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Non-parametric IQC Multipliers in Data-Driven
Robust Controller Synthesis

Vaibhav Gupta, Elias Klauser, and Alireza Karimi

Abstract— The paper presents a robust data-driven con-
troller synthesis method for generalised multi-input multi-
output (MIMO) systems. Using the frequency response of a
linear time-invariant (LTI) MIMO system and characterising
perturbations through Integral Quadratic Constraint (IQC),
the method provides a convex set of controllers robust
to perturbations. This facilitates the design of controllers
with either robust stability or robust performance criteria.
Notably, the proposed method is versatile, as it is also
applicable for non-parametric IQC multipliers. An example
of a non-parametric IQC multiplier for elliptical uncertainty
quantification is demonstrated and subsequently employed
in designing a robust controller for a hybrid active-passive
micro-vibration platform. Experimental results show that
the synthesised controller effectively achieves the desired
levels of both robustness and performance.

Index Terms— Robust control; uncertain systems; Opti-
mal control; LMIs

I. INTRODUCTION

INTEGRAL Quadratic Constraints (IQC) offer a versatile
and flexible formalism for representing and analysing a

wide range of uncertainties and nonlinearities including para-
metric uncertainties, rate-bounded uncertainties, time-delay
uncertainties, as well as norm- and sector-bounded nonlin-
earities. In [1], a sufficient condition for robust closed-loop
stability in systems with IQC-type uncertainties/nonlinearities
is described. Various extensions to the IQC framework, in-
corporating aspects of dissipation theory [2], [3], as well as
elements of Lyapunov theory [4] has been introduced in the
literature. The IQC approach has been shown to be linked to
various stability notions, including classical multiplier theory
[5] and graph separation theory [6]. Furthermore, within the
IQC framework, a concept of system stability margin has been
introduced for systems with mixed uncertainties [7]. Several
techniques for analysing the robustness of the systems have
been proposed. For example, [8] presents a method for a linear
parameter-varying (LPV) system, while [9] offers an efficient
approach for robustness analysis using the IQC framework.

While the majority of existing literature in IQC focuses
on robustness analysis, there is also a subset of research
dedicated to controller synthesis using the IQC framework.
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Polytechinique Fédérale de Lausanne (EPFL), Switzerland (e-mail:
vaibhav.gupta@epfl.ch, alireza.karimi@epfl.ch).

E. Klauser is with CSEM SA, Neuchâtel, Switzerland (e-mail:
elias.klauser@csem.ch).

For instance, [10] introduced a model-based control synthesis
approach, complemented by the availability of the associated
MATLAB package IQClab [11]. It should be noted that the
method uses an iterative procedure which alternates between
nominal controller synthesis and IQC-analysis, and hence no
optimality certificate can be provided. A robust synthesis
method for uncertain LPV systems has been addressed in
[12] that similarly alternates between the LPV synthesis step
and the IQC analysis step. A novel IQC synthesis framework,
which employs non-smooth optimisation for the synthesis of
the structured controllers, has been recently presented in [13].
This approach addresses the issue of providing an optimality
certificate but necessitates the multiplier to have a specific
structure.

Due to recent developments in computational capabilities
and sensing technologies, data-driven controller synthesis is
emerging as a valuable alternative to the conventional model-
based approaches. These data-driven approaches are particu-
larly beneficial in scenarios where a system model is either
unavailable or challenging to estimate. The utilisation of
frequency response data for the analysis and synthesis of
controllers in linear systems has become a well-established
practice in the literature. The frequency response of the system
can be easily extracted from the input-output data, as presented
in [14], leading to its widespread adoption in the industry
for the classical loop-shaping approaches. Considering that a
substantial portion of control performance and robust stability
criteria can be formulated in the frequency domain, numerous
frequency domain data-driven techniques have been introduced
in the literature.

In general, the controller design using frequency-domain
data leads to a non-convex optimisation problem. This opti-
misation problem is solved using a non-smooth optimisation
framework in [15] to compute fixed structure H∞ controllers
for systems represented by their frequency-domain data. Sev-
eral solutions have also been proposed using convex approxi-
mations. The design of SISO-PID controllers through convex
optimization using frequency domain data was proposed by
[16] and [17]. This approach involves employing the same
type of linearization of constraints as presented in the work
of [18]. The design of MIMO-PID controllers was presented
by [19] as a convex-concave optimization, which is solved
by linearization of quadratic matrix inequalities. In [20], a
frequency-based data-driven control design methodology with
an H∞ control objective based on coprime factorisation of
the controller is proposed and extended to systems with sector
nonlinearity [21]. This method is also employed for LPV con-
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troller design in [22]. A fixed-structure data-driven controller
design method for multivariable systems with mixed H2/H∞
sensitivity performance is proposed in [23] and applied to
the distributed control of microgrids [24] and passivity-based
controller design [25]. Finally, [26] extends the technique to
the fixed-structure controller design problem for generalised
systems represented in linear fractional representation (LFR)
form. While some techniques have been extended to account
for certain nonlinearities, a comprehensive data-driven con-
troller design framework for generalised systems that accounts
for generic nonlinearities is absent.

Within the data-driven context, the existing results for con-
troller synthesis with robust stability using IQC framework are
fairly limited. Nevertheless, [27] established a necessary and
sufficient condition for assessing the stability of linear time-
invariant (LTI) system using only one input–output trajectory
of finite length. A data-driven approach that merge robust
stability with performance analysis within the IQC framework
for LPV controller synthesis has been explored in [28], and
deployed for control of a gyroscope [22].

This paper presents a data-driven controller synthesis for
generalised MIMO systems in the presence of perturbations
characterised by non-parametric IQCs. The contributions of
this paper are:

1) Development of a convex set of robustly stabilising
controllers for generalised systems in the presence of
perturbations characterised by non-parametric IQC.

2) Robust controller synthesis method for generalised
MIMO plants, using only frequency-domain measure-
ment data, with robust stability or robust performance
guarantees.

3) Derivation of a non-parametric IQC multiplier directly
from frequency-domain data, which is employed to
ensure robust stability guarantees of the synthesised
controller.

The organisation of the paper is as follows: In Section II,
basic notations are introduced, an overview of IQC is pro-
vided, and the context for the problem under consideration is
established. The main developments of the paper are presented
in Section III. In Section III-A, the convex set of controllers
ensuring robust stability is presented. Furthermore, the ap-
proach is extended for robust performance by integrating a
performance channel in Section III-B. A data-driven method
for computing non-parametric IQC multipliers is presented in
Section IV, and is employed in Section V to synthesise a
robust controller for a hybrid active-passive micro-vibration
damping platform, considering uncertainties in its mechanical
properties.

II. PRELIMINARIES

Notations: R represents the set of real numbers, while C
denotes the set of complex numbers. The set of real rational
stable transfer functions with bounded infinity norm is denoted
by RH∞. The notation M ≻ (⪰), N signifies that the matrix
M −N is positive (semi-) definite, and M ≺ (⪯), N signifies
that M −N is negative (semi-) definite. The identity matrix of
the appropriate size is denoted by I . The conjugate transpose

H

∆

p(t)

q(t)

Fig. 1. Basic feedback configuration

of a complex matrix M is indicated as M∗. The conjugate
transpose of the diagonally opposed element in a square matrix
is denoted by ⋆. If M ∈ Cn×m is full row rank, its right inverse
is defined as MR =M∗(MM∗)−1. It is evident that MMR =
I and MRM are Hermitian. In the case of full column rank, the
left inverse is denoted as ML = (M∗M)−1M∗. Consequently,
MLM = I , and MML is Hermitian. For a square matrix
with full rank, MR = ML = M−1. R(M) and rank(M)
represent the range and rank of the matrix M , respectively. A
decomposition function C : Cm×n 7→ R2m×n and its inverse
C−1 are also defined,

C(x) ≜

[
Re{x}
Im{x}

]
and C−1(y) ≜

[
I jI

]
y.

For continuous-time systems Ω := R and for discrete-time
systems Ω := [−π/Ts, π/Ts), where Ts is the sampling time.
G(jω) will be used to denote the frequency response of the
system G in both cases.

A. Integral Quadratic Constraint

Two signals p and q are said to satisfy the IQC defined by
a multiplier Π, if∫

Ω

[
Fq(jω)

Fp(jω)

]∗

Π(jω)

[
Fq(jω)

Fp(jω)

]
dω ≥ 0 (1)

where Fp(jω) and Fq(jω) are the Fourier transform of the
signals p and q respectively.

From [1, Theorem 1], the feedback connection between H ,
a stable LTI system with bounded infinity norm, and a bounded
causal operator ∆ (see Fig. 1) is stable if,

1) Interconnection of H and τ∆ is well-posed, ∀τ ∈ [0, 1];
2) τ∆ satisfies the IQC defined by Π, ∀τ ∈ [0, 1];
3) ∃ ϵ > 0 such that the following frequency domain in-

equality (FDI) is satisfied,[
H(jω)

I

]∗

Π(jω)

[
H(jω)

I

]
⪯ −ϵI, ∀ω ∈ Ω (2)

Remark 1. If Π is partitioned as

Π(jω) =

[
Π11 Π12

Π∗
12 Π22

]
(jω),

with Π11 ⪰ 0 and Π22 ⪯ 0, then using [1, Remark 2], τ∆
satisfies the IQC defined by Π for all τ ∈ [0, 1] if and only if
∆ satisfies the IQC. Most relevant IQCs can be represented
in this form.
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Fig. 2. Linear fractional representation of feedback system

B. Problem Description
Consider the robust control synthesis problem for the feed-

back connection between the perturbation ∆ and the gener-
alised plant G (see Fig. 2).

q = G11p+G12u (3a)
y = G21p+G22u (3b)
p = ∆(q) (3c)
u = Ky (3d)

It is assumed that only the frequency response functions
(FRFs) of the generalised system, which maps the perturbation
p ∈ Rnp and control inputs u ∈ Rnu to the input of
perturbation q ∈ Rnq and measurements y ∈ Rny ,

G(jω) =

[
G11(jω) G12(jω)

G21(jω) G22(jω)

]
(4)

is available, where Gij(jω) are FRFs of appropriate sizes.
The frequency response of a discrete-time plant G22 can be

estimated using the Fourier analysis method from nu sets of
finite input/output sampled data as [14]

G22(jω) =

[
N−1∑
k=0

Y(k)e−jωTsk

][
N−1∑
k=0

U(k)e−jωTsk

]−1

(5)

where N is the number of data points for each experiment
and Ts is the sampling period. The FRF of G22(jω) can be
computed ∀ω ∈ [0, π/Ts) using (5). Each column of U(k) and
Y(k) represents, respectively, the inputs and outputs at the time
sample k from one experiment, and nu different experiments
are needed to extract G22(jω) from the data. It is assumed
that the input signal is persistently exciting, and the synthe-
sis process takes into account the estimation errors caused
by truncation and noise in the plant’s frequency response.
G11(jω), G12(jω), and G21(jω) can be determined based on
the specified performance metrics, along with perturbations to
be rejected according to user-defined filters and the previously
computed plant G22(jω).

The objective is to synthesise a fixed-structure feedback
controller K ∈ K, which guarantees robustness against per-
turbation ∆. It is assumed that ∆ satisfies the IQC defined
by a known Π that meets the criteria outlined in Remark 1.
Consequently, the problem can be reformulated as a feasibility
problem for some ϵ > 0,

Find K ∈ K (6)

s.t.

[
Tqp

I

]∗

Π

[
Tqp

I

]
(jω) ⪯ −ϵI ∀ω ∈ Ω (6a)

where,

Tqp = G11 +G12K (I −G22K)
−1
G21 (7)

III. DEVELOPMENTS

The following assumptions will be made for the generalised
plant model:

(A1) G21(jω) has full row rank, ∀ω ∈ Ω.
(A2) G(jω) is bounded, ∀ω ∈ Ω.

Remark: (A1) is related to control performance specifications,
and there are similar equivalent assumptions on the rank of
some matrices in model-based state space approaches [29]. It
is specified to ensure that any possible disturbances have an
effect on the measurements. Such a situation, from a control
design perspective, indicates that either more sensors or better
placement of the sensors is required for the desired objective.

In this paper, the right factorisation of the controller
K = XY −1 is considered, where X ∈ X ⊂ RH∞ and
Y ∈ Y ⊂ RH∞. X and Y are the linear parametrisations
in the optimisation variables which are chosen such that
XY −1 reflects the choice of the desired structure of K. Some
examples of controller structures can be found in [26].

A. Robust Stability
The flow for the subsection aimed at achieving robust

stability is as follows: Theorem 1 establishes a set of all
controllers satisfying the constraint in (6a). Subsequently,
Lemma 1 introduces a convex set of stabilising controllers
for the nominal plant. Finally, Theorem 2 leverages the lin-
earisation of Theorem 1 to define a convex set of robustly
stabilising controllers. A special case of factorisation of Π is
considered in Corollary 1 to reduce the number of LMIs for
the convex set representation.

First, it is necessary to state a proposition concerning the in-
equality between matrices, and the pre- and post-multiplication
of matrices.

Proposition 1. Let A = A∗ ∈ Cn×n, B = B∗ ∈ Cn×n, and
S ∈ Cn×m, then the following statements hold [30, Proposi-
tion 8.1.2]:

• If A ⪯ B, then S∗AS ⪯ S∗BS.
• If S∗AS ⪯ S∗BS and S is full row rank, then A ⪯ B.

Theorem 1. Assume that ∆ satisfies the IQC defined by Π.
Furthermore, assume that only the frequency responses of the
multiplier Π and the generalised model depicted in Fig. 2 are
known. In that case, all controllers of the form K = XY −1

satisfying the frequency domain inequality (6a) are also the
part of the set defined by the following quadratic matrix
inequality (QMI):[

(Π+)−1 L

L∗ −L∗Π−L

]
(jω)⪰0, ∀ω ∈ Ω (8)

where,

L =

[
G11Φ+G12X G11Ψ

Φ Ψ

]
Φ = GR

21 (Y −G22X)

Ψ = I − ΦΦL = I −GR
21G21
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and Π+ ≻ 0 and Π− ⪯ 0 are chosen such that

Π+

[
0 0

0 ϵI

]
= Π+ +Π−.

with ϵ > 0. Note that L and Φ are linear in the optimisation
variables, and Ψ is known.

Proof. The nominal closed-loop transfer function Tpq in (7)
can be written as,

Tqp = G11 +G12XΦL = G11(ΦΦ
L +Ψ) +G12XΦL

= (G11Φ+G12X)ΦL +G11Ψ. (9)

Notice that Ψ is a hermitian idempotent (projector) matrix and

ΨΦ = Φ − ΦΦLΦ = 0,

ΦLΨ = ΦL − ΦLΦΦL = 0.

Multiplication of
[
Tqp

I

]
by [Φ Ψ ] results in

L =

[
Tqp

I

][
Φ Ψ

]
=

[
G11Φ+G12X G11Ψ

Φ Ψ

]
.

So, the pre- and post-multiplying (6a) by [Φ Ψ ] gives:

L∗ΠL ⪯ −ϵ
[
Φ Ψ

]∗[
Φ Ψ

]
= −L∗

[
0 0

0 ϵI

]
L. (10)

Furthermore [Φ Ψ ] can be shown to be a full row rank matrix,
using

R(Ψ) ∩R(Φ) = {0} and rank(Ψ) = np − rank(Φ),

along with [30, Fact 2.11.9], to get

rank
([

Φ Ψ
])

= rank(Φ) + rank(Ψ) = np.

Therefore, using Proposition 1, it is possible to assert that[
Tqp

I

]∗

Π

[
Tqp

I

]
⪯ −ϵI ⇐⇒ L∗ΠL ⪯ −L∗

[
0 0

0 ϵI

]
L.

(11)
Using the fact that any square matrix can be factorised as

Π+

[
0 0

0 ϵI

]
= Π+ +Π−

with Π+ ≻ 0, and Π− ⪯ 0, a sufficient condition for (6a) is:

L∗Π+L−
(
−L∗Π−L

)
⪯ 0. (12)

Then Schur complement lemma on (12) gives the desired
constraint in (8).

Remark 2. Observe that (11) represents a necessary and
sufficient condition, indicating that the sets of controllers in the
form of K = XY −1, which satisfies (8) and (6a) respectively,
are identical.

Remark 3. Note that Π− = 0 is unattainable as it would
imply that Π = Π+ ≻ 0, thereby rendering the satisfaction of
the FDI (6a) impossible.

However, there is no guarantee that a controller in the set
defined by (8) stabilises the closed-loop system. To achieve

robust stabilisation, it is essential that the controller not only
satisfies the FDI in (2) but also stabilises the nominal case
(∆ = 0). In other words, the nominal closed-loop transfer
function Tqp must be stable. Since it is assumed that no
parametric (e.g. state-space, transfer function, etc) model is
available, the closed-loop poles cannot be computed to assess
the stability of the nominal closed loop. So, a sufficient
condition for the stability would be derived using the Nyquist
stability criterion [31].

For this purpose, the winding number wno{f} for a real
rational polynomial function f : C 7→ C is defined as the
number of counterclockwise encirclement of f(δ) ∈ C around
the origin when δ ∈ C traverses a contour. Two important
properties of the winding number are

wno{f∗} = wno{f−1} = −wno{f}
wno{fg} = wno{f}+wno{g}

where g : C 7→ C is another real rational polynomial function,
with no poles and zeros on the contour. Through Cauchy’s
argument principle, wno{f} can be related to the number of
poles and zeros of f inside the contour. This is used for the
stability analysis of the closed-loop systems using the Nyquist
stability criterion by defining an adequate Nyquist contour.
The Nyquist contour for continuous-time systems is defined
as the union of the imaginary axis and a semicircle with an
infinite radius enclosing the right-half plane. In contrast, for
discrete-time systems, the Nyquist contour is defined as the
counterclockwise-oriented unit circle.

Lemma 1. Given any matrix M ≻ 0 and the frequency
response G(jω) of a generalised model and a stabilising
controller Kc = XcY

−1
c , a convex set of stabilising controller

K = XY −1 can be defined by the following linear matrix
inequality (LMI):

Φ∗MΦc +Φ∗
cMΦ− Φ∗

cMΦc ⪰ 0, ∀ω ∈ Ω (13)

where, Φc = GR
21 (Yc −G22Xc), and det(Y ) and det(Yc)

have no zeros on the stability boundary.

Proof. The flow of the proof is similar to [26, Theorem 1].
First, from (13), it is noted that Φ∗MΦc is a non-Hermitian
strictly positive definite matrix and all its eigenvalues have
strictly positive real parts. This implies that W{Φ∗MΦc} =
0, where for conciseness W{·} is defined as W{·} :=
wno{det(·)}. Note that W{Φ∗MΦc} can be expressed as:

W{Φ∗MΦc}︸ ︷︷ ︸
=0

= −W{Y −G22X}+ W{Yc −G22Xc}
+W{GR∗

21MGR
21}

= −W{I −G22K} − W{Y }
+W{I −G22Kc}+ W{Yc}
+W{GR∗

21MGR
21} (14)

Since M ≻ 0 and GR
21 has full column rank, GR∗

21MGR
21 is

also a strictly positive definite matrix at all frequency points
[30, Proposition 8.1.2]. Therefore,

W{GR∗
21MGR

21} = 0 (15)

Given that Kc is assumed to be a stabilising controller and
using the Nyquist theorem, W{I −G22Kc} = NG22

+NKc
,
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where NG22
is the number of unstable poles of G22, and NKc

is the number of unstable poles of Kc. Furthermore, since
Y, Yc ∈ RH∞, W{Y } = −NK and W{Yc} = −NKc , where
NK is the number of unstable poles of the controller K. It
can be seen that,

W{I −G22K} = NG22 +NK .

Hence, all controllers K in the set stabilises the closed-loop
system.

Remark 4. The relaxations concerning zeros on the stability
boundary, and the avoidance of unstable zero-pole cancella-
tion in G22K, can be demonstrated using a similar approach
as detailed in [26, Remark 1 and 2].

Theorem 2. In addition to the assumptions of Theorem 1,
assume that Kc = XcY

−1
c is a known stabilising controller

for the nominal plant, then a convex set of robustly stabilising
controllers against the bounded causal operator ∆ is defined
by the following LMIs:[

(Π+)−1 L

L∗ −L

]
(jω)⪰0, ∀ω ∈ Ω (16)

(Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc)(jω) ⪰ 0, ∀ω ∈ Ω (17)

where,

L = L∗Π−Lc + L∗
cΠ

−L− L∗
cΠ

−Lc

Lc =

[
G11Φc +G12Xc G11Ψ

Φc Ψ

]
Proof. The proof relies on finding a convex lower bound on
the result of Theorem 1 and using the result of Lemma 1
to ensure the stability of the nominal system. The con-
vex–concave component of the constraint L∗Π−L can be
convexified around a known controller Kc = XcY

−1
c such

that

(L− Lc)
∗Π−(L− Lc) ⪯ 0 (18)

=⇒ L∗Π−L ⪯ L∗Π−Lc + L∗
cΠ

−L− L∗
cΠ

−Lc = L. (19)

So, the convex lower bound on the constraint is,[
(Π+)−1 L

L∗ −L∗Π−L

]
⪰

[
(Π+)−1 L

L∗ −L

]
≻ 0

Selecting a stabilising controller as Kc and M = I ,
Lemma 1 gives a sufficient condition for the stability of the
nominal closed-loop,

Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc ⪰ 0.

The inherent conservatism in the theorem stems from the
inner approximation detailed in (18), and this conservatism
diminishes as equality is achieved. To minimise this conser-
vatism for any given L and Lc, Π− can be chosen to be
as small as possible. Furthermore, it is worth noting that
up to this point, no assumptions have been imposed on the
structure of Π. However, it can be shown that by introducing
a particular structure for Π, as outlined in Remark 1, it is
possible to eliminate one of the LMIs with very minimal
additional conservatism.

Corollary 1. Assume that Π is partitioned as outlined in
Remark 1, then a convex set of robustly stabilising controllers
against the bounded causal operator ∆ is defined by the
following LMI:[

(Π+)−1 L

L∗ −L

]
(jω)⪰0, ∀ω ∈ Ω (20)

with some α, β ≥ 0 such that Π22 − βI ≺ 0 and

Π+ =

[
Π11 + αI Π12

Π∗
12 (β + ϵ)I

]
≻ 0

where,

L =

[
L11 L12

L∗
12 L22

]
L11 = Φ∗(Π22 − βI)Φc +Φ∗

c(Π22 − βI)Φ

− Φ∗
c(Π22 − βI)Φc

L12 = Φ∗(Π22 − βI)Ψ− α(G11Φ+G12X)∗G11Ψ

L22 = Ψ(Π22 − βI)Ψ− α(G11Ψ)∗G11Ψ

Proof. It can be easily verified that ∃α, β ≥ 0 such that

Π+ =

[
Π11 + αI Π12

Π∗
12 (β + ϵ)I

]
≻ 0 and Π22 − βI ≺ 0.

This choice of Π+ gives,

Π− =

[
−αI 0

0 Π22 − βI

]
and L∗Π−L =

[
L′
11 L12

L∗
12 L22

]
where,

L′
11 = Φ∗(Π22 − βI)Φ− α(G11Φ+G12X)∗(G11Φ+G12X)

⪯ Φ∗(Π22 − βI)Φ (21)

The upper bound can be convexified around a known
controller Kc = XcY

−1
c with M = Π22 − βI ≺ 0 such

that

(Φ− Φc)
∗M(Φ− Φc) ⪯ 0

=⇒ Φ∗MΦ ⪯ Φ∗MΦc +Φ∗
cMΦ− Φ∗

cMΦc = L11.

This upper bound can then be used to find a convex lower
bound on the constraint of Theorem 1,[

(Π+)−1 L

L∗ −L∗Π−L

]
⪰

[
(Π+)−1 L

L∗ −L

]
⪰0.

Furthermore, notice that the sufficient condition for stability
from Lemma 1 is satisfied by the convex bound L11 ≻ 0.

Remark 5. Note that additional conservatism in the relaxation
(21) diminishes as α approaches 0. When Π11 ≻ 0, choosing
α = 0 eliminates any additional conservatism.

Conventional IQCs: The authors present a subset of con-
ventional IQCs along with their respective Π+ and Π−

counterparts with the expectation of bolstering the versatility
of the proposed approach in addressing diverse perturbation
scenarios.
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a) H∞ bounded perturbation : For the perturbations which
are upper bounded by some γ > 0, Π(jω) can be defined as
[1]:

Π =

[
γ2I 0

0 −I

]
. (22)

A feasible factorisation can be given as,

Π+ =

[
γ2I 0

0 ϵI

]
and Π− =

[
0 0

0 −I

]
Then, the condition in Theorem 1 can be written as,

γ−2I 0 G11Φ+G12X G11Ψ

0 ϵ−1I Φ Ψ

Φ∗Φ 0

0 Ψ
⋆

 ≻ 0 (23)

using the fact that Φ∗Ψ = ΨΦ = 0.

Corollary 2 (H∞ performance). The IQC defined by (22)
yields the closed loop transfer function Tqp, which has the
H∞ norm upper bounded by γp = γ−1

√
1− ϵ, and (23) is

equivalent to the constraint presented in Eq. (12) of [26],[
γ2pI − (G11Ψ)(G11Ψ)∗ G11Φ+G12X

(G11Φ+G12X)∗ Φ∗Φ

]
⪰ 0.

Proof. See Appendix.

Remark 6. This equivalence with the result of [26] enables
us to infer that this representation of the IQC’s FDI does not
introduce additional conservatism into the solution, and the
comprehensive comparison results outlined in [26] are equally
applicable here.

b) Input-output passivity: The transfer function Tqp is
strictly input passive if

Π =

[
0 −I
−I 0

]
. (24)

For some β ≥ 0, a feasible factorisation can be given as,

Π+ =

[
I −I
−I (1 + β + ϵ)I

]
and Π− =

[
−I 0

0 −(1 + β)I

]
.

c) Constant real scalar: If ∆ is defined as multiplication
by a real scalar ≤ 1, then ∆ satisfies all IQCs defined by

Π =

[
V1(jω) V2(jω)

V2(jω)
∗ −V1(jω)

]
(25)

where V1(jw) ≻ 0 and V2(jω) = −V2(jω)∗ are bounded and
measurable matrix functions.

A feasible factorisation can be given for some β ≥ 0,

Π+ =

[
V1 V2

V ∗
2 (ϵ+ β)I

]
≻ 0 and Π− =

[
0 0

0 −V1 − βI

]
.


G22

G11 G12

G21


K

∆
q

z

y

p

w

u

Fig. 3. Linear fractional representation of feedback system with
performance channels

d) Memoryless sector non-linearity: Let ∆ be a function
such that,

aq2 ≤ ∆(q)q ≤ bq2, ∀q (26)

then ∆ satisfies the IQC defined by

Π =

[
−2ab a+ b

a+ b −2

]
(27)

If a < 0 < b, a feasible factorisation can be given for some
β ≥ 0,

Π+ =

[
−2ab a+ b

a+ b β + ϵ

]
≻ 0 and Π− =

[
0 0

0 −2− β

]
.

B. Robust Performance
To consider the robust performance, an additional perfor-

mance channel is added as depicted in Fig. 3. The new
feedback is now defined through the following linear fractional
representation, qz

y

 =


G22

G11 G12

G21


pw
u

 (28a)

p = ∆(q) (28b)
u = Ky (28c)

As shown in Corollary 2, performance metrics can be
represented using an equivalent IQC multipliers. Let the per-
formance metric under consideration satisfy the IQC defined
by Πp(γ) where γp represents the performance index. Then a
composite IQC can be defined for the robust performance as

Πrp(γp) =


Π11 0

0 Πp,11(γp)

Π12 0

0 Πp,12(γp)

Π∗
12 0

0 Π∗
p,12(γp)

Π22 0

0 Πp,22(γp)

. (29)

Corollary 3 (Robust Performance). The interconnection (28)
is robustly stable to ∆ and has robust performance with
respect to Πp(γp) on the channel w → z, if there exist K ∈ K
such that [

T

I

]∗

Πrp(γp)

[
T

I

]
(jω) ≺ 0, ∀ω ∈ Ω (30)

where,
T = G11 +G12K (I −G22K)

−1
G21
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Proof. Let T be portioned as,

T =

[
Tqp Tqw

Tzp Tzw

]
. (31)

Then using simple row and column permutations, it can be
shown that the condition can be rewritten as

Tqp Tqw

I 0

Tzp Tzw

0 I


∗[

Π 0

0 Πp(γp)

]
Tqp Tqw

I 0

Tzp Tzw

0 I

 ≺ 0. (32)

From [9, Corollary 3], it can be shown that the closed loop has
the robust performance γp against the perturbation ∆ which
satisfies the IQC defined by Π.

Analogous to the previous section, the controller synthesis
problem for robust performance can be reformulated as a
convex optimisation problem over some performance index
γp using IQC formulation.

min
K∈K

γp (33)

s.t.

[
T

I

]∗

Πrp(γp)

[
T

I

]
(jω) ≺ 0 ∀ω ∈ Ω

C. Implementation Remarks
Frequency sampling: The problems presented in the pa-

per are formulated as frequency domain inequalities in a
convex semi-infinite program (SIP). One of the common
approach to solve SIPs is to sample the infinite number of
constraints in Ω at a reasonably large finite set of frequencies
ΩN = {ω1, · · · , ωN} ⊂ Ω. Since all constraints are applied on
the Hermitian matrices, constraints will also be satisfied for all
negative frequencies. The formulated optimisation problems
are convex, and large values of N can be handled by numerical
solvers. This sampling approach implies that constraint satis-
faction for all frequency points is no longer guaranteed, and
could potentially result in non-robust controllers. Nonetheless,
since the optimisation is convex, the scenario approach can be
employed to provide a probabilistic guarantee of the robustness
[32]. In practice, choosing a sufficiently large number of
frequency points results in a robust controller.

Iterative procedure: An initial stabilising controller is re-
quired for the convexification process in Theorem 2. It is
possible that the convexified set of the stabilising controller for
the nominal case and the convexified set of the IQC constraint
do not intersect. To address this issue, a slack variable can be
introduced to the IQC constraint and optimised over.

min
K∈K

ν (34)

s.t.

[
(Π+)−1 L

L∗ −L

]
(jω) ⪰ −νI ∀ω ∈ Ω

(Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc)(jω) ⪰ 0 ∀ω ∈ Ω

Subsequently, the problem can be addressed in an iterative
fashion, employing the optimal controller from each iteration

K P (δ) Pd e−τs

WdWe Wu

+

r e u

+

+
d

−

we wu wd

Fig. 4. Block diagram of the mixed sensitivity problem

as the initial controller for the subsequent one. The slack is
non-increasing as the initial controller is always a feasible
solution and the problem is convex. So, this series of opti-
misations would converge to a robust controller, if it exists.

Robustness with performance: For synthesis of a robust
controller with a specified performance metric, it is recom-
mended to initially optimise for the optimal nominal perfor-
mance. Following that, optimise to identify a robust controller
employing the slacked IQC constraint, and finally optimise
again to achieve the best nominal performance while ensuring
robustness with the strict IQC constraint.

D. Simulation Results

The control synthesis approach is applied to a mixed sen-
sitivity problem proposed in [33], which is shown in Fig. 4.
The uncertain plant and the disturbance model are defined as:

P (δ) =
4

s2 + 0.1(1 + 0.5δ)s+ (1 + 0.5δ)2
, Pd =

10

s+ 0.1
.

Additionally, a measurement delay of 0.025 s at most is also
considered. The synthesis objective are chosen with the aim of
tracking the reference signal r and rejecting the disturbance
signal d at low frequencies by employing the performance
filters as We =

2(s+3.674)2

3(s+0.03)2 , Wu = s+10
s+104 , and Wd = 1.

The uncertainty in the plant is extracted to a multiplication
by a constant real scalar which satisfies the IQC defined by Π
in (25). The uncertainty in measurement delay is represented
as the uncertainty in the time-difference operator which satis-
fies the IQC defined by [34]

Π =


ϕ(jω)V11ψ(jω)V12

sτ0V13


∗ϕ(jω)V11ψ(jω)V12

sτ0V13

 0

0 −
∑3

i=1 V
∗
1iV1i


where, τ0 is the maximum delay, and ∃ c, d > 0

ϕ(jω) = 2
τ20 s

2 + cτ0s

τ20 s
2 + 2

√
cτ0s+ 2c

ψ(jω) = 2
τ20 s

2 +
√
12.5τ0s

τ20 s
2 +

√
6.5 + 2

√
50τ0s+

√
50

+ d

The controller is computed with V1(jω) = I and
V2(jω) = 0 for robustness to plant uncertainty, and V11 = 0.7,
V12 = 1, V13 = 7, c = 2, and d = 10−6 for robustness to
measurement delay. The nominal performant robust controller
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Fig. 5. Time-domain simulation results for random samples

obtained from the proposed synthesis approach by optimising
over 450 points between 10−4 Hz and 104 Hz is

K =


−0.009 0.059 −0.002 0.482 −0.137 −3.895

−0.059 −0.362 0.015 −53.633 2.448 −10.553

0.002 0.015 −0.001 18.042 −0.113 0.411

0.482 53.633 −18.042 −56.590 24.666 121.294

−0.137 −2.448 0.113 24.666 −22.258 −30.755

−3.895 10.553 −0.411 121.294 −30.755 1.768

.
In Fig. 5, the time-domain simulation results for the synthe-

sised controller are shown for 100 samples of the uncertainty.
The root mean square values of the nominal and worst-case
simulated tracking errors are 0.2002 and 0.2354 respectively.

IV. NON-PARAMETRIC IQC MULTIPLIERS

Until now, the focus has primarily revolved around the
IQC defined through parametric multipliers. Nevertheless, the
developments presented in this paper extend to include non-
parametric IQC multipliers. This section provides an illustra-
tive example regarding the identification of a non-parametric
IQC multiplier using experimental frequency-domain data. To
validate these developments, a previously published result [35]
is implemented with the method outlined in Section III-A. The
subsequent section offers a concise summary of the content
presented in [35].

The primary objective of using non-parametric IQC multi-
pliers is to reduce conservatism in uncertainty modelling and
to compute a robust controller with high nominal performance.
The uncertain plant under consideration is represented using
a non-parametric nominal model coupled with an additive
uncertainty set. Classically, the nominal model is selected by
choosing one measurement from multiple identification exper-
iments, or alternatively, by averaging over all the experiments.
The uncertainty set is then determined by computing the
smallest disk encompassing all realisations. In this work, given
a set of frequency responses for a multiple-input multiple-
output (MIMO) LTI system, a ‘best’ nominal model and the as-
sociated additive elliptical uncertainty set, which is consistent
with the data, is identified. The controller synthesis objective is
to design a robust controller with high nominal performance
for the system in Fig. 6. Utilising a split representation, a
corresponding non-parametric IQC multiplier is constructed

K P̂

∆

+
r

+
y

p q

+

−

Fig. 6. Feedback system with additive uncertainty block

which can be employed using the methodology proposed in
this paper.

A. Optimal Additive Uncertainty Set

An optimal non-parametric additive uncertainty set rep-
resented as elementwise elliptical uncertainty is computed
using tools from convex optimisation. The systems under
consideration are linear time-invariant (LTI) plants represented
using FRF {P i(jω)} which can be obtained from a series of m
experiments using the Fourier analysis on the sampled input-
output data as presented in [14].

Definition 1. A frequency response function (FRF) matrix
with the elementwise additive elliptical uncertainty set can be
represented as M(P̂ , A)(jω) ≜ P̂ (jω) + ∆, where P̂ (jω) is
the nominal FRF model and ∆ is the additive uncertainty set
characterised by a matrix A. The element ∆kl of ∆ represents
the additive uncertainty of P̂kl(jω) from the input channel l
to the output channel k and belongs to the following elliptical
set:

∥Akl(ω)C(∆kl)∥2 ≤ 1, ∀k, l (35)

where Akl(ω) ∈ R2×2 represents the ellipse parame-
ters and C(∆kl) ∈ R2×1 is defined in Notions. The to-
tal area of the uncertainty of M(P̂ , A)(jω) is given as∑

k

∑
l π det

{
A−1

kl (ω)
}
.

The uncertainty set can be obtained by a convex optimisa-
tion problem with a log-det objective and a conic constraint
for each measurement in the dataset at all frequencies and for
each input-output pair. In practical implementation, since the
optimisation for controller synthesis will be performed at a
finite set of frequency points ΩN the following optimisation
needs to be solved at these finite number of points:

min
Akl,bkl

− log det{Akl(ωn)} (36)

s.t.
∥∥Akl(ωn)C

(
P i
kl(jωn)

)
− bkl(ωn)

∥∥
2
≤ 1 ∀i

Note that, in general, the best FRF might not be any of the
measured FRF of the system or their average.

Remark 7. For the matrix A◦
kl(ω) to be finite, the area of the

elliptical uncertainty should be non-zero. So, there should exist
at least three non-colinear points. The presence of noise, in
practical scenarios, makes it improbable for this assumption
to be violated.

B. IQC multiplier

In this section, the uncertainty set of M(P̂ , A◦) is shown
to satisfy the IQC defined by a non-parametric multiplier Π.
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Consider a transformation matrix

J =

[
1 0

0 j

]
with J∗J = I.

From the definition of M(P̂ , A◦), ∆kl satisfies

∥A◦
kl(ω)C(∆kl)∥2 ≤ 1 ∀ω

⇔
∥∥A◦

kl(ω)J
∗ C̄(∆kl)

∥∥
2
≤ 1 ∀ω

where, C̄(∆kl) = J C(∆kl). This can be written as,[
1

C̄(∆kl)

]∗[
1 0

0 −Ā∗
kl(jω)Ākl(jω)

][
1

C̄(∆kl)

]
≥ 0, ∀ω

where Ākl(jω) = A◦
kl(ω)J

∗. So, the uncertainty can be shown
to satisfy the IQC defined by

Πkl(jω) =

[
1 0

0 −Ā∗
kl(jω)Ākl(jω)

]
. (37)

Note that Πkl(jω) is a dynamic multiplier for the elliptical
uncertainty set, in contrast to the frequency-dependent static
gain for the disk uncertainty set. Since the multiplier satisfies
the condition of Remark 1, τ C̄(∆kl) also satisfies the IQC
defined by Πkl for all τ ∈ [0, 1]. For robust controller
synthesis, a single IQC for the full uncertainty block ∆ is
needed. By abuse of notation, denote

C̄(∆) =

[
Re{∆}
j Im{∆}

]
.

It is well-known that operators with diagonal structure, in
which each sub-operator meets the IQC defined by a certain
multiplier, also meet the IQC defined by a structured multiplier
[13]. Up till now, the multipliers have been generated for each
input-output channel, and the aim is to find a transformation
from the MIMO uncertainty block to a diagonally structured
uncertainty. So, the representation C̄(∆) =WLDWRwhere,
D = diag( C̄(∆11), C̄(∆12), . . . , C̄(∆nynu

)) is desired. It can
be verified that

WL =

Iny
⊗ 11×nu

⊗
[
1 0

]
Iny

⊗ 11×nu
⊗
[
0 1

] and WR = 1ny×1 ⊗ Inu

satisfies this desired representation. Then, it can be shown that
D satisfies the IQC defined by

Π(jω) =

[
I 0

0 −Ā∗Ā

]
(jω)

where, Ā = diag(Ā11, Ā12, . . . , Ānynu). A feasible factorisa-
tion of Π(jω) can be given as,

Π+ =

[
I 0

0 ϵI

]
and Π− =

[
0 0

0 −Ā∗Ā

]
.

K P̂

Re{∆}

j Im{∆}

+
r

+
y

q

+
+

p
+

−

Fig. 7. Feedback system with split additive uncertainty block

C. Robust synthesis

A robust controller K is to be synthesised which stablilzes
the closed-loop system against the uncertainty ∆ described by
M(P̂ , A◦), as depicted in Fig. 6. For the uncertainty models
described by M(P̂ , A◦), the uncertainty block can be split and
structured as shown in Fig. 7.

Using the representation C̄(∆) =WLDWR, an equivalent
LFR formulation for robust controller synthesis against the
uncertainty D can be given as,[

q

y

]
=

 0 WR

−
[
I I

]
WL −P̂

[p̃
u

]
(38a)

p̃ = Dq (38b)
u = Ky (38c)

where p̃ is the virtual output of the structured uncertainty
D. Incorporating the IQC constraint in Theorem 2 for the
multiplier into the performance problem described in [26]
results in the synthesis of a robust controller with nominal
performance.

V. EXPERIMENTAL RESULTS

In this section, a robust controller is synthesized for a hybrid
active-passive micro-vibration damping platform (MIVIDA).
The aim is to mitigate micro-disturbances and isolate the
sensitive optical payload from external disturbances. The
primary goal of the MIVIDA platform is stabilisation of
vibration-sensitive payloads against multiple unknown external
perturbations inherent in the satellites. The modular platform
comprises of an adjustable number of passive dampers, a
set of proof mass actuators (PMA) creating a 6 degree of
freedom (DoF) force tensor, and a payload interface capable
of accommodating various types of sensitive instruments. To
actively counteract disturbances transmitted from the satellite
body, the platform utilises the accelerometer measurements in
close proximity to the payload. An image of the system is
presented in Fig. 8. All experimental tests with the platform
are conducted at the Microvibration Characterisation Facility
at CSEM in Neuchâtel, Switzerland [36].

Due to the modular design, the FRF of the passive system
stage can significantly vary depending on the applied screw
torque and other mechanical system properties. A controller
is designed for a configuration where the actuators are placed
along the main axes having two parallel actuators per axis.
In addition, three accelerometers (one along each axis) are
mounted for local measurement of the disturbances at the
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Fig. 8. Hybrid micro-disturbance isolation platform developed at CSEM,
Switzerland
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Fig. 9. Multi-model FRF from uncertain screw torque

payload interface. The parallel nature of the actuator placement
together with the three accelerometers leads to a MIMO
system with three inputs and three outputs. A multimodel FRF
is acquired from five different experiments with different screw
torques in the interval from 6Nm to 8Nm. The resulting
FRFs are presented in Fig. 9. The screw torque directly
influences the rigidity of the system, which can be seen by
the shift in the frequency of the first mode in the interval
45Hz to 60Hz.

The aim is to design a robust controller using the proposed
approach, focusing on effectively rejecting a sinusoidal per-
turbation at a frequency of 80Hz. The generalised system for
robustness and performance can be respectively specified as:

Gr =

 0 WR

−
[
I I

]
WL −P̂

, Gp =

[
W −WP̂

I −P̂

]

where, P̂ is the identified nominal plant, WR and WL are
matrices as defined in section IV. The performance weighting
filter W is chosen as a peak filter with a centre frequency of
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Fig. 10. Nyquist plot of the estimated model using the proposed
method. Dashed lines shows the estimated uncertainty boundary.

TABLE I
RESULTING ATTENUATION PERFORMANCE ALONG THE DIFFERENT AXES

X-axis Y-axis Z-axis

Attenuation Performance [dB] 13.61 6.63 9.80

80Hz. The complete optimisation problem to be solved is,

min
X,Y, γ

γ (39)

s.t.

[
γI − Λp Gp,11Φ

∗
p +Gp,12X

⋆ Φ∗
pΦp,c +Φ∗

p,cΦp − Φ∗
p,cΦp,c

]
(jω) ≻ 0,[

(Π+)−1 L

L∗ −L

]
(jω) ⪰ 0,

∀ω ∈ Ω

with Π+ and Π− chosen as specified in Section IV.
The controller successfully attains the desired robust per-

formance, with an infinity norm of 0.5079. It is important to
mention that the controller synthesised in this study differs
from the one presented in [35]. Nevertheless, they deliver
similar performance, given the inherent non-uniqueness of H∞
controllers.

The designed controller was implemented and tested on
the platform for a sinusoidal perturbation at a frequency of
80Hz injected using an external shaker along the x-axis.
The achieved performance of the controller is presented in
Fig. 11. An attenuation of 13.18 dB along the perturbation
axis can be achieved. The resulting attenuation performances
are summarised in Table I.

The traditional method, which employs the disk-based un-
certainty quantification, results in a less performant controller,
largely due to the larger uncertainty bounds leading to in-
creased conservatism [35]. It is important to recognise the fact
that the use of the elliptical uncertainty bound quantification
is only feasible because of the non-parametric nature of the
IQC multiplier.

VI. CONCLUSION

A novel controller synthesis approach has been devised
for designing robust controllers, using only frequency-domain
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Fig. 11. Attenuation performance for the synthesised controller by
comparison of open-loop (from 0 s to 2 s) with the closed-loop system
(after 2 s)

data of a generalised MIMO system. The resulting controller
ensures robust stability or robust performance guarantees for
perturbations described by IQC. The control synthesis is
facilitated through iterative convex optimisations with LMI
constraints. Furthermore, it has been demonstrated that the
proposed approach can be applied even with non-parametric
IQC multipliers.

The method is first verified in simulation using an uncertain
LTI plant with uncertain bounded measurement delay. The
resulting robust controller has a similar performance compared
to the controller obtained in [33]. A high-performance con-
troller, designed to be robust to non-parametric uncertainty
quantification, is applied to the hybrid micro-vibration damp-
ing platform MIVIDA for validation. The attained performance
closely aligns with the results presented in [35].

APPENDIX

Proof of Corollary 2: H∞ performance
Proof. By expressing the constraint in (6a) using (22), the
desired specification is straightforwardly obtained.[
Tqp

I

]∗[
γ2I 0

0 −I

][
Tqp

I

]
(jω) ⪯ −ϵI ∀ω ∈ Ω

T ∗
qp(jω)Tqp(jω) ⪯ (1− ϵ)γ−2I ∀ω ∈ Ω

=⇒ ∥Tqp∥2∞ ≤ (1− ϵ)γ−2 = γ2p

To show the equivalence with the result in [26], first apply
row and column permutations to (23) to obtain

γ−2I G11Φ+G12X G11Ψ 0

⋆ Φ∗Φ 0 Φ∗

⋆ ⋆ Ψ Ψ∗

0 Φ Ψ ϵ−1I

 ⪰ 0. (40)

Since ϵ > 0, the application of Schur’s complement lemma
yields γ−2I G11Φ+G12X G11Ψ

(G11Φ+G12X)∗ (1− ϵ)Φ∗Φ 0

(G11Ψ)∗ 0 (1− ϵ)Ψ

 ⪰ 0.

(41)

Let Ψg denote the generalised inverse of Ψ satisfying

ΨΨgΨ = Ψ and (I −ΨΨg)
[
(G11Ψ)

∗
0
]
= 0.

Note that Ψg = Ψ satisfies these conditions, then using
generalised Schur’s complement lemma, [37, Theorem 1.20],
we obtain:[
γ−2I − (1− ϵ)−1(G11Ψ)(G11Ψ)∗ G11Φ+G12X

(G11Φ+G12X)∗ (1− ϵ)Φ∗Φ

]
⪰ 0.

Pre- and post-multiplication by
[
aI 0
0 I/a

]
where a =

√
1− ϵ

gives,[
(1− ϵ)γ−2I − (G11Ψ)(G11Ψ)∗ G11Φ+G12X

(G11Φ+G12X)∗ Φ∗Φ

]
⪰ 0.

Now choosing γ2p = (1 − ϵ)γ−2, the desired FDI (12) of
[26] can be obtained.[

γ2pI − (G11Ψ)(G11Ψ)∗ G11Φ+G12X

(G11Φ+G12X)∗ Φ∗Φ

]
⪰ 0.
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