding part-

ners, and their signaling can be discriminatory toward one downstream effector (Fig. 1.3b).

Biased signaling can be the result of several factors: the receptor itself can be biased (69; 70);

alternatively, the agonists could stabilize a certain conformation of the receptor that favors

a specific binding partner (71). The system itself could be biased, with the "system" being

defined by non-ligand molecules involved in the signalling process. Examples of system bias

are different transducer, effector, or modulatory protein concentrations across cell types or

different tissues (72).

Specifically, biased agonism is a hot subject of study since it promises therapeutic applications

with reduced side effects. For example, mouse studies of µ-opioid in mice lacking β-arrestin

2 showed enhanced analgesia (73). This has lead to an increased interest in computational

studies for elucidating the molecular mechanism (74) that would lead to design of novel

therapeutics (75).

1.1.4 Structural features

GPCRs are also known as seven-transmembrane domain receptors because of their character-

istic seven-transmembrane alpha helical structure (TM1-TM7) with the N-terminus toward

the extracellular (EC) side and the C-terminus toward the intracellular (IC) side. The seven

helices form a cavity in the plasma membrane where a ligand binds the EC cavity, and an IC

binding partner binds at the IC side. The helices are connected via three intra-cellular (ICL1-3)

and three extra-cellular (ECL1-3) loops which vary in length between receptor types, even

those belonging to the same subfamily (Take ECL2 and ICL3 of dopamine D1 and D2 receptors,

for example). After TM7, there is a shorter intracellular helix that is parallel to the membrane

(commonly known as helix 8). H8 is followed by a flexible C-terminus that is variable in length,

and contains several post-translational modification (PTM) sites. A general overview is shown

in Fig. 1.4.

Generic GPCR numbering: Due to the conserved seven-transmembrane helical structure of
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D2.50 Sodium binding site

Disulfide bond

P5.50I3.40F6.44 motif

DR3.50Y motif

CW6.48xP motif

NP7.50xxY motif

PTM site

Figure 1.4: GPCR snake plot featuring structure of dopamine D2 receptor, conserved mo-
tifs in class A GPCRs, conserved sodium ion binding site, and common post-translational
modification (PTM) sites. Residue numbers follow the Ballesteros-Weinstein designation,
where the first number is the TM helix and the second the position of the residue compared
to the most conserved residue in the helix, designated 50 (1). Generated with GPCRdb (76)
(https://gpcrdb.org/protein/drd2_human/)

GPCRs, generic numbering schemes that reference the position on the helix rather than the

sequence residue number are very helpful when comparing residue positions across receptors.

The most common numbering scheme that is used in this work is the Ballesteros-Weinstein

(BW) scheme (1), which exploits the presence of highly conserved residues in each of the

seven TM helices in class A GPCRs. The residue number consists of two numbers, the first

referring to the helix 1-7, and the second being the position of the residue compared to the

highest conserved residue in the helix, denoted 50. For example, 7.50 would be the most

conserved residue on helix 7, and 7.53 would be the residue 3 positions away from 7.50 toward

the C-terminus. The positions of the most conserved motifs in class A GPCRs are shown in Fig.

1.4.

The transmembrane helices: The seven TM helices form a tight interacting fold that serves as

a communication channel between the ligand binding and G-protein (or IC binding partner

more generally) binding site. A consensus analysis of various GPCRs unveils a conserved

network of 24 interactions between TM helices that are mediated by 36 topologically equivalent

amino acids (77) (generic numbering is helpful in this case to show this equivalence, keep in

mind that this analysis was from 2013, when a much smaller number of GPCR structures was

available). Included in the list of the mentioned amino acids are highly conserved residues

such as N1.50, D2.50, W4.50, and P7.50 (Fig. 1.4), while other topologically equivalent positions
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are more variable between GPCRs. The consensus inter-TM contacts are localized toward the

middle to cytoplasmic side of the GPCR. At the center of the TM bundle is TM3, which acts

as structural and functional hub that maintains consensus contacts with TM6,5,4, and 2 in

addition to non-consensus contacts with TM7 and TM1. This role is aided by the tilt angle

of TM3 with respect to the perpendicular to the membrane plane (∼ 35◦) (77). Another key

feature in GPCR TM helices is the presence of conserved proline residues in TM5, 6 and 7 at

positions P5.50, P6.50, and P7.50 that introduce kinks by interrupting the intrahelical hydrogen

bonding pattern. Other kinks are found at non-conserved positions too. These features are

essential for facilitating functional state formation as a response to ligand binding by lowering

the energy barriers of conformational changes in the TM helices.

GPCR post-translational modifications (PTMs): Almost all GPCRs are post-translationally

modified, although their presence and number varies by receptor. PTMs range from glyco-

sylation sites on ECLs to phosphorylation sites on ICL3 and C-terminus to palmitoylation

sites on H8. Glycosylation contributes to GPCR trafficking to the cell membrane and receptor

stability (78; 79). Phosphorylation sites affect receptor internalization and desensitization

after activation, as we saw previously with arrestin signaling (80). Recent research has shown

evidence for different patterns of phosphorylation (the so called phosphorylation barcode)

which would modulate arrestin conformation, and thus result in unique functional outcomes

(such as desensitization, internalization, or signaling) (81). Palmitoylation plays an important

role in membrane targeting and anchoring (82; 83; 84), and mutation of a palmitoylation site

in CB1 receptor also impaired its signaling properties (84). Finally, it is important to note that

the world of PTMs is vast, and a lot about them is still unknown. There is interplay between

PTMs that produces unique effects (79), but that it out of scope for this review.

Extra-cellular loops (ECLs): ECLs play important roles in ligand binding and specificity, and

are also potential binding sites for allosteric modulators (85). ECL1 has a highly conserved

length (but divergent sequence) in class A and class C GPCRs, and variable length and sequence

in class B. Despite its short length in class A, it has been reported to influence the shape of the

binding pocket (86; 87; 88) and to affect signalling efficacy of an allosteric agonist (89). ECL1 is

also the home of the WxFG motif in almost 90% of class A GPCRs (88). Mutations in the WxFG

motif were reported to be capable of ligand binding, but lack signaling responses (86), and

mutation of the W impairs receptor trafficking (88). ECL2, on the other hand, shows surprising

structural diversity in class A GPCRs, varying from unstructured short loops (DD2R) to alpha

helices (β2AR) to beta hairpins (CXCR4, rhodopsin). ECL2 contributes to ligand selectivity

(which may explain its structural and sequence diversity, (90; 91)), receptor function (92),

ligand binding (93), allosteric modulation (94; 89; 95), and biased signaling (96; 97), and it

has been described as a "gatekeeper" of receptor activation. A conserved disulfide bond

between ECL2 and TM3 forms a structural constraint across the GPCR superfamily (98). In

some GPCRs, the presence of the disulfide bond is essential for signaling, such as C5aR (99)

and chemokine CCR8 (93), while in others, such as adenosine A2A receptor, its presence seems

to be functionally redundant (100). The final extracellular loop is ECL3, which is small in class

A GPCRs. ECL3 forms an intra-loop disulfide bond in cases such as dopamine (101), serotonin
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(102), and melanocortin receptor families (103), while it forms a disulfide bond with the N-

terminus in other receptors, such as the chemokine family (104) and Angiotensin AT1 (105)

(instead of bombarding the reader with a river of references for the structures of every single

receptor mentioned, we would invite the reader to check the structures themselves by looking

them up on GPCRdb https://gpcrdb.org/structure/) Through those structural constraints,

ECL3 plays an important role in stabilizing the ligand binding pocket for aiding N-terminus

contacts with the ligand in case of chemokine and AT1 receptors. ECL3 is the least studied

between the ECLs, but there is evidence of its involvement in allosteric ligand binding (106)

and interactions with ECL2 that are critical for proper folding and signaling (107).

Intra-cellular loops (ICLs): Intra-cellular loops (ICLs) play a wide range of roles in GPCRs,

such as IC binding partner specificity, autoregulation, and PTMs. GPCRs contains three ICLs

(owing to the presence of seven TM helices), with different loops playing separate roles. ICL1

forms interactions with H8 with a few exceptions (AT2-R for example). Chimeras of AT1

with ICL1 of AT2 and vice versa showed a loss of function of AT1 toward G-q and toward

β-arr recruitment, which implies a role for ICL1 toward those pathways in AT receptors (108).

ICL1 has also been shown to be used in an "alternative" conformation of β-arrestin binding

(109). The second ICL plays a major role in both G-protein and arrestin binding, with the

"major" arrestin pose extracted from various structural studies (Fig. 1.8) showing ICL2 in a

helical conformation resting in a cleft in the arrestin structure. ICL2 is also involved in GDP

release, where mutations in ICL2 in rhodopsin maintain Gt coupling but impair GDP release

(110). ICL2 has also been suggested to be a fine-tuning switch in 5HT2AR that can distinguish

modes of receptor activation in response to hallucinogenic (such as LSD, shown in Fig. 0.1) and

nonhallucinogenic ligands (such as serotonin, also known as 5-HT), where ICL2 conformations

depend on the ligand bound in MD simulations (111). The third ICL is the largest and most

variable in GPCRs, ranging between 10 and 240 amino acids in length. A recent study has

found a relationship between ICL3 length and receptor–G protein binding site conservation.

In short, shorter ICL3s tend to have a broad distribution of interface conservation, while

longer ICL3s tend to have narrower (and lower on average) interface conservation. The length

threshold is reported to be around 46 AAs. The length of ICL3 is also related to how GPCRs

achieve specificity, either via the G-protein interface for shorter ICL3s, or via ICL3 gating for

the longer ones, thus making ICL3 a determinant of G-protein selectivity (112).

The N and C-termini: Amino-terminus (N-terminus) is a region that is variable in length and

is classically involved in receptor trafficking (113) and ligand binding in class B (secretin-like)

(114) and class C (glutamate-like) (115) GPCRs. It also binds to peptide and protein ligands in

some class A GPCRs and is stabilized with a disulfide bond to ECL3 (70; 116; 117). Furthermore,

the N-terminus affects GPCR signaling through proteolysis and other proteolysis-independent

modalities summarized here (118). A very interesting and particular case is the N-terminal

region in adhesion GPCRs (class B2), which has a large extra-cellular region that contains

a conserved G-protein-coupled receptor (GPCR) autoproteolysis-inducing (GAIN) domain

and a variable adhesion ligand binding domain (119; 120). The GAIN domain contains a

tethered peptide agonist that is often auto-cleaved (121), and is sensitive to mechanical
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Figure 1.5: (left) GPCR activation in a snapshot: Intracellular view of active (grey, PDB code:
6VMS) and inactive (orange, PDB code: 6CM4) GPCR (dopamine D2R) structures. Main
motions of TM5, TM6, and TM7 are highlighted. (right) Conserved microswitches: motions
of highly conserved microswitches involved in class A GPCR activation

signals (122; 123; 124) but can also activate the receptor via spontaneous tethered agonist

exposure(125).

The disordered carboxyl terminus (C-terminus) is a substrate for GPCR kinases and also binds

β-arrestins (126). Structures of GPCRs bound toβ-arrestins clearly show the phosphorylated C-

terminal peptide interacting with β-arrestin1, rendered in Fig. 1.8c (127; 128; 129; 130). Recent

studies on β2AR have shown that C-terminus inhibits basal activity and agonist signaling

in cells lacking β-arrestin. It limits interactions between the GPCR and G-protein by being

negatively charged and interacting with the positively charged cytoplasmic side of the receptor,

thus acting as an autoinhibitory factor (131).

Structural features of GPCR activation

As mentioned previously, the advent of high resolution cryo-EM has opened the door to eluci-

dation of structures of active tertiary (ligand - GPCR - IC binding partner) complexes, which

provides great insight to the structural features that define GPCR activation when compared

to inactive or intermediate state structures (mostly solved using X-ray crystallography). When

these features are combined with spectroscopy data and computer simulations, we arrive at a

molecular understanding of GPCR activation.

The most notable feature of GPCR active state structures is the opening of the cytoplasmic side
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to accommodate binding of its IC binding partner (a G-α subunit or an arrestin, Fig. 1.5:left).

The staple of this opening is an increase in the distance between TM6 and the stationary

TM3, where the exact distance varies depending on the binding partner (larger for G-αs

(57) and smaller for G-αi (132), as shown in Fig. 1.7). TM7 also kinks to form interactions

with the G-protein, moving closer toward the binding cavity along with H8. At the ligand

binding site, we observe a contraction in response to presence of an agonist compared to

an apo state, although the differences in the ligand binding site between an agonist and

an antagonist/inverse agonist bound state are subtle (133). Interestingly, structural and

computational data have revealed that ligand and G-protein binding sites of GPCRs can each

sample active or inactive conformations with a degree of independence from each other.

This can be seen structurally in agonist bound structures of 5HT1B (102), where cytoplasmic

part of the receptor is inactive like despite binding an agonist, and can be observed in the

conformations of agonist bound β2-AR MD simulations (66).

In addition to large scale motion of TM6 and TM7 in GPCR activation, smaller scale movements

at the amino acid scale, termed microswitches, are critical to GPCR activation and function.

Many of these microswitches display correlated motion across sparse networks that connect

the EC and IC domains of a GPCR. Moreover, since these microswitches form a unique set of

contacts between the inactive and active states, they are ideal targets for protein design (16).

Conserved motifs in class A GPCRs: Of the aforementioned microswitches, some are highly

conserved across class A GPCRs and form conserved motifs that are outlined here and shown

in Fig. 1.5:right:

Toward the G-protein binding site, one finds the D(E)3.49-R3.50-Y3.51 motif. In the inactive

state, R3.50 interacts with E6.30, either forming a salt bridge (called an ionic lock), such as the

case of dark-state rhodopsin (134) or simply interacting at a distance, such as β1AR inactive

state. MD simulations of β2AR have shown that ionic lock may form temporarily and then

dissociate (66; 135), which indicates this lock forms transiently in GPCRs with basal activity.

Nonetheless, it plays an important role in stabilizing the inactive state. That is why TM3-6

distance is considered to be one of the order parameters of GPCR activation. There is also an

extensive role that the DRY motif plays in forming stabilizing interactions with the G-protein

in the active state, as seen in β2-AR active state structure (57). R3.50 has been observed to form

hydrogen bonds with Y5.58 in active state structures of rhodopsin and µ-opioid receptors, and

in β2-AR, Y5.58A variant does not activate G-s and does not display basal activity (136).

Another conserved motif in GPCRs is the NP7.50xxY motif on helix 7. While it does not interact

directly with the G-protein, it is critical for forming the active state. Due to the proline at

position 3.50 that acts as a helix breaker, TM7 can rotate in the active state, moving Y7.53 to a

position previously occupied by TM6 in the inactive state. Y7.53 then forms a hydrogen bond

with Y5.58. Due to this motion, the NPxxY RMSD to the inactive state could be used as an order

parameter to measure GPCR activation, as will be seen in later sections of this work.

Toward the core of the receptor, the P5.50 I3.40 F6.44 motif, whose side chains act as toggle
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rotamers that respond to agonist binding and help transmit the "activating" signal across the

receptor. An inward movement of TM5 toward the orthosteric binding site requires I3.40 to

adopt a different rotamer to avoid steric clashes (see Fig. 1.5). This leads to a shift in F6.44

to maintain packing while TM7 moves inward. The conserved W6.48, known as Trp toggle,

also responds with a concerted motion with the aforementioned residues. These motions are

facilitated by the absence of backbone hydrogen bonds caused by the presence of prolines at

conserved positions in TM5, TM6, and TM7.

Ligand binding site

The orthosteric ligand binding sites vary between GPCRs given the wide array of diverse

ligands that they sense. We will focus on aminergic receptors as those are the class A GPCR

families that we mainly deal with in this work.

Aminergic receptors mainly bind their ligands through hydrogen bonding primarily with

serines or threonines on TM5 in positions 5.42, 5.43, and 5.46, a salt bridge interaction between

the charged nitrogen and D3.32, which is fully conserved in human class A aminergic receptors,

and Y7.43, which forms a hydrogen bond with the aforementioned D3.32 and the ligand (Fig.

1.6a). Residue D3.32 is essential for ligand binding and could abrogate ligand binding if mutated

(137; 138). Contacts with TM5 and TM6 in dopaminergic and serotonergic receptors has been

shown to control full agonist vs biased agonist response, where contacts with TM5 only gave

a G-protein biased response, while ligand interactions with both TM5 and TM6 (specifically

position 6.55) leads to full agonist response. The authors concluded that sequence variation

in position 6.55 is nature’s way of fine-tuning β-arrestin recruitment (139). Furthermore, the

ligand binding site is rich with aromatic residues that could form π-π interactions with the

aromatic rings of aminergic ligands. Sequence conservation of the ligand binding site in

human aminergic GPCRs is shown in Tab. 1.1.

Table 1.1: Sequence conservation of ligand binding residues in human class A aminergic
GPCRs. Residues with highest conservation level are shown in sequence consensus row, with
the percentage conservation shown. Additional designations are shown for positions with
lower conservation (< 70). Legend: TM = transmembrane helix, BW = Ballesteros-Weinstein
numbering scheme. Generated with GPCRdb (76) (https://gpcrdb.org/alignment/render)

TM 3 3 3 5 5 5 5 5 6 6 6 7 7 7
Residue (BW) 32 33 36 42 43 46 47 48 51 52 55 35 39 43
Seq. consensus D V C S S S F Y F F N F F Y

100 58 56 58 50 44 100 72 75 81 28 36 22 89
Aromatic 22 69 36
H-bonding 22 36 83 69 58 67 31 44
Small 0 89 75 78 86 11 8 3
Hydrophobic 100 64 8 28 42 42 81 69
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Y7.43
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Figure 1.6: (a) Ligand binding site of β1AR: extracellular view of β1AR (grey, PDB code: 6H7J
(140)) bound to Isoprenaline. Conserved ligand binding residues in class A aminergic GPCRs
are highlighted with BW numbering (1). (a) G-protein binding site in β2AR: binding of β2AR
(yellow, PDB code: 3SN6 (57)) to Gαs-βγ heterotrimer. C-terminal helix (H5) of the Gα is
highlighted.

GPCR binding to different intracellular (IC) binding partners

Given the wide variety of GPCR IC binding partners and G-protein subtypes, studies have

attempted to uncover the determinants of G-protein selectivity through functional assays

and molecular dynamics simulations (40; 39; 141). Dynamical simulations have shown that

when a GPCR binds to its cognate G-protein, the C-terminal helix (also known as Helix 5, Fig.

1.6b) of the G-α domain (which is inserted into the cytoplasmic cavity of the GPCR) assumes

a dynamic ensemble of unique orientations. Non-cognate G-proteins, on the other hand,

interact weakly and dynamically with latent intracellular GPCR cavities (40). Another study

built G-protein chimeras by exchanging the C termini and between Gα-subunits. They find

that Gq and Gs coupled receptors display promiscuity by binding to Gi1 to some extent while

Gi coupled receptors are more selective (39). One possible explanation for this difference

are structural features that are unique to every G-protein variant. For example, Gs-bound

active state structures have a larger opening of TM6 than Gi and Gq complexes, while Gq

structures have variable TM6 opening with low TM3-7 distance (measured between R3.50 and

Y7.53) as seen in Fig. 1.7. Gi and Go generally have a small opening of TM6 and a slightly

larger TM3-7 distance compared to Gs structures. At the time of writing, there is only one

class A GPCR structure bound to G13, and it sits in an intermediate position in TM3-6, TM3-7

space between all the other studied structures. The wealth of structural and annotation data

now allows construction of what is called the "receptor-G protein couplome" for determining

selectivity/promiscuity of GPCRs and G proteins (142). The authors find that half of GPCRs

are selective for a unqiue G-protein while 5% promiscuously activate all G-protein families,
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Figure 1.7: Survey of class A ternary complexes for different IC binding partners: TM3-6
distances are calculated between R3.50 and X6.30 (where X is a variable amino acid in the
sampled structures), while TM3-7 distances are calculated between R3.50 and Y7.53. Inactive
structure of β2AR (PDB code: 2RH1) is added for reference. PDB codes of ternary complexes
used in this figure are: Gs: 3SN6, 5G53, 6GDG, 7RMH, 7PIU, 7CKZ, 7XT9, and 7XTB. Gi: 6CMO,
6N4B, 6OS9, 8F7Q, 8F7W, and 7JVR. Go: 6OIK, 6WWZ, 7EJ0, and 7W2Z. Gq: 6OIJ, 7F6H, 7SRR,
7DFL, 7SR8, and 8E9Z. β-arrestin: 6PWC, 6U1N, 6TKO, 7R0C, and 7SRS. G13: 7T6B. The
outliers are 60IJ (X:21.9, Y:11.3, Gq), 7EJ0 (X:19.8, Y:12.9, Go), and 7RMH (X:13.5, Y:14.4, Gs).
Note that 7RMH is bound to an engineered miniGs399 that does not signal, so the structure
probably does not resemble a functional state

and that almost three quarters of GPCRs activate all G-proteins belonging to the same family.

In addition, there is evidence of binding of G-proteins to the membrane through several lipid

anchors (143).

Going beyond static structural features, a recent study derived a spatio-temporal code from

locations and durations of GPCR-Gα contacts that are critical for G-protein selectivity (141).

These contacts were divided into specific and common categories, and it was observed that

promiscuous GPCRs tend to sample the common contacts more than G-protein specific ones.

Between the studied G-proteins, Gs had the largest number of specific contacts, followed by

Gq and then Gi .

As for β-arrestin, it binds the same IC cavity as the G-protein in the activated receptor via inser-

tion of a finger loop, stabilizing a distinct receptor conformation. As seen in Fig. 1.7, opening

of the IC cavity is comparable to binding Gi/o, although this does not tell the full story. Arrestin
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M2R (6U1N)

β1AR (6TKO) NTR1 (6UP7)

5HT2B (7SRS)

Rhodopsin (5W0P)

(a) (b)

(c)

Phosphorylated 
tails

GPCRArrestin

Figure 1.8: Structural diversity of arrestin binding from available arrestin bound complexes:
arrestins are shown as cartoon, while GPCRs are represented as a translucent surface. (a) range
of arrestin orientations: after receptor Cα alignment, arrestins span a range of orientations
with respect to the receptors. (b) Diversity of finger loop conformations: finger loops can
either be helical or unstructured. Only 5HT2B (7SRS) receptor is shown in this panel for clarity.
(c) Phosphorylated tails binding: despite diversity of arrestin conformations, phosphorylated
C-terminal tail similarly bind the positively charged N-terminus of arrestin. The tail is shown
in surface representation.

binding positions ICL2 in a hydrophobic cleft (with the exception of NTSR1, which binds

β-arrestin via ICL1, leading to a largely rotated arrestin structure, shown in Fig. 1.8a, (109)),

and mutation I34.51A (ICL2) in 5HT2B reduced agonist induced β-arrestin-1 recruitment by

70% (130). β-arrestin forms contacts with the phosphorylated C-terminus, as indicated in

β-arrestin bound structures, and hinted at by mutagensis of possible phosphorylated ser-

ines in 5HT2B C-terminus, which reduced β-arrestin-1 recruitment maximum response by

30%–50% in response to LSD. GPCRs lacking a sizeable C-terminus (such as dopamine D2-4 or

5HT1A/B) compensate with a long ICL3 containing several phosphorylation sites that binds

β-arrestin. Disulfide crosslinking experiments of 5HT1A and 5HT1B provide evidence for ICL3

binding to the N-terminal domain of β-arrestin1 as well as ICL1 binding (as opposed to ICL2),

which suggests an NTSR1 similar "alternate" binding conformation. In this conformation, the

positively charged N-terminal domain is accessible to ICL3 (109). It is also possible for a GPCR

to partially bind β-arrestin via the phosphorylated tail only (known as the ‘tail’ conformation)

(144; 145). Such a conformation can mediate receptor endocytosis and activation, although

G protein signaling desensitization requires a fully engaged GPCR–arrestin complex (146).

Binding of either ICL3 or C-terminal peptide occurs at a conserved P-X-P-P motif (where P

is a phosphorylation site) which interacts with a K-K-R-R-K-K sequence in the N-domain
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of β-arrestins (147). A comparison between available arrestin bound structures and their

G-protein counterparts highlights a downward shift of R3.50 side chain to accommodate the

arrestin finger loop and a counterclockwise rotation of N7.49 away from D2.50. In addition,

while the arrestin finger loop has conserved negatively charged residues across β and visual

arrestins (109), the loop could assume various conformations, which in combination with

arrestin rigid body rotation is hypothesized to allow arrestin adaptation to various cytoplasmic

cavities across the GPCR superfamily (130). Furthermore, there is evidence that β-arrestin

preassociates with the plasma membrane, driving coupling to receptors and subsequent

activation (148).

Conclusion

As seen in this section, GPCRs play a diverse and pivotal role in vivo through the variety of

stimuli that they sense and diversity of IC binding partners and downstream responses. While

having a conserved 7-TM helix topology, GPCRs show a wealth of variety in the loop, terminal,

and ligand binding regions. GPCRs also access a rich activation landscape, exhibiting inactive,

intermediate, and multiple active states depending on the bound partners.

In the context of this thesis, we are interested in class A GPCRs as model systems for complex

allosteric proteins in which allosteric behavior depends on both structural and dynamic

features.

1.2 Underlying methods

1.2.1 Molecular dynamics (MD) simulations

Molecular dynamics (MD) simulations are a powerful and versatile way to study allosteric

signaling in a plethora of systems and in different forms of computational experiments. MD

simulations are based on solving Newton’s equations of motion for particles of a system where

the forces are calculated through a molecular mechanics force field in the classical case, and

where particles could be individual atoms in all-atom MD, atom-hydrogen pairs in united-

atom MD, or a merge of several atoms in coarse-grained MD. A molecular mechanics force

field is divided into bonded and non-bonded terms, where bonded terms describe the bonds,

angles, and dihedrals formed in a molecule, while non-bonded terms contain an electrostatic

and a van der Waals component. Such force fields are typically derived from experimental data

fitting (149) or quantum mechanical calculations (150), and more recently machine learning

potentials (151).

Without modification, molecular dynamics integrators sample a constant number of parti-

cles/volume/energy surface (known as the microcanonical ensemble, or NVE). A visualization

of such a trajectory and its sensitivity to inital conditions are shown in Fig. 1.9. An MD simu-

lation can be modified to sample constant temperature via coupling to a thermostat, which
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Figure 1.9: Sensitivity of molecular dynamics (MD) simulations to initial conditions. While
NVE MD simulations are deterministic, they are chaotic, meaning that a small change in initial
conditions can lead to drastically different trajectories. Simulations start at y0 = 0 and x0

indicated by the title of each figure. A slight change of x0 = 0.88 to x0 = 0.9 leads to the MD
simulation getting stuck in the small potential well at the origin. Simulation was performed
for 25000 steps with a time step of d t = 0.001 with periodic boundary conditions

will add or remove energy to a system, approximating a canonical ensemble (also known as

NVT). Popular thermostats include the Nose-Hoover (152; 153), velocity rescaling (154), and

Langevin (155; 156) thermostats. Additionally, constant pressure simulations can be achieved

by coupling to a barostat, and with the aforementioned modifications, MD can mimic an

experiment in the lab at constant temperature and pressure conditions.

In this work, we use all-atom classical unbiased MD to sample conformations of soluble and

membrane proteins, and then analyze the trajectories to extract allosteric communication

pathways or quantify responses to perturbations in a given system. We also used steered

molecular dynamics to study the unfolding/mechanical response of a mechanosensor (122).

For an overview of how MD is used to study allostery in proteins, we refer the reader to Sec.

1.4.2.

1.2.2 Rosetta

Rosetta is a software suite containing an ensemble of algorithms and protocols for compu-

tational modeling, design, and analysis of proteins. It employs a combination of physics

and knowledge-based terms to construct a forcefield for scoring protein structures, with the

terms shown in Fig. 1.10 (157), and works on the assumption that the "native" structure for a

given sequence corresponds to the lowest energy structure that can be formed (158; 159)( also

known as the thermodynamic hypothesis or Anfinsen’s dogma (160)).

Two major algorithms that are the workhorses of Rosetta are gradient-based optimization

and Monte Carlo. A stochastic gradient descent algorithm minimizes the score of a protein

structure by iteratively adjusting the atom positions and minimizing the energy using the

aforementioned energy function. The Markov chain Monte Carlo (MCMC) algorithm, on the
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Energy Term Description Weight Units
fa_atr Attractive energy between two atoms on different residues separated by a distance d 1kcal/mol

fa_rep Repulsive energy between two atoms on different residues separated by a distance d 0.55 kcal/mol

fa_intra_rep Repulsive energy between two atoms on the same residue separated by a distance d 0.005 kcal/mol

fa_sol Gaussian exclusion implicit solvation energy between protein atoms in different residues 1kcal/mol

lk_ball_wtd Orientation-dependent solvation of polar atoms assuming ideal water geometry 1kcal/mol

fa_intra_sol Gaussian exclusion implicit solvation energy between protein atoms in the same residue 1kcal/mol

fa_elec Energy of interaction between two nonbonded charged atoms separated by a distance d 1kcal/mol

hbond_lr_bb Energy of short-range hydrogen bonds 1kcal/mol

hbond_sr_bb Energy of long-range hydrogen bonds 1kcal/mol

hbond_bb_sc Energy of backbone–side-chain hydrogen bonds 1kcal/mol

hbond_sc Energy of side-chain–side-chain hydrogen bonds 1kcal/mol

dslf_fa13 Energy of disulfide bridges 1.25 kcal/mol

rama_prepro Probability of backbone ϕ, ψ angles given the amino acid type (0.45 kcal/mol)/kT kT

p_aa_pp Probability of amino acid identity given backbone ϕ, ψ angles (0.4 kcal/mol)/kT kT

fa_dun Probability that a chosen rotamer is native-like given backbone ϕ, ψ angles (0.7 kcal/mol)/kT kT

omega
Backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω 
dihedrals that deviate from 180° (0.6 kcal/mol)/AU AU

pro_close Penalty for an open proline ring and proline ω bonding energy (1.25 kcal/mol)/AU AU

yhh_planarity Sinusoidal penalty for nonplanar tyrosine χ3 dihedral angle (0.625 kcal/mol)/AU AU

ref Reference energies for amino acid types (1.0 kcal/mol)/AU AU

Figure 1.10: Energy terms of the Rosetta energy function known as ref2015. Descriptions and
weights are from (157)

other hand, aims to simulate protein folding by sampling different conformations and then

evaluating the energy of each conformation. For every MCMC step, the energy of the current

conformation is compared to the previous one; if its energy is lower, the step is accepted. If

the current conformation’s energy is higher than the previous, then the Metropolis criterion is

applied to accept or reject the step with probability:

P (∆r ) = exp(
−∆E

kbT
), (1.1)

where ∆r is the conformation change, ∆E is the change in energy due to the MCMC step, kb

is Boltzmann’s constant, and T is a temperature factor that modulates the permissiveness of

the protocol. Due to the stochastic nature of the mentioned algorithms, multiple replicas are

run in parallel to increase the chance of sampling and then converging to the global energetic

minimum.

The application of these fundamental algorithms, coupled with others methods (such as

fragment-based assembly and homology modeling) has led to many successes in employ-

ing Rosetta to design de novo proteins (161), membrane proteins (162), enzymes (163), and

therapeutic peptides (164).

Rosetta has a wide array of specialized protocols, and choosing which protocol to use is

key for using Rosetta to the best of its capability. In addition, Rosetta developers have been

recently focusing on machine learning and deep learning methods for structure prediction

with RoseTTAFold (165), structure generation (unconditional or topology-constrained, or
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Figure 1.11: Different steps of a Markov Chain Monte Carlo simulation with a Metropolis
criterion for one particle in a toy potential. The particle starts at the origin, as shown in the top
left frame. The particle eventually populates the two minima found in the energy landscape.
Simulation was run for 10000 steps, with a step size of 0.2 and kbT = 1. Periodic boundary
conditions were applied.

even symmetric oligomeric complexes) with RFdiffusion (166), and sequence design with

ProteinMPNN (167).

In this work, we do not aim to radically change protein structure or sequence or to do de novo

design. We rather introduce point or double mutations that modify protein function in some

quantifiable way. The mainly used protocols are the relax (168) and score (157; 169) protocols

for structure preparation and comparison, and RosettaRemodel for rebuilding missing loop

regions in the studied structures (170). For performing accurate mutations in a membrane

environment, RosettaMembrane is employed, which will be explained in the next section.

1.2.3 RosettaMembrane

Our laboratory created RosettaMembrane specifically for simulating the membrane protein

environment via intraprotein and protein-solvent interactions (171). In contrast to Rosetta,

RosettaMembrane has additional terms for calculating van der Waals and hydrogen bonding

scores in the membrane. The membrane is modeled implicitly by three continuous phases:

water, lipidic, and phospholipid head-group. The contribution of each phase to the solvation

term depends on its location within the membrane. With these changes, RosettaMembrane

has been able to more accurately reproduce native rotamer conformations within the mem-

brane during benchmarking.

In this work, RosettaMembrane is used for in-silico mutagenesis of GPCRs. We use the output
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scores from RosettaMembrane coupled with normal mode analysis (next section) to evaluate

the quality of mutations and decide on which mutations to go to the next phase of the study.

1.2.4 Normal mode analysis and dynamic cross-correlations

As described in Sec. 1.4.2, NMA methods provide a fast and reliable way of probing protein

fluctuations and cross-correlations at a coarse grained level. A normal mode is a pattern of

motion where all parts of a given system move sinusoidally with the same frequency and a

fixed phase. Normal modes can be derived from very simple mechanical systems (coupled

oscillators with 2 masses for example) and can be readily generalized to larger systems in

three dimensions with the use of Hessian matrices of the potential (called generalized force

matrix in (172)). The general motion of a system can be seen as a superposition of these

normal modes. Low frequency modes describe large concerted motions of the system that are

energetically favorable (energy of a mode is proportional to square of its frequency)

For the aim of our study, we use NMA as a fast coarse grained approximation to GPCR dynam-

ics. Anisotropic network model (ANM) has been shown to be able to replicate the transition

between opsin and rhodopsin by comparing the motions described by the lowest 20 (acces-

sible) modes to rhodopsin to the first principal component of a PCA constructed using the

available rhodopsin and opsin structures (173). Furthermore, lowest ANM modes in rhodopsin

were coupled with energy minimization with Amber94 forcefield to construct a model for

the active Meta II state of rhodopsin that highlighted residues (global hinge sites, peaks in

high frequency modes, and sites related to retinal isomerization) with observed experimental

effects using decay rate and misfolding data (174).

Given the (relative) success of NMA methods to GPCRs, we use NMA to approximate dynamic

cross-correlations which we then relate to allosteric signaling across the GPCR. To do that, we

sum dynamic cross-correlations over pairs of allosteric hubs (residues that are important for

transmitting the signal from the ligand binding to the intracellular binding interface which are

extracted from molecular dynamics (MD) simulations). We hypothesize that this will remove

superfluous correlations that are not functionally relevant (16). Dynamic cross-correlation

matrices (DCCM) are calculated from the lowest 20 modes (similar to rhodopsin) and then

compared between a reference state and a perturbed state, for example: a WT and a mutant

receptor, or an inactive and active state receptor. One could push this idea further and define

a difference of differences ∆∆
∑

i
∑

j DCC M(i , j ), between (active and inactive) and (mutant

and WT). Chen et al. have related this quantity to the ligand-effector structural coupling Gc

under certain assumptions (16)

∆∆Gc ∼∆∆∑
i

∑
j

DCC M(i , j ), (1.2)

where i and j are pairs of allosteric hubs and DCC M is the dynamic cross-correlation matrix
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for the given state of the system.

Based on the derivation in (16), eq. 1.2 holds as long as the ligand and receptor contributions

to the energy between WT and mutant are similar. This can be achieved by: 1- Avoiding

mutations that destabilize the system 2- Avoiding mutations in the ligand binding site/G-

protein binding site.

1.3 Models of allostery

1.3.1 Allosteric two state model (ATSM)

L
+
𝑅𝐼

L
+
𝑅𝐴

L𝑅𝐼 L𝑅𝐴

A
ctive

Ligand bound

𝐾𝑅

𝛼𝐾𝑅
𝐾
𝐴

𝛼
𝐾
𝐴

L: Ligand
𝑅𝐼/𝐴: Inactive or Active receptor

𝛼: Allosteric coupling
𝐾𝑅: Apo equilibrium constant

𝐾𝑅 =
𝑅𝐴

𝑅𝐼
, 𝛼𝐾𝐴 =

𝐿𝑅𝐴

𝐿 𝑅𝐴
,

𝐾𝐴 =
𝐿𝑅𝐼

𝐿 𝑅𝐼
, 𝛼𝐾𝑅 =

𝐿𝑅𝐴

𝐿𝑅𝐼
.

Figure 1.12: Allosteric two state model, where a ligand (L) binds to a two-state receptor (R).
The system is considered as a two component system where each component can access
two states, as shown in the schematic (left). The terms in the schematic, as well as the
equilibrium constants are presented on the (right). An expansion of this explanation to
include a thermodynamic aspect and more than 1 ligand and/or active state can be found
here (175).

Of significant importance for this study is allostery in receptor activation, specifically GPCRs,

as formulated in the allosteric two state model (ATSM) (176). In this model, the system studied

is a ligand-receptor pair, where the receptor can occupy one of two states, a resting inactive

state (RI ) or an active state (RA). The receptor has a "basal" equilibrium between these

two states in the absence of a ligand described by KR , and then ligand binding shifts this

equilibrium either toward the active state (the ligand being an agonist), toward the inactive

state (inverse agonist), or not affecting the equilibrium (antagonist). The ligand has a different

association constant (K A) for the active or the inactive state, with the the allosteric coupling α

describing this difference, as seen in Fig. 1.12.

From the cycle in Fig. 1.12:left, we can determine the ratio of active receptors, fR , to be
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fR = [RA]+ [LRA]

[RI ]+ [RA]+ [LRI ]+ [LRA]
, (1.3)

where the concentrations are defined as in Fig. 1.12:right. Manipulation of the equation

using the equilibrium equations in Fig. 1.12:right leads to the fraction of active receptors as a

function of ligand concentration [L] and as a function of the parameters of ATSM (K A ,KR , and

α)

fR ([L]) = KR +αKR K A[L]

1+KR +K A[L]+αKR K A[L]
. (1.4)

We can use Eq. 1.4 to extract three quantities that describe the dose-response curve in ATSM,

the basal activity as [L] → 0, the max response as [L] → ∞, and the middle points of the

transition, EC50 as seen in Fig. 1.13.

Figure 1.13: A typical dose-response sigmoid curve in ATSM. Under ATSM, an equation
describing the fraction of active receptors as a function of ligand concentration can be derived
(Eq. 1.4), and then we can extract different limits from the equation as the ligand concentration
tends to zero, as the ligand concentration tends to infinity, and at the middle of the sigmoid
curve (175).

finally, we can solve for the allosteric efficacy α in terms of KR , K A , and EC50:

α=
( 1+KR

K AEC50
−1

)
∗ 1

KR
. (1.5)

This represents the simplest version of the allosteric two-state model as it pertains to GPCRs.

The model could be expanded to incorporate additional states, which would be necessary in

the case of biased signaling, allosteric modulation, or presence of multiple ligands (175). De-

spite its simplicity, the allosteric two-state model remains a valuable instrument for predicting
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and elucidating GPCR signaling, albeit primarily at a phenomenological level, rather than a

structural or dynamical aspect.

1.3.2 Macroscopic mechanisms of allostery

As described in the introduction, many models have been proposed to describe allostery

(Sec. 0.2). Out of these models, three main macroscopic mechanisms emerge: induced fit

(KNF sequential model (23)), population shift (MWC model (2)), and entropy driven allostery

(Cooper and Dryden (24)).

Figure 1.14: Description of allosteric mecha-
nisms as a function of an order parameter (177).
GPCRs fit into neither extreme, and thus we
need descriptions of both entropic contribu-
tions and conformational change to describe
their allosteric mechanisms.

Weinkam et al. proposed an order parame-

ter to connect microscopic structural from

molecular simulations to macroscopic al-

losteric mechanisms. The order parameter

is related to how ligand binding induces mo-

tion or cooperativity in the protein. Little to

no change in structure in response to the lig-

and signifies an entropy-driven mechanism,

while significant amount of conformational

change triggered by ligand binding is a sign

of an induced fit mechanism. Between these

two extremes lies the population shift (177).

Each of these mechanisms seem to better

describe one of the proteins mentioned in

the study. From this, we can define allosteric

mechanism as a function of an order param-

eter (Fig. 1.14).

1.4 Studying allostery

This section outlines the major methods of studying allostery that are relevant to this work.

While the methods mentioned in this section are divided into experimental and computational,

and then divided into sub-methods; studying allostery is rarely ever done using only one

technique. It is usually studied by combining the strengths of different experimental and

computational techniques to achieve an understanding of allostery.

1.4.1 Experimental methods

Any rigorous study of allostery needs to have a basis in experimental data whether for fitting/-

training or validation. Allostery has been studied in different and imaginative ways, including

but not limited to:
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Mutagenesis: one of the more "brute force" ways of studying allostery is mutagenesis. The

question is simple: what effect does mutating an amino acid have on protein function? (Of

course the interpretation of the specific experimental read-out and relating it to any kind of

allosteric mechanism is not trivial, as is discussed in this perspective (178)). Alanine scanning

of an area of interest in KCNQ1, a potassium channel, has been used to study its gating process

(179). Other studies have quantified the prevalence of allosteric sites in human liver pyruvate

kinase by whole-protein alanine scanning (180) and mapped the allosteric mechanism of a

GTPase via deep mutational scanning (181; 182). The conclusion from these studies is that

allosteric sites are prevalent in the structure, and that an allosteric mechanism that involves a

few defined positions is too simplistic. Deep mutational scanning has been applied to GPCRs

on the model beta-2 adrenergic receptor by testing 7800 of 7828 possible single amino acid

substitutions at four concentrations of the agonist isoproterenol. Mutations were divided into

six clusters with varying sensitivity and tolerance (183).

A different approach is targeting mutations to specific allosteric sites with mutation effects

predicted from a computational pipeline, also known as rational design. The process would

include predicting allosteric sites computationally (check Sec. 1.4.2) and then quantifying

the effect of specific substitutions. This has been demonstrated on dopamine D2 receptor by

repurposing it to a serotonin biosensor as well as modulating ligand efficacy and basal activity

(16). (One could argue that this rational design is an integrated approach, but we added it here

in this section for completion)

Structural studies: Structural data provides an invaluable resource to probe into allosteric

mechanisms, especially in cases where allostery triggers a conformational change in the

studied protein. These structures can be commonly determined by X-ray crystallography,

cryogenic electron microscopy (cryo-EM), or NMR spectroscopy.

X-ray crystallography has been used to probe conformational changes (by determining struc-

tures of different states/complexes), such as opening or closing of an active site, as seen in

phosphoglycerate dehydrogenase (PGDH) (184), minor conformational changes to active site,

with an example being DAHP synthase (DAHPS) (185), control of complex formation/oligomer-

ization allosterically, as in ATP phosphoribosyltransferase and epidermal growth factor re-

ceptor (EGFR) (186; 187), as well as other cases described in the literature (188). Of special

note are the crystal structures of GPCRs, starting from the first structure of rhodopsin (189) to

the tertiary GPCR-G protein complex (57) passing through agonist-bound intermediate states

(69). (Note that crystallization of the tertiary complex is significantly difficult due to flexibility

of the complex; there has been one other X-ray structure of a GPCR-G protein complex since

2011 (190))

Combining structural insight from crystal structures of GPCRs with the recent explosion of

GPCR cryo-EM structures gives us a unique opportunity to study allostery in GPCRs (191).

Cryo-EM has seen a recent surge with the famous "resolution revolution" (192), making it a

popular tool for examining the atomic details of protein structures (193), especially in GPCRs
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(Only 15 out of 261 GPCR structures deposited on GPCRdb in the last year (76)(March 2022

- March 2023, https://gpcrdb.org/structure/statistics) were determined using X-ray crystal-

lography, all the others were cryo-EM!). As GPCRs are fundamentally allosteric proteins that

populate many different states, it is critical to discern the structures of inactive, intermediate,

and active states to understand their function at an atomistic level. Cryo-EM has opened the

door to solving active state complexes of GPCRs with G-proteins (194), arrestins (109), and a G

protein-coupled receptor kinase (195). Structures of GPCRs bound to allosteric modulators

pave the way to studying allosteric modulation at sites distant from the orthosteric binding

site, adding another dimension to the study of allostery in these systems (196)(check Sec. 1.4.2

for more details). Furthermore, time-resolved cryo-EM can be used to investigate interme-

diates between two states, as has been shown on GTP bound Gαs with β2-AR (197). Such

intermediate state structures will prove invaluable in understanding protein transitions when

combined with dynamics simulations.

Dynamical studies: There are other cases, however, where structural studies are not enough

to identify the allosteric mechanism because the active and inactive states are almost identical

structurally. One famous example are PDZ domains, very common protein domain binding

modules that exhibit "dynamic" allostery. Fuentes et al. employed spin relaxation backbone

(15N ) and side-chain (2H-methyl) to compare the differences in dynamic parameters upon

binding of a peptide target, detecting changes in the domain’s ps–ns dynamics (198). More re-

cent studies have employed advances in NMR-based methods to provide an atomic-resolution

multi-state allosteric mechanism for PDZ domains, starting with a conformationally selective

ligand binding followed by conformational change covering about 25% of the protein, which

in turn reduces the allosteric netowrk of the apo form. (199). Similar advances allowed for

pinning of two different allosteric modes of action of two ligands of the Pin1 enzyme, with one

ligand following a dynamic allosteric mechanism and the other a population shift mechanism

(200).

NMR studies have also been invaluable in underpinning allostery in GPCRs (201). 1H 15N

NMR has been used to quantify the response of the thermostabilized mutant of the turkey

β1-adrenergic receptor (β1AR) to six different ligands, ranging from full agonists to antago-

nists, as well as correlating NMR chemical shifts to functional data (G-protein efficacy) (202).

This study was later complemented by quantifying dynamic equilibria between three major

receptor states upon binding of a G protein mimicking nanobody (63). In addition. 19F NMR

spectroscopy has showed the importance of cholesterol and cations in signaling of the adeno-

sine A2A receptor (A2AR), where cholesterol acted as an allosteric modulator that increased

the active state population and precoupled G-protein-bound state (64). Cations played either

an inactive ensemble reinforcing (Na+) or active state stabilizing (Ca2+ and Mg2+) role (203).

GPCRs have also been studied with double electron-electron resonance (DEER). In one study,

pressure resolved DEER revealed a minor population of unliganded β2AR with signature TM6

movement (that signifies class A GPCR activation), which provides evidence for a confor-

mational selection mechanism in the activation of β2AR (204). Another study elucidated
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structural and dynamical responses of µOR to functionally distinct ligands. The authors were

able to resolve two active conformations of TM6, which would translate to different G-protein

activties (205).

1.4.2 Computational methods

Given the recent development in computational resources and simulation techniques, compu-

tational methods have become indispensable in the study of biological systems, and allostery

is no exception. Technical details of the relevant methods are left to Sec. 1.2, while this section

reviews how the methods were used to study allostery in the literature.

Normal mode analysis (NMA): NMA is based on approximating the potential energy surface

of a protein harmonically and then representing protein motions as linear combinations of

normal mode vectors (206; 207). It neatly provides a method that resembles the ensemble

view of allostery, with the main difference being that conformational sampling is close to an

energy minimum. NMA has been used to study dynamics at an all-atom level (208), but coarse

graining, as in the elastic network model (ENM), removes the need for structure minimization

(so it could be applied directly to crystal coordinates) and is capable of replicating slow modes

of motion in sufficient detail using a single parameter model that connects particles within a

cutoff with springs described by Hooke’s law (172; 209). Low frequency modes are the ones

most relevant to allostery since they’re cooperative and can capture overall movement of the

structure (210). A further development was the Gaussian network model (GNM) by Erman et

al. (211; 212), which provides information on individual modes, whether in the form of cross-

correlation or residue mean square fluctuation, by assuming that residue fluctuations obey a

Gaussian distribution. It falls shorts of providing information on three dimensional motion,

however. An extension of the GNM, the anisotropic network model (ANM), was developed to

include, as its name suggests, anisotropic fluctuations (213; 214). NMA has been successful in

detecting allosteric sites (215; 216), as well as mapping allosteric pathways (210; 217). Flavors

of NMA, such as normal mode perturbation analysis, which quantifies the change in dynamics

of a protein in the presence of a modulator, can be used to predict allosteric pockets (218).

Given that NMA assumes that equilibrium systems fluctuate around a single (well-defined)

potential well and that the well takes a harmonic form, this leads to a number of limitations:

NMA is only valid in close proximity to equilibrium and uncertainty grows as you move away

from it. A direct consequence of this is that normal modes that describe motions of the protein

will violate internal constraints (bond lengths, angles, etc ...) in all but the smallest motions

unless explicit measures are taken to circumvent them (219).

Molecular dynamics (MD): Since MD simulations provide detailed information about the

system dynamics at an atomic level without the simplifications/assumptions of NMA, it is

considered the computational gold standard in studying biomolecule dynamics which can

enable the elucidation of allosteric mechanisms. MD has two features that make it attractive

for the study of allostery: the first is its spatial (sub-angstrom) and temporal (femtosecond)
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resolution. The second is the versatility of simulation setups, where controlled perturbations

could be introduced to the system to study the exact effect of a mutation, absence or presence

of ligand, or application of an external force. Allostery can take many forms and "disguises"

(220), making design of the "computational experiment" with MD is of utmost importance as

outlined in the case studies presented in Hertig et al (221).

The most straightforward way of studying allostery is to simulate a protein structure and look

for correlated motions between sites of interest, or use correlated residues to detect potential

allosteric sites (MD simulations produce huge amounts of data which are difficult to discern

with direct visualization). Analysis methods based on metrics such as covariance/cross-

correlation (222; 223), mutual information (224; 225), and transfer entropy (226) among others

(227; 228) have been developed to separate the wheat from the chaff in simulations.

A popular way to understand allosteric networks are graphs (25; 229), and metrics from MD

simulations have been combined with graph representations of proteins to elucidate allosteric

communication. Co-variation analysis was proposed by Proctor et al. (230), who treated the

correlation map as a weighted graph connectivity matrix, and then used Dijkstra’s algorithm

(231) to find the optimal path of propagation of correlations throughout the network. From

this idea of pathways within protein graphs, one could define bottleneck residues that can

disconnect a sub-graph, blocking communications between binding and allosteric sites, and

thus these residues could serve as targets for design and allosteric modulation. Sethi et al.

introduced the idea of "community network analysis", where the protein graph is partitioned

into sub-graphs called communities. These communities are loosely coupled to one another,

but residues within one community are strongly coupled (232). Bhattacharya and Vaidehi (233)

proposed an alternative approach to co-variation analysis that uses time-averaged pairwise

mutual information (MI) computed from torsional angles (rather than Cartesian coordinates)

and applied this method to GPCRs. This form of studying allostery in proteins will be expanded

upon in Sec. 1.2.

MD is also popular to study allosteric regulation and allosteric modulation in GPCRs (234).

A study of allosteric modulation of M2 receptor with unbiased MD provided valuable in-

formation on the binding modes and binding pathways of the allosteric ligands as well as

their cooperativity with the orthosteric ligands. All studied modulators formed cation-pi

interactions with extracellular ligands, which needed fine-tuning of cation-pi interactions in

the forcefield (235). Allosteric modulation could occur in more subtle ways than binding of

allosteric ligands, such as binding of ions or presence of cholesterol in the lipid membrane.

Presence of Na+ ion was shown to affect binding of orthosteric ligands as well as the action

of negative allosteric modulators (NAMs) in dopamine D2 receptor(236). Another study sug-

gested a conserved mechanism of Na+ binding to class A and B GPCRs by calculating free

energy profiles from combined MD simulations and Markov state models (237). An unbiased

MD-based study found a correlation between the presence of cholesterol in the membrane

and the flexibility of the serotonin 5-hydroxytryptamine 2A receptor (5HT2A). This increase

was due to decrease of hydrogen bonding between the receptor and the first layer of the lipid
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membrane in the presence of cholesterol (238). Another study used MD to discern cholesterol

entry and exit pathways from the membrane into the A2AR binding pocket. The authors

observed that cholesterol modulates ligand-binding properties in A2AR both orthosterically

and allosterically, with a possibility of cholesterol "invading" the orthosteric binding pocket

(239).

In other studies, enhanced sampling MD simulations were utilized to better mimic experimen-

tal conditions and/or to overcome sampling difficulties. As an example, steered molecular

dynamics (SMD) could be used to computationally mimic single molecule pulling experiments

(such as those done with atomic force microscopy, although it is vital to note the limits of

similarity between both (240; 241)). SMD was combined with equilibrium MD and principal

component and correlation analyses by Amaro et al. to find allosteric pathways in glutamine

amidotransferase (242). Schoeler et al. employed SMD combined with AFM to find force prop-

agation pathways passing through a mechanically stable multidomain cellulosome protein

complex under force (243).

Other enhanced sampling techniques that have proven popular in the study of allostery and

activation of GPCRs include (Gaussian) accelerated MD (244; 245; 246), replica exchange

(especially variants with solute tempering, such as REST2) (247; 248; 249), and meta-dynamics

(250; 251; 252).

Accelerated MD (244) adds a bias potential below a certain energy threshold but leaves the

area above the threshold unaltered. The bias could be added either to the dihedral potential

or the total potential (or both, called dual-boost aMD (253)) While aMD does not need prior

knowledge about any collective variables (CVs), it does need an initial unbiased simulation to

collect potential statistics for determining the energy threshold. However, finding appropriate

CVs that well describe the system is still required for any free energy calculations, as shown in

the free energy study of the M2 muscarinic receptor (254), and a study of the effects of select

mutations on the activation landscape of CCR5 (245).

Replica exchange methods (255) attempt to overcome the sampling problem by simulating

different replicas of the system over a range of temperature and then exchanging coordinates

between replicas periodically using a metropolis criterion (256). The standard temperatures

replica exchange method suffers from poor scaling with system size, where the number of

required replicas grows as f 1/2, where f is the number of degrees of freedom in the studied

system. The idea of solute tempering (REST) has been implemented to bypass this poor

scaling by heating up the solute while leaving the solvent cold in higher temperature replicas,

thus reducing the number of required replicas. Further modifications to the scaling of the

hamiltonian have been suggested to optimize the solute tempering method and the REST2

version (247) has been successfully applied to study sodium ion allosteric modulation of

CXCR4 with and without constitutively active mutants (248). REST2 was combined with NMR

and in-cell assays to study biased signaling in µ-opioid receptor, where the authors found

distinct binding conformations for biased, unbiased, or partial agonists. The biased ligands
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induced a change in conformation around intracellular loop 1 and helix 8, which they used to

propose an activation mechanism for unbiased vs biased ligands (249).

Meta-dynamics (257) attempts to escape free energy minima by depositing a history depen-

dent bias potential on the free energy landscape defined by a few CVs. This bias will (given

enough time) fill the free energy wells, allowing for an accurate determination of the free

energy surface (FES) as a function of the selected CVs. Meta-dynamics proved to be a popular

method for FES exploration, but it suffered from a few drawbacks. The first is the question of

when to end a run, since deposition of bias peaks leads to oscillating around the correct value.

The second is that the simulation could go to regions of the configurational space that are

unphysical if the simulation goes on for long enough. Finally, the method is dependent on the

choice of CVs, and choosing an appropriate CV for a given system is not trivial (we will later

see how machine learning approaches can help with that!). To address the first two issues,

an adaptive bias was later introduced that decreases in amplitude as the simulation goes on,

converging to the correct FES (well-tempered metadynamics (250)). MetaD methods have

been used to study β-arrestin and G-protein complex formation of β2-adrenergic receptor in

apo form or in the presence of four ligands (251). The authors found that the arrestin-receptor

bound conformation depends heavily on the bound small molecule, and were able to quantify

changes in binding free energies of small molecule ligands in presence of either intracellular

binding partner.

Machine and deep learning

Over the last decade, machine learning approaches have been developed to assist in studying

protein dynamics and allosteric mechanisms (258), and have become a valuable asset that

augments both computational and experimental studies. This subchapter will focus on the

computational part that is relevant to this work.

Machine learning has helped conformational sampling in MD simulations through choice

of reaction coordinates (259; 246), learning of slow modes of motion (260), and equilibrium

ensemble generation without the need of explicitly performing simulations (261). For example,

Gaussian accelerated MD simulations were combined with deep learning approaches to study

the effect of allosteric modulators on GPCR free energy landscape. Attention maps extracted

from 2D convolutional neural networks trained on labeled residue contact maps were mixed

with flexibility analysis to find reaction coordinates for which free energies would be calculated.

They found that allosteric modulators (whether positive or negative) confine GPCRs to mostly

one specific conformation for signaling (across class A and B) and that modulators are specific

to receptor subtypes (246).

The scope of machine learning methods goes beyond sampling to extraction of allosteric

residues and networks. Zhu et al. have applied a neural relational inference (NRI) model

based on graph neural networks that reconstructs MD trajectories, thus learning long-range

interactions that mediate allosteric communication between distant sites. It has been applied
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to elucidate allosteric pathways in Pin1, SOD1, and MEK1 (262).

Conclusion

All of these studies of protein allostery culminate in the ultimate question, can we build a

model that can design (or at least aid in designing) allosteric proteins1? As design of allosteric

proteins is still in its infancy due to a lack of any unifying theoretical framework (despite

having "unified" high level views (175); maybe one day we can hope for a "grand unification"

of allosteric mechanisms?). Attempts at design include classification of mutational effects of a

LOV2 domain by studying over a 100 mutations with a Random Forests algorithm (263), but

the bulk of allosteric design (so far) happens classically. Allosteric databases, such as ASD (264)

or AlloMAPS 2 (265), will prove very useful for future developments of allosteric residue/site

prediction and design. Finally, the advent of generative methods holds great promise for the

future of protein design in general (266).

1.4.3 Theoretical considerations

Bidirectionality and microscopic reversibility

A useful principle when studying allostery using computational methods is the concept of

bidirectionality of allostery. Assume an allosteric protein binds two ligands A and B. If the

binding of ligand A increases the binding affinity of ligand B (a phenomenon known as

positive cooperativity), then the binding of ligand B increases the affinity to ligand A by an

equal amount (if measured as changes in the free energy of binding, Fig. 1.15a). This could

be useful since studying the binding of the effect of one ligand may end up being easier than

studying the binding of another, and thus we end up with much shorter simulation times. One

example could be seen in this study of allosteric modulators in GPCRs (235). Simulations were

run with the presence and absence of the orthosteric ligand, and then allosteric modulators

would bind or dissociate during the simulation. Running simulations in this fashion is much

more practical since binding of allosteric modulators is typically much faster than that of

orthosteric ligands, since they bind to exposed parts of the receptor. A discussion of this point

with several case studies is presented here (221).

Another useful principle, microscopic reversibility, states that, at equilibrium, a system (such as

a protein) that goes through a transition between two states, will follow the same path in both

the forward and reverse directions. This is especially useful when we have two experimentally

determined structures of a protein (active and inactive state, for example), and we want to

sample the transition between the two states, as sampling one direction may be much more

feasible than the other direction (Fig. 1.15b). To know whether microscopic reversibility

1What do we mean by protein design? We can envision a targeted design starting from natural scaffolds and
modifying allosteric signaling in them, or a more radical de novo design of allosteric proteins from the ground up.
Protein design is usually treated as a binding problem, while we are treating it in this work as a function problem.
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Figure 1.15: (a) Bidirectionality of allostery: Assume an allosteric protein binds two ligands A
and B, then the free energy difference ∆G0→AB is independent of the pathway taken to arrive
at state AB. Thus ∆G0→AB = ∆G0→A +∆G A→AB = ∆G0→B +∆GB→AB . This implies that if the
binding of A is more favorable in the presence of B, then the binding of B is more favorable in
the presence of A (and vice versa). (b) and (c) Microscopic reversibility: under the assumption
of microscopic reversibility, simulating the transition in one direction will give us information
about the transition in the other direction. Practical examples are simulating an active to
inactive transition rather than the other way around (b) and simulating ligand unbinding
rather than binding (c)

applies to process one is studying, here are a few guidelines (as outlined in the case studies

in this paper (267)). Time scales within a state (a state could have substates, with transitions

between different substates) should be much shorter than transition times between separate

states, which leads to a quasi-Markovian behavior. In addition, for an energy basin that is

deep enough, a trajectory’s exit point is uncorrelated with its point of entry, which entails

approximate symmetry in the system. In essence, one should be careful when choosing

a simulation’s initial conditions, in addition to initiating the simulation from well-defined

states. Quoting Bhatt and Zuckermann: "It appears to be an open question, however, whether

biomolecular systems of interest tend to exhibit suitably well-defined states (267)".
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Artwork 2: CXCR2 (cyan) bound to CXCL8 (light grey to hot pink). The conformational

ensemble sampled by CXCL8 during a set of MD simulations is shown.
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2 Development: AlloDy

GROMACS reminds you: "It seems likely that significant software contributions to existing

scientific software projects are not likely to be rewarded through the traditional

reputation economy of science. Together these factors provide a reason to expect the

over-production of independent scientific software packages, and the underproduction of

collaborative projects in which later academics build on the work of earlier ones."

— Howison & Herbsleb

2.1 Main idea and objectives

AlloDy is a package built to analyze molecular dynamics (MD) trajectories of proteins, with a

focus on allosteric pathways and ensemble differences in GPCRs.

Objectives of the development process are the following:

• Automate the analysis of MD simulations in an accessible and customizable fashion

• Assemble an ensemble of useful metrics for allosteric analysis in a single package

• Build a system that can integrate multiple simulations and reference states organically

into the code

• Integrate GPCR specific features (structural elements, generic numbering, activation

states, etc ...) into the analysis

2.1.1 Overview of the approach

Since allostery is an elusive, and at times, ill-defined problem, studying it necessitates using

an integrated approach that combines structural features, correlation metrics, and formal

comparisons with reference states in order to pick up allosteric signals from the simulations.
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As such, the workflow of AlloDy can be divided into three main parts: (1) analysis of a set

of simulations of an individual system in the md2path module, (2) ensemble comparison

between sets of simulations of a test and a reference system using the kldiv module, and (3)

meta-analysis of simulations of many systems using the meta modules.

The md2path module, which aims to extract general useful metrics and calculate allosteric

pathways from the simulations, could be summarized in the following steps:

• Fetch reference PDBs from database, and then align sequences and input PDBs to

reference PDBs

• Load and align trajectories

• Calculate Root-Mean-Square Deviation (RMSD) and Root-Mean-Square Fluctuation

(RMSF) of receptor, ligand, and effector (if present)

• Calculate contact map of receptor with ligand and/or effector protein (if they exist)

• Calculate GPCR order parameters for activation states (if protein is a GPCR)

• PCA of ligand binding poses and receptor conformations followed by clustering

• Calculate dihedral time series from trajectories (φ, ψ and χx )

• Calculate 1st and 2nd order entropies from dihedrals, followed by mutual information

(MI)

• Assess convergence of entropies

• Run allosteric pathway calculation:

– Represent protein as a graph with edge weights being some function of MI

– Find shortest paths between nodes with significant pair MI

– Cluster individual paths into super-structures of pathways

As for the kldiv module, which compares distributions of dihedrals between test and reference

system using Kullback-Leibler (KL) divergences, the steps are:

• Fetch reference PDBs, and then align sequences and input PDBs to reference PDBs

• Load and align trajectories of test and reference ensembles

• Calculate dihedrals from trajectories

• Reconcile dihedrals between test and reference systems (in case of mutations or differ-

ence in number of residues)
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• Calculate 1st order KL divergences

• Calculate 2nd order KL divergences and mutual divergence (optional step that is time

consuming and not very informative)

• Plot dihedral distributions with highest divergences

• Visualize KL divergences residue-wise

The meta modules will not be discussed here, and explanation will be left to the documentation

on AlloDy’s Github page.

2.1.2 Choice of states to simulate

The choice of states of a given system is critical in ensuring extraction of useful information

from the simulations. Given that AlloDy compares distributions of dihedrals or distances,

it gives best results when simulations sample a well defined functional state of the receptor

(ex.: antagonist bound inactive state, agonist bound intermediate state, or agonist-receptor-G-

protein tertiary complex).

To make the study of a given system meaningful, at least two states need to be simulated, with

one acting as a reference state (such as an inactive state), and the other is the test or target

state (such as a ligand bound active state). More target states, such as multiple ligands can be

incorporated into the analysis, what matters is the consistency in the choice of a reference

state.

2.2 Implementation

AlloDy is available for download at https://github.com/barth-lab/AlloDy under an MPL-2.0

license including instructions and a demo.

AlloDy is written in Matlab (268) and requires Matlab Bioinformatics toolbox (269), MDprot

(free to download at https://github.com/barth-lab/mdprot), and VMD (270). It has been

tested using Matlab 2021b on Windows and Linux systems.

2.3 Architecture of the code

The general architecture of the objects defined in AlloDy are shown in Fig. 2.1. AlloDy follows

trajectory input and reading rules as defined in MDToolbox (271), and it uses a modified

version of MDToolbox as a base (MDprot) and builds upon it. The classes defined in this

section were initially written by Simon Lietar, a masters project student at the Barth lab from

February till July 2022.
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Figure 2.1: Flowchart of AlloDy classes

The code is based on four classes, database, entry, simulation, and chain.

A database object is the main class that contains different entries, where every entry contains

a PDB file that is either fetched from the RCSB protein database or local directories. The

database also contains functions that align sequences and structures between different chains

of member entries, as well as label residues using generic GPCR numbering. This generic

numbering will be useful for fetching conserved residues, calculating activation states of

GPCRs, and labeling residues for ease of use of output files.

An entry is the object containing the PDB file with reference to chain objects, sequence of

every chain, protein coordinates, and most importantly, it reads simulation data and creates

a corresponding simulation object. An entry is also very handy to make any kind of atom

selections (such as selecting backbone atoms, Cαs, ligand atoms, and so on)

A simulation object contains the trajectory from a molecular dynamics simulation and differ-

ent functions to manipulate and analyze the trajectory. Examples of trajectory manipulation

are superimposing frames to a reference frame and concatenating frames from different tra-

jectories using an atom selection and an equilibration cutoff. Trajectory analysis ranges from

calculating RMSD and RMSF of atom selections to calculating dihedral time series. From

the dihedrals, 1st and 2nd order entropies could be calculated, from which MI is inferred. If

more than one simulation set are present, KL divergences between distributions of equivalent

dihedrals (according to the sequence alignment) can also be calculated.

Finally, a chain object helps the code deal with PDBs containing multiple chains, where every

chain will contain its own atom and residue indices, secondary structure, and sequence.
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For a more detailed description of the code, the objects and the functions that they contain,

see AlloDy GitHub page reference.

2.4 Md2path module: calculating allosteric pathways from MD sim-

ulations

The md2path module analyzes a set of simulations for an individual system with the final aim

of calculating allosteric pathways, going through the steps mentioned in Sec. 2.1.1.

PDB fetching, sequence alignment, trajectory alignment, and RMSD/RMSF calculation steps

are trivial steps. We provide explanation for the rest of the steps in the following sections.

2.4.1 Contact map calculation

Contacts are calculated between non-hydrogen atoms using a dual cutoff scheme. Two atoms

get into contact when they are within r1 of each other and stay in contact until they are further

than r2 apart. This scheme is used to remove high frequency noise at the distance cutoff.

Default values for r1 and r2 are 3.5 Å and 5 Å. respectively.

Contacts are calculated between the receptor chain and ligand chain (if present) and between

the receptor chain and effector chain (if present). In case the effector chain is not present in

the simulation, contacts are calculated from the reference active state PDB specified in the

input settings file.
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Figure 2.2: Contact map of ligand (dopamine) with receptor (DD2R) with default parameters.
Y-axis shows atoms of the ligand, while X-axis shows residues of the receptor, where the first
number is the residue number in the simulation, the second is the PDB sequence number,
and the third is the Ballesteros-Weinstein designation (1).
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2.4.2 Principal component analysis (PCA) of ligand binding poses

Principal component analysis (PCA) is used for clustering ligand conformations accessed

during the simulation and finding representative samples from those clusters. Depending

on whether the ligand is a peptide or small molecule, either Cα or heavy atom coordinate

time series are used as input for the PCA by default. Other options for input coordinates are:

vectors from closest receptor residue to the ligand atom concatenated with ligand coordinates

or distance between closest receptor residue to the ligand atom concatenated with ligand

coordinates. Comparisons between the three sets of input are shown in Fig. 2.4. Adding the

aforementioned vectors from the receptor residues to the ligand atoms captures changes

in the receptor ligand binding region in addition to variations in the ligand binding pose,

alleviating one of the main drawbacks of taking ligand coordinates only.

PCA space is then clustered using a k-means clustering algorithm, with the optimal number of

clusters being evaluated by the Calinski-Harabasz criterion (272).

To find representative frames from every cluster, the PCA space is histogrammed in 2 dimen-

sions and frames closest to the center of the highest density bin are chosen as the highest

density frame in the cluster. This is done for all clusters, as seen in Fig. 2.3.
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Figure 2.3: Density map of PC space of the first 2 PCs for dopamine bound to DD2R. Cluster
centers are highlighted as C1, C2, etc. The size of every cluster (number of frames) is mentioned
in the legend. PCA was performed on heavy atom coordinates of dopamine.
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Input: 
• Heavy atom coordinates
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residues and ligand atoms

Input: 
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and ligand atoms

Figure 2.4: Ligand (dopamine) density maps (top) and scatter plots (bottom) of PC space of the
first 2 PCs for dopamine bound to DD2R for three sets of input data to the PCA. Cluster centers
are highlighted as C1, C2, etc. The size of every cluster (number of frames) is mentioned in the
legend.

2.4.3 Principal component analysis (PCA) of and receptor conformations

Similarly to the previous section, PCA is performed on receptor conformations. The process

is the same with the exception of the choice of input to the PCA. By default, Cα coordinate

time series are used, but other options include dihedral time series (backbone and sidechain),

backbone dihedral time series, and distances between Cα pairs. Since distances are two body

terms, the calculation may become memory intensive. To counteract this, two approximations

are made: (1) coarse graining of the receptor, where every N residue Cαs are taken (defaults to

4), and (2) distances with highest variance (as a function of time) are considered (defaults to

top 1000 distances).

2.4.4 GPCR activation states (GPCR specific option)

To specify the state of a GPCR during the simulation, we use hallmarks of class A GPCR

activation to define the state of the frame in the simulation compared to a reference active

or inactive structure. The used order parameters are: distance between TM helix 3 (residue

3.50) and TM helix 6 (residue 6.30), distance between TM helix 3 (residue 3.50) and TM helix

7 (residue 7.53), and RMSD of the NPxxY(7.53) motif to the inactive state reference. Note

that these order parameters are not the same for other classes of GPCRs and would require

customization. This module also couples with the ligand PCA module to find the activation

states of every ligand binding pose cluster (Fig. 2.5c).
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(a) Plot obtained by plotting TM3-6 distance vs RMSD of NPxxY motif with respect to inactive reference.
(left) scatter colored by replica (10 replicas total). (right) compiled data from all runs.
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(b) Plot obtained by plotting TM3-6 distance vs distance. (left) scatter colored by replica (10 replicas
total). (right) compiled data from all runs.
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Figure 2.5: Class A GPCR activation states for dopamine-bound D2 receptor simulations.
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2.4.5 Mutual information (MI) calculation

Mutual Information (MI) is a statistical measure that quantifies the degree of dependency

or information shared between two random variables. It is used in various fields, including

information theory, statistics, and bioinformatics, to assess the relationship between two

variables. MI measures how much knowing the value of one variable (let’s call it A) tells us

about the value of another variable (let’s call it B). In other words, it quantifies the reduction in

uncertainty about variable B when we know the value of variable A.

In this application, MI is calculated from correlated motions extracted from MD simulations.

The approach uses internal coordinates with focus on dihedral angles, which are the slowest

degree of freedom in the bond-angle-dihedral coordinate system. The advantage of using

dihedrals is two-fold, it avoids high frequency noise in the data, and it captures correlated

changes in side chain rotamers (225). MI is calculated via the mutual information expansion

(MIE), as formulated by Killian et al. (273). In short, a list of all backbone (ϕ and ψ) and

side chain (χ1 up to χ5 where applicable) torsion angles is built from the initial structure

(similar to a topology file, with a dihedral index, dihedral type (backbone or sidechain), and

atom numbers that make up the four dihedral atoms), dihedrals are then extracted every 100

ps after removing the first 50 to 150 ns of every replica of the simulation (depending on the

equilibration of the RMSD of Cα coordinates). The dihedral time series are then histogrammed

in radian space using 50 bins (50 x 50 bins for 2-dimensional histograms), and the marginal

entropy is calculated using the following :

Sφi =−R
Bi∑

n=1
Pφi (n) ln

(Pφi (n)

hφ

)
, (2.1)

where φi is the dihedral sampled for residue i , R is the gas constant, and Bi is the number

of bins. Pφi (n) is the probability of finding φi in bin n defined as: Pφi (n) = Ni (n)
N , with Ni (n)

being the number of snapshots/datapoints where φi falls in bin n and N the total number of

snapshots/datapoints. hφ is the width of each bin in the histogram defined by the dihedral φi .

For two dihedrals φi and ψi belonging to residues i and j , the joint entropy is written as:

Sφiψ j =−R
Bi∑

n=1

B j∑
m=1

Pφiψ j (n,m) ln
(Pφiψ j (n,m)

hφhψ

)
, (2.2)

where Pφiψ j (n,m) is the joint probability of finding φi in bin n and ψi in bin m. We then get

the corresponding mutual information term Iφiψ j :

Iφiψ j = Sφi +Sψ j −Sφiψ j . (2.3)

Since probability distributions are calculated from finite length simulations with a finite
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number of snapshots, correction for finite size effects is also added:〈
Sobser ved

〉
= S − M −1

2N
, (2.4)

where

〈
Sobser ved

〉
is the estimated entropy using N datapoints and M is the number of

histogram bins with non-zero probability (274; 275).

Practically, we consider MI between residue pairs i and j , which is simply the sum of MI

between the pair of residues’ dihedrals:

I (i , j ) = ∑
k=ϕ,ψ,χ′s

∑
l=ϕ,ψ,χ′s

Ik,l . (2.5)
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Figure 2.6: MI maps before and after filtering: Raw MI (left) and excess MI (right) calculated
from dopamine-bound DD2R simulations. 7-TM Helices are shown for reference.

2.4.6 Statistical filtering and significance testing of MI

Another side effect of finite sample sizes is nonzero mutual information in independent

datasets. To correct for this effect, we divide the observed MI space into 100 bins. In each MI

bin, we randomly pick 5 dihedral pairs (or less if the bin has <5 samples) to represent the bin,

and then for every dihedral pair φi and ψ j , we shuffle the time series of one of the observed

dihedrals and recalculate MI with the shuffled dihedral. This process is repeated until the

shuffled dihedral MI converges, and then the average of the resulting MI over the chosen

dihedral pairs approximates the nonzero independent MI for a given MI bin. This value of

independent MI is then subtracted from all MI values belonging to the bin to get the "excess"

MI (Figs. 2.6 and 2.8). These permutations can also be used as a test of significance for MI, and

the percentage of MI values from the various permutations that are larger than the observed

MI approximates a p-value (225). We used an MI significance level of p < 0.01 in our analysis.
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Figure 2.7: MI mapped on structure: Average summed MI per residue mapped on the structure
of dopamine-bound DD2R. This data is obtained by summing the rows of Fig. 2.6 (right) and
then dividing by the number of residues. Backbone is shown in cartoon representation,
and conserved residue F6.44, W6.48, and Y7.53 are highlighted in licorice. Note that these
conserved residues have high MI in the protein core.

The independent MI versus "raw" MI is shown in Fig. 2.8. The plateau level of independent

MI depends on the number of datapoints and number of bins.

2.4.7 Convergence of entropies

In order to acquire precise entropy and MI measurements up to the second order, it is neces-

sary to run simulations for significantly longer durations compared to the time it takes for the

slowest autocorrelation and pair correlation processes to unfold. Moreover, the data should

ideally be comprised of independent observations. However, due to computational limita-

tions, achieving these ideal conditions is seldom feasible. Consequently, molecules within

simulations tend to retain some memory of their initial states. MI filtering and corrections for

finite sampling help with this issue, but do not counteract it fully. To assess the convergence

of entropies (and thus mutual information), we plot the the dihedral contributions to the
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Figure 2.8: MI filtering and significance testing: (left) Independent information vs mutual
information for dopamine bound DD2R simulations for total simulation time of 2µs. The blue
solid line shows the x = y diagonal. Every "cluster" of dots shows a MI bin (100 bins), where
the color represents significance (black are not significant, while red are significant, α= 0.05).
(right) Level of independent information (II) as a function of number of frames considered
for the calculation. II level is calculated by averaging over the bins with significant II (red, left
panel). Error bars are the standard error of the mean. Frames total to 2µs of simulation time.

first and second-order approximations to the entropy as a function of number of frames and

double check their convergence in the simulations (Fig. 2.9). The first and second-order

approximations to S are given by the following equations:

S(1) ≡∑
φ

Sφ, (2.6)

and

S(2) ≡ S(1) −∑
φ

∑
ψ>φ

Iφψ. (2.7)

Due to limitations on computation time, we consider all dihedrals for the first-order entropy

but only a subset of dihedrals with highest MI contributions for the second-order entropy. In

this work we take contributions from the top 100 dihedrals with highest MI. Note that this

method of assessing convergence has the downside of looking at the global state of the system

rather than individual degrees of freedom.

2.4.8 Allosteric pathway and pipeline calculation

Building on advancements and methods of calculating allosteric networks in the field (233;

15) (Sec. 1.4.2), we studied allostery in GPCRs by representing the protein as a graph and

constructing shortest paths (paths of "maximum information") in the graph followed by

clustering of said paths. The goals of this process are the following:
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1. Get a score for how important a given residue is for allosteric signaling in the receptor

under the simulation conditions. This score could be used to target sites for mutagenesis.

2. Establish connectivities between different parts of the receptor, for example between

the ligand and G-protein binding sites.

Graph construction
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Figure 2.10: Examples of monotone decreas-
ing functions of MI that could be used as edge
weights over the range of MI values observed
in my simulations.

An undirected weighted graph is constructed

using residue coordinates and MI. The graph

is intentionally undirected due to the uti-

lization of a specific correlation measure in

this research, namely mutual information.

This choice aligns with the inherent symme-

try of MI (I (a,b) = I (b, a)), a key characteris-

tic that reflects the mutual dependence be-

tween two variables without regard to their

order. In contrast, other measures such as

transfer entropy exhibit directional proper-

ties (226; 276). The construction of such a

graph involves three pivotal decisions that

significantly influence its structure and util-

ity. These decisions pertain to the selection

of nodes, the establishment of edges, and the

assignment of edge weights. Each choice in

this triad plays a crucial role in shaping the graph and, consequently, in determining its

suitability for capturing the intricate relationships within the simulation being analyzed.
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We consider residues to be nodes centered at the Cαposition, where edges are defined between

nodes that are less than rc apart and have significant MI between them. A typical value for rc

is 7.5 Å, which is meant to approximate Cα-Cα cutoff distances used in the literature (277).

Regarding edge weights, the desired property is a monotonic decreasing function of MI. Since

MI is non-negative, it suffices that the functions are monotone decreasing over the interval

where MI is defined ([0,∞]). Fig. 2.10 shows a variety of functions that fit the aforementioned

criteria (with the exception of 1/I , which is ill defined at I = 0. This is not a problem since

edges are also not defined when I = 0). After visualization of edge weight maps for different

functions (Fig. 2.11), we settled on exp(−I ) for the edge weights, but other functions would

also serve a similar purpose. For example, a recent preprint uses the negative logarithm of

a generalized correlation constructed from mutual information as edge weights in a similar

context (278).
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Figure 2.11: Edge weight maps for various edge weight functions: Examples of edge weight
maps for different functions of mutual information. Functions are shown in the subpanel
titles. The colorbar for 1/I (i , j ) goes beyond the range [0,2], but this range is shown for clarity.

Now that the graph is constructed, the question of how do we use the graph to reach the

aforementioned goals. Some ideas that could come to mind are centrality metrics (such as

betweenness centrality), which would rank the nodes by their importance for the connectivity

of the graph. Another operation to perform on the graph is clustering, which would give us

communities within the graph that are more connected within each other than with the rest

of the graph. Since we are interested in constructing pathways within the protein and ranking

residues by their importance, we first construct shortest paths and then cluster them to get

both allosteric signaling pathways and residue scores.
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Shortest path calculation
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Figure 2.12: Average interresidue MI vs inter-
residue distance for dopamine-bound DD2R
simulation in the active state. The 10 Å line
is shown for clarity. The first peak at 2 Å
represents "direct communication" between
residues in close proximity, while the further
peak at 64 Å represents "allosteric communica-
tion". Fig. A.1 shows the curve for more class A
GPCRs.

After the construction of a graph from pro-

tein structure and MI, we calculate a set

of shortest paths connecting every pair of

nodes that have significant MI and that are

further than 10 Å apart using Dijkstra’s short-

est path algorithm (231) as implemented in

Matlab (268).

The distance of 10 Å is chosen by investigat-

ing the average MI vs distance plot (Fig. 2.12

and Fig. A.1 for more examples.) and pick-

ing a distance where the direct communi-

cation peak dies out. After construction of

the set of shortest paths between all eligible

residue pairs, the pathways are ranked ac-

cording to the MI of their end nodes. After

that, top percentage of pathways that cover

Ic % of total MI are chosen for clustering.

Ic = 85% has been used in this work. For

example, in dopamine-bound DD2R simu-

lations, Ic = 85% would represent taking the

top 18% pathways with highest pair MI (Fig.

2.13).
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Figure 2.13: Dihedral pair and pathway MI statistics: (Left) MI normalized cumulative
sum plotted versus dihedral pairs ranked from highest to lowest MI. 75.8% of dihedral pairs
contribute significant MI after filtering. (Right) MI normalized cumulative sum plotted versus
pathways ranked from highest to lowest end node pair MI. The top 18% pathways with highest
pair MI cover 85% of total MI, and are thus considered for clustering.
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Path clustering

The next step in the analysis is clustering the constructed paths into larger pathway structures.

The first ingredient for clustering is a similarity matrix. A simple measure of similarity is the

Jaccard index, which measures the overlap between two sets as the size of the intersection of

the two sets divided by the size of their union J(A,B) = |A∩B |
|A∪B | . The Jaccard index as defined

here is not suitable since it does not give leeway to consider interactions between residues. For

example, two pathways containing residues in close proximity that are physically interacting

with one another ought to be clustered together. Instead, we could measure similarity between

pathways according to their proximity in the space. Given two pathways k and l of lengths

Nk and Nl , denote the number of nodes in k that are within a cutoff distance rc (typically

rc = 7.5 Å) from l as ν1 and denote the number of nodes in l that are within rc from k as ν2.

Inspired from similar works in the literature (233), we define an overlap parameterΦ between

two pathways k and l :

Φ(k, l ) = max
( ν1

Nk
,
ν2

Nl

)
−α∗ |Nk −Nl |

ρ
, (2.8)
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Figure 2.14: Distribution of shortest path
lengths considered for clustering in dopamine-
bound DD2R simulations.

where the first term represents the "soft"

overlap between k and l and the second term

is a penalty for the difference in length be-

tween the two pathways. α is a weighting

factor for the penalty term, and ρ is the max-

imum possible path length difference in all

considered pathways. ρ includes informa-

tion about the width of the distribution of

path lengths into the overlap metric as a kind

of normalization (Fig. 2.14). An overlap cut-

offΦc is used where anyΦ<Φc is set to zero.

We typically use Φc = 0.75 in this work. The

weighting factor α controls whether smaller

paths can integrate with larger overlapping

paths in the cluster, ifα≥ 1−Φc , then smaller

paths cannot cluster with larger overlapping

paths, while if α< 1−Φc , then smaller paths

can cluster with larger overlapping paths. We generally allow for smaller paths to merge with

larger ones to get larger clusters.

Now that a similarity matrix between all considered pathways is obtained from Φ(k, l )s, a

linkage matrix is constructed from the similarity matrix by pairing paths into binary clusters,

then the newly formed pair clusters are grouped into larger clusters until a hierarchical tree

is obtained. Under the assumption that the set of shortest paths merge into larger pathway

structures that describe allosteric communication, hierarchical clustering is fitting for this

application. Note that the shortest paths in graph space represent paths of highest mutual
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2.4 Md2path module: calculating allosteric pathways from MD simulations

information. To find the optimal number of clusters, we use a metric that maximizes intra-

cluster overlap while minimizing inter-cluster overlap as described previously in the literature

(233).

To reduce the number of clusters further and thus improve interpretability, a second clustering

step is performed by combining clusters that are too similar. Consider two clusters that

resulted from the aforementioned clustering ζ1 and ζ2. For every residue m belonging to ζ1 or

ζ2, we construct a score λm(ζx ) by counting the number of pathways belonging to cluster ζx

containing residue m. Similarity among clusters is then defined as:∑
m∈(ζ1∩ζ2)(λm(ζ1)+λm(ζ2))∑

m∈ζ1
λm(ζ1)+∑

m∈ζ2
λm(ζ2)

.

Like the first clustering step, a linkage matrix is defined from the similarity matrix, which is

followed by hierarchical clustering and determination of number of clusters by maximizing

intra-cluster overlap while minimizing inter-cluster overlap.

After both clustering steps, we end up with more populated clusters as shown in Fig. 2.15.

The allosteric strength of a cluster η is the MI weighted sum of pathways belonging to the

cluster, where every pathway is weighted by the MI value of the pathway’s end residues (for

distribution differences between mean path MI and path end pair MI, check Fig. A.2). Thus

the allosteric strength of cluster η can be written as:

ση =
∑
l⊂η

I (i , j ), (2.9)

where l is a pathway belonging to cluster η, i and j are the end nodes of pathway l , I (i , j ) is

the MI between residues i and j .

A similar metric can be used to measure the allosteric strength of individual residues by

calculating the end node MI-weighted sum of all pathways going through a given residue m:

σm = ∑
l∀m∈l

I (i , j ). (2.10)

Allosteric residues are defined as the residues with the largest number of MI-weighted allosteric

pathways passing through them, i.e., largest σm (Fig. 2.18a). This metric is versatile as the

set of pathways to sum over could be filtered according: belonging to a cluster η, pathways

containing ligand binding residues, pathways containing G-protein binding residues, etc ...
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Robustness of clusters

To check the robustness of the clustering algorithm, we reran the md2path pipeline using 75%

of the dopamine-bound DD2R simulations while permuting the sampled frames three times.

We report the mean MI vs cluster size, number of clusters, and topology of top clusters in this

section. The number of clusters changes slightly between permutations (Fig. 2.16), but the

trends remain very similar between different tests.
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Figure 2.15: Mean cluster MI and cluster sizes: mean cluster MI is calculated as the mean of
the end node path MI for every path belonging to the cluster. Error bars show standard error
of the MI within a given cluster. Cluster sizes are represented by the size of the blue dots (for
reference, the largest 3 clusters contain 894, 722, and 392 pathways respectively). The total
number of clusters is 129, with 81 clusters containing > 10 pathways.
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Figure 2.16: Mean cluster MI and cluster sizes for resampled data: Data is resampled by
permuting sampled frames for 75% of simulated time (translating to 1.5µs). This process is
repeated three times. Mean cluster MI is calculated as the mean of the end node path MI for
every path belonging to the cluster. Error bars show standard error of the MI within a given
cluster. Cluster sizes are represented by the size of the blue dots. Number of clusters from top
to bottom panels are 127, 132, and 120 respectively.
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Robustness of residue allosteric strength scores σm

Similar to the last section, we reran the md2path pipeline using 75% of the dopamine-bound

DD2R simulations while permuting the sampled frames three times and extracted the residue

allosteric strength scores σm and compared them within each other and with the full simu-

lation. The results are reported in Fig. 2.17. The distribution and ranking of the residues is

largely similar between the tested sets. One observation is that the full simulation has consis-

tently lower allosteric strengths than the randomized sets that cover 75% of the simulation. A

following test where we ran another 5×1µs simulations of dopamine-bound DD2R confirmed

this, showing a relatively similar distribution but yet lower mean σm (Fig. A.3). There are two

sources for this effect, the first is the MI filtering, where the level of independent MI depends

on the sampled frames (Fig. 2.8:left), and thus less sampling leads to generally lower MI due

to the independent MI level being higher. The second source is the number of pathways

considered for analysis (Fig. 2.13:right), where less sampling leads to taking higher percentage

of pathways to reach the desired MI cutoff.

The takeaway from this section is that while the distribution of σm is robust to changes in

sampling, the absolute values depend on the sampled frames, and thus care must be taken

when comparing values of σm coming from simulations with vastly different number of

frames.
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Figure 2.17: Robustness of allosteric strength scores: Data is resampled by permuting sam-
pled frames for 75% of simulated time (translating to 1.5µs). This process is repeated three
times. (top) Raw allosteric strength scores σm are plotted. (bottom) Allosteric strength scores
normalized by maximum score for every analyzed set of frames.
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Alternatives to path clustering

It is possible to get allosteric scoring and pathway-like structures without going through a

clustering step. One option is to filter pathways going through a desired set of residues (ligand

binding or effector binding sites for example), and then calculate the density of pathways

going through every residue.

A similar alternative that is also density based is to divide the Cartesian space occupied by

the protein into voxels and calculate path densities at every voxel. This defines volumes

of high density within the protein structure that would be most important for allosteric

communication (Fig. 2.18b).
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F7.56

(a) (b)

Figure 2.18: Path density from dopamine-bound DD2R simulations shown on protein
structure: (a) Top 20 global allosteric hubs (without filtering by specific residues) with highest
hubscores shown on DD2R structure. (b) Path density for paths filtered by ligand binding and
G-protein binding residues using 85% of MI content. Path densities are colored according to
their intensity compared to maximum path density. Selected residues are highlighted to help
guide the reader.

These approaches are mentioned here for completion since they were considered during

development, but they are not used further.

Limitations to the approach

While the path calculation approach has proven to be a powerful method to understand and

design allostery in GPCRs, it is not without its limitations:
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1. Number of post analysis steps lead to a certain difficulty in interpretability.

2. Complexity of structures that emerge from clustering (clusters η) make comparisons

between clusters from different systems difficult.

3. Lack of directionality in the correlation metrics and subsequently in the graph descrip-

tion of the proteins.

While it is possible to deal with more than one ensemble (and formally compare them, as we

will see in Sec. 2.5), this approach finds difficulty to deal with the transitions and transition

state simulations, since it needs converged statistics describing a somehow well defined state

of the system.
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2.5 KLdiv module: perturbation response by ensemble comparison

using Kullback–Leibler divergences

In contrast to the md2path module that analyzes a set of simulations for an individual system,

kldiv module performs an ensemble comparison between sets of simulations of a test and a

reference system, going through the steps mentioned in Sec. 2.1.1. KL highlights degrees of

freedom that are different between the test and reference sets of simulations by calculating

the distance between distributions of a given d.o.f. in the two systems, thus quantifying the

perturbation response of the system in question. This perturbation is defined as the difference

between the test (or target) and reference systems. Typical perturbations are amino acid

substitutions, ligand changes, or protein state differences.

2.5.1 Dihedral reconciliation

Dihedral time series are constructed in a similar fashion to the last section (Sec. 2.4). After

constructing the dihedral list for every system, differences in dihedral types are resolved to

construct a common topology that applies to both systems. For example, if the test system

contains a mutation from Arginine (ϕ,ψ, and χ1 to χ5) to Glycine (ϕ andψ), only the common

dihedrals present in both simulations (ϕ and ψ) contribute to the KL divergence.

2.5.2 Kullback-Leibler (KL) divergence calculation

KL calculation is performed as described in Mcclendon et al. (279). From the KL-divergence

expansion, we consider the first order term, denoted the "local" KL divergence. To perform this

calculation, dihedrals are extracted every 100 ps after removing the first 50 to 150 ns of every

replica of the simulation (depending on the equilibration of the RMSD of Cα coordinates). The

dihedrals are then histogrammed using 50 bins, and the KL is calculated using the following

equation:

K Lφ =
B∑

n=1
Pφ(n) ln

(Pφ(n)

P∗
φ

(n)

)
, (2.11)

where φ is the dihedral being sampled, B is the number of bins, Pφ(n) is the probability of

finding φ in bin n, in the target ensemble, defined as mentioned in the MI calculation section,

and P∗
φ(n) is the probability of finding φ in bin n, in the reference ensemble.

The local KL for a single residue is simply the sum of the KL between reference and target

ensembles for each of the applicable dihedrals for a given residue (ϕ, ψ, and χ′s):

K Lr esi =
∑

φ=ϕ,ψ,χ′s

B∑
n=1

Pφ(n) ln
(Pφ(n)

P∗
φ

(n)

)
. (2.12)
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Despite the similarity of this expression to that of the marginal entropy (Sφi ) mentioned before,

it is a distinct thermodynamic quantity that measures the dissimilarity of two probability

density functions (pdfs), while the marginal entropy Sφi measures the level of disorder of a

particular pdf. This makes local KL a suitable criterion for quantifying degree of freedom

specific responses to a perturbation to a reference system.

2.5.3 Statistical filtering and significance testing of KL

Corrections to the local KL are applied to counteract the effects of sample variability due to

finite sampling (279). To do that, KL is calculated from the reference ensemble using a statis-

tical bootstrapping approach, which is then used for significance testing and for correcting

the calculated KL values (which bears similarity to mutual information expansion explained

before). Reference sample KL is calculated by dividing the reference simulation into nb blocks,

and then using half the blocks as a proxy “reference” ensemble and the other half as a proxy

“target” ensemble. Any non-zero KL between these proxy sets will approximate the bias to KL

coming from intra-ensemble variability. The average bias becomes thus:

K LH0
φ

=
(

nb

nb/2

)−1 nb /2∑
bl ocks

B∑
n=1

Pφ(n) ln
( P S

φ
(n)

P SC

φ
(n)

)
, (2.13)

where S are the subsamples constructed from half the blocks and SC are the complementary

subsamples from the other half of the blocks. The distribution of proxy KL values can be

used to derive a p-value for the null hypothesis that the mean KL does not exceed what one

would expect based on the variability observed in the reference ensemble. We then define a

significance level α, which is used to zero out non-significant KL divergences, and subtract

“excess” divergences from the significant ones as follows:

K̂ L1 = K L1 −K LH0
1 .

2.5.4 Interpreting the divergences

Since KL divergence is measuring the distance between two distributions, it is reducing these

two probability distribution functions (pdfs) into a scalar value. This could lead to difficulties

in interpreting the exact values that are output by KL. Despite global KL divergence having

connections to the free energy (279), it would be useful to visualize how the exact values of the

local KL translate into pdfs. The general trend is that the larger the KL, the more different the

two pdfs are, as can be seen in Fig. 2.21 and Fig. 2.22. Note that the K L1 values reported in the

aforementioned figures can arise from a variety of distribution shapes, and thus care must be

taken not to overgeneralize from the reported distributions.
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KL1 of BRC|DA DD2R
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(a) KL per residue for DD2R system with DA-bound simulation as reference and BRC-bound simulation
as test. KL contributions are color-coded according to backbone (brown) and sidechain (green). Ligand
binding residues for DA and BRC are highlighted. Note that most of the changes are close to ligand
binding residues, as is expected when the perturbation is a ligand change. The 7TM helices of GPCRs
are highlighted.

(b) Same KL shown above mapped on the DD2R structure, where the backbone is
shown in cartoon representation and colored according to the KL value. Ligand (BRC)
is shown in transparent sphere representation.

Figure 2.19: KL per residue for DD2R system with DA-bound simulation as reference and
BRC-bound simulation as test.
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KL1 of DA-DD2R I4.46N|WT

I125N
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(a) KL per residue for DA-bound DD2R system with the WT as reference and I4.46N mutated simulation
as test. KL contributions are color-coded according to backbone (brown) and sidechain (green). Ligand
binding residues, G-protein binding residues, and mutation site are marked. The two residues with
highest KL are the mutation site (I4.46N) and Y2.41, which forms a polar interaction with the mutation
site. The 7TM helices of GPCRs are highlighted.

(b) Same KL shown above mapped on the DD2R structure, where the
backbone is shown in cartoon representation and colored according to the
KL value. Ligand (DA) is shown in transparent sphere representation, and
mutation site (I4.46N) is shown as licorice.

Figure 2.20: KL per residue for DA-bound DD2R system with WT simulation as reference and
I4.46N simulation as target.
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Figure 2.21: KL for a selection of backbone dihedrals starting from smallest to largest KL for
dopamine-bound DD2R (active state, blue) simulations as test system and risperidone-bound
DD2R (inactive state, brown) simulations as reference system.
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Sidechain KL
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Figure 2.22: KL for a selection of sidechain dihedrals starting from smallest to largest KL for
dopamine-bound DD2R (active state, blue) simulations as test system and risperidone-bound
DD2R (inactive state, brown) simulations as reference system.
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2.5.5 Higher order KL terms

Similar to the mutual information expansion, the Kullback-Leibler expansion also includes

higher order terms that contain two or more body interactions. In such an expansion, a term

similar to the mutual information can be defined, and is called the mutual divergence M (279).

M is defined between two degrees of freedom with pdfs Pi and P j and joint distribution Pi j in

the test ensemble, and two degrees of freedom with pdfs P∗
i and P∗

j and joint distribution P∗
i j

in the reference ensemble:

M2 =
∑

i
Pi ln

( Pi

P∗
i

)
+∑

j
P j ln

( P j

P∗
j

)
−∑

i

∑
j

Pi j ln
(Pi j

P∗
i j

)
. (2.14)

The derivation of higher order terms is left to the reference (279). While the mutual information

has a simple intuitive interpretation, the mutual divergence between degrees of freedom (d.o.f.)

i and j can be interpreted in the following manner: if we know how divergent d.o.f. i is in the

test ensemble from the reference ensemble, what do we know about divergence of d.o.f. j

between the two ensembles?

To assess the usefulness of the mutual divergence term, M2 is calculated for systems with

different types of perturbations (ligand change, amino acid substitution, activation state

change) and observe the additional insight that it may give.
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Figure 2.23: Mutual divergence M2 for DD2R bound to BRC (test ensemble) and DA (reference
ensemble).

For the ligand change test, the results are reported for DD2R active state bound to BRC (test

ensemble) and DA (reference ensemble). We observe that the mutual divergence is not adding

new information to the one term KL divergence, which is signified in the horizontal/vertical
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high M2 lines in Fig. 2.23 and in the very similar peaks when plotting residue summed M2 and

K L1 on the same axis (Fig. 2.24).
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(a) Mutual divergence M2 summed over residues for DD2R system with the DA-bound as reference and
BRC-bound as test ensembles. M2 contributions are color-coded according to backbone-backbone
(brown), sidechain-sidechain (green), and backbone-sidechain (yellow). Ligand binding residues and
G-protein binding residues are marked. The largest divergences are in the ligand binding region. The
7TM helices of GPCRs are highlighted.
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(b) Same residue summed M2 (blue, left y-axis) plotted above with K L1 plotted in the negative direction
(red, right y-axis).

Figure 2.24: M2 and K L1 comparison of DD2R BRC and DA bound.

Similar results are reported for the two other tested perturbations (amino acid substitution

and activation state change), and the figures are found in the appendix (Sec. A.1).

72



2.6 Relationship of KL-divergences to experimental observables

2.6 Relationship of KL-divergences to experimental observables

KL-divergences have been reported to highlight regions showing NMR chemical shifts (IL-2 in

response to binding and pH regulation of Talin (279)). In this section, we study the relationship

between KL and experimental observables, namely NMR chemical shifts.

When simulating two states of a system, a perturbed and an unperturbed state, the KL will

quantify two types of effects, a direct effect in close proximity to the perturbation site and an

allosteric effect distant from the perturbation. NMR spectroscopy that reports on structure and

dynamics of a protein in response to a ligand or to mutations would make an ideal reference

for validation, since differences of chemical shifts between states can identify local changes as

well connections in allosteric pathways (202).

While chemical shift calculations from simulations require quantum mechanical methods for

geometry optimization and electronic structure calculations, my aim with this comparison

is not to re-calculate the chemical shifts ab-initio, but to find correlations between what the

chemical shifts represent in a certain experiment and the KL-divergences. To this end, we

compare KL-divergences calculated from MD simulations using AlloDy to NMR chemical shifts

measured for beta-1 adrenergic receptor (β1AR) from the group of Prof. Stephan Grzesiek

from the University of Basel (202; 63). What makes the data ideal for comparison is that some

of the chemical shifts are interpreted as functional readouts of ligand efficacy or some property

of the ligand (affinity, tail volume, etc ...).

2.6.1 Studied system description

In Isogai et al. and Grahl et al., two variants of wild turkey β1AR are studied, a thermostabilized

variant (TS) and a variant doubly mutated from TS (YY). The thermostabilized variant was

derived from previous turkey β1AR used in crystallography studies by adding three thermosta-

bilizing mutations, the final TS sequence is as follows:

MGAELLSQQWEAGMSLLMALVVLLIVAGNVLVIAAIGSTQRLQTLTNLFITSLACADLVVGLL

VVPFGATLVVRGTWLWGSFLCELWTSLDVLCVTASVETLCVIAIDRYLAITSPFRYQSLMTRA

RAKVIICTVWAISALVSFLPIMMHWWRDEDPQALKCYQDPGCCEFVTNRAYAIASSIISFYIP

LLIMIFVALRVYREAKEQIRKIDRASKRKTSRVMLMREHKALKTLGIIMGVFTLCWLPFFLVN

IVNVFNRDLVPKWLFVAFNWLGYANSAMNPIILCRSPDFRKAFKRLLAFPRKADRRL

HHHHHH.

The YY variant reverts positions 5.58 and 7.53 back to their WT sequences ( A5.58Y and L7.53Y

from TS). The tyrosines present in these two positions are essential for function and for

nanobody binding in the intracellular side. The receptors were studied in an apo state and

bound to six different ligands: isoprenaline, dobutamine, alprenolol, carvedilol, cyanopindolol,

and atenolol, ranging from full agonist to antagonists (Fig. 2.28).
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On the computational side, we prepared the systems for MD simulations by in-silico muta-

gensis of respective PDB files (check Tab. 2.1 for the full list) using RosettaMembrane (171),

building missing loops using RosettaRemodel (170), and ligand protonation using Protoss

(280). We then embedded the complex (or receptor in the case of apo simulations) in a POPC

lipid membrane followed by solvation and ion addition using CHARMM-GUI (281; 282; 283),

and running simulations using Gromacs (284) (See Methods, Sec. 2.6.4).

2.6.2 Results

KL divergences of different perturbations

From the simulated systems, we first try to understand the effect of different perturbations

introduced in the study before directly comparing with experimental observables.

Effect of agonist vs antagonist: To assess the effect of binding to agonist versus an antagonist,

we calculate K L1 using isoprenalol bound β1AR-TS as target ensemble and carvedilol bound

β1AR-TS as reference ensemble (Fig. 2.25). The general differences are highlighted by K L1 in

the ligand binding site as expected, including ECL2. Another pair of significant residues are

R3.50 and E6.30, which form an ionic lock that stabilizes the inactive state.

Effect of A5.58Y-L7.53Y double mutation: The double mutation A5.58Y-L7.53Y is crucial for

activity of the receptor, for without the two critical tyrosines, the receptor cannot bind its

intracellular binding partners. We calculate K L1 using isoprenalol bound β1AR-YY as target

ensemble and isoprenalol bound β1AR-TS as reference ensemble (Fig. 2.26 to assess effect

of mutations during simulations starting from an inactive state (PDB code: 2Y03). Large KL

signals can be seen in the vicinity of the mutation sites (TM5 and NPxxY motif). Note that K L1

of A5.58Y residue is small at the site itself due to alanine lacking any sidechain dihedrals, and

therefore having only backbone contributions to the divergence. The effect of the mutation is

clear on the neighborhood in TM5, however.

Effect of nanobody binding: To capture the effect of nanobody binding, we compare en-

sembles from simulations of β1AR-YY bound to ISO with and without the nanobody. The YY

mutations are necessary for nanobody binding (202), and thus it makes no physical sense to

simulate nanobody bound β1AR-TS. Nanobody binding shows the highest K L1 signal among

the studied perturbations, with sidechain signals observed at the core of the receptor (residues

V3.40, M5.54, M6.41, and F6.44) and a mixed backbone sidechain signal from the YY mutation

sites (Y5.58 and Y7.53) and their neighborhoods. The largest signals, however, come from

mostly backbone contributions from ICL3, which is interfacing with the nanobody.

Direct comparison with experimental observables In Isogai et al. (202), the authors corre-

lated NMR chemical shifts at different valine residues with ligand efficacy to Gs (V226(5.57)),
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KL1 of ISO-TS|CVD-TS
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(a) KL per residue where target ensemble is isoprenalol bound β1AR-TS and reference ensemble is carvedilol
bound β1AR-TS. Most differences are present at ligand binding sites (as expected), including ECL2. In addition,
positions R3.50 and E6.30 also show a KL signal. Helix 8 also shows a significant sidechain KL signal.

(b) Same KL shown above mapped on the ISO-bound β1AR-TS structure, where
the backbone is shown in cartoon representation and colored according to the
KL value. Ligand (ISO) is shown in transparent sphere representation.

Figure 2.25: K L1 ofβ1AR-TS to quantify differences between agonist and antagonist binding.
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KL1 of ISO-YY|ISO-TS
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(a) KL per residue where target ensemble is isoprenalol bound β1AR-YY and reference ensemble is isoprenalol
bound β1AR-TS. Large KL signals can be seen in the vicinity of the mutation sites (TM5 and NPxxY motif).

(b) Same KL shown above mapped on the ISO-bound β1AR-TS structure, where
the backbone is shown in cartoon representation and colored according to the
KL value. Ligand (ISO) is shown in transparent sphere representation. Mutation
sites are shown in red licorice.

Figure 2.26: K L1 of isoprenalol bound β1AR to quantify differences between YY and TS
sequence variants.
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KL1 of ISO-NB80-YY|ISO-YY
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(a) KL per residue where target ensemble is isoprenalol and nb80 bound β1AR-YY and reference ensemble is
isoprenalol bound β1AR-YY.

(b) Same KL shown above mapped on the ISO- and Nb80-bound β1AR-TS struc-
ture, where the backbone is shown in cartoon representation and colored accord-
ing to the KL value. Ligand (ISO) is shown in transparent sphere representation.
Nb80 is shown in transparent surface representation.

Figure 2.27: K L1 of isoprenalol bound β1AR-YY to quantify differences due to nanobody
binding.
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affinity (V314(6.59)), tail volume1 (V103(2.65)), and insertion depth2 (V125(3.36)). Additional

information regarding how these properties were obtained can be found in extended Data

table 1 in Isogai et al. (202). In this section, we report K L1 as sum of contributions from both

backbone (φ,ψ) and sidechain (χ1) of valine residues, unless otherwise mentioned. K L1 of

residue V226(5.57) in β1AR bound to different ligands with β1AR-TS apo as reference has an

excellent correlation with efficacy of ligands to Gs (Fig. 2.28b), with R2 = 0.943. Note that the

full agonists were simulated with nanobody bound (as shown in the figure legend) to mimic an

active like state. Another property that correlated with K L1 at the same site as that observed

in NMR experiments is ligand insertion depth measured at V125(3.36) with R2 = 0.746 (Fig.

2.29b). The correlations between K L1 and Gs efficacy and ligand insertion depth are main-

tained upon change of reference state of KL-divergence from apo state β1AR-TS to antagonist

bound β1AR-TS (CAR) (Fig. 2.30).

On the other hand, correlations are not observed for other ligand specific properties with the

same valines reported in Isogai et al., as seen in Fig. 2.29c and d. A possible explanation for

the lack of correlation of ligand affinity (which correlated with V314(6.59)) is that the ligand is

already in the ligand binding pocket in the simulations, and thus the simulations contain no

information on ligand affinity. The lack of correlation with tail volume is puzzling, however,

since that is information that is present in the simulations. After scanning the residues close

to the ligand binding site, we found an excellent correlation between K L1 at residue N7.39

and tail volume for the simulated systems with R2 = 0.982 (Fig. 2.31a). This correlation is also

present if we consider β1AR-TS bound to the agonists (ISO and DOB) without the nanobody

with R2 = 0.926, hinting that this is a robust correlation that is not sensitive to the exact

simulation conditions (Fig. 2.31b).

1The tail volumes were calculated by the Molinspiration Property Calculation Service for the tail group including
the amino moiety.

2The insertion depth of the ligand was taken as the distance between the β-carbon atom of the ligand amino
group and the amide nitrogen atom of V125 (V117 for β2AR) in the crystal structures of turkey β1AR in complexes
with isoprenaline (PDB ID: 2Y03), dobutamine (PDB ID: 2Y00), carvedilol (PDB ID: 4AMJ), and cyanopindolol
(PDB ID: 4BVN) as well as of human β2AR in complex with alprenolol (PDB ID: 3NYA).
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Figure 2.28: Ligand chemical structure and fitting of data to experimental efficacies of said
ligands: (a) Chemical structures of the β1AR ligands used in this study. The ligand atenolol
was not simulated, but is present in the reference study (202). (b) and (c) G-s efficacy measured
as percentage of activation of the full agonist isoprenalol plotted against K L1 for residue V226
(5.57) calculated with β1AT-TS apo as reference (b) and a best fit linear combination of the
V226 (5.57) chemical shifts (a =−515,b =−31.7,c = 8.4×103) (c).
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Figure 2.29: Fitting of K L1 with β1AR-TS apo as reference to different experimental observ-
ables correlated with NMR chemical shifts: (a) efficacy of ligands for Gs signalling pathway,
(b) ligand insertion depth, (c) ligand tail volume, and (d) ligand affinity.
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Figure 2.30: Robustness of correlation to change of K L1 reference state: Fitting of K L1 with
antagonist bound β1AR-TS as reference to (a) efficacy of ligands for Gs signalling pathway and
(b)) ligand insertion depth.
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Figure 2.31: Fitting of K L1 of residue N329 (7.39) with β1AR-TS apo as reference to tail
volume of simulated ligand: (a) correlation using nanobody bound simulations for agonist
ligands and (b) correlation using β1AT-TS without any bound intracellular binding partner.

Comparison of ligand efficacy with KL-divergence at probed valine sites The observed

correlation between K L1 and chemical shifts reported at V226 (5.57) with ligand efficacy hints

that this residue contains dynamical information pertaining to the agonism of the ligands.

V5.57 is one position away from the conserved Y5.58, which, along with Y7.53, are necessary for

binding of G-protein-mimicking nanobody and thus receptor activation (202; 63). We probed

K L1 at the different valine sites previously reported, and then attempted to correlate K L1 with

ligand efficacy at sites other than V226 (5.57). Figures 2.32 and 2.33 show the correlation plots

of reported efficacy in Isogai et al. (202) with backbone K L1 and backbone+sidechain K L1

respectively. Interestingly, V298 (6.43), which is one site away from the conserved F6.44 of the

PIF motif in class A GPCRs, shows excellent correlation with ligand efficacy. Other noted valine

sites that correlate well are V172(4.56) and V230(5.61). These findings hint that the dynamical

information pertaining to ligand efficacy can be found at certain conserved sites and selected

valine sites.
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Ligand efficacy fit vs BB KLDiv
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Figure 2.32: β1AR simulations fitting of backbone K L1 for valine residues using β1AR-TS
apo as reference to ligand efficacies reported in Isogai et al. (202): correlation R2 and p-
values are reported in subplot titles. NaNs mean that all K L1 at a given residues are zero.
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Figure 2.33: β1AR simulations fitting of backbone K L1 for valine residues using β1AR-TS
apo as reference to ligand efficacies reported in Isogai et al. (202): correlation R2 and p-
values are reported in subplot titles. NaNs mean that all K L1 at a given residues are zero.
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Comprehensive comparison with valine NMR chemical shifts To take the analysis further, we

investigated the correlation between K L1 and chemical shifts of valine residues reported in

Grahl et al. (63). To that end, we fit a linear function aδ1H +bδ15N + c to K L1 with β1AR-TS

apo as reference state for the set of TS simulations (Fig. 2.34) and YY simulations (Fig. 2.35)

separately. As mentioned before, we do not expect K L1 to reproduce the chemical shifts,

as they are extracted from simulations performed at an insufficient level of theory (using

molecular mechanics forcefields). It would nonetheless be instructive to see how far we can

find correspondence between the experimental and computational sides. For each of the

variants tested (TS and YY), a few of the valines show significant or (bordering on significance,

assuming α= 0.05) correlations with the NMR fits. Note that correlations are meaningless of

the K L1 value is small (less than ≈ 0.2 in this case). For TS simulations, valine positions 103

and 202 show large enough K L1 and significant correlations, while positions 172 and 202 are

highlighted for the YY variants, with position 125 bordering on significance. One observation

is that the correlation observed before for V226 (5.57), which is indiative of Gs efficacy is not

observed here. The main reason is absence of nanobody-agonist bound simulations in the

comparison performed here. In short, while there a few positions with significant correlations,

there is no one to one correspondence between K L1 and valine 1H and 15N chemical shifts

for β1AR.

2.6.3 Discussion

Over the last sections, we showed that K L1 of selected valine residues correlated well with

ligand efficacy along the Gs pathway, ligand insertion depth, and had limited correlation with

NMR chemical shifts. In addition, we report a ligand binding residue where K L1 correlates

well with tail volume (N7.39). we have also shown that some of the correlations are robust to

change of reference states (Fig. 2.30) and correlations regarding ligand volume are present

independent of the presence of an intracellular nanobody in the simulations (Fig. 2.31). At

the same time, we have seen that correlation with Gs efficacy is sensitive to the presence of

the bound nanobody, since efficacy of a given ligand is a fundamentally allosteric property

in GPCRs (allosteric regulation). All this demonstrates that K L1 is a suitable tool to quantify

effects of perturbations in simulations and to probe allosteric effects of said perturbations.

In addition, the current KL-divergence formulation allows decomposition of K L1 into back-

bone and sidechain contributions. If we consider only the backbone contribution (ϕ,ψ) to

K L1, we still observe correlations with ligand efficacy toward Gs and insertion depth, albeit

with a reduced K L1 signal (Fig. A.8). However, correlation of residue N329 (7.39) to ligand

tail volume is worse and loses significance (Fig. A.9). This decomposition shows that the

relevant signal of N7.39 for the sake of the aforementioned comparison is mainly its sidechain

contribution.

When comparing to chemical shifts, it is crucial to remember that 15N chemical shifts have

contributions from hydrogen bonding, backbone conformation, sidechain orientation, and
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a 1H + b 15N + c fit vs KLDiv, Grahl et al. (2020)
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Figure 2.34: Thermostabilized (TS) β1AR simulations fitting of K L1 for valine residues using
β1AR-TS apo as reference to NMR chemical shifts (aδ1H +bδ15N + c) from Grahl et al. (63):
correlation R2 and p-values are reported in subplot titles. NaNs mean that all K L1 at a given
residues are zero.

neighboring residues (285). A future continuation of this work in the direction of completing

comparison with 1H-15N NMR ought to study effects of not just backbone conformation and

sidechain orientation (which are already captured by (ψ,ϕ,χx ) in the current KL-divergence

formulation) but also hydrogen bond lengths. The main challenge to adding hydrogen bond

length is the level of theory currently used in large-scale molecular simulations, which lacks

the ability to accurately model sub angstrom distance shifts that contribute to chemical shifts

(286).
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a 1H + b 15N + c fit vs KLDiv, Grahl et al. (2020)
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Figure 2.35: A5.58Y-L7.53Y (YY) β1AR simulations fitting of K L1 for valine residues using
β1AR-TS apo as reference to NMR chemical shifts (aδ1H +bδ15N + c) from Grahl et al. (63):
correlation R2 and p-values are reported in subplot titles. NaNs mean that all K L1 at a given
residues are zero.
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2.6.4 Methods

Structure preparation

Systems simulated for wild turkeyβ1AR are shown in Tab. 2.1, where TS is the thermostabilized

variant as described in Isogai et al .(202) and YY is the A5.58Y-L7.53Y reverted double mutant

starting from TS. Structure preparation started by rebuilding missing loops from the reference

structures using RosettaRemodel (170) after constrained relaxation using Rosetta (168). The

loops were built to match the sequence reported in the reference (202). For every structure,

2000 decoys with 5 trajectories each were generated. The lowest scoring decoys were used for

all subsequent analyses.

Ref. PDB Variant In complex Ligand Ligand type Comment

4AMJ TS None None NA Apo state
6H7J YY Nb80 Isoprenalol Agonist
2Y03 TS None Isoprenalol Agonist
2Y03 YY None Isoprenalol Agonist
6H7L YY Nb6B9 Dobutamine Agonist
2Y01 TS None Dobutamine Agonist
2Y01 YY None Dobutamine Agonist
6H7O YY Nb6B9 Cyanopindolol Partial agonist
4BVN TS None Cyanopindolol Partial agonist
4BVN TS None Cyanopindolol Partial agonist
4AMJ TS None Cyanopindolol Partial agonist Ligand from 4BVN
4AMJ YY None Carvedilol Antagonist
4AMJ TS None Carvedilol Antagonist
4AMJ YY None Alprenolol Partial agonist Ligand from 3NYA
4AMJ TS None Alprenolol Partial agonist Ligand from 3NYA

Table 2.1: Systems simulated for wild turkey β1AR. TS is the thermostabilized variant as
described in Isogai et al .(202). YY is the A5.58Y-L7.53Y reverted double mutant starting from
TS. Ligands from different reference structures were overlayed after structural alignment and
then relaxed with MD.

Wild turkey β1AR TS and YY models were generated using RosettaMembrane (171). The

starting structures are listed in Tab. 2.1. Receptor and nanobody (when present) chains were

kept from the starting structure during in-silico mutagenesis (ISM). Residues of interest were

mutated and adjacent residues within 5 Å were subjected to alternating cycles of sidechain

repacking and backbone relaxation through Rosetta’s Monte Carlo-based energy minimization

algorithm. 200 decoys were generated per design to ensure score convergence. The lowest

scoring decoys were used for all subsequent analyses.
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After ISM, ligands were replaced in the orthosteric binding site. Ligands from different refer-

ence structures were overlayed after structural alignment and then relaxed with MD. Ligand

protonation state was predicted using Protoss (280).

Molecular dynamics simulations

The receptor-ligand-nanobody (when present) complexes were inserted in a regular hexagonal

POPC lipid bilayer where the distance between parallel sides is 90Å solvated by layer of

water above and below the bilayer (40 Å for systems without nanobody and 50 Å for systems

with) with 0.15 M of N a+ and C l− ions using CHARMM-GUI bilayer builder (287; 283; 281).

Parameters for the ligands were generated using CGenFF (288). Simulations were performed

with GROMCAS 2020.5 (289; 290) with CHARMM36 forcefield (291) in an NPT ensemble at

310K and 1 bar using a Nose-Hoover thermostat (with a period of temperature fluctuations of

1.0 ps) and Parrinello-Rahman barostat (with semi-isotropic coupling at a relaxation time of 5

ps) respectively. Equations of motion were integrated with a timestep of 2 fs using a leap-frog

algorithm. Each system was energy minimized using a steepest descent algorithm for 5000

steps, and then equilibrated with the atoms of the ligand-receptor-nanobody (when present)

complex and lipids restrained using a harmonic restraining force in 6 steps as shown in Tab.

A.19. After constrained equilibration, 4 to 5 replicas of 400 ns were run for all systems except

4AMJ-TS-CYA, 4AMJ-TS-ALP, and 4AMJ-YY-ALP, for which 500 ns replicas were run (Tab. 2.1,

those are the systems where the ligand was overlayed from a different structure). The first 50

to 125 ns of every simulation was discarded for equilibration of Cα and ligand RMSD, and the

rest of the simulation was used for calculating statistics.

AlloDy calculation

The KLDiv module of AlloDy was used to calculate Kullback–Leibler divergences from the

simulations. The calculations were performed as described in Sec. 2.5.2. Unless otherwise

mentioned, the reference state used for the calculation was the apo state simulation, and

both backbone and sidechain dihedrals were used for the calculation. When mentioned, the

antagonist bound reference state refers to the 4AMJ-TS-CVD simulation (Tab. 2.1).
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Artwork 3: Dopamine D2 receptor (yellow) bound to bromocriptine interacting with Gαi (beige

thru purple), Gβ (cyan) and Gγ (magenta). This simulation uses the structure from 6VMS (132).

The structure was determined using a D2 receptor stabilized in the active state designed

previously in the lab (16).
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3 Computational rewiring of allosteric
pathways reprograms GPCR selective
responses to ligands in dopamine
receptors

"What I cannot create, I do not understand"

— Richard Feynman

Author contributions: M.H. contributed to the study design and performed MD simulations,

data analysis, interpretation, and figure design. M.H. wrote the chapter. This work was done

in collaboration with Dr. Daniel Keri and Aurélien Oggier.

3.1 Introduction

The importance of G-protein-coupled receptors (GPCRs) as valuable drug targets underscores

the necessity to comprehend and predict how ligand binding to a GPCR triggers specific

signaling responses, particularly within GPCR families with divergent receptor roles. Allostery

enables ligand-induced changes in protein structure and dynamics to be efficiently trans-

mitted to distant sites and is a widespread regulation mechanism of protein function (see

(220; 27; 292) and Ch. 1). Owing to the lack of high-resolution dynamical measurements

on GPCRs, how allostery is encoded into receptor sequence, structure and dynamics is not

well understood. Computational studies using sequence co-evolution inference or molecular

dynamics simulations can detect networks of functionally and dynamically coupled receptor

residues that may provide efficient communication pathways(277; 293; 25; 294) . However,

how distinct ligands engage these networks to elicit precise and selective signaling responses

remains elusive.

In this chapter, we employ computational protein design techniques previously developed

in the lab (16) coupled with dynamic analysis from AlloDy to explore the allosteric functions
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of GPCRs, unveiling mechanistic relationships between agonist ligand chemistry, receptor

sequence, structure, dynamics, and allosteric signaling across the dopamine receptor family

using dopamine D1 and D2 receptors as a model systems. The designed receptor variants

exhibited correlated responses to structurally similar ligand agonists and displayed selective

reactions across members of the dopamine receptor family. Computational analysis identified

distinct topologies of allosteric signal transmission pathways for various agonist-receptor

pairs, perturbed differently by the designs. By harnessing these insights, we rewired ligand-

receptor specific pathways and engineer receptors with highly selective ligand responses.

Our study suggests that diverse ligand agonists activate a given signaling effector through

specific "allosteric activator" moieties, which engage partially independent signal transmis-

sion networks in GPCRs. These allosteric activators have evolved to optimize either binding

affinity or signaling efficacy based on the receptor’s function. Additionally, we investigated the

impact of allosteric modulators and demonstrated the ability of receptor design to emulate

the effects of positive modulators. These results furnish a mechanistic framework for compre-

hending and predicting the influence of sequence polymorphism on receptor pharmacology,

providing valuable insights for selective drug design and rational receptor engineering for

both fundamental research and therapeutic applications.

3.2 Results

In a previous study, we had identified a class of allosteric sites (“allosteric propagators”) that

connect highly conserved microswitches into fully wired allosteric pathways. We were able

to fine-tune GPCR signaling responses through novel allosteric “propagator” microswitches

designed on several TMHs, which suggested the existence of multiple allosteric signal trans-

duction pathways running through the TM region of the receptor (16). The designed mi-

croswitches at propagator sites enhanced the sensitivity to both dopamine and serotonin,

implying that receptor responses to both ligands may involve the same path. Since signal

transduction pathways connect the extracellular ligand to the intracellular effector binding

sites, we reasoned that ligands with similar structure should engage similar paths through

overlapping contacts with the receptor. Conversely, structurally distinct agonists that bind to

the receptor through different “allosteric activator” chemical groups should involve alternative

pathways and therefore be sensitive to different allosteric “propagators”.

3.2.1 Ligand functional effects correlate with ligand clustering in dopamine D2
receptors

To test this hypothesis, we sought to explore the mechanistic relationships between agonist

ligand chemistry and receptor signaling through the atomic-resolution mapping of allosteric

pathways and quantification of signal transductions in ligand-receptor systems (Fig. 3.1).

We took a multi-disciplinary approach combining ligand structure clustering for mapping

chemical space, molecular dynamics simulations (MD) for allosteric pathway discovery and

94



3.2 Results

perturbation response quantification, computational protein design for reprogramming al-

losteric responses and a battery of cell signaling assays for measurement of receptor responses

to multiple ligands (Fig. 3.1c). If we understand how ligands activate a receptor through

engagement of specific allosteric pathways, we should be able to rationally rewire these paths

and design novel selective ligand-GPCR responses (Fig. 3.1c).

We selected the dopamine D2 receptor as a system for the first part of this study because

it performs critical neurological functions (295; 296), has been structurally characterized in

several signaling states and is regulated by numerous partial and full ligand agonists. We

first analyzed the structural similarity of a comprehensive set of 39 characterized D2 agonists

using standard structural clustering approaches and identified 4 major clusters (Fig. 3.1b,

methods). Consistent with our expectations, serotonin (SE) and dopamine (DA) adopt very

similar chemical structure and therefore belong to the same cluster. D2 agonists from other

clusters are often much larger than DA and SE, populate distinct chemical subspaces and can

presumably contact the receptor through multiple additional sites.
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(Caption on next page.)
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Figure 3.1: Outline of computational and experimental workflow: a Principal component
analysis plot of clustered dopamine receptor agonists. Highlighted agonists were chosen for
experimental testing and are colored based on cluster. b Different agonists engage different
set of binding residues that each contribute to allosteric pathways connecting the protein
structure. c Computational and experimental workflow performed in this work. After selection
of agonists from clustering, molecular dynamics (MD) simulations of ligand-bound receptors
are input to our software AlloDy that predicts ligand-specific allosteric pathways. Ligand
specific allosteric hotspots are targeted for mutagenesis. Chosen mutants are tested in live
cells to confirm ligand selective effect. d Highlights of allosteric pathways extracted for
dopamine bound and bromocriptine bound dopamine D2 receptor.

To investigate the relationship between ligand chemical space and long-range allosteric sig-

naling responses, we first assessed how several allosteric propagator microswitches previously-

designed in the TM core of D2 in addition to newly designed ligand specific variants modulate

the receptor response to structurally-distinct ligands (Fig. 3.2). The previously designed vari-

ants (T5.54M, F6.44I, C6.47L, and T5.54M-C6.47L) were designed with parameters for DA-Gi

pathway, without any consideration for ligand selectivity (16), while the additional designs

reported in this work considered two sets of parameters, one for DA and another for BRC. The

parameters involved are the modeled structures that are used as a starting point for in-silico

mutagenesis (ISM) and the allosteric hotspots used to approximate dynamics from DCCM.

Because these sites are far away from the ligand binding site, they can probe long-range in-

teractions connecting ligands and allosteric pathways running though the receptor structure.

We selected representative members of the 4 largest ligand clusters and measured in vitro the

D2-mediated activation of the G protein Gi2 upon ligand stimulus using HEK reporter cell

lines stably expressing a TRP channel (Fig. 3.2a). Nine designed D2 receptors incorporating

distinct allosteric propagator microswitches at TMHs 3, 4, 5 and 6 (Fig. 3.2d and e) were

transiently expressed in stable HEK cells and incubated with the following 6 agonist ligands:

the full agonists dopamine (DA), bromocriptine (BRC), and the partial agonists serotonin (SE),

aripiprazole (AR), MLS1547 (MLS) and UNC9994 (UNC). Dose titrations revealed very distinct

effects of the designed microswitches on the assayed ligands. The large (i.e. from 1 to 2 orders

of magnitude) increases in potency for dopamine and potency and efficacy for serotonin were

not observed for the other ligands (Fig. 3.2b and d). While the designed microswitches still

behaved as gain of function for the partial agonists, smaller increases in efficacy and potency

were observed except for mutations I4.46N and L3.41G (residues are numbered according

to the Ballesteros–Weinstein numbering scheme (1)). I4.46N is dead for all surveyed ligands

except DA, for which it is a loss of function, while L3.41G breaks the pattern by being a gain

of efficacy for BRC and a loss of function for the partial agonists. L3.41H, on the other hand,

displayed strong gain of function for DA/SE cluster, a slight gain of function for MLS/UNC

cluster, and no effect on the others. F6.44I displayed gain of function for all ligands except

BRC, and F6.44M signals with all ligands except for BRC, which loses all signaling. The double

mutant T5.54M-C6.47L appears to have an additive effect for the DA/SE cluster, a mixed effect

on MLS/UNC/AR, and a loss on BRC when observing from the lens of potency shift (Fig. 3.2d).
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Interestingly, specific designed effects tend to be similar for ligands from the same cluster and

could be classified into 4 distinct classes; i.e. DA/SE, UNC/MLS, AR, BRC (Fig. 3.2f). The results

suggest that, while each allosteric propagator microswitch has the potential to modulate ligand

signaling differently, the effects correlate with how ligands activate the receptor and trigger

allosteric pathways. Importantly, the allosteric coupling profiles could not be explained by the

differences in efficacy of the ligands for the WT receptor as DA and BRC are both full agonists

and SE is a very weak agonist for D2.

3.2.2 Molecular exploration of WT dopamine D2 receptor behavior using AlloDy

These observations suggested the existence of several allosteric pathways running through

distinct TMH interfaces that would be potentiated differently by the two full agonists to activate

Gi, hence prompting us to investigate the behavior of the DA and BRC-bound D2 receptor

using molecular dynamics over 2 µs simulation time. Consistent with large differences in

ligand size, BRC displayed more contacts than DA, especially on TMH 3, ECL2, TMH 6, and

TMH 7 (Fig. 3.3). In addition, BRC-D2 structures displayed significantly lower RMSF than

DA-D2 structures especially in regions directly in contact with the ligand (Fig. A.10).

To assess how the differences in ligand contacts, receptor rigidity, and amino acid substitutions

affect the allosteric signaling pathways running through the receptors, we used AlloDy (Ch.

2, (297)). Allosteric signals are predicted to be best propagated by residues that exchange

the most information (298), so we assign residues allosteric scores σm proportional to the

number of pathways going through them weighted by the pathway endpoint MI. We also used

AlloDy to quantify Kullback-Leibler divergences (KL) between target and reference simulations.

Examples of perturbations could be amino-acid substitutions or different ligands binding the

receptor. Perturbation responses are divided into two classes, those close to the perturbation

site (direct effect) and others far from the perturbation site (allosteric effect). During the

analysis process, AlloDy also performs principal component analysis (PCA) of ligand binding

poses and extracts consensus class A GPCR activation features such as interhelical (i.e., TM3-

TM6 and TM3-TM7) distances on the intracellular side of the receptor and the RMSD for the

NPxxY motif (Ch. 2).
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Figure 3.2: Functional output, classes of mutations and of allosteric effects: a Schematic
of the TRP channel assay used to produce the data shown in this figure. b Dose response
curves of selected mutations for the six tested ligands show a range of ligand selectivity. c
Same data represented as radar plots. d −∆ log(EC 50) for the nine tested mutants for all tested
ligands. NaNs represent a dead receptor that does not signal. e Normalized efficacies and
− log(EC 50) values for D2 designs in TRP channel assays measuring Gi response. Positions of
the ligand-agnostic and ligand-selective designs on the dopamine D2 receptor structure are
shown in the inset. f Pearson correlations of EC50 shifts between agonists for tested dopamine
D2 receptor designs. *p < 0.05. Rows including NaNs were not included in the correlation
calculation. Colored bars represent clustering from Fig. 3.1a.
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(Caption on next page.)
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Figure 3.3: Ligand binding residues and their allosteric hubscores for DD1R and DD2R: a
Difference of ligand contact persistence between mutant and WT for simulated variants of
DD2R. WT values represent fraction of simulation in which ligand is in contact with a given
residue. Contact is defined via a dual cutoff scheme where two heavy atoms (non-hydrogen)
come in contact when they are within 3.5 Å and leave contact when the atoms are further than
5 Å apart b Allosteric hubscores σm of ligand binding residues for DA-bound, BRC-bound,
and RIS-bound states. NaNs represent residues not having significant contact with the ligand.
Significant cutoff is taken to be 30% of all simulated time. c Same as a but for DD1R. d Same as
c but for DD1R.

Using the aforementioned features extracted using AlloDy, we analyzed WT D2 receptor

bound to different ligands and in different states: DA-D2WT-GiH5; BRC-D2WT-GiH5; and

risperidone(RIS)-D2WT, where the DA and BRC bound simulations start from the active

state (6VMS) and RIS bound D2 simulations start from the inactive state (6CM4). GiH5

represents the H5 C-terminal helix of the G-protein which interfaces with the IC cleft of a

GPCR. Comparing active to inactive state simulations indicates markers of activation in DD2R,

while comparing the two active ligand bound simulations informs us on the ligand sepcific

activation mechanisms.

Starting from the inactive state simulations, RIS kept an almost perfect unbroken contact

with I3.40, F5.47, F6.44, and W6.48, where the contacts with F5.47 and F6.44 are unique to

RIS in our simulation set, compared to DA and BRC (Fig. 3.3). In other DD2R inactive state

structures, ligands haloperidol (299) and spiperone (300) also contact F6.44 in inactive state

D2 structures, which makes sense since one of the ways the antagonists/inverse agonist are

blocking activation is through the PIF motif. RIS also formed contacts with W100(23.50)

for more than half of the total simulation time (RIS forms a T-stack in the crystal structure,

although this interaction is not maintained during the simulation). On the other hand, RIS

lacks contact with activating residues on TM5, S5.42 and S5.43.

As for the activation state, the markers of activation are taken to be TM3-6 and TM3-7 distances

defined between Cαs of residues 3.50-6.30 and 3.50-7.53 and RMSD of NPxxY motif to the

inactive reference, 6CM4. The inactive state simulations sampled a single well defined well

that includes the inactive state reference, while DA-D2WT-GiH5 displayed a major and a minor

population that are both far from the inactive reference (Fig. 3.4a).

Looking more closely at differences between DA and RIS-bound simulations at the degree

of freedom level, we observe significant divergences beyond the expected ones at the ligand

binding site. On the ECL side, ECL1 exhibits backbone and sidechain divergences at positions

W100(23.50) and F102(23.52), while ECL2 shows mostly backbone divergences (expected with

the majorly different conformation in ECL2 between the two ensembles), with the highest

divergence being on the C182(45.50). Other expected highlighted features are the conserved

motifs that are hallmark markers of class A GPCR activation, including I3.40/F6.44 from the

PIF motif, W6.48, R3.50 from the DRY motif, and Y7.53, which all also display higher MI in the
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active state. The backbone K L1 signal at the NPxxY motif represents the kink observed in active

state GPCRs, and this is combined with TM7 having a significantly larger MI contribution in

DA active state simulations. Other significant divergences are seen on Y2.41, Y5.62, and E6.30.

C3.37 and L3.43 are mostly sidechain changes that corroborate with I3.40 changes. Y5.58

stabilizes the active state in an interaction with Y7.53 and has been shown to be essential for

tertiary complex formation in β1AR (202).

Looking at the ligand binding, activation landscapes, MI, and divergences altogether, we get a

rigorous picture of markers of activation and ensemble differences between active and inactive

ensemble.
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Figure 3.4: Inactive state RIS-bound and active state DA-bound DD2R comparison: a Activa-
tion landscapes for inactive state RIS-D2WT simulations (left) and active state DA-D2WT-GiH5
simulations (right). TM3-6 distance is measured between residues R3.50 and E6.30. b KL-
divergence with DA-D2WT-GiH5 as target ensemble and RIS-D2WT as reference ensemble.
Brown and green bars represent backbone and sidechain contributions to the KL respectively.
Ligand binding residues in the target ensemble are in yellow disks and those in the reference
ensemble are in purple circles. c Difference of residue summed mutual information (MI)
between target and reference ensembles. Ligand binding residues and G-protein binding
residues are marked on the figure. Rectangles represent the seven TM helices of GPCRs.

103



Chapter 3. Computational rewiring of allosteric pathways reprograms GPCR selective
responses to ligands in dopamine receptors

Moving on to the ligand specific differences in active state simulations of WT D2 systems

(DA and BRC-bound). Major allosteric pathways connecting extracellular to the intracellular

regions are initiated from a set of divergent ligand binding residues. With the exception of

common allosteric contacts with conserved serines on TMH 5 (S5.42/6), DA initiated pathways

from residues on TMH 6 (F6.51) and TMH 7 (Y7.43), while BRC initiated pathways from TMH

6 (H6.55 and W6.48), TMH 7 (Y7.35) and ECL2 (C182). Both systems have a pathway running

through TMH 5 connecting to the G-protein binding interface. The major differences lie in

DA-bound D2 having strong cross TMH connectivity between TMHs 6 and 7, which is weaker

in the case of BRC (Fig. 3.1d), and in having stronger allosteric pathways, as is signified by

higher overall MI and MI of conserved class A residues of DA-D2WT over BRC-D2WT (Fig.

3.5b). KL-divergence analysis between the two simulations shows obvious differences at the

binding site (residues F6.52 and Y7.35 show high signal), and others such as I3.40, Y5.48, ECL3,

and W7.40. Interestingly, only very slight changes are seen in the protein core or G-protein

binding region, with KL<1 (Fig. 3.5a).

Figure 3.5: KL-divergence and MI differences for DA and BRC-bound active state D2 simu-
lations: a KL-divergence with BRC-D2WT-GiH5 as target ensemble and DA-D2WT-GiH5 as
reference ensemble. Brown and green bars represent backbone and sidechain contributions
to the KL respectively. Ligand binding residues in the target ensemble are in yellow disks
and those in the reference ensemble are in purple circles b Difference of residue summed
mutual information (MI) between target and reference ensembles. Ligand binding residues
and G-protein binding residues are marked on the figure. Rectangles represent the seven TM
helices of GPCRs.
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3.2.3 Allosteric design using distinct ligand specific pathways in dopamine D2
receptors

If DA and BRC exploit distinct pathways to activate the same signaling effector, we should

be able to create D2 receptors with high ligand selectivity by reprogramming long-range

communication along ligand-specific allosteric channels. We first identified the main allosteric

sites through which DA or BRC-specific paths were predicted to run through and defined DA

or BRC-selective allosteric hubs (Fig. 3.1d).

Figure 3.6: Computational protein design strategy: a Allosteric pathways are extracted using
AlloDy. b Design hotspots are mutated to all 20 possible amino acids using RosettaMembrane
(171). c Amino acid substitution is chosen based on stability (s) and coarse grained dynamics
(d) calculated using Eq. 1.2.

We then applied our computational allosteric design approach to select in silico novel combi-
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nations of amino-acids at these hubs predicted to enhance or weaken the allosteric coupling

mediated by the ligand selective paths (Fig. 3.6). Design hotspots are chosen as residues with

high allosteric score σm for either ligand and residues not directly contacting the ligand or

the G-protein. DCCM values are calculated as difference of differences between (active and

inactive state) and (mutant and WT) receptors. The allosteric hubs extracted from AlloDy

are used in the sum in Eq. 1.2. The list of mutations, measured experimental efficacies and

potencies, in addition to the calculated ∆∆DCC M values are summarized in Tab. 3.1.

Table 3.1: DD2R Gi2 pathway experimental responses for dopamine (DA) and bromociptine
(BRC). SEM = standard error of the mean. Design column shows the origin of the design,
phase 1 are taken from Chen et al. (16), while phase 2 are the variants designed in this work.
∆∆(DCCM) is the sum described in Eq. 1.2.

Ligand Mutation LogEC50 SEM Efficacy SEM Design ∆∆(DCCM)
DA WT -7.489 0.038 99.959 1.086 NA NA
BRC WT -6.563 0.042 57.135 1.036 NA NA
DA T5.54M-C6.47L -8.909 0.082 87.114 2.022 Phase 1 (16) 0.74
BRC T5.54M-C6.47L -6.570 0.100 56.907 2.934 Phase 1 (16) NA
DA L6.41M -7.910 0.048 104.182 1.598 Phase 2 -0.00096
BRC L6.41M -6.756 0.096 83.078 3.205 Phase 2 -0.13
DA L3.41G -7.361 0.042 103.273 1.439 Phase 2 -0.11
BRC L3.41G -6.442 0.061 79.724 2.307 Phase 2 -0.048
DA L3.41H -8.674 0.061 97.338 1.674 Phase 2 -0.0094
BRC L3.41H -6.620 0.144 62.564 4.253 Phase 2 0.014
DA F6.44M -8.499 0.050 97.083 1.264 Phase 2 0.017
BRC F6.44M nan nan nan nan Phase 2 -0.0064
DA F6.44I -8.267 0.065 94.520 1.771 Phase 1 (16) 0.44
BRC F6.44I -6.401 0.118 61.130 4.011 Phase 1 (16) NA
DA I4.46N -6.884 0.076 78.628 2.186 Phase 2 0.01
BRC I4.46N -7.114 0.684 3.288 1.000 Phase 2 -0.35
DA C6.47L -8.909 0.082 106.241 1.819 Phase 1 (16) -0.51
BRC C6.47L -6.716 0.108 48.392 2.561 Phase 1 (16) NA

Our aim was to engineer receptors with more ligand selective responses or gain of function

variants for BRC. We targeted a wide variety of sites in the TM core of the receptor, including

TMHs 3 and 4 that were not covered in our previous study (16). We validated our selected

designs by measuring ligand-stimulated Gi-activation responses in TRP-HEK cells as described

above. Consistent with our intentions, we were able to engineer D2 receptors with a high

variation in response to BRC, ranging from gain of efficacy to total loss of signaling. In

particular, designed microswitches at sites 3.41 and 6.41 enhanced BRC efficacy by up to

39.54% and 45.41%, respectively (Fig. 3.2e). Remarkably, these effects were highly selective for

BRC in the L3.41G design which did not show any difference in DA responses as compared to

WT. Conversely, sequence changes at the 4.46 hub had a slight loss of function effect on DA

but considerably decreased the response to BRC. The extent of the loss of function depended

on the exact sequence substitution, with I4.46T displaying the smallest effect, and I4.46N
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displaying no Gi activation signals even at submillimolar concentrations of BRC. Lastly, F6.44M

strongly enhanced the sensitivity for DA while suppressing all Gi-mediated response to BRC.

This receptor achieved a very high level of ligand selectivity and, together with the other

designs, demonstrates that the rational rewiring of selective allosteric pathways enables the

fine-tuning and control of ligand mediated receptor functions (Fig. 3.2b and e).

Given the experimental findings, we expanded the molecular dynamics simulations set to

include the following ligand-receptor variants of D2-GiH5 and extracted aforementioned

features using AlloDy: DA-T5.54M-C6.47L; DA-L3.41G; DA-L3.41H; DA-I4.46N; DA-L6.41M;

DA-F6.44M; BRC-T5.54M-C6.47L; BRC-L3.41G; BRC-L3.41H; BRC-I4.46N; BRC-L6.41M; BRC-

F6.44M; and BRC-F6.44I.

From the total set of simulations, we attempted to extract global features that could correlate

with experimental observations. We report that allosteric pathways passing through TMH 5 in

dopamine systems show a correlation with the shift in potency in response to the mutation of

the system (Fig. 3.8a). This agrees with the presence of consensus serines on TMH 5 ligand

binding site in aminergic class A GPCRs (Fig. 3.7) and with previous studies with mutation of

these sites to alanine is detrimental to G-protein signaling in dopamine (301) and adrenergic

receptors (302; 303). Additionally, the largest difference in the ligand binding site between

active and inactive β2AR is an inward bulge of TM5 centered at S5.46 (57). We observed this

shift via backbone K L1 between the active and inactive ensembles at positions 5.44, 5.45, and

5.46 (Fig. 3.4b).

TM3 ECL2 TM5 TM6 TM7
Residue number 3 3 3 3 3 3 3 45 45 45 5 5 5 5 6 6 6 6 7 7 7
Sequence-based 

(BW) 32 33 36 37 38 39 40 50 51 52 42 43 46 47 48 51 52 55 35 39 43

drd1_human D I S T A S I C D S S S S F W F F N F V W
drd2_human D V C T A S I C I I S S S F W F F H Y T Y
Seq consensus 

(aminergic) D V C T A S I C + I S S S F W F F N F F Y

100 58 56 81 81 100 81100 11 39 58 50 44 100 100 75 81 28 36 22 89

Ligand binding residue persistence of contacts
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Figure 3.7: Ligand binding residue conservation and persistence of contacts in DD1R and
DD2R: a Residues of ligand binding region for DD1R and DD2R. The sequence consensus
among aminergic class A GPCRs. b Ligand binding residue persistence of contacts for DD1R
and DD2R. Note that the amino acid identity and numbering shown on the x-axis is that of
DD1R.
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(Caption on next page.)
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Figure 3.8: DD2R allosteric effects explain ligand selectivity: a Changes in potency for
dopamine bound DD2R correlate with strength of major allosteric pathways passing through
TM5. The correlation has an R2 = 0.436 b Difference of differences of efficacy and potency
between mutant and WT and bromocriptine and dopamine. c-g Models of allosteric effect
in DD2R in response to mutations and ligands (bromocriptine: panels c-e, and dopamine:
panels f-g. Ligands are colored according to their RMSD from their respective WT. h Legend
for allosteric effects observed in the simulations

3.2.4 Molecular origins of ligand selectivity upon mutation in dopamine D2 recep-
tors

Beyond WT systems, we have classified mutations into distinct clusters in ligand sensitivity-

selectivity space (Fig. 3.8b), with the most DA selective variants being I4.46N and F6.44M. We

will discuss these two variants in more detail to investigate the origins of ligand selectivity:

BRC-D2-I4.46N: Among the I4.46 substitutions, mutation I4.46N kills all signaling with BRC.

We begin the investigation by comparing mutual information between the mutant and WT

systems. While there is a reduction in the total MI of the system, there exists a set of selected

residues, including the mutation site, neighboring sites (Y2.41, L2.46), and distant residues

(W7.40, Y7.43) that have increased residue summed MI. We explore further by investigating

K L1, allosteric scores σm , and allosteric pathways. The asparagine mutation forms H-bonds

with Y2.41 and S2.45, changing their side chain dihedral distributions as well as that of L2.46

(evidence from K L1, Fig. 3.9c), which leads to L2.46 and Y2.41 acting as allosteric hubs

(evidence from σm) at the junction of allosteric pathways connecting ligand binding regions

(TM3, V3.29, TM6, F6.51, TM7, Y7.43, from allosteric pathway topology, Fig. 3.9a) to TM2

and the mutation site. This funnels information into TM2, as is seen from MI distributions,

where only TM2 has higher MI than WT, while other TMs have lower summed MI (Tab. 3.2). A

consequence of this is a reduction in the communication between G-p binding regions and the

rest of the receptor (reduction of ∼ 25%, from summed MI). The mutation also allosterically

modifies the conformation of ECL3, G4.63 and sidechain of T7.39 (evidenced by K L1). No

major difference in ligand binding poses or contacts is observed. Synthesizing all of this

information, we propose the effect of I4.46N on BRC as an allosteric sink mechanism (Fig.

3.8c), where information is diverted toward the neighborhood of the mutation and the ligand

thus does not lead to signaling.

Table 3.2: Summed MI over every TM helix in BRC-D2-WT-GiH5 and BRC-D2-I4.46N-GiH5.

Summed MI TM1 TM2 TM3 TM4 TM5 TM6 TM7
BRC-WT-Gi 717.2 319.7 374.6 613.7 782.1 797.7 387.2
BRC-I4.46N-Gi 686.7 386.5 326.8 352.4 619.1 536.0 275.9
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Figure 3.9: BRC-D2-I4.46N-GiH5 simulation data: a Selection of top ten allosteric pathways
for BRC-D2-WT-GiH5 (left) and BRC-D2-I4.46N-GiH5 (right). b N4.46 forming polar interac-
tions with Y2.41 and S2.45. c KL-divergence with BRC-D2-I4.46N-GiH5 as target ensemble and
BRC-D2WT-GiH5 as reference ensemble. d Difference of residue summed mutual information
(MI) between target and reference ensembles. Ligand binding residues and G-protein binding
residues are marked on the figure. Rectangles represent the seven TM helices of GPCRs.
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DA-D2-I4.46N: On the other hand, DA is still able to signal through Gi despite the mutation

being a loss of function both in terms of efficacy and potency. Similarly to BRC, the asparagine

mutation forms H-bonds with Y2.41 and S2.45, changing their side chain dihedral distributions

(mostly Y2.41, evidenced by K L1, Fig. 3.10b and c). Unlike the case of BRC, this does not

translate to an allosteric signal through TM2 (Fig. 3.10a). In fact, Y2.41 has a loss of total MI

in I4.46N (Fig. 3.10d). Thus, we conclude that the effect of mutation is structurally localized

(evidenced by K L1). However, the ligand (DA) reacts to the mutation by changing binding

pose (separate cluster from WT simulations in Fig. A.12), which is reflected in the contact

persistence map and allosteric scores of ligand binding residues (Fig. 3.3a and b). Residue

Y7.43 has a weaker allosteric score despite not losing contact, and the role is taken instead by

W6.48, which has increased contact persistence and allosteric score. This change leads to a

shift in allosteric communication from TM7 to TM6, which is reflected in MI of TM6 and TM7

for I4.46N (Fig. 3.10d), which we term allosteric rewiring (Fig. 3.8f).

Table 3.3: Summed MI over every TM helix in DA-D2-WT-GiH5 and DA-D2-I4.46N-GiH5.

Summed MI TM1 TM2 TM3 TM4 TM5 TM6 TM7
DA-WT-Gi 629.7 412.8 586.8 821.9 934.0 743.8 1155.5
DA-I4.46N-Gi 607.1 418.0 447.3 876.5 919.2 965.8 690.1
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Figure 3.10: DA-D2-I4.46N-GiH5 simulation data: a Selection of top ten allosteric pathways
for DA-D2-WT-GiH5 (left) and DA-D2-I4.46N-GiH5 (right). b N4.46 forming polar interactions
with Y2.41 and S2.45. c KL-divergence with DA-D2-I4.46N-GiH5 as target ensemble and DA-
D2WT-GiH5 as reference ensemble. d Difference of residue summed mutual information (MI)
between target and reference ensembles. Ligand binding residues and G-protein binding
residues are marked on the figure. Rectangles represent the seven TM helices of GPCRs.
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Another highly selective mutation is F6.44M, which is dead for BRC but increases potency

toward DA:

BRC-D2-F6.44M and F6.44I: In the case of BRC-D2-F6.44M, we observe changes in rotameric

states of I3.40 and L6.41 (evidenced by K L1, Fig. 3.11b). Contrary to the WT case, allosteric

pathways jump from W6.48 to I3.40, skipping position 6.44 (Fig. 3.11a). This is supported by

M6.44 having lower σm than WT with BRC, but slightly higher with DA. In addition, substitu-

tion F6.44I with BRC displays larger σm than WT, and this is reflected in I6.44 not blocking

allosteric transmission (Fig. 3.8d-e). Another piece of evidence is that apo state simulations

of D2 WT and F6.44M starting from the active state have shown that F6.44M accesses an

inactive-like state more readily than WT in terms of TM3-6 distance (Fig. A.11).

Table 3.4: Summed MI over every TM helix in BRC-D2-WT-GiH5, BRC-D2-F6.44M-GiH5,
and BRC-D2-F6.44I-GiH5.

Summed MI TM1 TM2 TM3 TM4 TM5 TM6 TM7
BRC-WT-Gi 717.2 319.7 374.6 613.7 782.1 797.7 387.2
BRC-F6.44M-Gi 877.1 640.5 426.3 687.1 909.3 1206.6 731.0
BRC-F6.44I-Gi 559.2 532.3 489.7 740.2 821.8 674.3 761.5

DA-D2-F6.44M: In the case of DA, no divergence is observed at position I3.40 (evidenced

by K L1). DA changes binding pose (separate cluster from WT simulations in Fig. A.12), and

shows stronger allosteric contacts with TM5 (S5.46), TM6, (F6.51), and TM7 (Y7.43) (Fig. 3.3),

which would hint at the increase in potency. In terms of allosteric transmission, pathways

show communication between TMH 3 -TMH 7 and TMH 6 (residues 6.47- 6.48) – TMH 7 that

lead to the NPxxY motif and to G-protein binding residues in TMHs 6 and 7. M6.44 still acts as

an allosteric block, but DA is able to adapt its binding pose, leading to signaling regardless of

the mutation (Fig. 3.8g).

Table 3.5: Summed MI over every TM helix in DA-D2-WT-GiH5 and DA-D2-F6.44I-GiH5.

Summed MI TM1 TM2 TM3 TM4 TM5 TM6 TM7
DA-WT-Gi 629.7 412.8 586.8 821.9 934.0 743.8 1155.5
DA-F6.44M-Gi 594.3 614.0 523.4 825.7 862.1 924.1 959.5
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Figure 3.11: BRC-D2-F6.44M-GiH5 simulation data: a Selection of top ten allosteric path-
ways for BRC-D2-WT-GiH5 (left) and BRC-D2-F6.44M-GiH5 (right). b KL-divergence with
BRC-D2-F6.44M-GiH5 as target ensemble and BRC-D2WT-GiH5 as reference ensemble. c Dif-
ference of residue summed mutual information (MI) between target and reference ensembles.
Ligand binding residues and G-protein binding residues are marked on the figure. Rectangles
represent the seven TM helices of GPCRs.
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Figure 3.12: DA-D2-F6.44M-GiH5 simulation data: a Selection of top ten allosteric pathways
for DA-D2-WT-GiH5 (left) and DA-D2-F6.44M-GiH5 (right). b KL-divergence with DA-D2-
F6.44M-GiH5 as target ensemble and DA-D2WT-GiH5 as reference ensemble. c Difference of
residue summed mutual information (MI) between target and reference ensembles. Ligand
binding residues and G-protein binding residues are marked on the figure. Rectangles repre-
sent the seven TM helices of GPCRs.
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Figure 3.13: BRC-D2-F6.44I-GiH5 simulation data: a Selection of top ten allosteric pathways
for BRC-D2-WT-GiH5 (left) and BRC-D2-F6.44I-GiH5 (right). b KL-divergence with BRC-D2-
F6.44I-GiH5 as target ensemble and BRC-D2WT-GiH5 as reference ensemble. c Difference of
residue summed mutual information (MI) between target and reference ensembles. Ligand
binding residues and G-protein binding residues are marked on the figure. Rectangles repre-
sent the seven TM helices of GPCRs.
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3.2.5 Allostery across the dopamine family, case of dopamine D1 receptor

To investigate the effects of the most selective mutations in a different sequence context, we

computationally and experimentally studied a subset of the mutations and ligands chosen

for the D2 receptors in D1. Dopamine receptor family includes five receptors divided into

two sub-families, the D1-like (D1 and D5), which binds to the stimulatory G-protein Gs, and

D2-like (D2, D3, and D4), which primary signal through the inhibitory G-protein G-i/o. D1

and D2 are the most abundant in the central nervous system, and are thus the target of this

study (Fig. 3.14a) (304; 305)

We selected three ligands (DA, BRC, and 5-HT) and five mutations (L3.41H, I4.46N, F6.44I,

F6.44M, C6.47L) and measured in vitro the D1-mediated activation of the G protein Gs upon

ligand stimulus using HEK reporter cell lines using the EPAC cAMP assay. Dose titrations

revealed very distinct effects of the designed microswitches on the assayed ligands compared

to their responses to D2-Gi.

The first significant observation is that none of the tested variants exhibited any loss of function

behavior. They all ranged from neutral to gain of function. The second difference is that DA

responses exhibit a significant gain of efficacy that was not observed in D2 variants (all tested

D2 variants exhibited no effect or loss of efficacy). Finally, and most interestingly, a general

loss of function variant (I4.46N) became gain of function (DA) or neutral (BRC, 5-HT), and

variant F6.44M, which is dead for D2-BRC, becomes a gain of function for D1-BRC (Fig. 3.14b).

Similar to D2, we combined molecular simulations with AlloDy analysis to investigate the

molecular mechanisms of differences between D1 and D2 responses. Furthermore, sequence

differences in ligand binding site and in receptor core could play a role in this divergent

response. To be able to compare how dopamine engages allosteric signaling in DD1R vs DD2R,

we would first need to identify key differences in the ligand binding site and compare with the

consensus of aminergic receptor binding sites (Fig. 3.7). Consensus serines on TM5, positions

5.42, 5.43, and 5.46 (conservation percentages 58, 50, and 44 in class A aminergic GPCRs)

interact with the two hydroxyl groups on DA (also known as a catechol motif). Interactions

with these serines is crucial for allosteric signal transmission in both receptors, and even

non-catechol based agonists, such as PW0464 still interact with these serines via fluorine

H-bonding (note that ligand PW0464 activates Gs but does not recruit arrestins) (306; 307).

Fully conserved aspartic acid on 3.32 forms a salt bridge with a charged amine common to

aminergic receptors. Allosteric pathway calculations with AlloDy show that this is a purely

structural interaction with very little to no role in allosteric communication (Fig. 3.3b and

d). On TM6, F6.51 interacts in both simulation sets and participates in allosteric signal on

TM6 with the other binding residues. F6.52 is common to both, but it only forms a T-stacking

interaction with the dopamine ring in D1.
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Figure 3.14: Ligands and mutations reacting in different contexts, case of Dopamine D1
and D2 receptors: a dopamine D1 and D2 receptors diverge evolutionarily (sequence identity
of 19% in humans) and bind to different G-proteins. b Difference of differences of efficacy
and potency between mutant and WT and bromocriptine and dopamine for D1 and D2
receptors. The x and y-axes can be interpreted as DA sensitivity and DA selectivity respectively.
c Model of allosteric enhancing effect of I4.46N in DA-D1-GsH5 simulations. d Major allosteric
pathways in DA-D1WT-GsH5 simulations. e Model of allosteric effect of F6.44M in DA-D1-
GsH5 simulations. f and h Dose response curves for D1 mediated Gs activation and D2
mediated Gi activation in response to DA for I4.46N (f) and F6.44M (h) variants. g Model of
allosteric enhancing effect of positive allosteric modulator (PAM) binding to D1.

On the other hand, the main differences in binding residues are Y/W7.43, H/N6.55, and

C/S3.36, where the first residue is that of D2 and the second residue is that of D1. Y7.43 is a

major allosteric hub in D2 active state simulations, while W7.43 is almost absent from allosteric

paths and MI signal (W7.43 average residue summed MI is 0.0114 while that of Y7.43 is 0.3996

in DA-bound WT systems). Residue 6.55 is absent from D1 simulations and is weakly present

in D2 simulations. 6.55 has been reported to be a “modulator” residue for arrestin signaling

via sequence variation (139). Finally, 3.36 contributes very weakly to allosteric pathways in D2

(C3.36), while S3.36 is involved in D1-DA (Fig. 3.3).

Insights from DD1R WT simulations

Three sets of WT DD1R simulations were prepared starting from previously solved DD1R

structures (PDB code 7CKZ (306)): DD1R-GsH5 bound to DA and the positive allosteric

modulator (PAM) LY3154207, DD1R-GsH5 bound to DA, and apo DD1R simulations.

Starting with the general features of D1 simulations, both DA-GsH5 bound simulations ex-

hibited a single activation state in TM3-6, TM3-7, and NPxxY RMSD to inactive space with a

single well that includes the coordinates of the starting structure (Fig. 3.15a and b). Dopamine

was stable in the binding pocket with ∼ 1.4 Å RMSD and assumed one major and one minor

binding pose in both systems. This was in contrast with DD2R-DA-6VMS simulations, where

DA had more flexibility and covered a larger span of binding poses (Fig. 3.16).

The effect of the PAM is a subtle but important one. The PAM binds in the cleft between

TM3/4 towards ICL2 and has little structural effect on the receptor (Fig. 3.15). In contrast, the

PAM effect could be clearly seen in the mutual information and allosteric pathways. MI per

residue were significantly larger in PAM bound simulations, and the effect permeated beyond

the PAM binding region. Experimentally, the PAM has been reported to increase the potency

of D1 to DA but not its efficacy and can even slightly activate the receptor at high enough

concentrations (306).
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Figure 3.15: DA-D1-GsH5 simulations and effect of the PAM: a and b Activation landscapes
for DA-D1-GsH5 simulations (a) and DA-PAM-D1-GsH5 simulations (b). TM3-6 distance is
measured between residues R3.50 and E6.30. c RMSF plots of DA-DA-GsH5 with and without
PAM present in the simulations. Rectangles represent the seven TM helices of GPCRs.

Figure 3.16: PCA of ligand binding poses for DA-bound WT DD1R and DD2R: a DA-D1-
GsH5 simulations and b DA-D2-GiH5. PCA was performed on ligand heavy atoms. Data was
clustered with 2 PCs using a K-means algorithm.
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Figure 3.17: DA-D1WT-GsH5 simulation data with and without PAM: a Selection of top
ten allosteric pathways for DA-D1WT-GsH5 (left) and DA-PAM-D1WT-GsH5 (right). b PAM
binding site interactions. c KL-divergence with DA-PAM-D1WT-GsH5 as target ensemble and
DA-D1WT-GsH as reference ensemble. d Difference of residue summed mutual information
(MI) between target and reference ensembles. Ligand binding residues and G-protein binding
residues are marked on the figure. Rectangles represent the seven TM helices of GPCRs.
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Beyond WT D1 systems, models of allostery in D1 variants

DA-D1-I4.46N: Unlike the case of DD2R, I4.46N shows a gain of function for DA in DD1R (Fig.

3.14f) when it is a loss of function in D2. Qualitatively, the mutation shifts allosteric pathways

toward a more active-like topology in an unusual way. We can observe top-ranking pathways

connecting to the IC binding site going through the mutation neighborhood in addition to

the classical pathways connecting ligand binding to IC binding site. Moreover, top ranking

allosteric hubs shift toward the mutation neighborhood of TM4 (residues W4.50, N4.46, and

L4.45) and include Y7.53, which was weaker in WT in terms of hubscore σm and MI (Fig. 3.18).

Combined MI, K L1, andσm analysis shows a clear set of connections from I4.46N to F2.41 and

then R55 (ICL1) all the way to Y7.53 (Fig. 3.14c). Note that a very similar pattern is seen in the

PAM bound simulations, which suggests that the mutation and the PAM affect the activation

of D1 in a similar way.

DA-D1-I4.46N: Mutation F6.44M exhibits gain of function effects for all ligands tested with

D1. Simulations of F6.44M-D1-DA-GsH5 show that position M6.44 allows allosteric signal-

ing through it (Fig. 3.14e), starting from ligand binding site W7.43 and connecting to M6.44

through N7.45 and then continuing along TMH 6 to M6.41 toward the G-p binding interface.

Residue summed MI is significantly increased for all the aforementioned residues (Fig. 3.19),

and ligand binding hubscores σm are significantly stronger for W7.43 and ligand binding

residues in TMH 6 for the F6.44M variant. This behavior is in stark contrast with D2 simula-

tions, where M6.44 acted as an allosteric block. Sequence variation at the ligand binding site

(Y7.43 to W7.43) and in the mutation neighborhood (L6.41 to M6.41) could play an important

role in this divergent behavior.

Table 3.6: DD1R Gs pathway experimental responses for dopamine (DA) and bromociptine
(BRC). SEM = standard error of the mean.

Ligand Mutation LogEC50 SEM Efficacy SEM
DA WT -8.003 0.059 100.120 1.668
BRC WT -5.603 0.094 55.983 2.339
DA I4.46N -7.419 0.054 186.842 2.891
BRC I4.46N -5.334 0.200 65.906 6.086
DA F6.44M -8.381 0.089 126.321 2.793
BRC F6.44M -5.825 0.121 94.318 5.060
DA F6.44I -8.919 0.052 151.426 1.809
BRC F6.44I -6.016 0.067 128.217 3.361
DA L3.41H -8.862 0.152 176.491 6.308
BRC L3.41H -5.722 0.137 138.044 7.673
DA C6.47L -8.680 0.077 121.148 2.118
BRC C6.47L -5.945 0.053 76.706 1.785
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Figure 3.18: DA-D1-I4.46N-GsH5 simulation data: a Selection of top ten allosteric pathways
for DA-D1WT-GsH5 (left) and DA-D1-I4.46N-GsH5 (right). b Mutation site interactions. c
KL-divergence with DA-D1-I4.46N-GsH55 as target ensemble and DA-D1WT-GsH as reference
ensemble. d Difference of residue summed mutual information (MI) between target and
reference ensembles. Ligand binding residues and G-protein binding residues are marked on
the figure. Rectangles represent the seven TM helices of GPCRs.
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Figure 3.19: DA-D1-F6.44M-GsH5 simulation data: a Selection of top ten allosteric pathways
for DA-D1WT-GsH5 (left) and DA-D1-F6.44M-GsH5 (right). b Mutation site interactions. c
KL-divergence with DA-D1-F6.44M-GsH5 as target ensemble and DA-D1WT-GsH as reference
ensemble. d Difference of residue summed mutual information (MI) between target and
reference ensembles. Ligand binding residues and G-protein binding residues are marked on
the figure. Rectangles represent the seven TM helices of GPCRs.

124



3.3 Discussion

3.3 Discussion

In this study, we explored the relationships between agonist ligand chemical space and se-

quence variation in dopamine receptor signaling responses through the lens of receptor con-

formational dynamics, allostery and protein design. We found that allosteric microswitches

designed in the receptor TM core to enhance ligand-mediated Gi activation had gain of

function effects that were specific to ligand agonists. A strong correlation was observed be-

tween ligand structural similarity and the functional shifts measured for ligand-D2 pairs and

prompted us to further investigate the two full agonist ligands (DA and BRC) that displayed

the most divergent Gi-mediated responses to designed microswitches. Analysis by AlloDy

revealed a distinct topology of allosteric pathways connecting each ligand to the Gi binding

site and different path perturbation and rewiring upon designed microswitches. We were able

to design variants that preferentially signal through one ligand but not the other.

Furthermore, we have observed that sequence variation among dopamine receptors leads to

divergent responses to mutations. Our study suggests that distinct ligand agonists can activate

a given signaling pathway through specific “allosteric activator” moieties that engage partially

independent allosteric pathways running through the receptor (Fig. 3.20a). These allosteric

activators diverge among receptors of the same family in terms of both sequence and allosteric

strength, such as the case of Y/W7.43 between DD2R/DD1R. Combining our data, DA ligand

affinity data, and mutagenesis data reported in the literature (306; 301), we hypothesize that

DD1R has evolved to optimize for affinity and not signaling (efficacy), while DD2R has evolved

for signaling but not affinity. Three pieces of evidence are presented for this statement: 1-

Mutagenesis studies of DD1R ligand binding site: mutating DD1R residues to their DD2R

counterpart reduces EC50 and increases efficacy ((301), Figure S6 mutations N6.55H and

W7.43Y). 2- Our mutagenesis data reported in this work and in Chen et al. (16), we observed

increased EC50 but not increased efficacy for DD2R. While our mutagenesis study is limited

in scope, it suggests that DD2R is already optimized for signal transduction/efficacy. 3- The

presence of PAMs for DD1R signifies that DD1R by itself is not ideal for signaling and could be

improved upon by allosteric modulators. This is clear from our allosteric calculations, where

there is a general increase of information transfer across the receptor upon PAM binding.

This could be related to their biological functions, with DD1R activating a stimulatory G-

protein and DD2R binding an inhibitory G-protein. Overall, our ability to rationally design

receptor sequence variants with fine-tuned signaling responses to specific ligands paves the

way for engineering very selective ligand biosensors and predicting the effects of receptor

polymorphisms on drug pharmacology for enhanced personalized medicine.
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Figure 3.20: Ligand properties, sequence variation, and substitution identity play major
roles in receptor response to substitutions: a The role of the ligand is played through its level
of flexibility and chemical groups interacting with ligand binding sites. b Sequence context
dependence of an amino acid substitution can change its effect from a loss to a gain of function
by allowing allosteric signal through it. c Synthesis of all the mentioned effects. d Substitution
identity changes local interactions or subtle rotameric states that lead to divergent allosteric
responses.
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3.4.1 D2 ligand clustering

A Dopamine D2 receptor ligand list was obtained from the CHEMBL database (https://www.

ebi.ac.uk/chembl/) and only agonists were kept. The physicochemical properties of all ag-

onists were summarized using the JOELib cheminformatics library. The resulting data were

clustered using density-based clustering (DBSCAN) (308) and finally dimensionality was

reduced using principal component analysis (PCA) for visualization.

3.4.2 G-alphaI TRP channel cell-based assay

HEK-293 cells stably expressing the TrpC4β channel (generously provided by Dr. Michael

X. Zhu) were maintained in DMEM supplemented with 10% fetal bovine serum (FBS) and

50µg/mL geneticin as a selective antibiotic and grown at 37◦C and 5% CO2. FLIPR Membrane

potential assays (Molecular Devices) were performed as previously described1. Briefly, the

assay relies on the detection of a membrane-permeable fluorescent dye coupled to a non-

permeable quencher. The non-selective cation TRP channel changes the membrane potential

upon activation by Gαi, which enables the selective influx of the dye. 24 hours prior to

the assay, 150’000 cells/well were seeded into clear-bottom 96-well plates and were reverse

transfected with an optimized quantity of receptor DNA (present in the pcDNA3.1+ vector)

and 0.5µL Lipofectamine 2000 per well. Prior to reading the transfected plates, the media was

removed and the FLIPR dye was applied. The relevant drug was transferred into the plates

during plate reading on a Flexstation3 multi-mode plate reader and changes in fluorescence

(emission at 535nm, excitation at 565nm) were measured for a period of a maximum of 4

minutes. Controls were removed and maximum fluorescence values were reported as function

of the logarithm of the drug concentration in GraphPad PRISM10.

3.4.3 G-alphaS BRET-EPAC cAMP assay

HEK-293T cells (gift from Prof. Ted Wensel at Baylor College of Medicine) were maintained

in DMEM supplemented with 10% fetal bovine serum (FBS) and grown at 37◦C and 5% CO2.

Upon agonist stimulation of the dopamine receptor D1, GDP-GTP exchange will promote

GαS dissociation from the Gβ and Gγ subunits. GαS will subsequently activate adenylyl

cyclase, which will increase the concentration of cAMP in the cell. The well-characterized

BRET sensor CAMYEL (cAMP sensor using YFP-EPAC-RLuc) based on the exchange protein

directly activated by cAMP (EPAC) will change conformation and BRET ratios will decrease

upon cAMP increase. 24 hours prior to the assay, 75’000 cells/well were seeded into white-

bottom 96-well plates and reverse transfected with an optimized quantity of DNA to match WT

levels as well as an optimized quantity of the CAMYEL biosensor using 0,5µL Lipofectamine

2000 per well. Right before reading, the media was removed and cells were washed once with

HBSS and 40µL HBSS was added in each well. Coelenterazine h was added on top of the cells
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and incubated for 5min. After a first read, drugs were added in each well and change in light

emission was recorded using a Mithras2 multimode plate reader. Controls were removed and

changes in BRET ratios were plotted as function of the logarithm of the drug concentration in

GraphPad PRISM10.

3.4.4 Enzyme-linked Immunosorbent Assay (ELISA)

To ensure all receptor variants express at a level similar to the WT receptor control, ELISAs were

performed against the 3xHA N-terminal tag present on each receptor variant. For each of the

aforementioned cell-based assay, an accompanying ELISA plate was also reverse transfected

in parallel using the same conditions as the main assay plate. On the day of the assay, the

media was removed from the wells and the cells were fixed with a 4% paraformaldehyde (PFA)

solution for 10 minutes. Fixation was followed by a 2% bovine serum albumin (BSA) solution

incubation, anti-HA mouse primary antibody incubation, and an anti-mouse secondary HRP-

linked antibody incubation. Each for a period of 1 hour with three PBS washes between each

step. SuperSignal chemiluminescent substrate (Thermo Fisher) was added to each well and

plates were incubated for 5 minutes before a luminescent reading on a Flexstation3 plate

reader. Mock-transfected wells were used to determine and subtract the baseline signal from

the remaining wells.

3.4.5 Ligand docking

Dopamine docking onto the solved dopamine D2 receptor active state structure (6VMS (132))

was accomplished by the established IPhold Rosetta protocol (309). Only the receptor chain

was used during all steps; heteroatoms and additional chains were removed. The overall

protocol consists of sequential coarse-grained docking coupled with structural relax, decoy

clustering, high resolution docking, and ligand clustering steps. During the first docking

and relax step 10,000 decoys are generated, of which the lowest 10% scoring are used in the

subsequent structure clustering step to diversify target receptor conformation. High resolution

docking was performed on the cluster centers of the largest 6 clusters, again generating

10,000 decoys for each cluster center model and only using the lowest 10% scoring decoys

for subsequent analysis. An additional filter was added to only keep the lowest 50% scoring

decoys in terms of interface energy. The remaining decoys were used for ligand binding mode

clustering using a DBSCAN algorithm with ligand heavy atom coordinates as the input (308).

The largest binding mode cluster was designated as the putative native binding mode and

used for further analyses.

3.4.6 In silico mutagenesis

Dopamine D2 variant models were generated using RosettaMembrane (171), a Rosetta-based

protein structure prediction software utilizing a Monte Carlo gradient descent energy mini-
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mization algorithm enhanced with an anisotropic implicit membrane scoring functionality.

The recently released active-state dopamine D2 receptor structure (6VMS (132)) served as the

initial starting structure. All heteroatoms and non-receptor or G-protein chains were removed

from the starting structure. Residues of interest were mutated and adjacent residues within 5 Å

were subjected to alternating cycles of sidechain repacking and backbone relaxation through

Rosetta’s Monte Carlo-based energy minimization algorithm. 200 decoys were generated per

design to ensure score convergence. The lowest scoring decoys were used for all subsequent

analyses.

3.4.7 Molecular dynamics simulations

The starting structures used for MD simulations are: 1- BRC bound 6VMS with the last 20

residues of the C-terminal helix of Gαi and the sequence re-mutated back to WT, 2- the DA

bound docked model based on 6VMS, 3- RIS bound 6CM4 (101), and 4- DA bound 7CKZ (306)

with the last 20 residues of the C-terminal helix of Gαs. Mutant variants were generated based

on the WT structures using RosettaMembrane (171). The receptor-ligand-helix complex was

inserted in a 90×90Å2 POPC lipid bilayer solvated by 22.5 Å layer of water above and below

the bilayer with 0.15 M of N a+ and C l− ions using CHARMM-GUI bilayer builder (287; 283;

281). Parameters for the two ligands (dopamine and bromocriptine) were generated using

CGenFF (288). Simulations were performed with GROMACS 2019.4 for DD2R simulations

and GROMCAS 2020.5 for DD1R simulations (289; 290) with CHARMM36 forcefield (291) in

an NPT ensemble at 310K and 1 bar using a velocity rescaling thermostat (with a relaxation

time of 0.1 ps) and Parrinello-Rahman barostat (with semi-isotropic coupling at a relaxation

time of 5 ps) respectively. Equations of motion were integrated with a timestep of 2 fs using a

leap-frog algorithm. Each system was energy minimized using a steepest descent algorithm

for 5000 steps, and then equilibrated with the atoms of the ligand-receptor-G-p helix complex

and lipids restrained using a harmonic restraining force in 6 steps as shown in Tab. A.19. After

constrained equilibration, 5 to 10 replicas of 250 to 400 ns were run for each system, where the

first 50 ns of every simulation was discarded for equilibration of Cα RMSD, and the rest of the

simulation was used for calculating statistics.
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4 Computational study of designed
dynamic receptor—peptide signaling
complexes applied to chemotaxis

"There is nothing new to be discovered in physics now.

All that remains is more and more precise measurement"

— Lord Kelvin, 1897

Author contributions: This chapter is partially based on the following publication: Jefferson,

R. E., Oggier, A., Füglistaler, A., Camviel, N., Hijazi, M., Rico-Villarreal, A. R., Arber, C., and

Barth, P. (2023). Computational design of dynamic receptor—peptide signaling complexes

applied to chemotaxis. Nature Communications, 14(1), 2875. M.H. developed AlloDy and ran

the MD simulations and all related calculations.

In this chapter, we study the dynamic origins of designed flexible peptide-receptor complexes

by combining clustering of flexible peptide conformations and allosteric pathway analysis.

The main goal of the study is to develop a computational strategy for designing signaling

complexes between conformationally dynamic proteins and peptides. The design strategy

aims to address the challenges of engineering protein biosensors that sensitively respond to

specific biomolecules, and the designs are able to elicit chemotaxis in primary human T cells.

To complement the design approach and add a layer of explainability to the designs, we run

MD simulations and couple that with AlloDy to explore the conformational space sampled by

the WT peptide ligand and the designs, as well as relate this flexibility to allosteric signaling.

In this chapter, we will include the introduction and a summary of the results from the paper,

as well as the work that we contributed.

4.1 Introduction

Designing biosensors with arbitrary input and output behaviors is a grand challenge of syn-

thetic biology. Current approaches focus on engineering binding to structurally well-defined
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protein (310) and small-molecule chemical cues (311), and couple molecular recognition

to synthetic optical reporters that are built-in modular biosensor scaffolds. While this strat-

egy provides elegant solutions to the design of in vitro diagnostics, applications for in vivo

detection and synthetic cell biology rely on coupling the molecular sensor to the precise

activation and orchestration of complex intracellular signaling functions that often cannot be

recapitulated de novo. Harnessing synthetic sensing to fine-tuned native signaling functions

in a biosensor scaffold is limited by our poor mechanistic understanding of allosteric signal

transduction and lack of techniques to rationally engineer these properties.

Computational approaches for the design of protein-protein recognition have produced a

wide array of therapeutic proteins including potent inhibitors and vaccines mostly through the

optimization of binding interactions between static protein surfaces (311; 312; 313). However,

several classes of proteins including signaling receptors and peptides display high levels

of conformational plasticity and binding of these molecules often involves large structural

rearrangements through conformational selection and mutual induced fit (309; 314; 315; 316).

The rational design of dynamic binding complexes remains particularly challenging and has

not been reported to date.

Peptides mediate close to 40% of cell signaling functions through ubiquitous interactions

with membrane receptors and soluble proteins (317; 318). Unbound peptide ligands are

often partially disordered in solution, which challenges structure determination and the

computational sampling of the vast space of peptide conformations. In contrast to rigid

protein binders and small-molecule ligands, structural information on peptide binding is

scarce and limits supervised training and validation of deep-learning (319; 165; 320) and

physics-based (321) protein–peptide complex structure prediction approaches. Consequently,

the mechanistic underpinnings of peptide-mediated functions remain also poorly understood.

A recent comparative genomics study of peptidergic GPCRs revealed important features of the

peptide-GPCR network (322). Peptide-binding GPCRs typically involve larger binding cavities

and ligand contact areas than receptors binding to small molecules. The peptidergic signaling

network is often characterized by GPCRs sensing an array of peptide ligands and peptides

capable of activating several receptors, which complicates the prediction of binding and

signaling determinants. The specific receptor–peptide modeling and engineering problem is

further complicated by the high flexibility of both receptor and peptide ligand, which often

mutually adopt a new conformation through induced fit to reach the active state and initiate

signal transduction (323).

In this study, we first develop a computational strategy for modeling the binding between

flexible peptides and structurally uncharacterized proteins and designing signaling membrane

receptors with high binding sensitivity to peptide ligands. To validate the approach, we

create chemokine receptor–peptide pairs that elicit potent intracellular signaling in human

cells and chemotactic responses in primary T cells. Lastly we carry out molecular dynamics

simulations on the complexes to assess the conformational sampling of each of the designed
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peptides, relate peptide conformations to allosteric transmission, and uncover mechanistic

determinants of GPCR–peptide recognition and signaling.

4.2 Results

4.2.1 Overall rationale and goal of the study

In the long run, we aim to design custom-built modular biosensors that can link binding

of a flexible peptide input signal to fine-tuned and complex cellular responses through ge-

netically encoded single-receptor domains. We define this designed class of biosensors as

CAPSens, which stands for Conformationally Adaptive Peptide BioSensors. Such an approach

would enable the reprogramming of cellular functions upon a wide range of environmen-

tal cues and would impact cellular therapies that rely on cell trafficking, including cancer

immunotherapies.

Toward that goal, we developed a method that can build flexible receptor–peptide conforma-

tional ensembles and model peptide-mediated receptor signaling pathways. Unlike previous

work that mainly optimizes binding and models receptors as rigid target structures (324), this

approach enables the modeling of signaling active states and the design of dynamic complexes

with altered binding contacts and allosteric networks enhancing both recognition sensitivity

and signaling response (Fig. 4.1a, b).

To demonstrate this strategy, we targeted the chemokine receptor CXCR4–CXCL12 peptide

signaling axis. We selected that signaling complex because CXCR4, upon sensing its native

ligand CXCL12, regulates important physiological functions, including cell chemotaxis (i.e.,

cell migration along a gradient of CXCL12), but remains structurally uncharacterized in the

active signaling state. Using the approach, we modeled and designed CXCR4 variants with

high binding sensitivity to the native CXCL12 and also created receptor–peptide binding pairs

that triggered potent signaling and cell migration (Fig. 4.1b).
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Figure 4.1: a Cartoon representation of the CXCR4–CXCL12 complex (schematic model of
receptor and chemokine structures aligned to CXCR2:CXCL8 complex structure. PDB IDs:
4RWS, 4UAI, 6LFO) targeted for the design of chemotactic receptors with enhanced binding
and signaling responses towards peptide attractants. The CXCL12 chemokine ligand consists
of a folded domain and a flexible 8 residue-long N-terminal tail (sequence: KPVSLSYR rep-
resented with light blue spheres) inserted into the receptor binding pocket. b The peptide
ligand can adopt distinct bound conformations through specific contacts with receptor pocket
residues that are classified as drivers of binding (red) or activation (orange). Dotted green
lines correspond to putative allosteric signal transduction pathways running through the
receptor. Plain green lines schematically represent the specific pathways engaged by each
peptide conformation bound to the receptor. Through design, receptor–peptide connectivity
(represented as an interaction graph between peptide (P) and receptor (R) residues) can be
rewired to promote binding (top), activation, or both (bottom) to ultimately reprogram the
cell migratory response. c–e General overview of the protein-peptide binding design strategies
employed in the study. c Schematic view of a conformational energy landscape describing the
binding of a flexible peptide to a receptor. The peptide is represented with 6 light gray spheres
and adopts distinct conformations in each local energy minimum. d Design by conformational
selection stabilizes one favored receptor–peptide conformation, while destabilizing others.
Destabilizing interactions are represented as steric clashes. e Design to preserve dynamism
selects amino-acid substitutions stabilizing multiple receptor–peptide conformations, hence
maintaining conformational entropy at the binding interface. f Pipeline of the modeling &
design strategy involving receptor–peptide modeling, rational design, experimental valida-
tion, refinement of receptor-peptide models, design of peptide super-agonists and analysis of
allosteric signal transduction properties.
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4.2.2 Computational modeling and design framework of GPCR–peptide signaling
complexes

Despite tremendous progress in protein structure determination, experimental structures of

signaling receptor–peptide complexes remain scarce. In absence of structures of the interact-

ing partners, the design of binding complexes necessitates a method that both models the

conformations of the bound molecules and engineers functional binding interactions. Molec-

ular recognition between flexible peptide and signaling receptors likely involves significant

structural rearrangements of both molecules through conformational selection (i.e., selection

from an ensemble of unbound conformations) and induced fit (i.e., conformational changes

occurring upon binding) effects. Therefore, we first reasoned that an effective method for

modeling receptor–peptide structures should explore a vast conformational binding space,

including the large ensemble of conformations explored by the flexible peptide but also the

diverse receptor conformational changes triggered by peptide binding. We also hypothesized

that maintaining a high level of conformational flexibility or dynamism at the binding interface

may be critical for evolving complexes that optimize both peptide recognition and long-range

allosteric response, necessitating interactions between multiple functional sites. Hence, to test

this hypothesis, we sought to carry out and compare design calculations that either stabilize

specific receptor–ligand bound conformations through conformational selection (Fig. 4.1c, d)

or maintain high levels of conformational entropy by enabling the binding of a wide range of

peptide conformations (Fig. 4.1c, e).

Our computational strategy was developed with these ideas in mind and proceeds in the main

steps outlined in Fig. 4.1f). The first part is the protein modeling stage while the second part

refers to the protein design stage.

The approach involves exploring a wide conformational binding space for both the flexi-

ble peptide and receptor, aiming to optimize peptide recognition and allosteric response.

The computational strategy includes building receptor scaffolds, peptide docking, filtering

and diversifying peptide-bound positions, loop remodeling, and finally relaxation of recep-

tor–peptide complexes.

Two design approaches are presented: conformational selection for stabilizing specific con-

formations and a design that maintains conformational flexibility. The design process is

experimentally validated, refined, and used to create super-agonist pairs. Finally, the al-

losteric properties of the designed complexes are characterized through molecular dynamics

simulations with AlloDy.

4.2.3 Design of hyper-sensitive CAPSens for the native CXCL12 chemokine

We aimed to model and design peptide ligand agonists, with a focus on the N-terminal region

of the chemokine CXCL12 that activates the CXCR4 receptor. We employed computational

design strategies, including conformational selection (Csel) and maintaining conformational
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flexibility (Cdyn), to optimize binding (we also termed a combined designed Csedy). In the first

round of our conformational selection design (Csel1), we improved interfacial contact density

between the receptor and peptide, leading to enhanced sensitivity to CXCL12 in cell-based

assays (Fig. 4.2). Later on, we introduced a second binding motif, resulting in a substantially

improved receptor (Csel2) with enhanced calcium mobilization and Gαi-coupling. While Csel1

is focused on increasing contact density in the binding pocket (and optimizing contacts with

the three N-terminal residues of the peptide ligand), Csel2 adds contacts on the extracellular

part, mainly contacting ECL2. We tested a total of 19 designs with a 37% success rate in

achieving enhanced binding and signaling properties.

We then sought to design dynamic receptor-peptide complexes that could maintain high

conformational entropy at the binding interface. We created a library of variant designs by

rationally mutating predicted peptide binding and allosteric residues from the initial ensemble

of receptor-peptide models. This library was tested for calcium mobilization and Gαi coupling,

resulting in the identification of activating mutations on TM1, TM3, and ECL2. The Cdyn

receptor variant was considerably more sensitive, with an almost 11-fold increase in Gαi

potency and a 20% increase in efficacy compared to the starting CXCR4 WT scaffold. We

then combined the binding hotspot motifs from Csel2 with the activating sites identified

in Cdyn, resulting in the Csedy sensor with a more than 9-fold increase in Gαi response.

The study demonstrated that our approach could design highly sensitive sensors for the WT

CXCL12 chemokine-derived peptide, with Cdyn and Csedy achieving larger improvements

in potency compared to the conformational selection approach, indicating that maintaining

conformational flexibility had the potential to identify more effective binding interactions

that trigger receptor activation.

4.2.4 Design of CAPSen chemotactic peptide super-agonist pairs

We aimed to create selective receptor-peptide pairs, focusing on designing peptide super-

agonists for synthetic sensor-response systems. Our computational models identified key

sites on the peptide scaffolds, and mutations at P7 and P3 significantly enhanced binding

interactions with receptor designs (Csel1 and Csel2). These mutations led to increased Gαi

efficacy and signaling potency in the designed sensors. Combining mutations at P3 and P7

produced the most substantial enhancements in both potency and efficacy. These results

showcased the potential of our computational approach for engineering highly sensitive

receptor-peptide pairs and suggested that the native binding interface may not be optimized

for binding and signaling potency.

4.2.5 Designed receptor–peptide pairs enhanced human T cell chemotaxis

We tested our ultra-sensitive CAPSens to see if they could induce cell migration in response

to chemokines. Chemotaxis relies on complex intracellular pathways governing receptor

oligomerization, cell motility, and adhesion following G-protein activation by chemokines.
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Figure 4.2: (a) Table describing the mapping on the receptor topology and numbering of
receptor and peptide residues targeted for design. ECL and TM refer to extracellular loop
and transmembrane helix, respectively. BW refers to Ballesteros Weinstein notation. Csel1,
Csel2, Cdyn represent the sequences of the selected designs. (b) Location of the designed
residues (shown in sticks) mapped onto the backbone structure of receptor peptide binding
site (shown in cartoon). The WT CXCL12 peptide is represented as a gray-colored surface. (c–h)
WT peptide-induced cell signaling responses of designed receptors measured through Gαi
activation and calcium release: Gαi BRET of Csel1 design (mean, n = 2 technical replicates)
(c), Csel2 design (mean, n = 2 technical replicates) (e), and library-screened mutations (mean,
n = 2 technical replicates) (g). Calcium mobilization of Csel1 design (mean ± s.e.m., n = 3
technical replicates) (d) and Csel2 design (mean ± s.e.m., n = 3 technical replicates) (f). Gαi
BRET of single-point library mutations in Csel2 design background (mean, n = 2 technical
replicates) (h).
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This validation demonstrated our ability to engineer cell behavior in response to environ-

mental cues. We transduced human T cells with designed sensors and observed significantly

increased migration towards both WT and engineered chemokines. Our engineered CAPSens

enhanced T cell migration by up to 4.7-fold (Fig. 4.3f), demonstrating that the designed

signaling properties also affect cell functions and phenotypes. This approach focusing on the

flexible peptide region of chemokines appears to be generalizable for designing biosensors

responding to full-length chemoattractants, indicating its potential to enrich receptor-peptide

binding interfaces for improved sensitivity and potency in receptor signaling.

4.2.6 Highly conformationally adaptive designed receptor–peptide binding inter-
faces through mutual induced fit

Our designed receptor–peptide agonist pairs offer a unique opportunity to uncover the struc-

tural and dynamics underpinnings of receptor–peptide binding and agonism. Experimental

structures by X-ray crystallography or cryo-electron microscopy of our designs would only pro-

vide snapshots of the conformational ensemble and not reveal whether our designs achieved

their functions through the intended modulation of the binding dynamics. Therefore, we de-

cided to instead carry out molecular dynamics (MD) simulations of the designs to investigate

the sequence-structure-dynamics relationships underlying their functions. Since the compu-

tational design was performed using knowledge-based potentials of the Rosetta software, MD

simulations using molecular mechanics force fields provide an orthogonal validation of the

design calculations.

Starting from the refined design models that best agreed with the experimental data, we run up

to 1.9 microsecond long equilibrium MD simulations in explicit lipids (see Methods). Within

this timescale, the peptide-bound receptor complex remains in the active state as assessed by

the local conformation of consensus class A GPCR activation features such as interhelical (i.e.,

TM3-TM6 and TM3-TM7) distances on the intracellular side of the receptor and the RMSD

for the NPxxY motif (Fig. 4.9). However, the simulations are long enough for the peptide and

receptor to explore distinct bound conformations and enable a qualitative comparison of

dynamic ensembles between variants (Fig. 4.4, Fig. 4.10).
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Figure 4.4: Population density of ligand poses sampled in all-atom MD simulations are plotted
in PC space (left panels). Inter-cluster RMSD of the most populated ligand conformations
shown. Representative peptide poses are shown for the three most populated conformational
substates of each variant (middle panels). Only sidechains for positions 1, 3, and 7 of the
peptide are shown for clarity. The top 15 most frequent contacts from each substate are
depicted schematically (right panels). Strong static contacts (solid gray lines) are prevalent
in two or more substates, while weaker dynamic contacts (dotted blue lines) are unique to a
single substate. Receptor–peptide variants are shown in increasing order of conformational
dynamism of the complexes: a the Csel2:Y7L complex, b the Csedy:V3Y-Y7L complex, c the
WT CXCR4—CXCL12 complex, d and the Cdyn:V3Y complex.

We analyzed the conformational space of the complexes using principle component analysis

(PCA) of the MD trajectories. The analysis revealed the existence of distinct families (i.e.,

clusters) of conformations for the WT and all engineered receptor–peptide pairs (Fig. 4.4).

The WT and Cdyn binding interfaces were characterized by high peptide ligand RMSD (up

to 14.6Å distance between clusters of peptide conformations, Fig. 4.4a, b) (Tab. A.17) and

suggest that the design approach was able to maintain high levels of peptide conformational

diversity at the binding interface. On the other hand, the Csel2 design displayed substantially

lower conformational diversity (only up to 2.1Å inter-cluster RMSD, Fig. 4.4c), consistent

with that design strategy stabilizing a subset of the receptor–peptide structures through

conformational selection. As expected for the hybrid design strategy, the V3Y-Y7L peptide

explored an intermediate conformational space in the binding pocket of Csedy (up to 8.1Å,

Fig. 4.4d). Overall, the different levels of peptide structural heterogeneity identified by the

MD simulations are consistent with the intended modulation of the conformational space by

our 2 design strategies. To rule out that the observed conformational heterogeneity results

solely from potential inaccuracies in our predicted models, we carried out the same MD

analysis starting from the experimental structure of the related complex between the N-

terminal peptide of RANTES (325) and the CCR5 chemokine receptor. We observed a similar

diversity in the conformations of the bound chemokine peptide (Fig. 4.5), suggesting that

native chemokine receptors may actually bind agonist peptides with a significant degree of

conformational dynamism.

We then analyzed in detail the network of binding contacts engaged by the distinct families of

peptide conformations. Contacts were defined as dynamic if they were unique to one cluster

or static if they were observed for at least two peptide binding modes. Throughout the MD

trajectories, the peptide engaged with Csel2 through 16 strong static versus 5 weaker dynamic

binding contacts (Fig. 4.4). The number of static contacts dropped to 12 and 11 while the

dynamic ones raised to 11 and 13 in the Csedy and Cdyn complexes, respectively (Fig. 4.4).

These observations further confirm that Cdyn and Csedy complexes involve a more dynamic

binding interface than Csel2.

Conformational diversity was also noticeable on the receptor side and best quantified using

a volumetric analysis of the peptide binding pocket. To simplify the analysis, representative
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Figure 4.5: Conformational flexibility of the ligand in the CCR5-RANTES complex. Popu-
lation density and cluster centers in PC space. Inter-cluster RMSD of the most populated
ligand conformations shown. The highest density areas are colored yellow, while the lowest
density areas are blue. The first 2 PCs explain 53.66% and 19.09% of the variability in the data
respectively. Total simulation time is 1500 ns.

members of each cluster were selected and cross-sectional areas were calculated at different

depths of the binding site. This analysis highlighted significant conformational adaptation of

the binding surface (e.g., by up to 52% at a cavity depth of 10.25Å) in response to the different

peptide conformations and sequences (Fig. 4.6a, b). When we mapped the distribution of

the largest cluster of conformations (i.e., cluster C1) onto a 3D map of the structure-function

relationship (Fig. 4.6c), we observed that the designed pairs occupy subspaces that are far

apart in both receptor binding pocket and peptide conformation dimensions.

Overall, these findings suggest that the high conformational plasticity of the CXCR4–CXCL12

binding interface may facilitate the adaptation of contact networks in response to even limited

changes in receptor and peptide sequence space through mutual induced fit. Although this

analysis implies that higher conformational flexibility at the binding interface correlates with

stronger signaling efficacy, it does not provide mechanistic insights into how such structurally

distinct binding complexes could trigger potent signaling responses.
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Figure 4.6: a WT CXCR4 ligand-binding cavity with depths marked for N-terminal residues P3,
P5, and P7. b Cross-sectional area across cluster centers from molecular dynamics simulations.
(mean ± s.d.) c 3D map of structure-function relationship. Activity shifts from WT of individual
receptor–peptide pairs (z-axis for potency and bars colored according to maximal activity) are
plotted as a function of conformational shifts of the peptide (y-axis: calculated by Principal
Component Analysis on bound peptide ensembles (see Methods)) and conformational shifts
of the receptor binding pocket (x-axis: calculated by cross-sectional area at the P5 depth,
10.25Å (see Methods)) for the center of the largest cluster of conformations.

4.2.7 Potent signaling achieved through substantially rewired but robust allosteric
pathways

To address that question, we sought to investigate how peptide binding initiates signal trans-

ductions across the receptor. Since the inference of allosteric pathways using experimental

approaches remains very challenging and would require extensive measurements by NMR

spectroscopy, we relied on predictions from MD simulations coupled with AlloDy (AlloDy

v1.0.0 was used in this paper) to carry out the analysis (Ch. 2, Fig. 4.8). Since MD simulations

in this study are performed on peptide-bound receptor complexes in the active state, they

do not carry out information on the transition of the receptor from inactive to active states,

but inform on how the extracellular and intracellular sites communicate when the peptide

is bound and the receptor occupies the active state. Within that framework, effective signal

transductions should translate into strong allosteric pipelines running through the receptor

structure and connecting the intra- and extracellular receptor sides.

As shown in Fig. 4.7, AlloDy identified several allosteric pipelines for the WT CXCR4 and

designed CAPSens that flowed from the agonist peptide through a layer of receptor residues

at the pocket interface, termed ‘allosteric triggers’, down to a conserved set of ‘allosteric

transmission hubs’ located in the TM region away from the shell of ligand-binding residues.

These transmission hubs include highly conserved class A GPCR motif residues W2526.48 (W

toggle) and N2987.49 (NPxxY), as well as key highly conserved activation residues in CXCR4:

F872.53, L1203.36, H2035.42, mutation of which has been shown to impair calcium mobilization
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Figure 4.7: Signal transduction pathways calculated by AlloDy from peptide-contacting
residues (orange circles). The allosteric pathways utilize a diversity of receptor pocket residues
to communicate information, but ultimately propagate the activation signals through a com-
mon set of allosteric determinants in the core of the receptor (yellow circles: F872.53, L1203.36,
H2035.42, W2526.48, N2987.49). (See Figs. S7–S10 for a complete mapping of the allosteric
couplings.) Receptor–peptide variants are shown in increasing order of conformational dy-
namism of the complexes: a the Csel2:Y7L complex, b the Csedy:V3Y-Y7L complex, c the WT
CXCR4–CXCL12 complex, and d the Cdyn:V3Y complex.

activity (326; 327; 328). Though the relative amounts of information passing through this

conserved set of transmission hubs varies between the designs (Tab. A.18), the topology of the

allosteric pipelines leading to G-protein signaling remain very similar between variants (Figs.

A.13, A.14, A.15, A.16).

By contrast, how allosteric signals initiated by the peptide reach the common set of trans-

mission hubs is highly dependent on the designed receptor–peptide interface. In fact, each

variant utilizes a distinct set of allosteric triggers to connect to the activating allosteric pipelines

(WT: R183EC L2, I185EC L2, W942.60, N371.31, H2817.32, E2887.39, see Fig. A.13; Csel2: R183EC L2,

I185EC L2, W942.60, A371.31, L411.35, I2847.35, M2857.36, E2887.39, see Fig. A.14; Cdyn: R183EC L2,

I185EC L2, D187EC L2, D972.63, W942.60, N371.31, H2817.32, see Fig. A.15; Csedy: A180EC L2,

R183EC L2, V185EC L2, D187EC L2, F189EC L2, W942.60, A371.31, H2817.32, I2847.35, M2857.36, E2887.39,

see Fig. A.16). Though there is some overlap in the allosteric triggers, the specific interactions

with the peptide agonist that confer activation are unique across WT and the CAPSens and

reflects the high diversity of binding contacts engineered at the binding interface.

Overall, while there is substantial dynamic rearrangement of activating contacts between

variants (Fig. 4.7), they propagate the activation signals through a common set of allosteric

determinants in the core of the receptor. These findings suggest that high conformational

adaptability of the binding site together with robustness of the allosteric transmission layer

are critical features for the evolution of signaling receptor–peptide pairs.
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4.3 Discussion

Current approaches for the design of protein-protein complexes mostly follow the classical

lock and key paradigm and optimize interactions between static binding surfaces. The lack of

dynamic treatment of protein interactions hampers the effective design of complexes involving

flexible proteins and ligands, which represent a large fraction of the molecules regulating cel-

lular functions. In particular, peptide-binding receptors constitute one of the most abundant

signaling systems in humans. However, these complexes have been particularly challenging to

study and engineer partly owing to their high conformational flexibility. Here, we developed a

computational framework for the design of dynamic protein complexes involving adaptable

conformational ensembles of the molecules. We demonstrate that this approach is critical

to achieve optimal sensing of flexible ligands and strong allosteric signaling responses that

necessitate the interactions with multiple functional sites on the receptor surface.

Previous efforts to engineer high-affinity peptide ligands to the native CXCR4 receptor have

mostly generated antagonists. Library-selected CXCL12-based antagonists(325) identified

single N-terminal amino acid additions of Leu and Met that may antagonize CXCR4 in a similar

mode as vMIP-II(329), IT1t(104) or Met-CXCL12(330), that intercalate between W942.60 and

H1133.29, a local hydrophobic inter-TM groove not occupied by our agonist peptide ensemble.

These antagonists may lock W942.60 in an inactive conformation, preventing allosteric signal

propagation through key downstream transmission hubs, suggesting that selecting solely

for high-affinity receptor–peptide interactions is susceptible to conformational selection of

inactive receptor states.

Our designs were able to explore regions of sequence space not enriched by such binding-

selective approaches, suggesting that the computational method can explore and engineer

alternative active states not commonly accessed by the WT receptor. Unlike most binding

interfaces between globular proteins, our designs displayed considerable structural adapta-

tion to sequence changes. Remarkably, the diversity of designed allosterically coupled residue

networks at the ligand-binding pockets is large among variants, and even between conforma-

tional substates of the same variant. While the designed allosteric triggers still operate and

funnel signals through the same set of conserved transmission hubs as WT, they considerably

enhance signal transduction through optimally rewired dynamic couplings. Our CAPSens are

capable of ultrasensitive responses, not by enriching a high density of strong contacts around

a particular active conformational substate, but by preserving conformational dynamism,

as observed in our MD simulations. Our findings support a receptor–peptide recognition

model where conformational flexibility is essential for the bound molecules to engage a

multitude of functional interactions triggering effective allosteric responses. In this model,

high levels of conformational entropy enable the shifting of active state ensembles and the

rewiring of allosteric coupling via contacts not commonly accessed by the WT complex (Fig.

4.7, Figs. A.13, A.14, A.15, A.16). As such, the high conformational adaptability of the native

CXCR4–CXCL12 binding interface is critical in accommodating and rewiring allosteric entry

points to the transmission layer. Overall, our study suggests that the combination of a flexible

146



4.3 Discussion

sensing layer coupled with a robust signal transmission layer may be a common hallmark

of GPCRs, providing potential mechanistic insights into the high evolvability of sensing and

signaling properties in this receptor family. While our computational findings are consistent

with the experimental results, the MD simulations were performed on design models and not

experimental structures. Hence, we cannot rule out that the precise details of the simulated

binding complexes may be affected by inaccuracies in the starting structural models.

This work was started before AlphaFold2 was released. A recent study (331) indicates that

AlphaFold can predict peptide–protein interactions despite not being trained on this task,

suggesting that the main features of peptide binding can be implicitly captured as an extension

of folding. Our method is geared towards modeling flexible peptide interactions which do not

involve strong patterns of unique static contacts such as those characteristic of folded polypep-

tide chains. Therefore, our study should provide a complementary and useful approach to

neural network based methods trained on protein folded structures.

In the long run, we expect that designed chemotactic signaling systems should prove useful

in a wide variety of therapeutic contexts. Chemotactic peptides are attractive targets since

directional movement of cells in response to gradients of these molecules (i.e., chemotaxis)

is essential throughout biology and control over cell migration represents a key challenge in

synthetic cell biology. For example, efficient immune cell homing to and into cancers is one

of the main bottlenecks in modern immunotherapy (332; 333; 334; 335; 336). Hence, these

therapeutic approaches would benefit from engineered cytotoxic lymphocytes with enhanced

chemotaxis toward tumor sites. Overall, our results suggest that engineered receptors could

trigger migration towards cancer-prone sites at longer distances with shallower chemokine

gradients when compared to native chemotactic systems. Our designed CAPSen:hyper-agonist

peptide pairs open the door to bringing cell migration under exogenous and spatiotemporal

control, providing a promising synthetic cell biology tool.

Most biosensor design approaches have focused on engineering protein domains for optimal

recognition of structurally well-defined molecules. Previous studies have repurposed designer

receptors exclusively activated by a designer drug (DREADDs) to elicit chemotaxis towards

the small molecule clozapine-N-oxide (CNO) (337), but the direct in vivo application of this

approach is limited by the delivery of CNO and the inherent lack of utility as a gradient-

generating homing molecule. Our CAPSens exhibit some degree of orthogonality in the

Csel2:Y7L pair, and future iterations could be developed as genetically encodable orthogonal

receptor–peptide pairs allowing for biological expression of the homing signal by cells that

would enable synthetic transmitter-receiver cell systems and precise spatiotemporal control

of cell homing. By targeting flexible and structurally uncharacterized peptides, our design

platform significantly expands the range of molecules that can be detected by biosensors.

Unlike approaches that rely on multi-domain sensor reconstitution upon ligand sensing, our

method optimizes the coupling between molecular recognition and allosteric response in a

single protein domain within the restricted design space of the ligand pocket interface and

can generate CAPSens with strongly enhanced dynamic and sensitive responses. Carving
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biosensors into versatile GPCR scaffolds offers key additional advantages. GPCRs can now be

engineered to trigger a wide range of intracellular functions through reprogrammed coupling

to diverse effectors including G-proteins and arrestins (338; 339). Alternatively, inserting

fluorescent protein domains into GPCR scaffolds enables fast and direct optical detection of

ligand molecules (340). As such, our approach lays a foundation for a wide range of synthetic

biology, diagnostics, and therapeutic applications that would benefit from sensor systems that

trigger complex cellular outputs or enable direct highly sensitive detection of chemical cues.

4.4 Methods

The parts of the methods that are not directly related to my contribution, which include

experimental details and flexible peptide design, are left to the reference (297).

4.4.1 Molecular dynamics (MD) simulations

The final selected models for CXCR4: WT:WT, Cdyn:V3Y, Csel2:Y7L, and Csedy:V3Y-Y7L com-

plexes were used as starting input poses for MD simulations. CCR5-RANTES simulations

were started from the 11 N-terminal residues of RANTES bound to the receptor extracted

from the active state structure of the complex (PDB: 7F1R). The receptor-ligand complex was

inserted into a regular hexagonal POPC lipid bilayer with 90 Å perpendicular distance between

any parallel sides and solvated by 22.5 Å layer of water above and below the bilayer with

0.15 M of Na+ and Cl- ions using CHARMM-GUI bilayer builder (287; 283; 281). Simulations

were performed with GROMACS 2020.5 (289; 290) with CHARMM36 forcefield (291) in an

NPT ensemble at 310K and 1 bar using a Nosé–Hoover thermostat (independently coupled

to three groups: protein, membrane, and solvent with a relaxation time of 1 ps for all three)

and Parrinello-Rahman barostat (with semi-isotropic coupling at a relaxation time of 5 ps

respectively). Equations of motion were integrated with a timestep of 1 fs for the first three

steps of equilibration and then 2 fs using the leap-frog algorithm. Each system was energy

minimized using the steepest descent algorithm for 5000 steps, and then equilibrated with the

atoms of the ligand-receptor complex and lipids restrained using a harmonic restraining force

in 6 steps (Tab. A.19). After constrained equilibration, 5 to 7 independent trajectories of 200 or

300 ns (Tab. A.20) were run for each system. The first 50 ns of the simulations were discarded

as the time needed for the system to equilibrate, as shown by the Cα RMSD of the receptors

and the ligands. The total simulated time was defined to ensure convergence of the 1st and

2nd order entropies calculations in the top three PCA clusters in every system (see sections

below).
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4.4.2 Principle component analysis (PCA) of bound peptide conformational en-
semble

All MD trajectories sampled the receptor active state as assessed by the structural distribution

of consensus class A GPCR activation features such as the TM3-TM6 and TM3-TM7 interhelical

distances on the intracellular side of the receptor, except for the C2 and C3 substates of the

variant Cdyn for those we also observed a minor alternative minimum not representative

of a true active state (i.e. distinct from the well containing the experimental active state

structures). The frames corresponding to these minor populations were filtered out to ensure

that subsequent conformational analysis were truly reflecting receptor active states. This

filtering process yielded 999, 1109, 1277, and 1057 ns of simulated time for subsequent analysis

of WT:WT CXCR4, Csel2:Y7L, Cdyn:V3Y, and Csedy:V3Y:Y7L, respectively. PCA was performed

on the Cartesian coordinates of Cα and Cβ atoms of peptide ligands from receptor—peptide

conformations selected by combining molecular dynamics trajectories from each of the

studied systems. Representative models from the molecular dynamics trajectories were

chosen as the highest density points in the space of principal components (PCs) 1 and 2. The

first 2 PCs explain 43.7% and 19.0% of the variability of the data, respectively. PCA was also

performed individually for each of the systems studied with MD on the Cartesian coordinates

of Cα of peptide ligands. The PCA space was then clustered using a k-means clustering

algorithm, with the optimal number of clusters being evaluated by the Calinski-Harabasz

criterion. The variability explained by the first 2 PCs is shown in Tab. A.21. For each cluster,

contact frequency between receptor and peptide residues was calculated as the percent of

frames for which a heteroatom of a given receptor residue is within 5 Å of a heteroatom of a

given peptide residue.
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Figure 4.8: Schematic of the steps performed by AlloDy v1.0.0 to extract correlated mo-
tions from simulations and cluster them into allosteric pipelines. Ligand binding poses
are clustered from molecular dynamics simulations using principal component analysis. A
particular ligand pose is highlighted in the blue box with contact mapping to the right. Then
dihedrals are extracted for every cluster separately. For every cluster, mutual information
(MI) is calculated with finite size corrections and statistically filtered to remove uncoupled
pairs (black) and include highly coupled pairs (red) before being summed over residue pairs.
Pathways are then constructed using a shortest distance algorithm between residue pairs (red
box) that have significant MI and are more than 10 Å apart stemming from ligand contacts
(blue box). Constructed pathways are clustered into allosteric pipelines.
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Figure 4.9: Activation landscapes of molecular dynamics simulations. Landscapes repre-
senting the density of frames in the activation conformational space described by interhelical
distances of TM3-6 and either TM3-7 on the intracellular side of the receptor (left) or the RMSD
of the NPxxY motif from the inactive reference structure (right) for (a,b) CXCR4 WT:WT, (c,d)
Csel2:Y7L, (e,f) Cdyn:V3Y, and (g,h) Csedy:V3Y-Y7L. Distances were calculated between alpha
carbons of residues R3.50, K6.30, and Y7.53 for TM3, TM6, and TM7 respectively. Landscapes
were calculated in a fashion similar to 2D potential of mean force, with densities defined by
kernel density estimates with gaussian functions. The color bars are in arbitrary units, where
blue (lowest quantity) represents the highest density of frames, and yellow (highest quantity)
represents the edge of the populated space. Experimental structures of inactive CXCR4 (PDB
ID: 4RWS) and active US28, CXCR2, CCR5 (PDB IDs: 4XT1, 6LFO, and 7F1R, respectively)
chemokine receptor structures are shown for reference.
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Figure 4.10: Convergence of 1st and 2nd order entropies for WT and CAPSen recep-
tor—peptide complexes. Convergence plots of 1st order (blue, left Y-axis) and 2nd order
(red-brown, right Y-axis) entropies as a function of number of frames in every cluster for
(a) CXCR4 WT:WT, (b) Csel2:Y7L, (c) Cdyn:V3Y, and (d) Csedy:V3Y-Y7L. 1st order entropy is
defined as the sum of marginal entropies of all individual dihedrals (φ, psi , and χ’s) and 2nd
order entropy is the sum of joint entropy of dihedral pairs formed by the top 300 dihedrals
with the highest summed MI. 1st order entropies converge much faster than 2nd order ones,
so we consider 2nd order entropies for the convergence criterion. Entropies are considered
converged when there is less than 10% variability from the final entropy value over the last 500
frames (50 ns) considered. The 10% limit is represented by the dashed horizontal red line. The
final entropy value is marked by the solid horizontal red line. The last 500 frames are marked
with the vertical dotted magenta line.
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5 Integration of genetic variation and
allostery in class A GPCR signaling

"The capacity to blunder slightly is the real marvel of DNA. Without

this special attribute, we would still be anaerobic bacteria and

there would be no music."

— Lewis Thomas

Author contribution: M.H. managed the project, chose research direction, prepared MD

simulations with all subsequent allosteric analysis, and wrote the chapter. This work has been

done in collaboration with a summer research program student at the lab, Mariia Minaeva.

5.1 Introduction

The ability to predict the effects of amino acid substitutions on protein stability and function

holds paramount significance in molecular biology, drug discovery, evolutionary biology, and

disease research. Amino acid substitutions, arising from genetic mutations, can substantially

influence the biological properties of proteins (as we have seen throughout this work), thus

impacting cellular processes and organismal health. Consequently, the prediction of these

effects has garnered considerable attention. This chapter explores the relationship between

amino acid substitutions, protein function, and allosteric metrics.

While recent advancements, such as AlphaMissense (341), have made great strides toward

predicting whether a mutation would be benign or pathogenic, the analysis we present here

attempts to understand the effect of genetic variation in the light of protein function (and

specifically, allostery). To this end, we predict evolutionary scores using GEMME (342) and

allosteric scores using AlloDy for dopamine receptors D1 and D2, and β2-adrenergic receptor.

We then looked at occurrence of single nucleotide single (SNVs) within allosteric hotspot

positions. Finally, we perform a comparison between predicted GEMME scores and reported
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deep scanning mutagenesis functional outcomes for β2AR, relating the reported clusters of

"tolerance to mutations" to evolutionary scores (183).

5.2 Results

5.2.1 Relationship between evolutionary scores and allosteric scores in dopamine
receptors

As a first level of the analysis, we plot allosteric scores from AlloDy (σm) and GEMME scores

(averaged over all possible amino acid substitutions at any given residue) on the same axis for

DD1R (Fig. 5.1a) and DD2R (Fig. 5.2a) to get a general overview of both distributions. We have

one allosteric score per residue to the lack of feasibility of running MD simulations for every

mutation, while GEMME scores span every possible amino acid substitution at every residue,

thus we average GEMME scores when comparing them with allosteric scores at any given

position. Visually, there is little overlap between the two sets, this is confirmed by the very

weak (if any) correlation between σm and averaged GEMME scores (Fig. 5.1b and c, Fig. 5.2b

and c). Note that disordered regions of the receptors (long ICL3 in DD2R and C-terminal tail in

DD1R) have not been simulated and thus have no allosteric score. While the lack of correlation

is no proof of the independence of the two measures, it hints that these two metrics describe

different aspects of the system being studied.

5.2.2 Single nucleotide variants (SNVs) and allosteric residues

To further investigate the role of allosteric residues, we extracted missense variants from The

Genome Aggregation Database (gnomAD) v3.1.2 (343) and mapped them along with allosteric

scores σm in Fig. 5.3. We observe higher count of amino acid substitutions in disordered

regions of the receptors (although it is good to keep in mind that substitution counts are small,

ranging between one and four at a given position). Interestingly, there is little overlap between

the SNVs and allosteric hotspots. A possible explanation is that allosteric hotspots are critical

for function and that any variation in these positions will not be tolerated.

In addition, we looked into the variants reported in ClinVar (344), a public archive of interpre-

tations of clinically relevant variants. In the case of DD2R, most of the missense variants in

Clinvar are in loop regions (ICL1, ICL3, and ECL2), while the few positions in TM region have

an allosteric strength of zero (for DA-bound DD2R simulations) with the exception of SNV

V5.72I, which had significant allosteric strength (Tab. 5.1).
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Figure 5.1: Allosteric scores and averaged GEMME scores are not correlated for DD1R:
(a) Allosteric scores from AlloDy σm for DA-DD1R bound to a positive allosteric modulator
(top) and GEMME scores (averaged over all amino acid substitutions) plotted against residue
numbers. Rectangles and lines show TM helices and loops. (b) Correlation between allosteric
scores σm for DA-bound DD1R simulations and and averaged GEMME scores. (c) Same as
panel b but with BRC-bound DD1R simulations.

Protein change Clinical significance dbSNP ID Protein region BW Allosteric score
A410T, A381T Benign rs758683320 TM7 7.37 0
A64V Likely benign rs201137518 ICL1 NA 9.34806
G261R Uncertain rs1415830775 ICL3 NA NA
H287P, H316P Uncertain rs1182082677 ICL3 NA NA
K327E, K298E Benign rs71653614 ICL3 NA NA
N176D Uncertain rs776148708 ECL2 NA 11.72111
P271H, P300H Uncertain rs765357874 ICL3 NA NA
P310S, P281S Conflicting rs1800496 ICL3 NA NA
Q337K, Q366K Uncertain rs779477138 TM6 6.28 0
R245Q, R274Q Uncertain rs200184730 ICL3 NA NA
R294W, R265W Uncertain rs758884516 ICL3 NA NA
S311C, S282C Benign rs1801028 ICL3 NA NA
V154I Uncertain rs104894220 TM4 4.44 0
V223I Uncertain rs764968856 TM5 5.72 143.1067

Table 5.1: Clinical missense variants for DD2R: protein change shows the sequence for long
and short isoforms of DD2R. BW represents generic class A numbering. Allosteric scores were
calculated from DA-bound DD2R WT simulations.
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Figure 5.2: Allosteric scores and averaged GEMME scores are not correlated for DD2R: (a)
Allosteric scores from AlloDy σm (top) and GEMME scores (averaged over all amino acid
substitutions) plotted against residue numbers. Rectangles and lines show TM helices and
loops. (b) Correlation between allosteric scores σm for DA-bound DD1R simulations and and
averaged GEMME scores. (c) Same as panel b but with BRC-bound DD2R simulations.

Figure 5.3: Single nucleotide variant (SNV) count (red) and allosteric scores σm (blue):
for (a)DD1R and (b) DD2R. SNVs were extracted from The Genome Aggregation Database
(gnomAD) v3.1.2 by filtering missense variants.
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5.2.3 Relationship between evolutionary scores, allosteric scores, and function in
beta2-adrenergic receptors

The next frontier in this analysis is comparing evolutionary couplings and allosteric scores

with functional data. Jones et al. (183) have reported deep scanning mutagensis data for β2AR

in response to isoproterenol (also known as isoprenaline) for cyclic AMP (cAMP) dependent

pathway (one of the main signaling modalities of Gs-coupled receptors). They then applied

dimensionality reduction followed by clustering to unveil functionally relevant groups of

residues, which were divided into six clusters. These clusters were interpreted functionally

according to mutation sensitivity, ranging from globally intolerant to charge sensitive to

tolerant residues, as seen in Fig. 5.4a.
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Figure 5.4: Intolerant β2AR residues correlated better with evolutionary scores: (a) Snake
plot of β2AR where residues are colored according to their clustering from deep scanning
mutagenesis study. Figure was recreated using data from Jones et al. (183). (b) Correlation
plots of deep scanning mutagensis data (Supplementary file 2, average activity (183)) with
GEMME scores show stronger correlations for less intolerant substitutions and the opposite
for tolerant ones.

We hypothesized that the correlation between evolutionary scores and functional readout will

depend on the cluster: the more intolerant a residue is to mutation, the higher the correlation

of evolutionary couplings to functional outcomes will be. We test this by calculating linear

fits between GEMME scores and functional readout for every amino acid substitution at each

of the residue positions reported in Jones et al. (Supplementary file 2, average activity). We

find that, as expected (Fig. 5.4b), tolerant and proline sensitive positions have low correlation

coefficients (R2 = 0.1 and R2 = 0.14 respectively), charge sensitive cluster has a middling

correlation coefficient (R2 = 0.21), and the rest of less tolerant clusters have higher correlation
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coefficients (R2 = 0.32 for hydrophilic sensitive, and R2 = 0.38, R2 = 0.31 for the globally

intolerant clusters).

In the space of GEMME and allosteric scores (Fig. 5.5a), positions with high allosteric and

conservation scores are more prevalent in intolerant clusters (clusters 1 to 3), while residues

with high allosteric score and low conservation are more prevalent in tolerant clusters (clusters

5 to 6). This allows us to divide important residues into functionally and structurally important

highly conserved ones and more variable residues that potentially modulate subfamily or even

receptor specific function, while leaving some leeway for evolvability.

Hydrophilic Sensitive
(-) Charge Sensitive
Proline Sensitive

Globally Intolerant

Globally Intolerant
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a

b

Figure 5.5: Gemme scores, tolerance clusters, and allosteric scoresσm : (a) scatter of allosteric
versus GEMME scores where residues are colored by the clustering extracted from Jones et
al. (183). The red square represents residues with top 25% σm and high evolutionary score,
while the blue square represents area with top 25% σm and low evolutionary score. The line
separating red and blue squares is the median for evolutionary scores. (b) Allosteric scores
σm and GEMME scores versus protein residues. The bars are colored by protein domain.
Rectangles and lines represent TM helices and loop regions respectively.
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5.3 Methods

5.3.1 GEMME Overview

We utilized GEMME (Genome-wide Estimation of Mutation Effect) (342) as a quick tool for

estimating mutation effects. GEMME relies on Multiple Sequence Alignment (MSA) and

offers the advantage of using a concise set of biologically meaningful parameters. Initially, it

constructs an evolutionary tree including the query sequence and its homologous sequences

from the MSA, then calculates the conservation level for each position, indicating its tolerance

to mutations. When analyzing a mutation, GEMME assesses the position’s conservation

in evolution and estimates the required evolutionary fit for accommodating mutations. It

combines the mutation’s frequency and physicochemical similarities with the minimum

evolutionary fit needed, determined by how far one must go in the evolutionary tree to find a

natural sequence with the mutation. Consequently, mutations requiring more changes across

the sequence are predicted as more deleterious.

It demonstrates performance similar to statistical inference-based (345) and deep learning-

based techniques, including family-specific models and high-capacity protein language mod-

els (346; 347; 348). Importantly, GEMME explicitly models the protein’s evolutionary history,

generating an evolutionary score denoted as ∆∆E . The calculated ∆∆E scores range from 0

(conservative substitutions) to -7 (incompatible substitutions based on the MSA). In summary,

GEMME leverages evolutionary insights and conservation assessments to predict mutation

deleteriousness and its impact on protein function and structure.

5.3.2 Procedure for Evolutionary Score Calculation

To construct MSAs, we downloaded DD1R, DD2R, and β2AR sequences from UniProt (P21728,

P14416, and P07550 respectively) and applied HHblits (349) with specific parameters (-e
1e-10 -p 20 -B 20000) over the Uniclust (350) database built upon UniRef30_2023_02.

Subsequently, we degapped the MSAs by removing positions that aligned with gaps in the

query sequence, a prerequisite for GEMME’s operation, and formatted them to comply with

the input requirements of the GEMME tool. Finally, we ran GEMME locally with default

parameters to calculate mutant evolutionary scores utilizing the provided docker image.

5.3.3 Molecular dynamics simulations and AlloDy

MD simulations of dopamine receptors (DA-DD1R-GsH5, DA-DD1R-PAM-GsH5, DA-DD2R-

GiH5, BRC-DD2R-GiH5) were taken from the computational rewiring of dopamine receptors

project (Ch. 3). All the details of the simulations are explained there.

As for β2AR, the starting structures used for MD simulations of are: Isoprenaline bound 7DHR

(302) with the last 20 residues of the C-terminal helix of Gs and the sequence re-mutated

back to WT, and carazolol bound 2RH1 (351). The setup of the simulations is identical to
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that described for the dopamine systems (Ch. 3:Methods). After constrained equilibration, 4

replicas of 1000 ns were run for each system, the first 125 ns of every simulation was discarded

for equilibration of C-alpha RMSD, and the rest of the simulation was used for calculating

statistics.

Calculation of mutual information (MI), allosteric scores (σm), and allosteric pathways has

been performed on dopamine D1, dopamine D2, and β2 adrenergic receptors as described in

the methods chapter (Ch. 2).
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6 Conclusions and contributions

6.1 Conclusion

This thesis aims to investigate and design allostery by first modeling allosteric behavior in

GPCRs from a dynamical perspective and then incorporating the model descriptors with

traditional protein design methods to rationally design minimal perturbations that would

elicit a modified allosteric response.

Building upon the knowledge in the literature on GPCRs, dynamical simulations, and allosteric

modeling, Part I introduces AlloDy, a MD simulations analysis package that assembles an

ensemble of metrics for quantifying allosteric transmission. AlloDy allows for a holistic analysis

of a set of simulations by including basic simulation diagnostics, ligand binding contacts,

ligand pose clustering, GPCR specific activation state determination, mutual information

calculation, allosteric pathway extraction, and perturbation response quantification. These

metrics can be used individually, or combined as seen in Part II to design allostery in dopamine

receptors or validate already designed flexible peptide agonists in chemokine receptors.

In an age of de novo protein design (hallucination, generative methods, etc), advancing rational

design is of paramount importance. In this work, we have taken allosteric design of GPCRs a

step further by introducing ligand specificity via mutation of hotspots distant to the ligand

binding site. This ligand specificity could be introduced via single point substitutions, which

tells us that with proper knowledge of the system, minimum perturbation is required to reach

the design goal. In addition, the descriptors developed in this work that were used in the

process of design have pushed forward understanding of the underpinnings of allostery in

GPCRs and proteins in general.

This molecular understanding requires incorporating dynamic information into design, whether

through different ligand peptide binding poses, correlation metrics (MI), allosteric pathways,

or ensemble differences (Fig. 6.1). This reinforces the idea that structural information is not

enough for (1) understanding and (2) designing allosteric behavior.
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Figure 6.1: a The trio of theory, structure/dynamics, and function with design being at the
center and requiring knowledge of the three aspects. b Description of allosteric mechanisms
as a function of an order parameter (177). AlloDy uses metrics that can describe both ends of
the spectrum.

Finally, we explore the relationship between genetic variation, allosteric metrics, evolutionary

scoring, and functional readouts in GPCRs. We find that there is no clear relationship between

the surveyed allosteric metrics and evolutionary scores, and that genetic variants found in the

population and clinical databases generally do not overlap with allosteric hotspots.

To synthesize, this thesis puts forward a relationship between evolvability of proteins and

conformational dynamics (352; 353). We show that a receptor such as dopamine D2 is one

point mutation away from achieving total ligand selectivity, and that chemokine receptors are

a few mutations away from having a rigid or a flexible binding mode with modified chemokine

peptides. The conformational dynamics of these receptors allow a level of functional promis-

cuity that can be modulated via point substitutions. Knowledge of the dynamics and allosteric

transmission within the studied receptors allow for a level of control of the functional modula-

tion.

6.2 Contributions

Hereby we summarize the contributions that this thesis provides to the field:

AlloDy: Developing a publicly available tool, AlloDy, to study allostery in proteins using

diverse metrics from information and graph theories. AlloDy provides scores at a protein

level (allosteric pathways) and residue level (allosteric scores, MI, KL-divergences) that act as
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valuable input for the protein design process.

Ligand selective design: First allosterically ligand selective designs in GPCRs, which form

a basis for selective drug design and rational receptor engineering for both fundamental

research and therapeutic applications

Evidence for allosteric pathways in GPCRs: the fact that we were able to achieve ligand

specific responses by exploiting unique allosteric pathways is evidence for the pathway view

of allostery in GPCRs.

Expanding the available set of GPCR MD simulations: Comprehensive set of MD simulations

to be contributed to the already fantastic work being done at gpcrmd (354). Simulation sets

contain simulations of GPCRs in different states, binding various ligands, interacting with

various IC binding partners, and mutated GPCRs.

6.3 Future directions

6.3.1 Method development

In light of the advancements delineated within this thesis, it is evident that there remains a

substantial body of research yet to be undertaken to unify allosteric description of G protein-

coupled receptors (GPCRs) with the overarching objective of protein design.

On the side of AlloDy development, there is still some improvements to be done regarding

accessibility and ease of use. Furthermore, correlation metrics emerge as a pivotal facet in

this kind of analysis. Beyond the conventionally employed measure of mutual information

(MI), there may arise a need for directional metrics such as transfer entropy, which would

lead to construction of directional graphs that would elucidate directionality in the intricate

mechanisms underlying GPCR allosteric regulation and modulation. After the construction

of the protein graph, the appropriateness of considering shortest paths followed by path

clustering as the descriptive paradigm begs further scrutiny, with an exploration of employing

simpler, yet more interpretable metrics for measuring allosteric strength of residues.

Moreover, the precise nature of the simulations conducted and their subsequent interpretation

still requires consideration. The KL-divergence formulation as a measure of perturbation

response is a step in the direction of interpretation of simulations in different states. However,

the current simulation setup lacks free energy insight into transitions from and to receptor

active state under the effect of mutation (we currently estimate free energy differences between

mutants and WT using RosettaMembrane, which does not include transition information).

Lastly, and relating to the previous point, implementation of enhanced sampling techniques

may serve improving sampling in simulations under the current framework (where we sample

equilibrium states). Replica exchange methods with solute scaling/tempering (247) or acceler-

ated MD (244) can serve this purpose. For simulating transitions, metadynamics protocols
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have been successfully employed to study GPCR systems (355), and can prove invaluable to

study free energy differences along transition paths in mutant receptors.

6.3.2 Applications

One of the steps forward in this thesis is moving from allosteric design in GPCRs toward

endogenous ligand and cognate G-protein (16) to ligand selective design. A natural extension

to this is design of bias toward an intracellular binding partner (either G-protein or β-arrestin,

or bias between G-protein subtypes) allosterically. This follows a similar underlying assump-

tion that different IC effectors will engage a set of common and unique allosteric pathways,

where we can target effector unique pathways for design. Initial simulations of arrestin bound

systems analyzed by AlloDy find separate sets of pathways when compared with G-protein

bound simulations. The main challenge would be deciding the exact amino acid substitutions

at the design hotspots, since the design strategy depending on NMA calculations seems to

have reached its limit with ligand selectivity calculations.

A longer term goal is using this understanding that we gain from allosteric design to move

toward drug/peptide design. The allosteric description provided here allows specific targeting

of hotspots in the receptor ligand binding region that initiate allosteric pathways connecting to

the effector binding region, opening the door for designing specific interactions for function.
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A Appendix: supplementary figures

A.1 Supplementary figures: Development: AlloDy

This section contains supplementary figures for chapter 2.

A.1.1 Md2path: calculating allosteric pathways from MD simulations
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Figure A.1: Average interresidue MI vs interresidue distance for a set of simulated class
A GPCRs. The 10 Å line is shown for clarity. The first peak at 2 or 3 Å represents "direct
communication" between residues in close proximity, while the further peak between 640 and
72 Å represents "allosteric communication".
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Figure A.2: Distribution of path pair and mean MI: (left) path pair MI (red solid line: end
node MI of a pathway) and path mean MI (yellow rhombus, mean over all nodes in a pathway)
as a function of pathway indices ranked by pair MI. (right) distribution of path pair MI (red)
and path mean MI (blue).
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Figure A.3: Allosteric strength scores in two sets of independent DA-DD2R simulations
of different lengths:(top) Raw allosteric strength scores σm are plotted. (bottom) Allosteric
strength scores normalized by maximum score for every analyzed set of simulations.
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A.1.2 Higher order KL terms: amino acid substitution in bromocriptine-bound
DD2R:I4.46N and WT
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Figure A.4: Mutual divergence M2 for DD2R bound to BRC I4.46N substitution (test ensemble)
and BRC WT (reference ensemble).
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(a) Mutual divergence M2 summed over residues for DD2R system with the WT BRC-bound as reference
and I4.46N BRC-bound as test ensembles. M2 contributions are color-coded according to backbone-
backbone (brown), sidechain-sidechain (green), and backbone-sidechain (yellow). Ligand binding
residues and G-protein binding residues are marked. The largest divergences are in the ligand binding
region. The 7TM helices of GPCRs are highlighted.
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(b) Same residue summed M2 (blue, left y-axis) plotted above with K L1 plotted in the negative direction
(red, right y-axis).

Figure A.5: M2 and K L1 comparison of BRC-bound DD2R I4.46N and WT.
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A.1.3 Higher order KL terms: Gi-helix5 and dopamine-bound DD2R (active state)
and risperidone-bound DD2R (inactive state)
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Figure A.6: Mutual divergence M2 for DA-DD2R-Gi helix 5 complex (test ensemble) and RIS-
bound DD2R (reference ensemble).
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(a) Mutual divergence M2 summed over residues for DD2R system with the RIS-bound as reference
and DA-DD2R-Gi helix 5 complex as test ensembles. M2 contributions are color-coded according to
backbone-backbone (brown), sidechain-sidechain (green), and backbone-sidechain (yellow). Ligand
binding residues and G-protein binding residues are marked. The largest divergences are in the ligand
binding region. The 7TM helices of GPCRs are highlighted.
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(b) Same residue summed M2 (blue, left y-axis) plotted above with K L1 plotted in the negative direction
(red, right y-axis).

Figure A.7: M2 and K L1 comparison of DA-DD2R-Gi helix 5 complex (test ensemble) and
RIS-bound DD2R (reference ensemble).
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A.1.4 Relationship of KL-divergences to experimental observables fitting using
backbone divergences
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Figure A.8: Fitting of backbone K L1 withβ1AR-TS apo as reference to different experimental
observables correlated with NMR chemical shifts: (a) efficacy of ligands for Gs signalling
pathway, (b) ligand insertion depth, (c) ligand tail volume, and (d) ligand affinity.
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Figure A.9: Fitting of backbone K L1 of residue N329 (7.39) with β1AR-TS apo as reference
to tail volume of simulated ligand: (a) correlation using nanobody bound simulations for
agonist ligands and (b) correlation using β1AT-TS without any bound intracellular binding
partner.
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A.2 Supplementary figures: Computational rewiring of allosteric

pathways reprograms GPCR selective responses to ligands in

dopamine receptor

This section contains supplementary figures for chapter 3.
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A.2 Supplementary figures: Computational rewiring of allosteric pathways reprograms
GPCR selective responses to ligands in dopamine receptor

Figure A.10: RMSD and RMSF of WT and F6.44M DD2R. a Root mean square deviations
(RMSD) of the ligands DA and BRC during MD simulations for D2-WT (blue: DA, green: BRC)
and D2-F6.44M mutation (yellow: DA, crimson: BRC). The first 500 frames of the simulations
are discarded as equilibration (red dashed line). b Root mean square fluctuations (RMSF)
of the DA and BRC-bound D2 receptors during MD simulations for WT. The first 500 frames
of the simulations are discarded as equilibration. Ligand binding residues for every ligand
are marked on the plot (red dots for DA binding residues and black circles for BRC binding
residues). TMHs are represented as rectangles at the bottom of the plot space.
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Figure A.11: Activation states of WT and F6.44M apo state simulations starting from active
states: a and b activation landscapes of dopamine D2 WT apo state (n = 10) starting from
an active like state (a) and D2 F6.44M apo state (n = 6) starting from an active like state (b).
Reference inactive state (6CM4) and active states (6VMS, 7JVR, and 7CKZ) are highlighted
on the plots. c and d Time series plots of TM3-6 (c) and TM3-7 (d) distances for the afore-
mentioned systems. Dashed lines represent active (6VMS, blue) and inactive (6CM4, red)
references. TM3-6 distances were calculated between C-alphas of residues R3.50 and E6.30,
while TM3-7 distances were calculated between C-alphas of resides R3.50 and Y7.53.
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A.2 Supplementary figures: Computational rewiring of allosteric pathways reprograms
GPCR selective responses to ligands in dopamine receptor

Figure A.12: Ligand binding pose PCA in DD2R simulated systems: a DA-bound DD2R simu-
lations and b BRC-bound DD2R simulations. PCA was performed on heavy atom coordinates.
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A.3 Supplementary figures: Computational study of designed dy-

namic receptor—peptide signaling complexes applied to chemo-

taxis

This section contains supplementary figures for chapter 4.
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A.3 Supplementary figures: Computational study of designed dynamic receptor—peptide
signaling complexes applied to chemotaxis

Figure A.13: Predicted allosteric couplings in the WT CXCR4:WT CXCL12 complex. (a-c)
Predicted allosteric pipelines (solid lines) starting from the peptide and running through the
receptor towards the intracellular side are calculated for substates C1 (a), C2 (b), and C3 (c)
and represented schematically as follows using 3 layers of residues from left to right. Left layer:
Peptide residues shown as grey spheres. Middle layer: Receptor residues in the extracellular
peptide binding pocket shown as ovals. Those allosterically coupled to peptide residues
(connected by a solid line) are defined as allosteric triggers. Right layer: Allosteric transmitter
residues coupled to allosteric triggers shown as ovals in the receptor core and located in
distinct transmembrane helices (TM 2,3,5,6,7). Receptor residues are colored according to
their level of sequence conservation in CXCR4.
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Figure A.14: Predicted allosteric couplings in the Csel2:Y7L CXCL12 complex. (a-c) Predicted
allosteric pipelines (solid lines) starting from the peptide and running through the receptor
towards the intracellular side are calculated for substates C1 (a), C2 (b), and C3 (c) and
represented schematically as follows using 3 layers of residues from left to right. Left layer:
Peptide residues shown as grey spheres. Middle layer: Receptor residues in the extracellular
peptide binding pocket shown as ovals. Those allosterically coupled to peptide residues
(connected by a solid line) are defined as allosteric triggers. Right layer: Allosteric transmitter
residues coupled to allosteric triggers shown as ovals in the receptor core and located in
distinct transmembrane helices (TM 2,3,5,6,7). Receptor residues are colored according to
their level of sequence conservation in CXCR4. Mutated peptide and receptor residues are
colored in red.
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signaling complexes applied to chemotaxis

Figure A.15: Predicted allosteric couplings in the Cdyn:V3Y CXCL12 complex. (a-c) Predicted
allosteric pipelines (solid lines) calculated for substates C1 (a), C2 (b), and C3 (c) are repre-
sented schematically as follows using 3 layers of residues from left to right. Left layer: Peptide
residues shown as grey spheres. Middle layer: Receptor residues in the extracellular peptide
binding pocket shown as ovals. Those allosterically coupled to peptide residues (connected
by a solid line) are defined as allosteric triggers. Right layer: Allosteric transmitter residues
coupled to allosteric triggers shown as ovals in the receptor core and located in distinct trans-
membrane helices (TM 2,3,5,6,7). Receptor residues are colored according to their level of
sequence conservation in CXCR4. Mutated peptide and receptor residues are colored in red.
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Figure A.16: Predicted allosteric couplings in the Csedy:V3Y-Y7L CXCL12 complex. (a-c)
Predicted allosteric pipelines (solid lines) starting from the peptide and running through the
receptor towards the intracellular side are calculated for substates C1 (a), C2 (b), and C3 (c)
and represented schematically as follows using 3 layers of residues from left to right. Left layer:
Peptide residues shown as grey spheres. Middle layer: Receptor residues in the extracellular
peptide binding pocket shown as ovals. Those allosterically coupled to peptide residues
(connected by a solid line) are defined as allosteric triggers. Right layer: Allosteric transmitter
residues coupled to allosteric triggers shown as ovals in the receptor core and located in
distinct transmembrane helices (TM 2,3,5,6,7). Receptor residues are colored according to
their level of sequence conservation in CXCR4. Mutated peptide and receptor residues are
colored in red.
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signaling complexes applied to chemotaxis

Figure A.17: Conformational dynamics and structural characterization of clustered sub-
states of WT and CAPSen designs from molecular dynamics simulations. Pathway density
distribution across substates selected as input for AlloDy. Occupancy calculated from total
simulated frames. Intra-cluster RMSD calculated from receptor and peptide (Complex) and
contacting residues across all variants including peptide (Pocket). Contact frequency thresh-
olds used to define binding and allosteric contacts normalized to intra-cluster complex RMSD
of each substate.
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Figure A.18: Allosteric strength of transmission hubs across variants. Allosteric hubscores
calculated from AlloDy for transmission hub residues conserved among WT and designed vari-
ants. Hubscores measure the total number of allosteric pathways running through a residue.
Since pathways are constructed from pairs of residues exchanging significant amount of mu-
tual information, comparison of hubscores between transmission hubs gives an indication
of the relative amount of information passing through these sites (see Methods for detailed
calculations). The fractional hubscore among the transmission hubs for each variant is shown
in parentheses to enable comparison between variants.

Figure A.19: Equilibration restraints used for molecular dynamics simulations of recep-
tor—peptide complexes. Timing and position restraints used for all simulated systems during
equilibration in 6 steps.

Figure A.20: Simulated time of each system. Number of runs and simulated time for each run
and total simulation time for each receptor—peptide system.
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A.3 Supplementary figures: Computational study of designed dynamic receptor—peptide
signaling complexes applied to chemotaxis

Figure A.21: Variability of each system explained by principle component analysis. Vari-
ability explained by the first and second principle components (PC1, PC2) for each recep-
tor—peptide system.
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