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Abstract

Background During the COVID-19 pandemic there has been a strong interest in forecasts of

the short-term development of epidemiological indicators to inform decision makers. In this

study we evaluate probabilistic real-time predictions of confirmed cases and deaths from

COVID-19 in Germany and Poland for the period from January through April 2021.

Methods We evaluate probabilistic real-time predictions of confirmed cases and deaths

from COVID-19 in Germany and Poland. These were issued by 15 different forecasting

models, run by independent research teams. Moreover, we study the performance of com-

bined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring

rules, along with interval coverage proportions to assess calibration. The presented work is

part of a pre-registered evaluation study.

Results We find that many, though not all, models outperform a simple baseline model up to

four weeks ahead for the considered targets. Ensemble methods show very good relative

performance. The addressed time period is characterized by rather stable non-

pharmaceutical interventions in both countries, making short-term predictions more

straightforward than in previous periods. However, major trend changes in reported cases,

like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove

challenging to predict.

Conclusions Multi-model approaches can help to improve the performance of epidemiolo-

gical forecasts. However, while death numbers can be predicted with some success based on

current case and hospitalization data, predictability of case numbers remains low beyond

quite short time horizons. Additional data sources including sequencing and mobility data,

which were not extensively used in the present study, may help to improve performance.
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Plain language summary
We compare forecasts of weekly

case and death numbers for COVID-

19 in Germany and Poland based on

15 different modelling approaches.

These cover the period from January

to April 2021 and address numbers of

cases and deaths one and two weeks

into the future, along with the

respective uncertainties. We find that

combining different forecasts into

one forecast can enable better pre-

dictions. However, case numbers

over longer periods were challenging

to predict. Additional data sources,

such as information about different

versions of the SARS-CoV-2 virus

present in the population, might

improve forecasts in the future.
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Short-term forecasts of infectious diseases and longer-term
scenario projections provide complementary perspectives to
inform public health decision-making. Both have received

considerable attention during the COVID-19 pandemic and are
increasingly embraced by public health agencies. This is illu-
strated by the US COVID-19 Forecast1,2 and Scenario Modeling
Hubs3, supported by the US Centers for Disease Control and
Prevention, as well as the more recent European COVID-19
Forecast Hub4, supported by the European Center for Disease
Prevention and Control (ECDC). The Forecast Hub concept,
building on pre-pandemic collaborative disease forecasting pro-
jects like FluSight5, the DARPA Chikungunya Challenge6, or the
Dengue Forecasting Project7 aims to provide a broad picture of
existing short-term projections in real time, making the agree-
ment or disagreement between different models visible. Also, it
forms the basis for a systematic evaluation of performance. This is
a prerequisite for model consolidation and improvement, and a
need repeatedly expressed8. It has been highlighted that such
modeling studies should be prospective9 and ideally follow pre-
registered protocols10 in order to prevent selective reporting and
hindsight bias (i.e., the tendency to overstate the predictability of
past events in hindsight).

We here report on the second part of a prospective disease
forecasting study, pre-registered on 8 October 202011 and
including forecasts made between 11 January 2021 and 29 March
2021 (with last observed values running through April; twelve
weeks of forecasting). It is based on the German and Polish
COVID-19 Forecast Hub (https://kitmetricslab.github.io/
forecasthub/), which gathers and stores forecasts in real time.
This platform was launched in close exchange with the US
COVID-19 Forecast Hub in June 2020. In April 2021, it was
largely merged into the European COVID-19 Forecast Hub,
shortly after the latter had been initiated by ECDC. During our
study period, fifteen independent modeling teams provided
forecasts of cases and deaths by the appearance in publicly
available national-level data, provided either by national health
authorities (Robert Koch Institute, RKI12 or the Polish Ministry
of Health, MZ13; the primary data source) or the Johns Hopkins
University Center for Systems Science and Engineering (JHU
CSSE; refs. 14 and15). As specified in our study protocol, we report
results on forecasts up to a horizon of four weeks, but focus on
forecasts one and two weeks ahead. While we acknowledge the
relevance of longer horizons for planning purposes, we argue that
factors like changing non-pharmaceutical interventions and the
emergence of new variants limit meaningful forecasts (as opposed
to scenarios) to rather short time horizons, especially for cases.
Also, we focus almost exclusively on incident quantities, as their
cumulative counterparts have almost completely vanished from
any public discussion.

The time series of cases and deaths in both countries are displayed
in panels (a) and (b) of Fig. 1. The study period covered in this paper
is marked in dark gray, while the light gray area represents the time
span addressed in the first part of our study16. Our study period
contains the transition from the original wild-type variant of the
virus to the B.1.1.7 variant (later called Alpha). Panel (c) of Fig, 1
shows the estimated weekly percentages of all cases which were due
to the B.1.1.7 variant in Germany17 and Poland18,19 in calendar
weeks 4–12. Panel (d) shows the proportion of all performed PCR
tests which turned out positive. While in Germany, the curve follows
a U-shape similar to the case incidence curve, the test positivity rate
continuously increased in Poland, peaking at 33%. Panel (e) shows
the Oxford Coronavirus Government Response Tracker (OxCGRT)
Stringency Index20. It can be seen that compared to the first part of
our study, the level of non-pharmaceutical interventions was rather
stable at a high level during the second period. We note, however,
that on 27 March, a new set of restrictions was added in Poland

(closure of daycare centers, hair salons, and sports facilities, among
others), which is not reflected very strongly in the stringency index.
The start of vaccination rollout in both countries coincides with the
start of our study period. However, by its end, only roughly one-sixth
of the population of both countries had received the first dose, and
roughly one-twentieth had received two doses (with the role of the
one-dose Johnson and Johnson vaccine negligible in both countries);
see panel (f). Note that all these data are publicly available via the
respective public health agencies and their use does not require
ethical approval.

We find that averaged over the second evaluation period, most
though not all of the compared models were able to outperform a
naïve baseline model. Heterogeneity between forecasts from dif-
ferent models was considerable. Ensemble forecasts combining
different available predictions achieved very good performance
relative to single-model forecasts. However, most models,
including the ensemble, did not anticipate changes in trend well,
in particular for cases. Pooling results over both evaluation per-
iods, we find that ensemble forecasts for deaths were well-
calibrated (i.e., prediction intervals contained the true value
roughly as often as intended) even at longer prediction horizons
and clearly outperformed baseline and individual models, while
for cases, this was only the case for one- and to a lesser degree
two-week-ahead forecasts.

Methods
The methods described in the following are largely identical to
those in the first part16 of our study, but are presented to ensure
self-containedness of the present work.

Targets and submission system. Teams submitted forecasts for
the weekly incident and cumulative confirmed cases and deaths
from COVID-19 via a dedicated public GitHub repository
(https://github.com/KITmetricslab/covid19-forecast-hub-de). For
certain teams running public dashboards, software scripts were
put in place to transfer forecasts to the Forecast Hub repository.
Weeks were defined to run from Sunday through Saturday. Each
week, teams were asked to submit forecasts using data available
up to Monday, with submission possible until Tuesday 3 p.m.
Berlin/Warsaw time (the first two daily observations were thus
already available at the time of forecasting). Forecasts could either
refer to the time series provided by JHU CSSE or those from
Robert Koch Institute and the Polish Ministry of Health. All data
streams were aggregated by the time of the appearance in national
data, see also Supplementary Note 4 of Bracher et al.16. Sub-
missions consisted of a point forecast and 23 predictive quantiles
(1%, 2.5%, 5%, 10%, …, 95%, 97.5%, 0.99) for the incident and
cumulative weekly quantities. As in previous work16, we focus on
the targets on the incidence scale. These are easier to compare
across the different data sources than cumulative numbers, which
sometimes show systematic shifts.

Evaluation metrics. As forecasts were reported in the form of 11
nested central prediction intervals (plus the predictive median), a
natural choice for evaluation is the interval score21. For a central
prediction interval [l, u] at the level (1− α), thus reaching from
the α/2 to the 1− α/2 quantile, it is defined as

ISαðF; yÞ ¼ ðu� lÞ þ 2
α
´ ðl � yÞ ´ χðy < lÞ þ 2

α
´ ðy � uÞ ´ χðy > uÞ;

ð1Þ
where χ is the indicator function and y is the realized value. Here,
the first term characterizes the spread of the forecast distribution,
the second penalizes overprediction (observations fall below the
prediction interval) and the third term penalizes underprediction.
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To assess the full predictive distribution, we use the weighted
interval score (WIS; ref. 22). The WIS is a weighted average of
interval scores at different nominal levels and the absolute error.
For N nested prediction intervals, it is defined as

WISðF; yÞ ¼ 1
2N þ 1

´ jy �mj þ ∑
N

k¼1
αk ´ ISαk ðF; yÞ

� �� �
; ð2Þ

where m is the predictive median and in our setting N= 11. The
WIS is a well-known approximation of the continuous ranked
probability score (CRPS; ref. 21) and generalizes the absolute error
to probabilistic forecasts. Its values can be interpreted on the
natural scale of the data and measure how far the observed value
y is from the predictive distribution (lower values are thus better).
For deterministic one-point forecasts, the WIS reduces to the
absolute error. A useful property of the WIS is that it inherits the
decomposition of the interval score into forecast spread, over-
prediction, and underprediction, which makes average scores
more interpretable. As secondary measures of forecast quality, we
use the absolute error to assess the central tendency of forecasts

and interval coverage rates of 50 and 95% prediction intervals to
assess calibration.

As specified in our study protocol, whenever forecasts from a
model were missing for a given week, we imputed the score with
the worst (largest) value achieved by any other model for the
respective week and target. However, almost all teams provided
complete sets of forecasts, and very few scores needed imputation.

Submitted models and baselines. During the evaluation period,
forecasts from fifteen different models run by fourteen indepen-
dent teams of researchers were collected. Thirteen of these were
already available during the first part of our study, see Table 3 and
Supplementary Note 3 of Bracher et al.16 for detailed descriptions.
Table 1 provides a slightly extended summary of model proper-
ties, including the two new models, itwm-dSEIR and Karlen-
pypm; a more detailed description of the latter can be found in
Supplement S1. All forecast data produced by teams was made
available under open licenses. They do not contain any personal
data, so no ethics approval was required for their use.
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Fig. 1 Overview of relevant epidemiological time series. Reported cases (a) and deaths (b) per seven days in Germany (black) and Poland (red) according
to Robert Koch Institute, the Polish Ministry of Health (MZ; solid lines), and Johns Hopkins CSSE (dashed). Additional panels show c the share of cases due
to the B.1.1.7 (Alpha) variant, d the proportion of all performed PCR tests which turned out positive, e the overall level of non-pharmaceutical interventions
as measured by the Oxford Coronavirus Government Response Tracker (OxCGRT) Stringency Index, and f the population shares having received at least
one vaccination dose (dotted) and complete vaccination (solid). The dark gray area indicates the period addressed in the present manuscript, and the light
gray area is the one from Bracher et al.16.
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During the evaluation period, only the ICM-agentModel
explicitly accounted for vaccinations (given the low realized
vaccination coverage by the end of the study period, this aspect
likely had a limited impact). Only four models (ICM-agentModel,
Karlen-pypm, LeipzigIMISE-SECIR, and MOCOS-agent1, all
only for certain weeks) explicitly accounted for the presence of
multiple variants. In contrast to other related projects2, none of
the models used mobility data or social media data.

To put the results achieved by the submitted models into
perspective, the Forecast Hub team generated forecasts from three
simple reference models (see also Bracher et al.16, Supplementary
Note 2). KIT-baseline is a simple last-observation-carried-
forward model, i.e., it predicts the last observed value indefinitely
into the future. Predictive quantiles are obtained by assuming a
negative binomial observation model with a dispersion parameter
estimated via maximum likelihood from five recent observations.
KIT-extrapolation_baseline extrapolates exponential growth or
decrease if the last three observations are monotonically
increasing or decreasing, with a weekly growth rate equal to the
one observed between the last and second last week; if the last
three observations are not ordered, it predicts a plateau.
Predictive quantiles are again obtained using a negative binomial
observation model and five recent observations. KIT-
time_series_baseline is an exponential smoothing time series
model with multiplicative errors as used by ref. 23 to predict
COVID-19 cases and deaths. It is implemented using the R
package forecast, version 8.1224.

As a further external comparison, we added publicly available
death forecasts by the Institute for Health Metrics and Evaluation
(IHME, University of Washington25; available under the CC BY-
NC 4.0 license). Here, we always used the most recent prediction
available on a given forecast date.

Forecast ensembles. The Forecast Hub team used the submitted
forecasts to generate three different ensemble forecasts. In the
KITCOVIDhub-median_ensemble, the α-quantile of the ensem-
ble forecast is obtained as the median of the α-quantiles of the
member forecasts. In the KITCOVIDhub-mean_ensemble, the
mean instead of the median is applied for aggregation. In KIT-
COVIDhub-inverse_wis_ensemble, a convex combination of the
α-quantiles of the member forecasts is used. The weights are
chosen inversely proportional to the mean WIS value (see

equation (2)) obtained by the member models over the last six
evaluated forecasts (last three 1-week-ahead, last two two-week-
ahead, last three-week-ahead). This is done separately for each
time series to be predicted. Missing scores are imputed by the
worst score achieved by any model for the respective target,
meaning that irregularly submitted models will be penalized and
receive less weight.

In the study protocol, the median ensemble was defined as our
primary ensemble approach11 as it can be assumed to be more
robust to occasionally misguided forecasts (e.g., due to technical
errors). We therefore display this version in all figures and focus
our discussion on it. Note that all forecast aggregations are
performed directly at the level of quantiles rather than density
functions as in other work26. This approach is referred to as
Vincentization (in ref. 27, see e.g., ref. 28). A broader discussion of
Vincentization approaches and their application to epidemiolo-
gical forecasts, including numerous other weighting schemes, can
be found in recent works by Taylor and Taylor29 and Ray et al.30.
Notably, Taylor and Taylor29 used a similar inverse score
weighting approach and found it to perform well in a re-
analysis of forecasts from the US COVID-19 Forecast Hub. In
this context, we note that our inverse-WIS ensemble does not
involve any estimation or optimization of weights, but simply
uses the inverse of an average of past scores as heuristic weights.
A more flexible approach with one tuning parameter estimated
from the data has been used in Ray et al.30.

There were no formal inclusion criteria other than the
completeness of the submitted set of 23 quantiles. The Forecast
Hub team did, however, occasionally exclude forecasts with a
highly implausible central tendency or degree of dispersion
manually. These exclusions have been documented in the
Forecast Hub platform.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Figures 2 and 3 show the forecasts made by the median ensemble
(KIT-median_ensemble; our prespecified main ensemble
approach; see Materials and Methods); a naïve model always
using the last observed value as the expectation for the following

Table 1 Forecast models contributed by independent external research teams.

Category Model NPI Test Variants Age DE PL Regional Truth Pr

Agent-based ICM-agentModel53 ✓ ✓ ✓ ✓ ✓ MZ ✓
MOCOS-agent154 ✓ ✓ ✓ ✓ ✓ JHU ✓

Compartment CovidAnalytics-DELPHI55 ✓ ✓ ✓ JHU ✓
FIAS_FZJ-Epi1Ger56 ✓ ✓ RKI ✓
itwm-dSEIR ✓ ✓ RKI ✓
Karlen-pypm57 ✓ ✓ ✓ RKI ✓
LeipzigIMISE-SECIR58 ✓ ✓ ✓ ✓ (✓) RKI ✓
MIMUW-StochSEIR ✓ JHU ✓
USC-SIkJalpha59 ✓ ✓ ✓ RKI/MZ ✓

Growth rate/
renewal eq.

epiforecasts-EpiNow260 ✓ ✓ ✓ RKI/MZ ✓

SDSC_ISG-TrendModel61 ✓ ✓ JHU
ITWW-county_repro62 ✓ ✓ ✓ ✓ RKI/MZ ✓
LANL-GrowthRate63 ✓ ✓ JHU ✓

Human judgment epiforecasts-EpiExpert64 (✓) (✓) (✓) (✓) ✓ ✓ RKI/MZ ✓
Forecast ensemble Imperial-ensemble265 ✓ ✓ RKI ✓

NPI: Does the forecast model explicitly account for non-pharmaceutical interventions? Test: Does the model account for changing testing strategies? Variants: Does the model accommodate multiple
variants? Age: Is the model age-structured? DE, PL: Are forecasts issued for Germany and Poland, respectively? Regional: Were regional-level forecasts for at least one country submitted? Truth: Which
truth data source does the model use? Pr: Are forecasts probabilistic (23 quantiles)? Detailed descriptions of the different models can be found in Bracher et al.16, Supplementary Note 3, and in
Supplementary Methods (Section 1) of this article.
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(d) Weekly incident deaths, Poland, 1 wk ahead
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Fig. 2 One-week-ahead forecasts of cases and deaths from COVID-19 in Germany and Poland. One-week-ahead forecasts of confirmed cases and deaths
from COVID-19 in Germany (a, b) and Poland (c, d). It shows forecasts from a baseline model, the median ensemble of all submissions, and a subset of
submitted models with above-average performance. The black line shows observed data. Colored points represent predictive medians and dark and light
bars show 50 and 95% prediction intervals, respectively. Asterisks mark intervals exceeding the upper plot limit. The remaining submitted models are
displayed in Supplementary Fig. 1. The right column shows the empirical coverage rates of the different models. The dark and light bars represent the
proportion of cases where the 50 and 95% prediction intervals, respectively, contained the observed values. The dotted lines show the desired nominal
levels of 0.5 and 0.95.
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Fig. 3 Two-week-ahead forecasts of cases and deaths from COVID-19 in Germany and Poland. Two-week-ahead forecasts of confirmed cases and
deaths from COVID-19 in Germany (a, b) and Poland (c, d). It shows forecasts from a baseline model, the median ensemble of all submissions, and a
subset of submitted models. The remaining submitted models are displayed in Supplementary Fig. 2. The black line shows observed data. Colored points
represent predictive medians, and dark and light bars show 50 and 95% prediction intervals, respectively. The right column shows the empirical coverage
rates of the different models. See the caption of Fig. 2 for a detailed explanation of plot elements.
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weeks (KIT-baseline); and five contributed models with above-
average overall performance across locations and targets (i.e.,
quantities to be predicted). In each Figure, case and death fore-
casts for Germany are shown in panels (a) and (b), while the same
for Poland is displayed in panels (c) and (d). The forecasts are
probabilistic, and we display the 50% and 95% prediction inter-
vals (PIs) along with the respective median. Forecasts by the
remaining teams are illustrated in Supplementary Figs. 1, 2, and
forecasts at horizons of three and 4 weeks are shown in Supple-
mentary Figs. 3–6. In the following, we discuss the performance
of these forecasts, starting with a formal statistical evaluation
before directing attention to the behavior at inflection points.

Formal evaluation, January–April 2021. Table 2 and Fig. 4
(panels (a), (b) for Germany and (c), (d) for Poland) summarize
the performance of the submitted baseline and ensemble models
over the 12-week study period. Performance is measured via the
average weighted interval score (WIS, see Methods section) and
the mean absolute error of the predictive median. For both
measures, lower values indicate better predictive performance.
We here show the average scores on the absolute scale, where
they can be interpreted as the average distance between the
observed and predicted value (the WIS taking into account
forecast uncertainty). A summary table of relative scores stan-
dardized by the performance of the naïve KIT-baseline model is
available in Supplementary Table 1. The WIS can moreover be
decomposed into components representing underprediction,
forecast spread, and overprediction (see Methods), which we
show in Supplementary Fig. 7. Detailed results in tabular form at
horizons of three and 4 weeks ahead can be found in Supple-
mentary Table 2. As specified in the study protocol, we also
provide results for cumulative cases and deaths (Supplementary
Tables 3, 4) and based on JHU rather than RKI/MZ data (Sup-
plementary Tables 5, 6; evaluation against JHU data leads to
slightly higher WIS and absolute errors, but quite similar relative
performance of models). A graphical display of individual scores
can be found in Supplementary Fig. 8.

Both for incident cases and deaths, a majority, but not all
models outperformed the naïve baseline model KIT-baseline (a
model outperforms the baseline for a given target whenever its
bar in Fig. 4 does not reach into the gray area). As one would
expect, the performance of all models considerably deteriorated
for longer forecast horizons. The prespecified median ensemble
was consistently among the best-performing methods, out-
performing most individual forecasts for all targets. The
KITCOVIDhub-inverse_wis_ensemble, which is an attempt to
weigh member models based on recent performance, does not
yield any clear benefits over the unweighted median and mean
ensembles. As can be seen from Supplementary Figs. 9, 10, the
weights fluctuate substantially, implying that the relative
performance of different models may be too variable for
performance-based weights to pay off. The KIT-
extrapolation_baseline model shows quite reasonable relative
performance for cases in both countries. Given the relatively long
stretches of continued upward or downward trends in cases, this
simple heuristic was not easy to beat and is rather close to the
performance of the ensemble forecasts. For deaths, too, there are
rather clear trends over the study period. Nonetheless, the
different ensemble forecasts achieve substantial improvements
over KIT-extrapolation_baseline, meaning that the deviations
from the previous trends were predicted with some success.

The most striking cases of individual models outperforming
the ensemble occurred for longer-range case forecasts in Poland.
Here, the two microsimulation models, MOCOS-agent1 and
ICM-agentModel performed considerably better. These two

models were arguably among the ones which were most
meticulously tuned to the specific national context. It seems that
this yielded benefits for longer horizons, while at shorter
horizons, the ensemble and some considerably simpler models
were at least on par (the best performance at the 1-week horizon
being achieved by the compartmental model MIMUW-
StochSEIR).

There were considerable differences in the forecast uncertainty
of the different models. This can be seen from the quite variable
forecast interval widths in Figs. 2, 3, and resulted in large
differences in the empirical coverage rates of 50 and 95%
prediction intervals (Table 2 and right column in the aforemen-
tioned figures). The ensemble methods performed quite favorably
in terms of coverage, typically with slight undercoverage (i.e.,
prediction intervals cover the observations less frequently than
intended) for cases and slight overcoverage (intervals cover more
often than intended) for deaths. The differences in forecast
dispersion are also reflected by the components of the weighted
interval score shown in Supplementary Fig. 7 (see Materials and
Methods for an explanation of the decomposition). Some models,
most strikingly ITWW-county_repro, issued very sharp predic-
tions, leading to very small dispersion components of the
weighted interval score (the darkest block in the middle of the
stacked bar). In turn, this model received rather large penalties for
both over- and under-prediction. Other models, like LANL-
GrowthRate, epiforecasts-EpiNow2, and ICM-agentModel issued
comparatively wide forecasts, leading to WIS values with large
dispersion components. While there is no clear rule on what the
score decomposition of an ideal forecast should look like,
comparisons of the components provide useful indications on
how to improve a model (e.g., the ITWW-county_repro model
might benefit from widening the uncertainty intervals).

A subset of models also provided forecasts at the subnational
level (states in Germany, voivodeships in Poland). Table 3
provides a summary of the respective results at the 1 and 2-week
horizons (results for three and four weeks can be found in
Supplementary Table 7). Despite the rather low number of
available models, the ensembles generally achieved improvements
over the individual models and, with exceptions for case forecasts
in Germany, clearly outperformed the baseline model KIT-
baseline. The mean WIS values are lower for the regional
forecasts than for the national-level forecasts in Table 2 primarily
because the numbers to be predicted are lower at the regional
level; the WIS—like the absolute error—scales with the order of
magnitude of the predicted quantity and cannot be compared
directly across different forecasting tasks. Coverage of the
ensemble forecasts was close to the nominal level for deaths
and somewhat lower for cases. Note that in this comparison, part
of the forecasts from the FIAS_FZJ-epi1Ger model were created
retrospectively (using only the data available up to the forecast
date) as the team only started issuing forecasts for all German
federal states on 22 February 2021.

As specified in the study protocol11, we also report evaluation
results at the national level pooled across the two study periods
for those models which covered both. These are summarized in
Supplementary Tables 8, 9. For deaths, ensemble forecasts clearly
outperformed individual models, the four-week-ahead horizon in
Poland being the only one at which an individual model
(epiforecasts-EpiExpert) meaningfully outperformed the prespe-
cified median ensemble. While most contributed and baseline
models were somewhat overconfident, the ensemble showed close
to nominal coverage even at the 4-week-ahead horizon. For cases,
the median ensemble achieved good relative performance
(comparable to the best individual models) one and 2 weeks
ahead, but was outperformed by a number of other models at 3
and 4 weeks. Notably, it failed to beat the naïve last-observation-
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Fig. 4 Formal evaluation results in terms of mean weighted interval scores. Average weighted interval scores (bars) and absolute errors (diamonds)
achieved by models in Germany (a, b) and Poland (c, d) per target and forecast horizon (12 weekly forecasts). The bottom end of the gray area represents
the mean WIS of the baseline model KIT-baseline, and the gray horizontal line is its mean absolute error. Values are shown on a square-root scale to
enhance readability. Only models covering all four horizons are shown.
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carried-forward model KIT-baseline. Its coverage of prediction
intervals was acceptable 1 week ahead, but substantially below
nominal at higher horizons (e.g., 13/19 and 10/19 four weeks
ahead in Germany and Poland, respectively, at the 0.95 level),
which reflects the severe difficulties in predicting cases in Fall
2020 as discussed in ref. 16.

Behavior at inflection points. From a public health perspective,
there is often a specific interest in how well models anticipate
major inflection points (changes in trend). We therefore discuss
these instances separately. However, we note that, as will be
detailed in the discussion, post-hoc conditioning of evaluation
results on the occurrence of unusual events comes with important
conceptual challenges.

The renewed increase in cases in both Germany and Poland
(third wave) in late February 2021 was due to the shift from the
wild-type variant of the virus to the B.1.1.7 (or Alpha) variant, see
Fig. 1c for estimated shares of the new variant over time. Given
earlier observations about the spread of the B.1.1.7 variant in the
UK31 and Denmark, there was public discussion about the
likelihood of a re-surgence, but there was considerable uncer-
tainty about the timing and strength (see e.g., a German
newspaper article32 from early February 2021). This was largely
due to the limited availability of representative sequencing data.
In certain regions of Germany, specifically the city of Cologne33

and the state of Baden-Württemberg34, large-scale sequencing

had been adopted by late January, but results were considered
difficult to extrapolate to the whole of Germany. An updated RKI
report35 on virus variants from 10 February 2020 described a
“continuous increase in the share of the VOC B.1.1.7”, but
cautioned that the data were "subject to biases, e.g., with respect
to the selection of samples to sequence” (our translation).

Given the limited available data, and the fact that many
approaches had not been designed to accommodate multiple
variants, only two of the teams submitting forecasts for Germany
opted to account for this aspect (a question which was repeatedly
discussed during coordination calls). These exceptions were the
Karlen-pypm and LeipzigIMISE-SECIR models, which starting
from 1 March 2021, explicitly accounted for the presence of two
variants. As a result, most models did not anticipate the change in
trend well and only reacted implicitly once the change became
apparent in the data on 27 February 2021. Figure 5 shows the case
forecasts of all submitted models and the median ensemble from
(a) 15 February, (b) 22 February, and (c) 1 March 2021. In panel
(d), we moreover show the two short time series of shares of the
B.1.1.7 variant available from Robert Koch Institute at the
respective prediction time points.

The ITWW-county_repro model was the only one to anticipate
a change in trend on 15 February (though slower than the
observed one) and adapted quickly to the upward trend in the
following week. This model extrapolates recently observed growth
or decline at the county level and aggregates these fine-grained
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Fig. 5 Case forecasts in Germany preceding the upward trend change in March 2022. Point forecasts of cases in Germany, as issued on a 15 February,
b 22 February, and c 1 March 2021. These dates, shown as vertical dashed lines, mark the start of a renewed increase in overall case counts due to the new
variant of concern B.1.1.7. d Data by RKI on the share of the B.1.1.7 variant as available on the different forecast dates (the next data release by RKI occurred
on 3 March). The models Karlen-pypm and LeipzigIMISE-SECIR accounted for the presence of multiple variants from 1 March onwards.
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forecasts to the state or national level. Therefore, it may have been
able to catch a signal of renewed growth, as a handful of German
states had already experienced a slight increase in cases in the
previous week (e.g., Thuringia and Saxony-Anhalt, see panel (b)
of Supplementary Fig. 11). However, as illustrated in panel (a) of
the same Figure, the ITWW model had also predicted turning
points earlier during the same phase of decline in cases, and
might generally have a tendency to produce such patterns.
Another noteworthy observation in this context is the change in
the predictions of the Karlen-pypm model. After the extension of
the model to account for the B.1.1.7 variant on 1 March, its
forecasts changed from the most optimistic to the most
pessimistic among all included models (panels b and c of Fig. 5).
The other model including variant data, LeipzigIMISE-SECIR,
likewise was among the first to adopt an upward trend.

In Poland, the availability of sequencing data was very limited
during our study period; the GISAID database19 only contained
2271 sequenced samples for Poland by 29 March 202118.
Nonetheless, the ICM-agentModel and MOCOS-agent1 models
explicitly took the presence of a new variant into account to the
degree possible. Again, the ITWW-county_repro model was the
first to predict a change in overall trends (in this case, without
having predicted turning points already in the preceding weeks;
see Supplementary Fig. 1).

In Poland, the third wave reached its peak in the week ending
on 3 April 2021. Despite the fact that it coincided with the Easter

weekend and thus somewhat unclear data quality, this turn-
around was predicted quite well by two Poland-based teams,
MOCOS-agent1 and ICM-agentModel. Figure 6 shows forecasts
made on (a) 22 March, (b) 29 March, and (c) 5 April. It can be
seen that the trajectory predicted by the two mentioned models
differed substantially from those of most others, including the
ensemble, which predicted a sustained increase. This successful
prediction of the turning point was in large part responsible for
the good relative performance of MOCOS-agent1 and ICM-
agentModel at longer horizons (Table 2). In retrospective
discussions, the respective teams noted that the tightening of
non-pharmaceutical interventions (NPIs) on 27 March (which
they had anticipated) in combination with possible seasonal
effects had led them to expect a downward turn.

For Germany, the peak of the third wave occurred only after
the end of our prespecified study period, but we note that
numerous models showed strong overshoot as they expected the
upward trend to continue. The exact mechanisms underlying the
turnaround remain poorly understood. A new set of restrictions
referred to as the Bundesnotbremse in German (federal
emergency break) was introduced too late to explain the change
on its own.

In Germany, the study period coincided almost perfectly with a
prolonged period of decline in deaths. In Fig. 7, panels (a) and (b)
show the behavior of the median ensemble at the beginning and
end of this phase. The ensemble had already anticipated a
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Fig. 6 Case forecasts in Poland surrounding the peak in April 2022. Point forecasts of cases in Poland from a 22 March, b 29 March, and c 5 April 2021,
surrounding the peak week. In each panel, the date at which forecasts were created is marked by a dashed vertical line. The models ICM-agentModel and
MOCOC-agent1 anticipated the trend change correctly, while the remaining models show more or less pronounced overshoot.
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downward turn on 4 January, two weeks before it actually
occurred. Following the unexpectedly strong increase in the
following week, it went to extending the upward tendency, before
switching back to predicting a turnaround. It seems likely that
the irregular pattern in late December and early January is partly
due to holiday effects in reporting, and forecast models may have
been disturbed by this aspect.

At the end of the downward trend in late March, the ensemble
again anticipated the turnaround to arrive earlier than it did, and
predicted a more prolonged rise than was observed. Nonetheless, in
both cases, the ensemble, to some degree, anticipated qualitative
change, and the observed trajectories were well inside the respective
95% prediction intervals (with the exception of the forecast from 4
January; however, this forecast had prospectively been excluded
from the analysis as we anticipated reporting irregularities).

In Poland, deaths started to increase in early March after a
prolonged period of decay. As can be seen in panel (c) of Fig. 7,
the median ensemble had anticipated this change (22 February
2021), but in terms of its point forecast, did not initially expect a
prolonged upward trend as later observed. Nonetheless, the
observed trajectory was contained in the relatively wide 95%
prediction intervals (Figs. 2, 3).

Discussion
We presented results from the second and final part of a pre-
registered forecast evaluation study conducted in Germany and
Poland (January–April 2021). During the period covered in this
paper, ensemble approaches yielded very good performance
relative to contributed individual models and baseline models.
The majority of contributed models was able to outperform a
simple last-observation-carried-forward model for most targets
and forecast horizons up to four weeks.

The results in this manuscript differ in important aspects from
those for our first evaluation period (October–December 2020),
when most models struggled to meaningfully outperform the
KIT-baseline model for cases. Fall 2020 was characterized by
rapidly changing non-pharmaceutical intervention measures,
making it hard for models to anticipate the case trajectory. Pooled
across both study periods, we found ensemble forecasts of deaths

to yield satisfactory reliability and clear improvements over
baseline models. For cases, however, coverage was clearly below
nominal from the two-week horizon onward, and in terms of
mean weighted interval scores, the ensemble failed to outperform
the KIT-baseline model three and four weeks ahead. This
strengthens our previous conclusion16 that meaningful case
forecasts are only feasible at very short horizons. It also agrees
with recent results from the US COVID-19 Forecast Hub36,
which led the organizers to temporarily suspend ensemble case
forecasts beyond the 1-week horizon.

The differences between our two study periods illustrate that
performance relative to simple baseline models is strongly depen-
dent on how good a fit these are for a given period. Cases in
Germany plateaued during November and early December 2020,
making the last-observation-carried-forward strategy of KIT-
baseline difficult to beat. The second evaluation period was char-
acterized by longer stretches of continued upward or downward
trends, making it much easier to beat that baseline. In this situation,
however, many models did not achieve strong improvements over
the extrapolation approach KIT-extrapolation_baseline. Ideally,
one would wish complex forecast models to outperform each of
these different baseline models. However, there are many ways of
specifying a simple baseline37, and post-hoc at least one of them
will likely be in acceptable agreement with the observed trajectory.
While the choice of the most meaningful reference remains subject
to debate, we believe that the use of a small set of prespecified
baselines as in the present study is a reasonable approach.

An observation made for both the first and the second part of
our study is that predicting changing trends in cases is very
challenging; turnarounds in death counts are less difficult to
anticipate. This finding is shared by works on real-time forecasts
of COVID-19 in the UK38 and the US39. To interpret these
insights, we note that, in principle, there are two ways of fore-
casting epidemiological time series. The first approach is to apply
a mechanistic model to project future spread based on recent
trends and other relevant factors like NPIs, population behavior,
spread of different variants, or vaccination. Models can then
predict trend changes based on classical epidemiological
mechanisms (depletion of susceptibles) or observed/anticipated
changes in surrounding factors, which depending on the model,
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may be treated as exogenous or endogenous. The second
approach is to establish a statistical relationship (often with a
mechanistic motivation) to a leading indicator, i.e., a data stream
which is informative on the trajectory of the quantity of interest,
but available earlier. Changes in the trend of the leading indicator
can then help anticipate future turning points in the time series of
interest.

Death forecasts belong to the second category, with cases and
hospitalizations serving as leading indicators. This prediction task
has been addressed with considerable success. Case forecasts, on the
other hand, typically are based on the first approach, which largely
reduces trend extrapolation, unless models are carefully tuned to
changing NPIs (see Table 1). Theoretical arguments on the limited
predictability of turning points in such curves have been brought
forward40,41, and empirical work including ours confirms that this is
a very difficult task. While the success of the two microsimulation
models MOCOS-agent1 and ICM-agentModel in anticipating the
downward turn in cases in Poland remains a rather rare exception, it
shows that careful mechanistic modeling combined with in-depth
knowledge of national specificities has the potential to anticipate the
impact of changing NPIs. As both groups heavily drew from
experience from past NPIs in Poland, there is hope that predictions
of the effects of NPIs will further improve as experience accumulates.
An alternative strategy to improve case forecasts would be to identify
appropriate leading indicators. These could, for instance, be trajec-
tories in other countries42 or additional data streams e.g., mobility,
insurance claims, or web searches. However, the benefits of such data
for short-term forecasting thus far have been found to be modest43.
Changes in dominant variants may make changes in overall trends
predictable as they arise from the superposition of adverse but stable
trends for the different variants. The availability of sequencing data
has improved considerably since our study period, and we consider
the extension of models to accommodate multiple strains a key step
towards improved prediction of trend changes. Other relevant
aspects include seasonal effects, which during our study period
remained poorly understood due to limited historical data, and
population immunity. As more data on seroprevalence become
available, predictability of saturation effects may increase, though this
will likely be complicated by the further evolution of the pathogen.

Another difficulty of case forecasts is incomplete case ascertain-
ment, which must be assumed to vary over time9,44. As a con-
sequence, data can be difficult to compare across different phases of
the pandemic, and modelers often choose to only use a recent subset
of the available data to calibrate their models. While data on testing
volumes and test positivity rates are available, estimation of the
reporting fractions and anticipation of its future development is
challenging. Even if models correctly reflect underlying epidemic
dynamics, this may thus not translate to accurate forecasts of the
observed number of confirmed cases. This is a limitation of the
considered forecasts and their evaluation, which inherit the diffi-
culties of the underlying truth data sources. Nonetheless, we argue
that a distinguishing feature of forecasts is that they refer to obser-
vable quantities, and forecasters should take into account all relevant
aspects of the system producing them. Indeed, many of the con-
sidered models (e.g., MOCOS-agent1 and FIAS_FZJ-Epi1Ger)
attempt to reconstruct the underlying infection dynamics, which are
then linked to the number of reported cases via time-varying
reporting probabilities.

We have extensively discussed the difficulties models encoun-
tered at turning points. In the aftermath of such events, epidemic
forecasts typically receive increased attention in the general media
(e.g., following the rapid downward turn in cases in Germany in
May 202145). While important from a subject-matter perspective,
this is not without problems from a formal forecast evaluation
standpoint. Major turning points are rare events and, as such dif-
ficult to forecast. Focusing evaluation on solely these instances will

benefit models with a strong tendency to predict change, and
adapting scoring rules to emphasize these events in a principled way
is not straightforward. This problem is known as the forecaster’s
dilemma46 in the literature and likewise occurs in, e.g., economics
and meteorology (see illustrations in Table 1 from ref. 46). An
interesting question for future work is whether turning points are
preceded by stronger disagreement between models, which might
then serve as an alert; or whether, on the contrary, trend changes
are followed by increased disagreement. Especially the latter ques-
tion has received considerable attention in economic forecasting47.

In this paper, we only applied unweighted ensembles and a
heuristic, rather unflexible weighting scheme based directly on
the past average performance. More sophisticated weighting
schemes have been explored in refs. 29 and30 using data from the
US COVID-19 Forecast Hub. Their results indicate that when
some contributing forecasters have a stable record of good per-
formance, giving these more weights can result in improved
performance. In particular, restricting the ensemble to a set of
well-performing models may be beneficial, a strategy employed in
the so-called relative WIS weighted median ensemble30 used by
the US COVID-19 Forecast Hub since November 2021.

The present paper marks the end of the German and Polish
COVID-19 Forecast Hub as an independently run platform. In April
2021, the European Center for Disease Prevention and Control
(ECDC) announced the launch of a European COVID-19 Forecast
Hub4, which has since attracted submissions from more than 30
independent teams. The German and Polish COVID-19 Forecast
Hub has been synchronized with this larger effort, meaning that all
forecasts submitted to our platform are forwarded to the European
repository, while forecasts submitted there are mirrored in our
dashboard. In addition, we still collect regional-level forecasts, which
are not currently covered in the European Forecast Hub. The
adoption of the Forecast Hub concept by ECDC underscores the
potential of collaborative forecasting systems with combined
ensemble predictions as a key output, along with continuous mon-
itoring of forecast performance. We anticipate that this closer link to
public health policymaking will enhance the usefulness of this sys-
tem to decision makers. An important step will be the inclusion of
hospitalization forecasts. Due to unclear data access, these had not
been tackled in the framework of the German and Polish COVID-19
Forecast Hub, but have been added in the new European version.

Data availability
The forecast data generated in this study have been deposited in a GitHub repository
(https://github.com/KITmetricslab/covid19-forecast-hub-de), with a stable Zenodo
release available under accession code 5608390 https://zenodo.org/record/5608390#.
YYFxdJso9H4. This repository also contains all case and death data used for evaluation.
These have been taken from public sources of routine surveillance data12–14, from which
they can likewise be obtained. Forecasts can be visualized interactively at https://
kitmetricslab.github.io/forecasthub/. An additional dataset summarizing all data shown
in Figs. 1–7 has been made available in the Supplementary Material of this paper as
Supplementary Data 1. Should any further data be required to reproduce the results,
these can be obtained from the corresponding authors upon reasonable request.

Code availability
Codes to reproduce figures and tables are available at https://github.com/KITmetricslab/
analyses_de_pl2, with a stable version at https://zenodo.org/record/5639514#.
YYF1aZso9H448. The results presented in this paper have been generated using the
release preprint2 of the repository https://github.com/KITmetricslab/covid19-forecast-
hub-de, see above for the link to the stable Zenodo release. The codes require the R
packages colorspace (version 2.0-3)49, plotrix (version 3.8-1)50, xtable (version 1.8-4)51,
and zoo (version 1.8-952).
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