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A B S T R A C T   

There is a paradox in the relationship between bedload transport rates and flow variables: laboratory and field 
studies have reported on how bedload transport rates depend on flow variables through a power law, but none of 
the empirical laws fitted to the data has managed to provide accurate predictions of bedload transport over a 
wide range of flow conditions. Inferring bedload transport’s scaling behavior from data has remained a stubborn 
problem because the data are very noisy. It is, therefore, difficult to progress on this problem without some 
informed speculation about how bedload and flow interact. Ralph Bagnold proposed an original theory to resolve 
this problem. This paper reviews and updates Bagnold’s model by separating the effects of flow resistance and 
efficiency (energy transfer from water to bedload) on dimensionless transport rates Φ. Both variables’ contri-
butions to transport rates can be parameterized separately for the three transport regimes that Bagnold defined 
(no transport, transitional, and sheet flow). We also consider two possible control variables: the dimensionless 
Shield stress τ* and a dimensionless number related to stream power. In the transitional regime, the dimen-
sionless bedload transport rate scales as Φ ∝ τ*3, whereas in the sheet-flow regime, it varies as Φ ∝ τ*5/3. We end 
up with two Bagnold equations: one based on physical principles and involving Shields stress τ*, flow resistance 
f , a density ratio, and a bed slope; the other based on non-linear regression and stream power. Compared to a 
large set of laboratory and field data, predictions from Bagnold’s model show reasonable accuracy when the bed 
is plane.   

1. Introduction 

If we had to sum up one century of research on bedload transport, the 
quest for a universal scaling law for bedload transport rates is certainly 
the one that has attracted the most attention in the last few decades. In a 
recent review paper, Gomez and Soar (2022) described this quest as a 
“Sisyphean task,” in reference to Greek mythology’s hero Sisyphus, who 
was condemned by Zeus to roll a boulder up to the top of a hill. 
Whenever Sisyphus reached the top, the boulder slipped from his hands 
and rolled down again, forcing him to resume his task endlessly. 

Why is a scaling law interesting and relevant to the study of bedload 
transport, and why do we care so much about its potential existence? 
Bedload transport equations are of paramount importance to engineer-
ing, and that is why engineers took a keen interest in scaling laws as 
early as the mid 19th century: at that time, engineers started to build 
river training works and increase harbor capacities on a large scale 
across Europe, and they sought to quantify the relationships between 
water discharge and sediment flux of rivers and estuaries using power 

laws. Viewed from this perspective, practical approaches to bedload 
transport essentially fell into two categories: one category modeled how 
water carries sediment and used experiments to calibrate the model’s 
parameters (du Boys, 1879; Forchheimer, 1914; Einstein, 1937; 
Kalinske, 1947), whereas the second category collected data and used it 
to fit a power law (Gilbert, 1914; Donat, 1929; Schoklitsch, 1934; 
Meyer-Peter et al., 1934; Thompson et al., 1935; Shields, 1936). Since 
the very beginning of research into bedload transport, the idea emerged 
that bedload transport rates qs should vary as a power of the excess stress 
τ − τc (du Boys, 1879; Donat, 1929; Shields, 1936; Meyer-Peter and 
Müller, 1948), excess water discharge (per unit width) q − qc (Gilbert, 
1914; Schoklitsch, 1934; MacDougall, 1933; Thompson et al., 1935), 
excess stream power ω − ωc (Bagnold, 1966), or water velocity u − uc 

(Forchheimer, 1914; Kalinske, 1947), where τ [Pa], q [m2⋅s− 1], ω 
[W⋅m− 2], and u [m⋅s− 1] denote the bed shear stress, flow discharge per 
unit width, stream power per unit width, and velocity, respectively, and 
the c subscript refers to incipient particle motion. As these power laws 
lack theoretical support, the exponents are not known in advance and 
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must be fitted to the data, but as those data are fraught with variability 
and uncertainties, the exponents have been found to range from 1 
(Cohen et al., 2010) to 16 (Paintal, 1971), with a consensual value 
around 3/2 (Meyer-Peter and Müller, 1948; Wong and Parker, 2006). 

Apart from their usefulness in engineering, scaling laws are espe-
cially significant in helping us to understand how physical or biological 
systems self-organize in response to internal or external changes, and 
that is why they have been extensively studied since the early 20th 
century, giving rise to an abundant literature (Seshadri and Na, 1985; 
Turcotte, 1995; Bak, 1996; Solé et al., 1999; Sornette, 2000; Dodds and 
Rothman, 2000; Barenblatt, 2003). Scaling laws often reflect the 
persistence of intrinsic features or physical principles across scales, 
regardless of the specific dynamics of each process at a given scale 
(Barenblatt, 2003). For instance, Lacey (1930) found that for straight, 
self-formed channels over mobile beds, the wetted perimeter Pw [m] 
varied as the square root of the water discharge Q [m3⋅s− 1], irrespective 
of bed slope and roughness: Pw = 4.83Q1/2 in the metric system. A large 
body of data has confirmed this empirical law, often with the width as a 
substitute for the wetted perimeter and an exponent that may slightly 
deviate from 0.5 (Leopold and Maddock, 1953; Richards, 1977; Fergu-
son, 1986; Li et al., 2015; Métivier et al., 2017; Phillips et al., 2022). 
Lacey’s equation holds over a wide range of water flow rates (spanning 6 
orders of magnitude), from laboratory flumes to large real-world rivers. 
Like all power laws, it is scale-invariant, which means that the equation 
structure does not change when the water discharge is multiplied by any 
factor. It is also scale-free in its original form, which means that the 
perimeter’s magnitude is not set by any particular length scale. At first 
glance, Lacey’s law seems to contradict what we have learnt from flow 
resistance in straight channels—flow resistance equations show the 
interdependence of water discharge, bed roughness, bed slope, flow 
depth and wetted perimeter—but when we delve into the underlying 
mechanisms of channel formation, it is tempting to view Lacey’s equa-
tion as the manifestation of general principles that rule how rivers adjust 
their cross-sections to drain water, transport excess sediment, and reach 
an optimal state in terms of energy and transport capacity. A large 
number of theoretical explanations have been advanced to explain 
Lacey’s law, and although no consensus has been reached to date (Fer-
guson, 1986; Singh and Nott, 2003; Gleason, 2015), the criticisms raised 
in the debate about the origin of Lacey’s equation (and other related 
forms) have prompted scientists to bounce ideas off each other and hone 
their respective arguments. 

Bedload scaling equations are often criticized for their inaccuracies. 
Prediction errors exceeding one order of magnitude are often reported 
when comparing these equations with field or laboratory data (Ancey, 
2020b). Their partial failure to summarize observations has pushed 
scientists to develop bedload equations for specific bed morphologies, 
grain size ranges, or flow conditions. The main problem with the 
development of specific equations is that we sacrifice universality to 
gain accuracy, thus leaving the question of bedload scaling unanswered. 
Naturally, the partial failure of existing scaling equations may mean that 
there is no such thing as a universal bedload transport scaling equation. 
Indeed, there are many reasons why sediment transport should not 
exhibit a universal behavior:  

• the distinctive nature of sediment particles (bedload vs. suspended 
load) (Turowski et al., 2010),  

• varied complex processes affecting the streambed (e.g., partial 
mobility, bed armoring and arrangement, vegetation, cohesion) 
(Wilcock and McArdell, 1997; Pitlick et al., 2008; Yager and 
Schmeeckle, 2013; Yang and Nepf, 2019),  

• uncontrolled boundary conditions (e.g., bedrock, varying sediment 
supply) (Whiting and King, 2003; Yager et al., 2012; Recking, 2012; 
Turowski et al., 2013; Gomez and Soar, 2022; Schwindt et al., 2023),  

• grain sorting (Parker, 1991; Lisle, 1995; Frey and Church, 2009),  

• large fluctuations in transport rate time series (Kuhnle and Southard, 
1988; Gomez, 1991; Nicholas et al., 1995; Dhont and Ancey, 2018; 
Gomez et al., 2022),  

• overlapping or separate response times (bed vs. water stream 
response, scales of observation) (Gomez et al., 1989; Hoey, 1992; 
Recking et al., 2012; Heyman et al., 2013), and  

• coupling between bedload transport, bedform, and water flow, and 
the influence of bed morphology (Church and Ferguson, 2015; 
Recking et al., 2016; Blondeaux et al., 2018). 

Concurrently, there is ample evidence that laboratory and field data 
provide consistent power-law relationships between bedload transport 
rates and water discharge, thus supporting the idea of a single scaling 
law representing the first-order control of water discharge on bedload 
transport whose mean trend has to be corrected by higher-order terms 
accounting for more specific processes. The increasing accessibility of 
high-resolution bedload data and the development of data-driven ap-
proaches may soon overcome the current limitations of the regression 
analyses applied to bedload (Gomez et al., 2022). However, until then, 
we can attempt to move one step further towards elucidating bedload 
transport’s scaling behavior by making an educated guess about what 
controls bedload transport. 

This paper revisits the problem of bedload transport scaling by 
critically examining Bagnold’s theory. Why Bagnold? Bagnold was 
associated with one of the few attempts to derive a scaling law based on 
physical principles—a law sufficiently versatile that it could be applied 
to a wide range of flow conditions. Over the years, Bagnold swung be-
tween rationalism (applying the principles of physics to derive a scaling 
law) and empiricism (applying regression analysis to a wide range of 
data). We follow him down both these avenues by building a bedload 
equation from Bagnold’s ideas and the available information,and by 
fitting a power-law equation to experimental data. 

In Sec. 2, we explain how Bagnold derived his equation relating 
bedload transport rate and stream power. We also express this equation 
by specifying its dependence on flow resistance, which leads us to pro-
pose an alternative formulation based on the bottom shear stress. 
Although Bagnold emphasized stream power as the main control vari-
able, he also used the bottom shear stress to partition flow regimes 
(see § 2.5). It thus makes sense to have a more consistent formulation. 
We review three assumptions underpinning the derivation of Bagnold’s 
equation: the local nature of transport in Bagnold’s model (see § 2.2), 
bedload as a one-phase continuum at dynamic equilibrium (see § 2.3), 
and the equation’s link with variational principles (see § 2.4). To close 
Bagnold’s model, we need to supplement it with elements that were 
absent or only partially available in his time: parameterized energy 
transfer and flow resistance (see § 2.6); the detail about the calibration 
procedure has been left out of this paper and placed in the Supple-
mentary Material (see § S1). We end the presentation of Bagnold’s model 
by summarizing the three respective expressions of the dimensionless 
transport rate Φ for the three transport regimes Bagnold identified 
(see § 2.7, where the variables will also be defined): the no-transport, 
transitional, and sheet-flow regimes. We propose the complete expres-
sion Φ(τ*, i, f , s, μ), specifying dependence of Φ on the Shields stress τ*, 
bed slope i, the Darcy–Weisbach friction coefficient f , the density ratio s, 
and Bagnold’s friction μ. We also propose a simplified expression 
referred to as Bagnold’s master equation, where only the main trend 
Φ(τ*) is reported. We also revisit Bagnold’s regression analysis and 
propose a scaling equation Φ(Ω, ξ,R, s)—referred to as Bagnold’s sca-
ling—in the form of a product M of the monomial powers of the scaled 
stream power Ω, relative submergence ξ, the particle Reynolds number 
R, and the density ratio s. 

In Sec. 3, we compare predictions from Bagnold’s model with labo-
ratory data for the no-transport (see § 3.1), transitional (see § 3.2), and 
sheet-flow regimes (see § 3.3). The focus is on the Φ(τ*) relationship, but 
we also look at how the Φ(M) relationship performs using flume data 
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(see § 3.4) and how Bagnold’s model compares with other theoretical 
models (see § 3.5). We then apply Bagnold’s model to gravel-bed and 
sand-bed rivers for which sufficiently accurate records of bedload 
transport rates and hydraulic conditions are available (see § 3.6). 

In Sec. 4, we examine how recent research in hydraulics and 
granular-flow dynamics sheds light on Bagnold’s theory. We start by 
revisiting Bagnold’s partitioning into three transport regimes (see § 4.1). 
Recent research has focused on microstructural theories of bedload 
transport. Within this framework, the existence of distinct transport 
regimes is seen as the consequence of the varied nature of particle 
contacts (see § 4.2). Finally, we examine how recent microstructural 
models of bedload transport shed further light on Bagnold’s approach 
(see § 4.3). 

2. Historical background and a reformulation of Bagnold’s 
equation 

2.1. Bedload transport equation 

2.1.1. Derivation of Bagnold’s model 
All Bagnold’s milestone papers, from 1956 to 1986, were predicated 

on the core assumption that water streams behave as “transporting 
machines.” The word machine is significant here because it is closely 
related to thermodynamics, the science created in the 19th century to 
understand how energy could be extracted and converted to work in 
steam machines. For Bagnold, energy was the key concept to under-
standing the dynamics of sediment transport. Note that well before this 
time, a few scientists had intuited the part played by stream power in 
sediment transport (Seddon, 1886; Gilbert, 1914; Cook, 1935), but they 
had not developed the analogy of transport machines as Bagnold did. 

Throughout Bagnold’s papers, developed along two distinct avenues 
of research, energy was the driving variable. His earliest contributions 
focused on a microstructural analysis of stress generation and energy 
dissipation in a granular suspension (Bagnold, 1956, 1966, 1973). Later, 
by the 1970s, Bagnold simplified his approach to bedload and ended up 
with a holistic model based on general physical considerations, regres-
sion analysis, and experimental evidence (Bagnold, 1977, 1980, 1986). 

The overarching idea of Bagnold’s approach is simple. Let us 
consider a water column of depth h [m], flowing at a depth-averaged 
velocity ū [m⋅s− 1], over a bed whose slope is denoted by i = tanθ 
where θ is the bed angle with respect to horizontal; in the following, we 
will use the usual assumption of shallow slopes: i = tanθ ≈ sinθ. In a 
steady uniform flow, the gravitational forces impart the driving power 
called stream power [W⋅m− 2] 

ω = ϱghūi = ϱgqi,

where q = hū is the water discharge per unit width [m2⋅s− 1], ϱ is the 
water density [kg⋅m− 3], and g denotes the gravitational acceleration 
[m⋅s− 2]. This power is dissipated by friction. The dissipative power is 
P = τbū [W⋅m− 2], where τb denotes the bottom shear stress [Pa]. In the 
absence of bedload transport, the supplied energy is primarily dissipated 
by friction near the bottom, and thus, under steady-state conditions, 
P = ω and τb = ϱghi. 

When the stream entrains particles, it imparts momentum to them, 
and thus part of the energy is dissipated by those particles. In his 1956 
paper, Bagnold assumed that the power P [W⋅m− 2] dissipated by par-
ticles was related to the difference between the actual bottom shear 
stress and the critical value for incipient motion τc [Pa] (Bagnold, 1956): 

P = (τb − τc)ūb, (1)  

where ūb is the flow velocity near the bottom [m⋅s− 1]. This assumption, 
referred to as the Bagnold hypothesis, has often been used in subsequent 
models of bedload transport. In his later papers, Bagnold put this idea 
aside without further justification. He merely assumed that P and ω were 

related to each other through an efficiency factor eb ≤ 1 (reminiscent of 
machine efficiency) (Bagnold, 1966): 

P = ebω. (2) 

Let us now look at how Bagnold modeled energy transfers between 
the discrete (particles) and continuous (water) phases. Bagnold (1954) 
observed that when sheared at sufficiently high rates, particles experi-
ence collisional interactions and, as a consequence, the effective normal 
and shear stresses, σp and τp [Pa], scale as the square shear rate γ̇ [s− 1] 
and particle diameter d [m]: 

σp ∝ ϱpd2 γ̇2 and τp ∝ ϱpd2 γ̇2,

where ϱp is the particle density [kg⋅m− 3]. These expressions are often 
referred to as the Bagnold law (Campbell, 1990; Andreotti et al., 2013), 
and Bagnold referred to the normal stress σp experienced by particles as 
the dispersive stress. Bagnold’s law implies that the ratio μb = σp/τp is 
roughly constant for a certain range of shear rates and particle con-
centrations, and it can thus be interpreted as a dynamic friction coeffi-
cient. If bedload takes the form of a particle layer of thickness h [m] and 
concentration c(y), where y [m] denotes the coordinate normal to the 
streambed, and moving at the velocity up [m⋅s− 1], then Bagnold’s 
assumption implies that, under steady-state conditions, water supplies 
power to this carpet: 

P =

∫ h

0
τp

dup

dy
dy

=

∫ h

0
μbσp

dup

dy
dy = −

∫ h

0
up

d
dy
(
μbσp

)
dy

= μσ̄pūp = μ
(
ϱp − ϱ

)
ghscosθūs,

(3)  

where σp = c
(
ϱp − ϱ

)
g(h − y)cosθ [Pa] is the effective normal stress 

distribution (the normal stress borne by the particle phase) across the 
flow depth, μ is Bagnold’s bulk friction coefficient, and σ̄p =

(
ϱp −

ϱ
)
ghscosθ is the effective normal stress [Pa] experienced by the particle 

layer. The mean values μ, ̄us [m⋅s− 1] (mean bedload velocity), and hs [m] 
(effective bedload layer thickness) are defined by virtue of the mean 
value theorem such that the integrals above can be replaced by a simpler 
algebraic expression (for instance, 

∫ h
0 cupdy = c̄hūs = hsūs, where c̄ de-

notes the depth-averaged bedload concentration and hs = c̄h an effective 
bedload layer thickness). 

By considering that the power supplied Ps is equal to the power 
dissipated by the water stream P = ebω, and by defining the bedload 
transport rate per unit width as qs = hsūs [m2⋅ s− 1], Bagnold obtained 
μΔϱgqscosθ = ebτbū or, equivalently, 

qs =
eb

μcosθ
ω

gΔϱ
=

eb

μcosθ
ūτb

gΔϱ
, (4)  

where Δϱ = ϱp − ϱ [kg⋅m− 3]. 

2.1.2. Alternative formulation 
If we take Bagnold’s developments one step further, we can derive a 

scaling law for the bedload transport rate qs by relating it to flow 
resistance. To that end, we use the Darcy–Weisbach relationship to ex-
press the mean flow velocity as a function of the bottom shear stress: 

ū =

̅̅̅̅
8
f

√ ̅̅̅̅τb

ϱ

√

, (5)  

where f denotes the Darcy–Weisbach friction factor. Substituting this 
equation into Eq. (4) provides 

μΔϱgqscosθ = ebτ3/2
b

̅̅̅
8
f

√

ϱ− 1/2. (6) 

C. Ancey and A. Recking                                                                                                                                                                                                                      



Earth-Science Reviews 246 (2023) 104571

4

We define the dimensionless shear stress and bedload transport rate 

τ* =
τb

Δϱgd
and Φ =

qs
̅̅̅̅̅̅̅̅̅
sgd3

√ , (7)  

where s = Δϱ/ϱ. The dimensionless shear stress is also referred to as the 
Shields number or stress. With this notation, we can recast Eq. (4) into the 
dimensionless form of 

Φ =
eb

μcosθ

̅̅̅
8
f

√

τ*3/2, (8)  

which leads to the asymptotic scaling Φ ∝ τ*3/2 when assuming that the 
friction factor f , the efficiency factor eb, and friction angle μ tend to 
constant values in the limit of τ*→∞. The link between dimensionless 
bedload transport rate, flow resistance, and Shields stress was made 
explicitly by Parker et al. (1982) and Ferguson (2012) (among other 
authors). 

2.1.3. A first critical look at Bagnold’s assumptions 
Here we review some assumptions used explicitly or implicitly by 

Bagnold (1966). Some of them require more attention and development, 
and they will be addressed in § 2.2–2.4. 

One key assumption in Bagnold’s model derivation is that the flow 
carrying bedload reaches a steady state. This implies, in particular, that 
sediment is fully available. Implicitly, Bagnold also assumed that the 
sediment had a representative diameter d, which implies that either this 
sediment is well-sorted or there is no significant size effect on the 
transport rate. Ignoring any dependence of bedload transport rates on 
particle size distribution, Bagnold did not differentiate between particles 
that were transported and those that lay on the bed surface or in the 
subsurface. 

Bagnold gave no clear indication about bedload transport’s align-
ment with the main flow direction. His first assumption in Eq. (1) has 
often been interpreted as the collinearity between bedload transport and 
shear stress directions, and it was criticized as such by Seminara et al. 
(2002) when they generalized bedload transport equations for flows 
over irregular topography. His second assumption in Eq. (2) involved 
stream power, an algebraic quantity with no preferential direction. 

Although Bagnold (1966) considered the existence of a mobile bed as 
a crucial element to his model’s validity, he did not try to relate particle 
exchanges to the bed and particle transport (as, for instance, Einstein 
(1950) did by studying entrainment and deposition rates). He stated that 
his theory could not apply to fixed beds. Nothing in his theoretical de-
velopments, however, justifies excluding fixed bottoms. 

Bagnold assumed that he could calculate bedload transport in 
isolation from the fluid dynamics (turbulence, form drag, flow resis-
tance). For him, knowing the tractive force exerted by the flow on the 
carpet was sufficient to calculate bedload transport rates. The alterna-
tive formulation presented in § 2.1.2 shows that it is possible to account 
for flow resistance in his bedload equation if the driving variable is the 
Shield stress τ* instead of stream power. 

Bagnold (1966) assumed that the mean bedload concentration could 
be fixed at a maximum value (c̄ = 0.53) much lower than the static bed’s 
concentration (c̄0 = 0.65). This assumption is dubious, but probably not 
critical because Bagnold encoded varying bedload concentration’s effect 
on flow dynamics into the dynamic friction coefficient μb (Bagnold, 
1956, 1966). His definition of the bulk friction angle μ (see § 2.6) may 
thus compensate, to some extent, for the error made by assuming a 
constant bedload concentration. 

Bagnold’s assumption of τp = μbσp, used in Eq. (3), can be compared 
with Terzaghi’s principle, used in geomechanics (Davis and Sevladurai, 
2002). According to this principle, the base of a saturated cohesionless 
layer undergoes a normal effective stress σ′

y defined as the difference 
between the total normal stress σy =

(
(1 − ζ)ϱp + ζϱ

)
ghscosθ and the 

interstitial fluid pressure p [Pa]: σ′
y = σy − p [Pa], where ζ = 1 − c is the 

porosity (i.e., ratio of the void volume to the total volume). In geo-
mechanics, the granular layer is seen as a two-phase continuum. If the 
fluid pressure is assumed to be hydrostatic (i.e., p = ϱg(h − y)cosθ), then 
the effective normal stress matches Bagnold’s dispersive stress σp: σ′

y =

(1 − ζ)
(
ϱp − ϱ

)
ghscosθ = σp. Note that numerous authors have ques-

tioned the approximation of hydrostatic pressure (Iverson, 1997; Pailha 
and Pouliquen, 2009; Iverson and George, 2014; Bouchut et al., 2016; 
Guazzelli and Pouliquen, 2018) in their two-phase models of saturated 
granular flows because the fluid pressure fluctuations created by the 
rapid contraction and dilation of pores during shearing are non- 
negligible relative to hydrostatic pressure. 

Bedload transport can be perceived differently depending on the 
timescale of observation. When looking at flume or river flows over 
timescales ranging from seconds to hours, bedload transport can be 
defined as the water-induced displacement of particles, and in this case, 
it makes sense to seek a dependence of bedload transport rates qs on 
instantaneous water discharge q or water stream ω, as Bagnold did: qs =

f(q) or qs = f(ω). Over longer timescales, let us say months or years, 
bedload transport reflects spatial and temporal bed variations, and its 
rate can be related to bedform displacement (Nicholas et al., 1995; 
Vericat et al., 2017). When the bed profile is regarded as the linear su-
perposition of bedforms with wavelength λ [m], amplitude A(λ) [m] and 
propagation speed C(λ) [m⋅s− 1] (typically for sand dunes), then the 
bedload transport rate can be defined as 

qs = (1 − ζ)
∫

A(k)C(k)dk  

where k is the Fourier mode (Simons et al., 1965; Nikora, 1984; Guala 
et al., 2014; Lee et al., 2023). We know of no generalization to other 
bedforms, but this lack of a generalized bedload transport model has 
been filled by the development of landscape evolution models, in which 
bed variations are modeled using cellular automata, nonlinear diffusion 
or advection-diffusion equations (Willgoose, 2005; Coulthard and Van 
De Wiel, 2012; Chen et al., 2014; Williams et al., 2016). Formally, the 
sediment volume transported over long periods could be computed by 
the time-integration of instantaneous bedload transport equations in the 
form qs = f(q) or qs = f(ω). However, in practice this procedure may 
lead to inaccurate estimates of the sediment budget, particularly in the 
gravel-bed rivers for which Shield stresses remain close to the threshold 
of incipient motion (to within a factor of 2). Although Bagnold (1966) 
made no mention of the timescale for which his model holds, his deri-
vation leads us to think that it is only valid when estimating instanta-
neous bedload transport rates. 

2.2. Local and non-local transport 

A caveat is in order at this stage. When expressing Bagnold’s bedload 
equation in the form (8) and assuming that the parameters f , eb, and μ 
are constant, we end up with the scaling of Φ ∝ τ*3/2, which does not 
differ from empirical equations like the Meyer-Peter–Müller equation 
(Meyer-Peter and Müller, 1948). Likewise, Bagnold’s moving carpet 
concept was not so different from the sliding layers imagined by Paul du 
Boys (1879) and subsequent authors, who expressed bedload transport 
rates as a function of the water stream’s driving force. There is a pos-
sibility of confusion here that we have to eliminate. 

Models involving bottom shear stress assume that bedload transport 
is a local process: particle flux adjusts instantaneously to the bottom 
shear stress that the water flow exerts on the streambed. Bedload 
transport corresponds to the everyday experience of exerting friction to 
displace an object. By contrast, Bagnold’s model implies that bedload 
transport is a non-local process: the energy dissipated by the particle 
carpet is part of the total energy dissipated by the water column. 
Calculating bedload transport rates involves determining all the 
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dissipative processes at play in a given flow region. 
Bagnold’s report and autobiography provided further grounds for 

using stream power (Bagnold, 1966, 1990). In real-world rivers, hy-
draulic conditions and bedload transport can exhibit substantial varia-
tions over short distances. Thus, they cannot be conveniently described 
using standard flow resistance equations based on bottom shear stress τb. 
This difficulty is alleviated if, instead of τb, one uses an effective cross- 
section (statistically representative of all sections in a given area), and 
stream power ω as the driving variable of bedload transport rates qs. 
From this perspective, Bagnold’s postulate is tantamount to stating that 
bedload transport rates can only be estimated on average and over 
sufficiently large spatial scales (typically, the cross-section). In practical 
applications to real-world cases, it is also far easier to estimate or 
measure the water discharge Q across a given cross-section, and deduce 
stream power ϱgQi than it is to measure the flow depth and velocity 
across that cross-section, and infer the bottom shear stress distribution. 

Although this was never explicitly stated by Bagnold or subsequent 
authors using stream power (Ackers and White, 1973; Yang, 1984; 
Molinas and Wu, 2001; Abrahams and Gao, 2006; Ferguson, 2005; 
Parker et al., 2011; Gao, 2012; Ferguson, 2012; Lammers and Bledsoe, 
2018), the point is not whether the main variable is stream power or 
bottom shear stress, but whether bedload transport is a local or non-local 
process. Indeed, in fluid dynamics, when thermodynamic processes (e.g., 
heat dissipation, entropy) are not considered, governing equations 
based on power and dissipation are strictly equivalent to balance 
equations involving stress and momentum: the dissipated power is 
derived from the stresses by multiplying them by the velocity field. In 
this respect, working with bottom shear stress or with stream power 
relies on the same principle of momentum conservation. Claiming that 
bedload transport is a non-local process implies that it is an adjustment 
variable that depends on what happens macroscopically in a certain flow 
region. Bagnold assumed that the flow depth was the right length scale 
for this flow region and that energy was more appropriate than stress for 
taking stock of the different processes and their interplay in a simple 
manner. Bagnold did not comment much on this crucial assumption, but 
one can find detailed justifications in Yang (1992). 

2.3. Bedload as a one-phase continuum at equilibrium 

Although Bagnold worked on a microstructural theory of granular 
suspensions—the antecedent of kinetic theory for granular gases (Haff, 
1983; Campbell, 1990; Hunt et al., 2002)—and the dynamics of saltating 
particles (Bagnold, 1954, 1973), he had preferred to work at a macro-
scopic scale when developing his bedload transport equation. In his 
pioneering paper (Bagnold, 1956, 1966), Bagnold viewed bedload 
transport as a one-phase continuum. Focusing on steady-state condi-
tions, he assumed that the bedload layer (called the carpet) was at 
equilibrium, that is, “the forces acting on every layer of solids must be in 
statistical equilibrium.” The bedload layer is then entirely characterized 
by its mean velocity ūs [m⋅s− 1], thickness hs [m], and mean concentra-
tion c̄. He defined the (volumetric) bedload transport rate as 

qs =

∫ ∞

0
c(y)up(y)dy = c̄hūs = hsūs, (9)  

where c is the local particle concentration and up denotes the local 
sediment velocity [m⋅s− 1]. These assumptions about the nature of bed-
load transport have several important consequences. 

First, particle size does not appear explicitly in the definition (9) of 
the bedload transport rate, and thus his theory was not tailored to sed-
iments with a wide grain-size distribution in which, depending on their 
size, some grains may move, while others remain at rest. Bagnold thus 
ignored a number of the physical processes at work in sediment trans-
port (partial mobility and transport, grain sorting, downstream fining, 
bed coarsening). The inclusion of the grain-size distribution in bedload 
transport equations has mostly been achieved empirically by 

hypothesizing equal mobility and hiding effects (Powell, 1998; Parker 
and Toro-Escobar, 2002; Wilcock and Crowe, 2003; Recking, 2010). 
Recently, however, the analogy with particle segregation in granular 
flows has led to advection-diffusive equations being proposed for pre-
dicting the time variations in the grain concentration (Ferdowsi et al., 
2017; Rousseau et al., 2021). 

Second, interstitial fluid plays no role other than having a buoyancy 
effect on sediment. Like many authors after him, this assumption had led 
Bagnold to consider that, as a first approximation, it was possible to 
distinguish between suspended and unsuspended (bedload) sediments. 
Dade and Friend (1998) showed that there was no clear separation be-
tween suspended load and bedload: for 0.3 ≤ ws/u* ≤ 3, sediment 
transport involves mixed loads, that is, mixtures of suspended load and 
bedload. The assumption in Bagnold’s theory that the sediment phase is 
fully subordinate to the fluid phase is also implicit. This assumption was 
consistent with Bagnold’s statement that the efficiency factor should be 
low, typically in the 0.11–0.15 range (Bagnold, 1966). As will be shown 
later (see § 2.6), much higher values are observed in flume and pipe 
experiments, which may mean that a large part of the water stream’s 
energy is dissipated, not only through turbulence and bed resistance to 
flow, but also through momentum exchanges with the bedload. Under 
these circumstances, the assumption of a fully subordinate sediment 
phase is questionable. 

Third, in Bagnold’s theory, equilibrium refers to the balance of forces 
(or stresses) in the direction normal to the bed. His definition is quite 
restrictive and differs from those used elsewhere. Gilbert (1914) seldom 
used the word “equilibrium”; instead, he wrote: 

“Whenever and wherever a stream’s capacity is overtaxed by the 
supply of debris brought from points above, a deposit is made, 
building up the bed. If the supply is less than the capacity, and if the 
bed is of debris, erosion results.” 

We can deduce that equilibrium refers to the mass balance of the bed: 
flow is in equilibrium if neither erosion nor deposition occurs in a given 
reach or, in other words, the amount of sediment that leaves the reach 
matches the amount that is deposited there. Continuing along the same 
lines as Gilbert, Einstein (1950) defined flow equilibrium as the bed’s 
mass balance over a given area (whose typical length scale is 100 grain 
diameters). In case of a mismatch between erosion and deposition, 
sediment transport is considered to be in a non-equilibrium state (Wu 
and Wang, 2007; Charru et al., 2013). Although both Einstein and 
Gilbert referred to equilibrium in terms of bed mass balance, their length 
scales differed, and thus their definitions did not overlap completely. 
When streambeds exhibit forms, mass can be conserved at a certain bed- 
length scale, whereas locally, some areas are preferentially subject to 
erosion or deposition; and even under steady-state flow conditions, 
sediment transport rates may exhibit huge temporal fluctuations due to 
sudden changes in the bed configuration (e.g., bank failure) (Dhont and 
Ancey, 2018). In this respect, rivers are closer to punctuated equilibrium 
systems: phases of rapid changes—during which the bed self-adjusts in 
response to local changes in the bed configuration or to a varying 
sediment input—alternate with long periods of weak transport (Ancey, 
2020b). More recently, when referring to weak sediment transport 
under steady-state conditions, the emphasis has been put on statistical 
equilibrium (Furbish et al., 2012; Ancey and Heyman, 2014; Furbish 
et al., 2017): the bedload transport rate is handled as a random variable 
whose variations are fully characterized by its probability density 
functions and power spectrum under bed equilibrium conditions. Said 
differently, the river attains an equilibrium state if the probability dis-
tribution of its flow variables (e.g., the bedload transport rate, the cross- 
section) remains stationary. In stochastic theories of bedload transport, 
the ensemble-averaged transport rate 〈qs〉 involves a diffusive contri-
bution and is thus entirely controlled by the local flow conditions: 

〈qs〉 = 〈γ〉〈ūs〉+
∂
∂x

(Dr〈γ〉 ) (10) 
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where γ denotes the particle activity [m] (volume of moving particles 
per unit streambed area), ūs is the mean sediment velocity [m⋅s− 1], Dr is 
the particle diffusivity [m2⋅s− 1], and the angle brackets 〈⋅〉 are used to 
denote an ensemble-averaged quantity (Furbish et al., 2012; Ancey and 
Heyman, 2014; Furbish et al., 2017). Some fully deterministic models 
have also introduced diffusion. For instance, based on empirical evi-
dence of space and time variations in the bedload transport rate, Charru 
et al. (2004) suggested a differential form for defining the local transport 
rate: 

qs = qeq − Ts
∂
∂t

qs − Ls
∂
∂x

qs, (11)  

where Ls [m] and Ts [s] are the length and time scales, called the satu-
ration length and saturation time, representing the typical length and 
times needed to reach the equilibrium transport rate qeq [m2⋅s− 1] that is 
observed for a flat bed under steady-state conditions. As Wainwright 
et al. (2015) highlighted, the notion of bed equilibrium and transport 
capacity varies between authors. 

Although based on force balance rather than mass balance, Bagnold’s 
definition of equilibrium is not necessarily incompatible with Einstein’s 
or Gilbert’s definition. Indeed, as the kinematic wave approximation to 
the shallow water equations illustrates (Hunt, 1984; Singh, 2001), un-
steady flows can be close to a dynamic equilibrium state while showing 
significant but slow time variations in their mass. By contrast, compared 
with more recent definitions involving a diffusive part, Bagnold’s defi-
nition is unable to account for the possible modulation of bedload 
transport rates when the particle activity γ is non-uniformly distributed 
along the bed. The only way to account for this diffusive process would 
be to make the efficiency factor eb dependent on sediment transport 
upstream, a possibility that Bagnold did not contemplate in his writings. 

2.4. Link with variational principles 

In their analogy between thermodynamic and geomorphic systems, 
Leopold and Langbein (1962) advocated using entropy to calculate a 
river’s most probable state, i.e., its longitudinal profile, its optimal cross- 
section, and the structure of its drainage networks. The most probable 
state is the one for which entropy is maximum or the entropy production 
rate is minimum. The equivalent of internal energy was the potential 
energy (Bagnold, 1966). Leopold and Langbein’s seminal paper gave rise 
to abundant literature based on the premise that geomorphic equilib-
rium can be determined using variational principles such as the principle 
of least action or maximum entropy (Yang et al., 1981; Yang, 1996; 
Molnár and Ramirez, 1998; Yalin and Ferreira Da Silva, 1999, 2000; 
Huang and Nanson, 2000; Huang and Chang, 2006; Singh et al., 2003; 
Millar, 2005; Nanson and Huang, 2008; Xu et al., 2016; Joshi et al., 
2018; Nanson and Huang, 2018; Tranmer et al., 2020). For instance, 
assuming that flow resistance can be estimated using the Man-
ning–Strickler equation, Huang (2010) found that the bedload transport 
rate should vary as Φ = 6.09(τ* − 0.0474)5/3, with a 5/3 exponent, 
higher than the 3/2 exponent used in the original Meyer-Peter–Müller 
equation. 

Among the various entropy-based approaches to bedload transport, 
Chih Ted Yang’s model was based on Prigogine’s and Gyarmati’s prin-
ciples to postulate that rivers are open dissipative systems, whose 
equilibrium corresponds to the state with the minimum entropy- 
production rate (Yang, 1971; Yang and Molinas, 1982; Yang, 1994, 
1996). According to Yang (1996), bed equilibrium is reached when the 
total energy dissipation of P [W⋅m− 2] is minimum, where 

P = ϱsgqsi+ ϱgqi, (12)  

and ϱs = cϱp + (1 − c)ϱ is the bulk density. In spite of the theoretical and 
experimental evidence provided by Chih Ted Yang and coauthors, some 
researchers like Parker (1977) considered the principle of the minimum 

entropy-production rate to have been “pulled out of a hat.” Indeed, in 
fluid mechanics, the only minimum dissipation principle commonly 
accepted is the Helmholtz–Korteweg theorem, which states that for 
incompressible Newtonian fluids, the solution to the Stokes equations 
minimizes the rate of energy dissipation (Keller et al., 1967; Batchelor, 
1970). For inertial flows, no extremum principle exists. Gray and Ghi-
daoui (2009) and Gray et al. (2018) derived depth-averaged balance 
equations (including internal energy and entropy) for one-directional 
flows and found that regardless of the flow regime (steady or un-
steady), the entropy production rate is: 

Λ =
P

T
=

1
T
(ϱsgqsi+ ϱgqi), (13)  

where T denotes absolute temperature [K]. Gray et al. (2018) found that 
the entropy production rate Λ is not a convex function of the flow depth 
(there is, therefore, no minimum of Λ(h) apart from the trivial solution 
h = 0). As a consequence, they concluded that “the use of an energy 
minimization principle with open channel flow is not physically war-
ranted” (Gray et al., 2018). More generally, the idea that geomorphic 
systems can be studied using extremum principles taken from the ther-
modynamics of irreversible processes has long been debated, and the 
consensus leans towards the irrelevance of thermodynamics concepts 
(Davy and Davies, 1979; Davies and Sutherland, 1983; Griffiths, 1984; 
Thorn and Welford, 1994). From this perspective, there is little hope that 
Bagnold’s assumption about stream power (as the main driving variable) 
could be justified a posteriori using variational principles. 

2.5. Bedload transport regimes 

Bagnold (1966) did not explicitly refer to transport regimes (his 
writings never employed the word “regime” but rather “stage”). Without 
abandoning the meaning that Bagnold (1966) wished to convey, we can 
consider there to be three distinct bedload regimes:  

• When τ* < τ*
c : there is no bedload transport when the dimensionless 

shear stress is below the threshold of incipient motion τ*
c , hereafter 

called critical shear stress. Most models of bedload transport assume 
the existence of a threshold of incipient motion, but its existence has 
been brought into question by some observations at low shear stress 
(see § 3.1 for further information).  

• When τ*
c < τ* < τ*

x: bedload transport takes the form of saltating and 
rolling particles that move intermittently along the bed. Bagnold 
highlighted how difficult it was to predict bedload transport rates in 
this regime, which he referred to as the transitional regime. He 
referred to τ*

x as the critical bedload stage. According to Bagnold 
(1966), it ranges from 0.25 (when d ≥ 2 mm) to 0.5 (when d ≤ 0.3 
mm).  

• When τ* > τ*
x: bedload transport occurs in the form of a particle 

carpet, in which particles experience collisions and friction. Bed-
forms disappear or, at least, cease to create appreciable form drag. 
Bagnold called this regime the high transport stage, but it is more 
commonly referred to as the sheet-flow regime in contemporary hy-
draulic literature, and we use this term hereafter. 

Fig. 1 shows the Shields diagram in the (R, τ*) space. For the critical 
shear stress τ*

c , we used the parametrization proposed by da Silva and 
Bolisetti (2000), who defined it as a function of the particle Reynolds 
number R (see Appendix A): 

R =

̅̅̅̅̅̅̅̅̅
sgd3

√

ν , (14)  

where ν is the kinematic viscosity of water [m2⋅s− 1]. 
Suspension occurs when turbulent velocity fluctuations are able to 

counterbalance the settling velocity ws [m⋅s− 1] imposed by the particle’s 
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immersed weight. Bagnold (1966) assumed that the threshold for sus-
pension was reached when ws = 1.25u*, where u* [m⋅s− 1] denotes the 
friction velocity, which we simplify into 

ws = u*. (15) 

Fig. 1 shows the dimensionless formulation (A.5) of this equation. 
Bagnold also considered the critical stage for carpet formation to be: 

τx = c0ϱgdtanα, (16)  

where c0 = 1 − ζ0 = 0.65 denotes the bed’s static volume concentration. 
In a dimensionless form, the critical stage is thus τ*

x = c0tanα. Antici-
pating the results in Section 2.6, which specifies tanα’s dependence on 
flow conditions (see Eq. (18) below), we can plot the critical stage τ*

x in 
Fig. 1. Four areas are bounded by the curves ws = u*, τ*

x, and τ*
c . The 

regime studied by Bagnold (1966) is the sheet-flow domain, colored in 
yellow. We define three additional regimes: Bagnold’s transitional 
regime, which he did not investigate, but which we will characterize in 
more detail in the following section, and two regimes for suspended load 
(when u* > ws), which we will not study in this review paper: the dilute 
and dense suspension regimes. 

2.6. Model calibration 

Bagnold’s model (8) involves three parameters: the dynamic friction 
coefficient μ, the efficiency factor eb, and the Darcy–Weisbach friction 
coefficient f . These parameters cannot be determined theoretically using 
conservation principles in a simple manner, and we thus used empirical 
closure equations to relate these parameters to the flow variables. Here 
we provide the main results and refer the reader to the Supplementary 
Material for the detail. 

2.6.1. Dynamic friction coefficient μ 
For the friction coefficient μ, Bagnold (1956) found that the local 

Coulomb friction factor μb = τp/σp was dependent on shear rate and 
particle concentration. Assuming a constant bedload concentration c =

0.53, he derived an expression for the bulk friction coefficient μ = tanα 
where α is the generalized internal friction angle (“generalized” means 
that this definition holds for stationary or creeping layers of grains, and 
we extend it to situations in which flow is more intense), with a 

dependence on the dimensionless number that came to bear this name: 

G2 =
ϱpτbd2

14η2 =
ϱp

ϱ
τ*

14
R2, (17)  

where η = ϱν is the water’s dynamic viscosity [kg⋅m− 1⋅s− 1]. Using 
Bagnold’s (1956) data, we found that the dependence of the friction 
angle μ = tanα on the dimensionless number G can be approximated by 
the empirical equation: 

μ = tanα = tanαmax − tanαmintanh
G1.8

1000
, (18)  

where tanαmax = 0.75 and tanαmin = 0.375 are the upper and lower limits 
of the μ variation. As explained in § 2.1, this bulk friction coefficient μ 
represents the average Bagnold friction factor μb over the bedload layer 
thickness. 

2.6.2. Efficiency factor eb 
For the efficiency factor eb, Bagnold (1966) stated that the efficiency 

factor’s upper bound was 0.15. Later, Bagnold (1977) abandoned the 
idea of calculating the efficiency factor and instead used empirical evi-
dence to provide the following scaling law: 

eb = 1.6
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω − ωc

ωc

√ (
h
d

)− 2/3

, (19)  

where ωc denotes the threshold stream power (related to sediment’s 
incipient motion) [W⋅m− 2], which was estimated using the Shields cri-
terion and Keulegan’s law 

ωc = τcu*c = ϱ
(
sgdp

)3/25.75log
12hc

dp
= 2860d3/2

p log
12hc

dp
, (20)  

where τ*
c = 0.04 is the critical Shields number, s is set to 1.6, u*

c =
̅̅̅̅̅̅̅̅
ghci

√

[m⋅s− 1] is the friction velocity for the depth hc [m] related to incipient 
motion, and dp [m] is the peak value (mode) of the grain size distribu-
tion. This definition raised criticisms as to its practical relevance given 
how difficult it is to determine the depth hc. Further studies have sug-
gested that the critical stream power varies as d3/2 (Petit et al., 2005; 
Ferguson, 2005; Parker et al., 2011; Eaton and Church, 2011; Ferguson, 
2012): 

–

–

Fig. 1. Shields curve in the (R, τ*) coordinate system, where R and τ* denote the particle Reynolds number (14) and the Shields stress (7), respectively. The threshold 
of incipient motion τ*

c is the empirical parametrization (A.1). The threshold for suspension ws = u* is given by the dimensionless eq. (A.5). The critical stage τ*
x is 

given by the dimensionless form of Eq. (16). 
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ωc = ϱ(sgd)3/2ω*
c , (21)  

with ω*
c ∼ 0.1—Ferguson (2012) found that ω*

c depends on the bed slope 
and sediment gradation d84/d50, but overall, it lies in the 0.05–0.15 
range. 

Later, (Bagnold, 1980) corrected Eq. (19) and proposed a new 
scaling: 

eb ∝ (ω − ωc)
1/2d− 1/2h− 2/3. (22) 

Although Bagnold (1980, 1986) reported a good agreement between 
this scaling and bedload transport rate data (from laboratory flumes and 
field surveys), Martin and Church (2000) noted that Bagnold selected 
just a few datasets from among the many available at that time, and 
discarded others without providing any justification for doing so. They 
also found an inconsistency in the scaling, which led them to reconsider 
the dependence of eb on flow parameters. Proceeding by trial and error, 
they found that the scaling of 

eb ∝ (ω − ωc)
1/2d1/4h− 1ϱ− 1/2g− 9/4 (23)  

provided the best fit with the data. As dimensionless forms are often 
preferable to monomial products (with no clear physical interpretation), 
we recast Martin and Church’s suggestion in the form of a product of the 
following dimensionless groups: the scaled stream power Ω = ω/(νgρ), 
the particle Reynolds number R, the relative submergence ξ = h/d, and 
the density ratio s. Eq. (23) then reads, 

eb ∝ Ω1/2ξ− 1s− 1/4R− 1/2, (24)  

which implies that the dimensionless bedload transport rate varies as 
Ω3/2: 

Φ ∝ Ω3/2ξ− 1s− 5/4R− 3/2. (25) 

To further test this scaling, we defined the dimensionless number 
Π = Ωa1 ξa2 Ra3 sa4 , where the exponents a1 to a4 were free parameters to 
be adjusted from data. We used the data recapped in Table 1 to set these 
exponents using a Markov chain Monte Carlo algorithm. We found a1 =

0.50 ± 0.04, a2 = − 0.49 ± 0.08, a3 = − 0.66 ± 0.05, and a4 = −

0.83 ± 0.08. By setting, a1 = 1/2, a2 = − 1/2, a3 = − 2/3, and a4 = −

4/5, we found that eb ∝ Π. We eventually ended up with the following 
scalings: 

eb = 1.2Π with Π = Ω1/2ξ− 1/2R− 2/3s− 4/5 and
Φ = 4M with M = Ω3/2ξ− 1/2R− 5/3s− 9/5,

(26)  

which performs slightly better than Eq. (24) for the dataset used here-
—the coefficient of determination and the Bayesian information crite-
rion were 0.61 and 1368, respectively, for Eq. (26), whereas they were 
0.56 and 1416 for Eq. (24). The dimensionless number M =

Ω3/2ξ− 1/2R− 5/3s− 9/5 has been labeled in reference to Yvonne Martin’s 

contribution. As it was obtained by statistical adjustment, it has no 
special physical meaning. Note that we did not need to use a critical 
stream power to fit the power-law function (26) to the data. We refer the 
reader to the Supplementary Material (see § S4.1) to see how power-law 
functions with and without critical stream power compare with the data. 
In particular, we show that the form 

Φ ∝ ω* − ω*
c with ω* =

ω
ϱ(sgd)3/2  

suggested by Rob Feruguson (personal communucation), is a valuable 
alternative for fitting dimensionless transport rates, but it does not lead 
to a convenient expression of the efficiency factor eb. 

Expressing the efficiency factor eb as a function of Π raises two issues. 
First, the number Π has no clear physical meaning. Second, Bagnold 
used the dimensionless shear stress τ* in his flow regime classification, 
and the stream power ω as the driving variable in his bedload transport 
rate equation. It may be more efficient to seek a dependence of the ef-
ficiency factor eb on τ*. We used the data recapped in Table 1 and esti-
mated the efficiency factor by using Eq. (4), where the friction factor μ 
was estimated using Bagnold’s eq. (18) and the stream power was 
computed as ω = ϱgqi = τbū. With these assumptions, we can estimate eb 
from laboratory data: eb = qsμcosθgΔϱ/ω. When plotting the efficiency 
factor eb with the Shields number τ* (see Fig. S3 in the Supplementary 
Material), we find two experimental trends that are consistent with 
Bagnold’s partitioning into bedload transport regimes:  

• For the transitional regime (τ* ≤ τ*
x with τ*

x ∼ 0.5), the efficiency 
factor eb increases with increasing Shields numbers τ*: 

eb = 2τ*3/2. (27)    

• For the sheet-flow regime (τ* > τ*
x), the efficiency factor eb shows 

weak dependence on τ*: eb = 0.4τ*1/5. As a first approximation, we 
can consider that it reaches a constant value, but there is no unique 
plateau value. The asymptotic value ranges from 0.2 to 1. Not all data 
follow this trend. When sediment is made up of light, fine particles 
(see the data obtained by Matoušek et al. (2013) and Pugh and 
Wilson (1999) in Fig. S3 in the Supplementary Material), turbulence 
maintains those particles in suspension and the efficiency factor does 
not tend to a constant value. 

2.6.3. Flow resistance factor f 
The last parameter involved in Bagnold’s bedload transport rate eq. 

(8) is the Darcy–Weisbach friction coefficient f , which represents 
resistance to flow. This coefficient f depends on dimensionless numbers 
such as the Reynolds and Froude numbers (Re = ūh/ν and Fr = ū/

̅̅̅̅̅
gh

√
, 

respectively) and on the relative submergence ξ (defined as ξ = h/ks, 
where ks is the bed roughness size [m]): f = f(Re, Fr, ξ,…) (Rouse, 1965; 

Table 1 
Experimental data used for calibrating the efficiency factor (see also Figs. S2 and S3 in the Supplementary Material). We report the type of experimental facility (flume 
with a free-surface flow or pressurized rectangular/cylindrical pipes), the ratio of the settling velocity ws to the friction velocity u*, the median particle diameter d50, its 
density ratio s = ϱp/ϱ − 1, the range of flume/pipe slopes, and the range of Shields numbers. Wilson (1966) provided only partial information about his experiments 
(the data used here were obtained by digitizing his Fig. 2).  

Authors Device ws/u* d50 (mm) s i (%) τ* 

Wilson (1966) rect. Pipe 1.2–4.8 0.7 1.67 – 0.5–7.3 
Aziz and Scott (1989) flume 0.5–4.6 0.3–1 1.65 3–10 0.1–0.9 
Nnadi and Wilson (1992) rect. Pipe 0.4–1.4 0.7–4 0.14–1.67 1.7–7 0.1–0.9 
Pugh and Wilson (1999) cyl. Pipe 0.1–0.7 0.3–1 0.53–1.65 2–12 2–18 
Gao (2008) flume 1.2–6.9 1–7 1.65 2.5–3.3 0.07–1.2 
Capart and Fraccarollo (2011) flume 1.0–2.6 3.35 0.51 1–8 0.4–2.5 
Matoušek (2009) cyl. Pipe 0.1–0.8 0.37 1.65 2–16 0.7–23 
Matoušek et al. (2013) rect. Pipe 0.1–0.5 0.18 0.45 1–6.5 0.5–6 
Matoušek et al. (2016) flume 1.0–2.8 0.32 0.36 0.5–6 0.4–22 
Rebai et al. (2022) flume 1.4–3.4 3.6–6.4 0.4 1.2–5.9 0.3–1.3  
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Colosimo et al., 1988). This functional dependence is rather well-known 
when the bed is plane. It is a situation that is often met in gravel-bed 
rivers (i) when their slope lies in the 1%–3% range (Montgomery and 
Buffington, 1997), (ii) when water flows over antidunes under super-
critical flow conditions (the free surface is then in phase with bed un-
dulations) (Recking et al., 2009a; Cartigny et al., 2014; Pascal et al., 
2021), or (iii) when all bedforms have been destroyed during floods 
(flow conditions referred to as the upper regime) (Kennedy, 1969; Julien 
and Raslan, 1998). 

In other circumstances, bedload transport usually causes the for-
mation of bedforms (step, pool, bar, dune, etc.) that make the deter-
mination of flow resistance far more complicated and uncertain. We 
refer the reader to the Supplementary Material, which includes further 
information on how bedforms and bedload transport affect flow 
resistance: 

• When beds develop bedforms, more energy is dissipated by turbu-
lence due to stronger vorticity and/or surface waves. This dissipation 
process is often called form friction (van Rijn, 1984b).  

• Sediment transport also causes higher energy dissipation, except 
under certain flow conditions where sediment deposition between 
bedforms smooths out bed irregularities and thereby reduces form 
friction (Omid et al., 2010; Hohermuth and Weitbrecht, 2018). 

Given how diversely bedforms can affect the velocity field, there is 
no all-purpose treatment for the additional energy dissipation they 
create, but many bespoke methods have been developed for particular 
types of bedforms. The common assumption is that energy dissipation at 
the grain and bedform scales is additive—which means that total friction 
can be broken down into skin and form frictions, respectively, and each 
contribution can be evaluated separately. As bedforms usually imply 
sediment transport, form friction also includes energy transfers from the 
water to the sediment. For dunes, several methods have been proposed 
for estimating energy dissipation as a function of their dimensions 
(Einstein, 1950; Engelund, 1966; Alam and Kennedy, 1969; van Rijn, 
1984b). Field surveys reveal that these methods explain part of the 
variance in the f variations (de Lange et al., 2021). For other bedforms, 
determining flow resistance is far more complicated. For this reason, we 
mainly focus on the simplest case —the plane bed. It should, neverthe-
less, be remembered that bedforms such as alternate bars can increase 
flow resistance by a factor of 3 to 50 (see Fig. S5 in the Supplementary 
Material) and thus reduce bedload transport rates by a factor of 2 to 7 if 
Φ ∝ f − 1/2, as predicted by Bagnold’s model (8). 

For sufficiently deep flows over fixed-plane gravel beds, Keulegan 
(1938) showed that over most of the flow height, the velocity profile was 
consistent with the logarithmic profile provided by Prandtl’s parame-
trization of the turbulent viscosity for turbulent flows near a solid 
boundary, and thus the depth-averaged velocity ū can be expressed as a 
function of the friction velocity u* and relative submergence ξ: 

ū
u* =

̅̅̅
8
f

√

= 6.25+ 5.75log
h
ks
. (28) 

This shows that the friction factor depends on relative submergence 
alone: 

f = 8
(u*

ū

)2
= 8
(

6.25 + 5.75log
h
ks

)− 2

=

(

2.03log
12.2h

ks

)− 2

. (29) 

For shallow flows (typically when ξ < 10), it becomes more difficult 
to define the level at which the velocity drops to zero (Nikora et al., 
2001)—the level that serves to locate the stream/bed interface. 
Furthermore, when the instantaneous velocity field shows significant 
time and space variations, especially near the bed, Prandtl’s model is no 
longer valid and must be replaced with more sophisticated parameter-
izations of wall turbulence (Nikora et al., 2004, 2007; Manes et al., 
2007; Lamb et al., 2017; Nikora et al., 2019; Rousseau and Ancey, 2022; 

Deal, 2022). To avoid using refined parametrization, we followed 
Recking et al. (2008b) and considered that under low submergence 
conditions, bed roughness was increased by a factor 

αrl = 4ξ− 0.43 subject to 1 ≤ αrl ≤ 4. (30) 

We rewrote Keulegan’s eq. (28) in the form (see § S1.3 in the Sup-
plementary Material): 
̅̅̅
8
f

√

=
ū
u* = 6.25+ 5.75log

h
αrlks

. (31) 

Recking et al. (2008b) also recommended using the characteristic 
diameter d84, corresponding to the coarsest grain fraction, but they also 
mentioned that the median diameter d50 worked equally well. There is 
no consensus in the literature about the optimal value of the bed 
roughness size ks: for gravel-bed rivers, ks = 2d90 (Kamphuis, 1974), 
ks = 3.5d84 (Hey, 1979), ks = 3d84 (Pitlick, 1992), ks = 5.9d50 (Millar, 
1999), or ks = 2.4d90 (López and Barragán, 2008). Other empirical flow 
resistance equations have been proposed and can substitute for Eq. (31) 
(Thompson and Campbell, 1979; Ferguson, 2007; Lamb et al., 2017); the 
reader is referred to § S1.3 in the Supplementary Material. 

Sediment transport’s effect on flow resistance has been evaluated 
from laboratory experiments. Most authors consider that the Dar-
cy–Weisbach coefficient f , derived from Keulegan’s eq. (29), remains 
valid insofar as the roughness size ks is reevaluated. For sand beds, ks is 
often found to depend on the median particle diameter and the Shields 
number (Wilson, 1989; Camenen et al., 2006). For gravel beds with a 
slope i ≥ 1%, Recking et al. (2008b) found that ks was a multiple of the 
coarse grain size d84: 

ks = αb(ξ, i)d84, (32)  

where the multiplying factor αb is a function of the relative submergence 
ξ = h/d84 and bed slope i (see § S2.1 in the Supplementary Material for 
the exact equation): 

αb(ξ, i) ≈ 7i0.85ξ, (33)  

subject to 1 ≤ αb ≤ 2.6. A consequence of this dependence on h/d84 is 
that flow resistance is constant over a certain range of flow depths 
corresponding to incipient and weak sediment transport (see Fig. S6 in 
the Supplementary Material). 

In summary, when dealing with plane beds, we can assume that flow 
resistance in Bagnold’s eq. (8) is properly described using Keulegan’s eq. 
(29), where the roughness size ks has been extended to account for 
additional dissipation due to (possible) flow shallowness and sediment 
transport: ks = αrlαbd84, where the coefficients αrl and αb are given by 
Eqs. (30) and (33), respectively. 

2.7. Tentative summary 

Here we summarize Bagnold’s model of bedload transport by 
providing transport rate equations for the two regimes that he identified. 
Table 2 shows how Bagnold’s model is broken down into different 

Table 2 
This table summarizes the main expressions for bedload transport rates under 
both regimes: flow resistance equations in the absence of bedforms, dimen-
sionless bedload transport rate equations Φ, and trends (that is, how Φ scales 
with τ*).   

Transitional regime Sheet-flow regime 

Flow resistance 
f =

(
2.03log

1.75
i0.85

)− 2 f = (2.03log(4.2ξ) )− 2 

Transport rate 
Φ =

2
μcosθ

̅̅̅
8
f

√

τ*3 Φ = 7.4
eb∞

μcosθ

(s
i

)1/6
τ*5/3 

Trend Φ = 40τ*3 Φ = 12τ*5/3  
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expressions for each regime, and we provide further justifications below. 
In Bagnold’s model, scaled bedload transport depends on the 

dimensionless shear stress τ*, bed slope i, Darcy–Weisbach friction co-
efficient f , relative density ratio s, and Bagnold number G: Φ =

Φ(τ*, i, f , s,G). In most cases, τ* is the key parameter controlling the Φ 
variations with flow conditions; other dimensionless numbers play a less 
significant part. It would be useful to obtain a single equation that we 
could refer to as Bagnold’s master equation and that would express Φ as a 
function of τ* solely. Towards the end of his life, Bagnold was still 
seeking a correlation between transport rates and stream power. Thus, 
we also propose such a correlation in the form of a monomial product of 
dimensionless groups Φ(Ω, ξ, s,R) that we will refer to as Bagnold’s 
scaling. 

2.7.1. Transitional regime 
For τ*

c < τ* < τ*
x, where the critical transport stage is τ*

x ∼ 0.5 for 
sand and τ*

x ∼ 0.25 for gravel, sediment transport occurs intermittently. 
When sediment transport involves weakly dissipative bedforms (e.g., 

plane bed or antidunes for supercritical flows), flow resistance is roughly 
constant for a given slope. The Darcy–Weisbach friction coefficient f is 
given by Keulegan’s Eq. (29) and roughness ks is computed using 
Recking’s eq. (32): 

fc(i) =
(

2.03log
12.2h

αbαrld84

)− 2

=

(

2.03log
12.2

7αrli0.85

)− 2

, (34)  

where the correcting factors αb and αrl are given by Eqs. (33) and (30), 
respectively. The Darcy–Weisbach friction factor f becomes independent 
of ξ for plane beds given the αrl dependence on ξ. The efficiency factor eb 
varies as: 

eb = 2τ*3/2. (35) 

As a result, the scaled sediment transport rate varies as τ*3: 

Φ =
eb

μcosθ

̅̅̅
8
f

√

τ*3/2 =
2

μcosθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8

fc(tanθ)

√

τ*3. (36) 

Let us provide a simple quantification. This equation provides the 
trend of Φ = 40τ*3 reported in Fig. 2, where we set fc ∼ 0.15 and 
μcosθ ∼ 0.37. This scaling is consistent with the pipe-flow data pre-
sented in Table 1. 

When sediment transport is associated with bedforms (which is true 
in most cases), flow resistance is usually much higher than Keulegan’s 
Eq. (29) predicts (as illustrated by Fig. S5). For regular bedforms, such as 
dunes, empirical equations can be used to determine flow resistance 
(van Rijn, 1984b; Van Rijn, 1993; Dey, 2014; Powell, 2014). As Bag-
nold’s eq. (8) predicts that Φ ∝ f − 1/2, any increase in flow resistance 
involves a decrease in the bedload transport rate. 

2.7.2. Sheet-flow regime 
For τ* ≥ τ*

x, sediment transport occurs in granular layers carried by 
the water flow. 

At sufficiently high shear stresses, most longitudinal bedforms for 
this regime are smoothed out, and the flow involves the upper flow 
regime. In these circumstances, flow resistance varies with relative 
submergence ξ, with f given by Eq. (29) and ks given by Eq. (32) (with 
αb→2.9 and αrl→1 for ξ > 17): 

f (ξ) =
(

2.03 log
12.2h

αrlαbd84

)− 2

= (2.03 log(4.2ξ) )− 2
. (37) 

It is difficult to arrive at a scaling law for Φ when using a Keulegan- 
like expression for flow resistance. If we use the equivalence between the 
Darcy–Weisbach and Manning–Strickler equations, then we can write: 

̅̅̅
8
f

√

=
Kd1/6

84
̅̅̅g√ ξ1/6 = 7.4ξ1/6 = 7.4

(sτ*

i

)1/6
, (38)  

where we use the relationship between the Strickler friction coefficient 
K and grain size d84 proposed by Jäggi (1984): K = 23.2d− 1/6

84 [m1/3⋅s− 1]. 
As a first approximation, the efficiency factor is assumed to be constant: 
eb = eb∞ where eb∞ lies in the 0.2–1 range. As a result, the scaled sedi-
ment transport rate varies as τ*5/3 if μ remains constant: 

Φ = 7.4
eb∞

μcosθ

(s
i

)1/6
τ*5/3. (39) 

When we quantify this equation, it provides the trend of Φ = 12τ*5/3 

reported in Fig. 2 when we set i ∼ 0.1%, s ∼ 1.7, eb ∼ 0.2 and μcosθ ∼

0.4 as a first approximation. 

2.7.3. Bagnold’s master equation and scaling 
Using Guo (2002)’s method, we can derive a single equation that 

smoothly connects the two former trends of Φ = 12τ*5/3 (τ*≫1) and Φ =

40τ*3 (τ*≪1): 

Φ = 40τ*3

(

1 +

(
τ*

τ*
1

)3/2
)− 8/9

, (40)  

where τ*
1 = 0.40 represents the upper limit of Bagnold’s transitional 

regime and is fixed for all slopes i. We refer to this equation as Bagnold’s 
master equation. Fig. 2(a) compares Bagnold’s master eq. (40) with the 
same pipe-flow data used for model calibration. 

In his last papers, Bagnold sought to express Φ’s dependence on flow 
variables using regression. We have updated his analysis by using the 
pipe-flow data summarized in Table 1. We found that the dimensionless 
transport rate was a linear function of Martin’s dimensionless number 
M: 

Φ = 4M with M = Ω3/2ξ− 1/2s− 9/5R− 5/3, (41)  

where Ω = ω/(νgϱ) is the scaled stream power. This equation will be 
referred to as Bagnold’s scaling equation throughout the rest of this re-
view. Fig. 2(b) shows that this equation fits the pipe-flow data well over 
five orders of magnitude of M, from 10− 2 to 103. The only data not 
represented by this equation involve small, lightweight particles 
(transported as suspended load rather than bedload). These data are 
roughly captured using the trend of Φ = 32M, which would mean that 
the scaling does not change for suspended load, although the propor-
tionality factor does. A curious behavior can be visualized in Fig. 2: for 
lightweight particles used by Nnadi and Wilson (1992), Matoušek et al. 
(2016), and Capart and Fraccarollo (2011), bedload transport rates 
behaved like Φ ∝ τ* (for τ* > 1), and therefore, the points did not fall on 
the mean trend Φ = 12τ*5/3. One possible explanation is that stress 
generation differs for fine and coarse lightweight particles at high shear 
stresses. Indeed, the strength of the momentum exchanges induced by 
particle collisions depends on the coefficient of restitution e, which is 
found to be an increasing number function of the Stokes number 
(Simeonov and Calantoni, 2012) 

St =
2
9

ϱp

ϱ
d2γ̇
ν .

In the experiments conducted by Capart and Fraccarollo (2011), we 
have ϱp/ϱ = 1.5, d = 3.3 mm, and γ̇ ∼ 40 s− 1, which leads to St ∼ 160, 
and thus e ∼ 0.8 (Simeonov and Calantoni, 2012). In this case, colli-
sional interaction can be generated and dissipate energy (Jenkins and 
Hanes, 1998). However, taking a lower diameter, such as d = 0.3 mm, 
leads to St ∼ 1.6, and thus e ∼ 0.1 (Simeonov and Calantoni, 2012), and 
in this case, turbulent drag and lubrication forces prevail in stress gen-
eration (Schmeeckle, 2014). 
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Fig. 2. (a) Variation in the dimensionless bedload transport rate Φ with scaled shear stress τ*. The flume data come from the sources listed in Table 1. We also report 
two trends: Φ = 40τ*3 (dashed line) for the transitional regime and Φ = 12τ*5/3 (dot-dashed line) for the sheet-flow regime. The solid line shows Bagnold’s master eq. 
(40). (b) Variation in the dimensionless bedload transport rate Φ with the monomial product M. The solid line shows Bagnold’s scaling (41). 
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3. Applications to laboratory flumes and rivers 

To further test Bagnold’s model as summarized in § 2.7, we now 
compare its predictions with data collected in the laboratory and in the 
field, that is, with data that were not used to calibrate the model’s pa-
rameters. We first consider flume experiments examining bedload 
transport from a variety of sources. Table 3 recaps these experiments’ 
main features. Williams (1970) collected a large amount of experimental 
data under various flow conditions; here, we distinguish between data 
related to plane beds and data associated with bedforms. For all other 
authors except Cao (1985), the information about bedforms was 
missing. 

Fig. 3(a) shows how the scaled bedload transport rate Φ varies with 
the dimensionless shear stress τ*, while Fig. 3(b) shows the variation in 
the efficiency factor eb with τ*. Figs. 3(a) and (b) confirm the parti-
tioning into three transport regimes. 

3.1. Bagnold’s no transport regime 

For τ* < 0.078 (see Fig. S14 in the Supplementary Material for a 
close-up view), Fig. 3(a) shows a strong increase in bedload transport 
rate with increasing bottom shear stress: the mean trend fitted to the 
data is Φ = (10τ*)

16, which is in close agreement with what Paintal 
(1971) obtained (Φ = (15τ*)

16 for τ* < 0.05), and with what Pazis 
(1976) observed in his flume (Φ = (10τ*)

8.28 for τ* < 0.05). The trans-
port rates remain very low, with Φ < 0.02. These low Φ values explain 
why this regime continues to be referred to as the no-transport regime. 

This regime was not observed when studying efficiency factor eb and 
calibrating it from pipe-flow data in § 2.6 since there were no experi-
mental data corresponding to τ* < 0.078. Fig. 3(b) shows that efficiency 
factor eb increases much more sharply in the no-transport regime 
(eb ∝ τ*10) than in the transitional regime (eb ∝ τ*3/2), but it does not 
exceed 0.05. Flow resistance is not changed to any significant degree 
when very few particles move. 

Observing non-zero transport rates in the no-transport regime re-
mains something of a stubborn paradox. For Paintal (1971), the 
threshold of incipient motion is an engineering reality insofar as 

engineers find the concept of critical shear stress very useful as it allows 
them to distinguish between stable and unstable beds. However, in na-
ture, this threshold does not exist: 

“At a very low shear value, one has to wait for a longer time to see the 
movement, as the probability of movement becomes very small. But 
this probability is never zero except in still water.” 

Paintal’s viewpoint is supported by strong experimental evidence 
(Graf and Pazis, 1977; Lavelle and Mofjeld, 1987; Van Rijn, 1993; 
Salevan et al., 2017; Dey and Ali, 2019), but Pähtz et al. (2020) pointed 
out that “a threshold must exist because the size of turbulent flow eddies 
is limited by the system dimensions.” Recent analyses suggest that the 
initiation of particle movement is better described using criteria based 
on energy or impulse than on bottom shear stress (Diplas et al., 2008; 
Valyrakis et al., 2013; Pähtz et al., 2020). Gaeuman et al. (2015) and 
Shih and Diplas (2018) found that Φ’s strong dependence on τ* reflected 
the intermittency of bedload transport—long periods with no bedload 
transport are punctuated with short periods of activity—and it is 
because transport rates are averaged over time that the Φ ∝ τ*16 scaling 
emerges. For the moment, we can postpone a decision about the nature 
of the no-transport regime and merely assume its existence while 
conceding that although transport rates are non-zero, they remain 
vanishingly small. 

Regardless of the existence of a critical shear stress for incipient 
motion, this regime exhibits specific features that make it difficult to 
study. Let us address some of them. At low bottom shear stresses, par-
ticles move along preferential paths, with just a few paths carrying most 
of the particles (Aussillous et al., 2016). The probability of entrainment 
depends crucially on bed slope and particle size gradation (Parker and 
Klingeman, 1982; Mueller et al., 2005; Lamb et al., 2008; Mao et al., 
2008; Recking, 2009; Parker et al., 2011; Comiti and Mao, 2012; 
Prancevic and Lamb, 2015; Dey and Ali, 2019; Hassan et al., 2020). The 
bed slope’s effect on incipient motion explains why Pazis (1976), who 
had investigated bedload transport on shallow slopes (i ≤ 1.4), was able 
to observe bedload transport rates as low as 10− 5 at τ* = 0.02, whereas 
Smart and Jaeggi (1983) and Rickenmann (1992), who worked with 
steep slopes (i ≥ 3%), observed such values at τ* = 0.06. 

These features lead to strong spatial heterogeneity in the local par-
ticle flux. Furthermore, particles move intermittently, with a probability 
distribution of arrival times that closely follows an exponential distri-
bution when the bed has developed no bedform (Ancey et al., 2008; 
Radice, 2009; Singh et al., 2009; Roseberry et al., 2012; Heyman et al., 
2013; Campagnol et al., 2015; Furbish et al., 2017; Ancey and Pascal, 
2020; Ashley et al., 2021; Benavides et al., 2022). Spatial and temporal 
fluctuations in bedload transport rates explain why the Φ data span four 
orders of magnitude for a given dimensionless stress (see Fig. 3(a)). 

3.2. Bagnold’s transitional regime 

For 0.078 < τ* < 0.40 (the transitional regime), Fig. 3(a) confirms 
that bedload transport rates scale as Φ = 40τ*3, which was the trend 
fitted to pipe-flow data (see Fig. 2). The data scatter around the mean 
trend remains significant (about one order of magnitude) but is far less 
pronounced than for the no-transport regime. The experiments con-
ducted by Williams (1970) showed that bed transport rates for flows 
associated with bedforms were noisier than for flows with no bedform. 
Bedform’s effect on sediment transport is particularly visible in Fig. 3(b): 
for some runs, the efficiency factor was two orders of magnitude lower 
when bedforms were present. According to Bagnold’s eq. (8), the 
dimensionless bedload transport rate scales as f − 1/2, and thus an in-
crease in flow resistance induces a reduction in the transport rate. If the 
flow resistance increase is in the order of 10 times bigger (see Fig. S14 in 
the Supplementary Material), then the relative reduction in Φ is three 
times larger. This reduction may explain why the flume data are slightly 
below Bagnold’s master curve and the pipe-flow data shown in Fig. 2(a). 

Table 3 
Experimental data considered in Fig. 3. We report flume width, median particle 
diameter d50, particle density ϱp, the range of flume/pipe slopes, and the range of 
Shields numbers. (a) See also Graf and Pazis, 1977. (b) See also Smart (1984). (c) 
See also Graf and Suszka (1987).  

Authors W (mm) d50 

(mm) 
ϱp (kg/m3) i (%) τ* 

Williams 
(1970) 

76–310 1.3 2650 0.1–3.6 0.04–2 

Paintal (1971) 914 2.5–22 1450 0.1–1.0 0.03–0.09 

Pazis (1976)a 500 0.5–3 1410–2650 0.01–0.14 0.017–0.052 

Smart and 
Jaeggi 
(1983)b 

200 2–10 2650 3–20 0.03–2.3 

Ikeda (1983) 
4000 6.5 2650 0.2–1.0 0.03–0.22 

Cao (1985) 600 11–44 2650 0.5–9 0.04–0.2 

Suszka 
(1987)c 

600 12–23 2726 0.5–2.5 0.04–0.09 

Wilcock 
(1990) 

600 1.86 2650 0.01–0.05 0.035–0.019 

Rickenmann 
(1992) 

200 10 2650 7–20 0.23–0.73 

Recking et al. 
(2008a) 

100–250 2–12 2650 1–9 0.09–0.28 

Deal et al. 
(2023) 

10.5 4–10 2400–2800 3–11 0.05–0.20  
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Fig. 3. (a) Variation in the dimensionless bedload transport rate Φ with the dimensionless shear stress τ*. The dashed lines show the trends of Φ = (10τ)*16, with 
Φ = 40τ*3 coming from transitional regime Eq. (36) and Φ = 12τ*5/3 coming from sheet-flow regime Eq. (39). The solid line shows Bagnold’s master eq. (42) 
combining all three trends. We also plot Einstein’s bedload eq. (43), Guo’s eq. (46), Wang’s eq. (45), and Engelund–Hansen’s eq. (48) (evaluated using Jäggi’s 
parametrization of friction (38), i = 1% and s = 1.65). (b) Variation in efficiency factor eb with dimensionless shear stress τ*. We also plot two experimental trends, 
eb = (10τ*)

10 (no-transport regime) and eb = 2τ*3/2 (transitional regime), and the boundaries eb = 0.2 and eb = 1 (sheet-flow regime). 
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Comparing the eb variations with τ* in Figs. 2(b) and 3(b) suggests that 
bedform’s primary effect on factor efficiency is to increase the vari-
ability of eb. 

3.3. Bagnold’s sheet-flow regime 

For τ* > 0.40 (sheet-flow regime), flume data support scaling in the 
form of Φ = 12τ*5/3, which is close to empirical equations like the 
Meyer-Peter–Müller equation: Φ = 8(τ* − 0.047)3/2 (Meyer-Peter and 
Müller, 1948). By reworking Meyer-Peter’s data and taking sidewall 
effects into account, Wong and Parker (2006) arrived at a slightly 
different form of Φ = 4.93(τ* − 0.047)1.6, whose exponent was even 
closer to the 5/3 value presented here. Ribberink (1998) found that the 
scaling of Φ = 11(τ* − 0.055)1.65 properly described sediment transport 
rates for the full range of Shields values under both oscillatory and non- 
oscillatory flow conditions. 

As there are few flume datasets available at high shear stresses, it is 
difficult to decide between Bagnold’s updated model (Φ ∝ τ*5/3) and the 
Meyer-Peter–Müller equation (Φ ∝ τ*3/2). The element in favor of Bag-
nold’s scaling is that it is more consistent with the pipe-flow data shown 
in Fig. 2. The efficiency factor eb tends to a constant that ranges from 0.2 
to 1. When bedforms are present, eb can take values as low as 0.05. The 
highest eb values corresponded to flows down steep slopes (typically the 
slopes above 10% studied by Smart and Jaeggi (1983) and Rickenmann 
(1992)). As highlighted in § 2.3, high eb values question Bagnold’s im-
plicit assumption that the sediment phase is fully subordinate to the 
water phase and extracts only a small fraction of the power imparted to 
the water by the gravitational forces. One possible explanation for these 
anomalously high eb values is that, from a mechanical standpoint, the 

intense bedload transport down steep slopes behaves differently from 
sediment transport on shallower slopes. When Takahashi (2007) wrote 
that “immature particles do not disperse in the entire depth, but they 
flow concentrated in a lower layer,” he was referring to immature debris 
flows. We will return to this point later (see § 4.1). 

3.4. Scaling with M 

Fig. 4 shows how Φ varies with Martin’s number, M =

Ω3/2R− 5/3ξ− 1/2s− 9/5. At sufficiently high bedload transport rates 
(Φ > 10− 2), the trend of Φ = 4M fitted to the pipe-flow data captured 
the flume data equally well over nearly three orders of magnitude in M 
(4× 10− 3 ≤ M ≤ 15). 

The data obtained by Rickenmann (1992) lay above this trend, but as 
indicated in § 3.3, those data pertained to steep slopes and might have 
been more representative of immature debris flows than of bedload 
transport. For Φ < 10− 2 or M < 4× 10− 3, flume data deviate from the 
mean trend of Φ = 4M. These data belong to the no-transport domain 
identified in § 3.1. 

3.5. Comparison with bedload transport equations 

As highlighted in § 2.7.3, in practical applications, a single equation 
is often preferred over a piecewise continuous equation. There is a price 
to pay for this, however: the only independent variable is the dimen-
sionless shear stress τ*, and the effects of other variables (bed slope i, 
flow resistance f , density ratio s) are ignored. Using Guo’s (2002) 
method, we merged the three trends of Φ = (10τ*)

16 (τ* ≤ 0.078), Φ =

40τ*3 (0.078 ≤ τ* ≤ 0.40), and Φ = 12τ*5/3 (0.40 ≤ τ*) to propose a 

Fig. 4. Variation in the dimensionless bedload transport rate Φ with the dimensionless number M = Ω3/2R− 5/3ξ− 1/2s− 9/5. The straight line in the log–log repre-
sentation shows the linear trend for Φ = 4M. 
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single equation for the Bagnold model: 

Φ = (10τ*)
16

(

1 +

(
τ*

τ*
1

)3/2
)− 8/9(

1 +

(
τ*

τ*
0

)8
)− 13/8

, (42)  

where τ*
0 = 0.078 and τ*

1 = 0.40 are the lower and upper limits of Bag-
nold’s transitional regime. Compared with Bagnold’s first master eq. 
(40) fitted to pipe-flow data, here we consider that bedload transport 
rates decay strongly with τ* when τ* < τ0, but they do not drop to 0. 

Einstein (1950) is credited with one of the first theoretical models of 
bedload transport. His model involves the probability p of particle 
entrainment, which can be related to the scaled bedload transport rate 
Φ: 

Φ =
αp

1 − p
with p = 1 −

1̅
̅̅
π

√

∫ a1/τ* − a2

− a1/τ* − a2

e− x2 dx, (43)  

where Einstein (1942) fitted the parameters a1, a2, and α to the flume 
data collected by Gilbert (1914) and Meyer-Peter et al. (1934): a1 =

0.156, a2 = 2.0, and α = 1/27. Einstein (1942) also proposed an 
empirical equation for moderate transport rates (Φ < 0.40): 

Φ =
1

0.465
exp
(
− 0.391

τ*

)

. (44) 

Cheng (2002) provided a variant of this equation that connects 
smoothly with Eq. (43) at high shear stresses: Φ =

13τ*3/2exp
(
− 0.05τ*− 3/2

)
. Wang et al. (2008) modified Einstein’s 

equation so that it is consistent with the scaling of Φ ∝ τ*3/2 at high shear 
stresses: 

Φ =
αp

1 − p
τ*3/2

20
with p = 1 −

1̅
̅̅
π

√

∫ ∞

− a1/τ* − a2

e− x2 dx, (45)  

with a1 = 0.07 and a2 = 2.0. Guo (2021) adjusted Einstein’s equation so 
that it becomes consistent with the scalings of Φ ∝ τ*16 found by Paintal 
(1971) when τ*≪1 and of Φ ∝ τ*5/3 found by Huang (2010) when τ*≫1: 

Φ = 10τ5/3
* exp

(

−
16

1 + (30τ*)
3

)

. (46) 

Engelund and Hansen (1967) developed a simple model of bedload 
transport over dunes. By using Bagnold’s assumption (1) on energy 
dissipation, they obtained the following equation: 

Φ = 0.077
4
f

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τ*2 + 0.15

√
τ*2. (47) 

If we use Jäggi’s parametrisation (38) of flow resistance (see § 2.7), 
then 

Φ = 2.1
(s

i

)1/3 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τ*2 + 0.15

√
τ*7/3. (48) 

Fig. 3(a) (see also Fig. S14 in the Supplementary Material for a close- 
up view) shows that the four models provide similar results for τ* > 0.08 
when plotted in a log–log representation. At a low Shields stress 
(τ* < 0.08), the deviation between model predictions can be as large as 
one order of magnitude, but as the data scatter is huge (three orders of 
magnitude at τ* = 0.05), all of them are consistent with the existing 
data. 

3.6. Influence of bedforms in natural rivers 

Figs. 5 (a) and (b) show the variation in the dimensionless bedload 
transport Φ with the Shields stress τ* and Martin number M =

Ω3/2R− 5/3ξ− 1/2s− 9/5, for natural rivers, where the relative submergence 
ξ was computed from the hydraulic radius Rh rather than the depth: ξ =

Rh/d50. The reader is referred to Tables S2 to S4 in the Supplementary 

Material for details of the sources used for plotting Fig. 5. We only 
employed data from rivers that had been sufficiently documented (i.e., 
with sufficient information about grain size distribution, cross-section 
profile, and hydraulic conditions). The data (10,496 data in all, corre-
sponding to 81 sites) were categorized by bedform type and summarized 
in Table 4. As the data scatter is considerable (spanning two to nine 
orders of magnitude for the same dimensionless shear stress), we also 
ran a quantile regression analysis to determine how some quantiles 
varied with τ* or M (Koenker et al., 2017). We considered the median 
bedload transport rate (Φ0.5 associated with the probability p = 0.5) and 
the quantiles of Φ0.9 and Φ0.1 associated with probabilities 0.9 and 0.1, 
respectively. There are two main reasons why the data scatter is 
considerable. 

The first reason is related to the wide spectrum of physical processes 
involved. Laboratory experiments make it possible to study physical 
processes in isolation or jointly. In field surveys, however, it is rarely 
possible to disentangle the respective influences of the various processes 
involved in sediment transport. Under similar flow conditions, bedload 
transport can vary significantly because of.  

• variations in sediment supply (Warburton, 1992; Nicholas et al., 
1995; Recking, 2012; Dean et al., 2015; Piton and Recking, 2017; 
East et al., 2018),  

• partial mobility (Wilcock and McArdell, 1997), grain shape (Dudill 
et al., 2020; Cassel et al., 2021; Deal et al., 2023),  

• grain sorting and the pavement formation (Gomez, 1983; Iseya and 
Ikeda, 1987; Dietrich et al., 1989; Parker et al., 1982; Parker and 
Klingeman, 1982; Frey and Church, 2009; Ferdowsi et al., 2017; 
Recking et al., 2023),  

• increased mobility as fine sediment is added (Venditti et al., 2010; 
Dudill et al., 2018),  

• bedform migration (Gomez et al., 1989; Recking et al., 2009b; Guala 
et al., 2014; Strick et al., 2019; Terwisscha van Scheltinga et al., 
2021),  

• local changes in sediment storage (Hoey, 1992; Lisle and Church, 
2002; Hassan et al., 2008),  

• cross-section narrowing or widening (Surian and Cisotto, 2007; Mao 
and Surian, 2010; Nelson et al., 2015; Recking et al., 2016),  

• flow confinement (Garcia Lugo et al., 2015; Carbonari et al., 2020),  
• the features (magnitude, duration) of flood hydrographs (Hassan 

et al., 2006; Mao, 2012; Papangelakis and Hassan, 2016; Wang et al., 
2019; Ravazzolo et al., 2022),  

• the spatial distribution of shear stress (Powell et al., 1999; Yager 
et al., 2018, 2019; Monsalve et al., 2020),  

• history dependence (Turowski et al., 2011; Mao, 2018; Masteller 
et al., 2019),  

• the influence of bed and riparian vegetation (Tal and Paola, 2010; 
Comiti et al., 2011; Yager and Schmeeckle, 2013), and  

• large pieces of wood (Ruiz-Villanueva et al., 2016; Wohl and Scott, 
2017) 

The second reason for data scatter is related to measurement un-
certainties, errors, and bias. Field conditions exacerbate the difficulties 
of measuring bedload transport rates. First, measurements in the field 
are more prone to uncertainties than are laboratory measurements: 
techniques that involve collecting sediment in traps or baskets may 
provide inconsistent measurements (Childers, 1999; Ryan and Porth, 
1999; Sterling and Church, 2002; Vericat et al., 2006; Bunte et al., 
2008). For instance, when testing in the same river with the same flow 
conditions, Bunte et al. (2008) found that Helley-Smith samplers yielded 
transport rate values two to four orders of magnitude higher than 
sediment traps (owing to the fine mesh used in the Helley-Smith sam-
plers). Furthermore, differences as high as a factor of five were observed 
when increasing the sampling duration of Helley-Smith samplers from 2 
min to 60 min (Bunte and Abt, 2005); theoretical studies have revealed 
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Fig. 5. (a) Variation in Φ with τ* for gravel-bed rivers depending on the main types of bedforms at the monitoring station. (b) Variation of Φ with M. The data sources 
are indicated in Tables S2 to S4 in the Supplementary Material. See also Fig. S9 to S12 in the Supplementary Material, which shows how changing the characteristic 
diameter in the τ* and Φ definitions modifies the data scatter; Fig. S15 for a selection of sites for which Bagnold’s model provide good Φ estimates; and Fig. S16 for 
the variation in the efficiency factor eb with τ* for different types of bedform. 
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that under steady-state-flow and weak-transport conditions, the vari-
ance of time-averaged transport rates varies as the inverse of the inte-
gration time, and thus accurate measurements require long sampling 
durations, a condition that is hardly ever met in the field (Ancey and 
Pascal, 2020) (or, at the very least, long sampling durations are seldom 
compatible with steady water discharge). In Fig. 5, sampling durations 
ranged from seconds to one day, making it difficult to compare time- 
averaged rate measurements with one another. Moreover, bedload 
samplers usually only provide point measurements of transport rates, 
and deducing totals over the cross-section is also subject to sampling 
errors. Other techniques are based on acoustic or seismic sensors (e.g., 
hydrophones, geophones, impact pipes) (Gray et al., 2010). The main 
difficulty then becomes correlating recorded signals and transport rates, 
which implies the calibration of every sensor. In their study of geo-
phones and other acoustic methods, Rickenmann and his colleagues 
found that calibration was sensitive to site-specific features such as flow 
velocity and bed roughness, with calibration factors varying by a factor 
of 20 between samples (Rickenmann and Fritschi, 2017; Rickenmann 
et al., 2022; Nicollier et al., 2022). Uncertainties concern not only 
bedload transport rates but also hydraulic variables (e.g., flow depth and 
water discharge) and bed configuration (surface and subsurface grain 
size distribution, bed slope). 

Although the trend in Fig. 5(a) is less clear than in Fig. 3(a) reporting 
laboratory data, there is a noticeable change in Φ’s dependence on τ* 

when τ* is in the 0.07–0.30 range. For τ < 0.1, transport rates Φ vary 
sharply with increasing Shield stress τ*, and variability is enormous (up 
to six orders of magnitude). For τ* > 0.3, Φ’s dependence on τ* is less 
marked, roughly consistent with Bagnold’s master eq. (42). Variability is 
also less pronounced. For gravel-bed rivers, this change in behavior has 
often been attributed to the breakup of the pavement layer, the transi-
tion from partial transport to equal-mobility transport, or the part 
played by sediment supply relative to the transport capacity (Emmett 
and Wolman, 2001; Ryan et al., 2002; Barry et al., 2004; Ryan et al., 
2005). However, it should be noted that this change is also visible in 
Fig. 3(a) for laboratory flume data, that is, for flow conditions where 
geomorphological processes (such as pavement or limited sediment 
supply) were not occurring. This point suggests that the change in 
behavior for τ* ∼ 0.1 (where the ∼ symbol means “is of the order of”) 
may be the result of geomorphological processes, but may also reflect 
the occurrence of Bagnold’s transitional regime. 

Figs. 5(a) and (b) also show that, on average, bedload transport rates 
in rivers are one to three orders of magnitude lower than those predicted 
by Bagnold’s master equation or scaling and, in this respect, Bagnold’s 
model performs no better than other models when applied to real-world 
rivers (Herbertson, 1969; van Rijn, 1984a; Gomez and Church, 1989; 
Barry et al., 2008; Recking, 2010; Hinton et al., 2018; Armijos et al., 
2021). In contrast to this trend, we also observe that lots of data lie 
above Bagnold’s master curve and scaling, especially those related to 
sand-bed rivers at high Shields stresses. It is often argued that bedload 
transport equations fitted to laboratory data can deliver the flow’s 
transport capacity, usually defined as the maximum amount of sediment 
that a river can carry (Wainwright et al., 2015), and thus those equations 
represent the upper bound of Φ variations with τ*. Fig. 5(a) shows that 
for gravel-bed rivers, the ϕ0.9 curve is fairly close to Bagnold’s master eq. 

(42) for τ > 0.09, but is far above it for τ* < 0.09. For sand-bed rivers, 
meanwhile, at a Shields stress exceeding 1, Bagnold’s master eq. (42) 
captures the median curve ϕ0.5. One tentative explanation for the dif-
ference between gravel-bed and sand-bed rivers relates to the grain size 
distribution’s influence on transport rates. For sand-bed rivers, this 
distribution is usually narrow, all particle sizes are mobile, and the 
determination of the median grain size required by the definition of the 
scale transport rate (7) is fairly accurate, which may explain why Bag-
nold’s master eq. (42) closely matches the median trend of ϕ0.5. Gravel- 
bed rivers usually exhibit a much wider grain size distribution than 
sand-bed rivers. At low Shields stresses (τ* < 0.09), only the finer grains 
are mobile, which explains why Bagnold’s master eq. (42), based on the 
surface median grain size d50, underestimates bedload transport rates. 
The presence or absence of fine patches might explain some of the 
substantial scatter in Fig. 5(a). At higher Shields stresses (τ* > 0.09), 
Bagnold’s master eq. (42) predicts transport rates Φ of the right order for 
some riffle-pool rivers (see below), but it usually tends to overestimate Φ 
by a factor 4 to 300. Braiding and step-pool rivers experience low 
transport rates, and in Fig. 5(a) their behavior is captured by the ϕ0.1 
curve. Note that the lack of data on high transport rates in step-pool and 
braided rivers does not mean that it is not possible to achieve high 
transport rates in these streams, but simply that it is particularly difficult 
to measure bedload transport there. 

Similar comments can be made when looking at Bagnold’s scaling in 
Fig. 5(b). There is a marked difference between gravel-bed and sand-bed 
rivers. For M > 0.01, data related to sand-bed rivers follow the trend of 
Φ = 32M that was reported as the trend for a suspended load in Fig. 2 
(b). As shown by the comparison of Bagnold’s master equation and 
scaling in Fig. 2 with field data, the proportionality factor of Bagnold’s 
scaling seems sensitive to the mode of transportation, and if this trend 
were confirmed, then this scaling could provide a rapid test for 
discriminating between bedload and suspended load. Some riffle-pool 
rivers exhibit a behavior close to that of sand-bed rivers, with many 
transport rates falling between the two trends of Φ = 4M and Φ = 32M. 
For other rivers, Bagnold’s scaling (41) provides the upper bound of 
dimensionless transport rates. 

What is not seen in Figs. 5(a) and (b) is that taken individually, some 
sites (17 out of 81) yielded bedload transport rate data that Bagnold’s 
equation managed to describe very closely (see Figs. S13(a) and (b) in 
the Supplementary Material). However, for the majority of sites (48/81), 
the correlation between the data and Bagnold’s eq. (42) was only 
moderately good (see below). For the remaining sites (16/81), there was 
no correlation between the data and Bagnold’s master equation. 

For the majority of sites (48/81) with a partial agreement between 
the data and Bagnold’s eq. (42), the trend of Φ(τ*) was correct in the 
log–log plot, in that the slope for the Φ(τ*) data in the log-plot was close 
to 3, as predicted by Bagnold’s equation for the transitional regime, but 
shifted away from the data. This shift could mean that the sediment size 
scale used to define the Shields stress (7) was not the right one. It may 
indicate (i) an improper definition of the dimensionless shear stress τ* 

and/or (ii) an incorrect scale for the dimensionless transport rate Φ. 
Regarding the first alternative, a number of authors have argued that 
using a reach-averaged dimensionless shear stress τ* is not representa-
tive of the actual stress borne by mobile particles. They have, therefore, 
suggested using shear stress partitioning to modulate the stress effec-
tively imparted to the mobile fraction (Parker et al., 1982; Diplas, 1987; 
Wilcock and Crowe, 2003; Yager et al., 2007; Recking, 2013; Schneider 
et al., 2015; Yager et al., 2018, 2019). Regarding the second alternative, 
authors such as Parker et al. (1982), Whiting and King (2003), and 
Pitlick et al. (2008) have noted that the bedload size distribution is 
usually closer to the observed subsurface distribution than to the dis-
tribution on the bed surface. Thus, in this respect, when defining the 
dimensionless transport rate (7), it makes more sense to use the sub-
surface median particle size than the surface median particle size. We do 
not enter into a more in-depth exploration of these alternatives here. 

Table 4 
Main features of the sites used in Fig. 5. See Tables S2 to S4 in the Supplementary 
Material for the detail (including the sources).  

Morphology Slope range 
(%) 

Median size range 
(mm) 

Number of 
sites 

Sample 
size 

Plane bed 0.028–4.5 4.0–210 46 4263 
Riffle-pool 0.070–3.2 1.0–5 19 4093 
Step-pool 2.070–5.1 40–207 7 683 
Braiding 0.800–2.5 20–50 3 495 
Sand 0.001–3.1 0.1–11 5 824  
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4. Insight from recent research 

Over the decades since Bagnold’s last papers, a great deal of work has 
been accomplished on bedload transport and granular flows, and it is 
thus interesting to examine the extent to which our current under-
standing of bedload transport confirms or disproves Bagnold’s views. 
Bagnold’s seminal work, in particular, inspired later generations of re-
searchers and gave birth to the kinetic theory of granular flows 
(Campbell, 1990; Hunt et al., 2002) that has since been applied to 
bedload transport. We will review the various paths explored to date 
below. 

We begin by recasting Bagnold’s partitioning into transport regimes, 
specifying them in more detail, adding a fourth regime (hyper-
concentrated flow), and addressing the part that bed slope plays in a 
regime’s occurrence (see § 4.1). This partitioning is essentially based on 
the macroscopic features exhibited by different transport regimes, but 
we can propose another partitioning by making a finer-scale examina-
tion of how particle contact controls the overall dynamics of bedload 
transport (see § 4.2). In recent years, many microstructural models of 
bedload transport have been proposed, and it is interesting to note what 
they can add to our understanding of bedload transport, particularly the 
scaling behavior of transport rates (see § 4.3). 

4.1. Bedload transport regimes 

One particularly important point in Bagnold’s theory concerns the 
partitioning of sediment transport into three regimes (see § 2.5): the no 
transport regime, the transitional regime, and the high-transport stage 
that we now refer to as the sheet-flow regime. As discussed in § 3.1, 
labeling the first regime as “no transport” is misleading in the sense that 
weak bedload transport continues to be observed when the Shields stress 
τ* drops below the threshold of incipient motion, τ*

c . Furthermore, 
Bagnold stated that predicting bedload transport in the transitional 
regime was difficult, if not impossible. Admittedly, laboratory and field 
measurements show that the variability in bedload transport rates is 
considerable, giving the impression that bedload transport is a noise- 
driven process in this regime. However, when time-averaged, these 
measurements lead to consistent power-law relationships, Φ ∝ τ*3, 
which suggests that there is some determinism hidden behind the vari-
ability in Φ. Lastly, bedload transport experiments at steep slopes have 
been associated with high values of efficiency factor eb (see § 3.3), which 
calls into question Bagnold’s central assumption that the bedload ex-
tracts a small amount of energy from the water stream. There is a 

transport regime in which bedload transport is intense and takes the 
form of “immature debris flow” (Takahashi, 1981) or “hyper-
concentrated flow” (Rickenmann, 1992). This regime is observed with 
steep slopes when the bed is subject to intense erosion or failure. All in 
all, therefore, there are five sediment transport regimes: suspended load, 
hyperconcentrated flow, and the three bedload transport regimes iden-
tified by Bagnold. Table 5 attempts to reshape Bagnold’s regime clas-
sification, shown in § 2.5, and specifies the regimes in terms of particle 
interactions, displacement modes, and coupling with the stream. We 
also suggest renaming the regimes as follows. 

The Rarefied transport regime corresponds to weak sediment transport 
(Φ < 0.02). It occurs when the Shields stress drops below a critical 
threshold of τ*

r , located just above the threshold of incipient motion τ*
c , 

which may not be unique and may vary with time, bed slope, and grain 
size (among other parameters) (Buffington and Montgomery, 1997; 
Yager et al., 2018; Pähtz et al., 2020; Benavides et al., 2022). Indeed, 
there is some consensus on τ*

c (with field and laboratory studies giving τ*
c 

values in the 0.04–0.10 range), but much less is known about τ*
r ; we will 

return to its value in Eq. (50), below. As summarized by Furbish et al. 
(2017), 

“sediment particle motions are mostly patchy, intermittent, and 
rarefied (...). This is particularly relevant to coarse-sediment rivers in 
which sediment transport predominantly occurs as bedload close to 
threshold (...); that is, where rarefied conditions likely are the norm.” 

In this regime, particles move erratically, mostly individually, and 
thus experience only fluid forces and frictional–collisional contact forces 
with the bed. On initially plane beds, microforms (e.g., ripples) are 
created, initiating a slight bed instability (Coleman and Melville, 1994). 
Finer grains are more prone to transport than coarse grains. Moreover, 
bedload transport rates show enormous fluctuations due to the high 
variability in the number of moving particles per unit stream bed 
area—a variable called particle activity γ (Ancey et al., 2008; Singh 
et al., 2009; Roseberry et al., 2012). Theoretically, this regime has often 
been investigated using stochastic models of particle advection and 
diffusion (Furbish et al., 2017; Ancey, 2020a, 2020b). In gravel-bed 
rivers, where sediment mobility is poor, a recent approach imple-
mented by Recking (2010) gave interesting results by associating this 
regime with the mobility of the bulk’s coarse fraction (considered 
through its d84 value), which in turn was used as a proxy for the fine 
fraction’s mobility (see Figs. S9 to S12 in the Supplementary Material). 

The kinetic regime refers to the regime in which moving particles start 
to interact with each other. Ashley et al. (2021) suggested that this 

Table 5 
Summary of sediment transport characteristics for the three regimes defined by Bagnold (1966), which we have renamed the rarefied transport regime, the kinetic 
regime, and the sheet-flow regime.   

Rarefied (dilute) transport Kinetic regime Sheet flow  

Shields range τ*
c ≤ τ* < τ*

r τ*
r ≤ τ* < τ*

x τ* ≥ τ*
x 

Interactions grain to bed collision + grain to bed grain–grain 
Movement rolling, saltation (patchy) rolling, saltation (more regular) dense flow 
Bedforms microform mesoscale structure (e.g., dune) upper regime (plane bed) 
Thickness δ δ ∼ 1 − 3d δ ∼ 3d δ ∼ 10d 
Flow resistance mostly skin friction (ks ∼ d90) skin + form friction +bedload ks/d = 2+ 6τ*5/2

c 

Mobility partial partial full 
Intermittency highly fluctuating qs granular gas continuous flow 
Control variable(s) particle activity particle activity and velocity bedload velocity and depth  
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regime was achieved when the collision number Θ = 2d50ūsγ2/E (where 
E is particle entrainment, and ̄us is mean particle velocity) exceeds unity. 
Recking et al. (2008b) identified this regime (that they called Domain 2, 
see also § S2.1 in the Supplementary Material where these domains are 
defined) by noticing that flow resistance was increased by bedload 
transport. Because of the particle collisions in this regime, bedload 
transport is akin to granular gases, and this analogy has been used to 
develop theoretical models. The challenge is considerable because there 
is no clear separation between particle and flow-length scales, which 
makes any attempt to derive continuum models almost impossible (Tan 
and Goldhirsch, 1998; Goldhirsch, 1999). The stochastic approach is 
also fraught with difficulties because of correlated motion (Aussillous 
et al., 2016; Ancey and Pascal, 2020). Both particle activity and velocity 
experience significant spatial and temporal variations, which leads to qs 
fluctuations that cover several orders of magnitude (Dhont and Ancey, 
2018; Ancey, 2020b). The flow thickness ranges from 2d to 3.5d (van 
Rijn, 1984a). 

The sheet-flow regime corresponds to the bedload transport that oc-
curs under intense flow conditions in the form of a particle carpet or 
bedload sheet. Flow is so intense that bedforms are usually destroyed, 
and the streambed is covered by a granular flow whose thickness is 
typically 10d. This regime is, therefore, often associated with the upper- 
regime plane-bed condition. On steeper slopes (typically over 20%), 
beds may become unstable and yield to form mature debris flows 
(Takahashi, 1981; Tognacca, 1997; Gregoretti, 2000; Armanini et al., 
2005; Prancevic et al., 2014; Lanzoni et al., 2017). The authors who 
addressed the transition to a sheet-flow regime arrived at several 
different conclusions. Nnadi and Wilson (1995) observed that for sand 
transported in a pressure-driven flow, bedforms were destroyed when 
τ* > 1, whereas van Rijn (1984a) indicated that the plane-bed condition 
was met when the transport stage T = τb/τc − 1 > 25, but Julien and 
Raslan (1998) found that under low submergence conditions (ξ < 100), 
the condition was met when T > 4. Gao (2008) suggested that the 
transition between the kinetic and sheet-flow regimes occurred when 
the proportion of mobile grains, Pg = τ*( 1 − τ*

c/τ*)3, equalled unity, 
namely for τ* in the 0.50–0.55 range. These values are slightly higher 
than the τ0 = 0.40 threshold defined in § 2.7.3 as the upper threshold 
found for the transitional regime. Growing knowledge of granular flows 
and suspensions has opened the possibility of developing a continuum 
model of intense bedload transport (Forterre and Pouliquen, 2008; 
Guazzelli and Pouliquen, 2018). Section 4.3 will provide a few examples 
of these models. 

Bedload can transform into suspended load when fluid drag and 
turbulence are sufficient to break particle contacts within the bedload 
layer. Sheet flows can be fluidized when most particles are held in sus-
pension by turbulence or contacts between grains are lubricated by 
viscous forces. Sumer et al. (1996) observed no suspension for w/u* < 1. 
This condition is close to the one used by Bagnold (1966) and the sub-
sequent propositions for defining the transition from bedload to sus-
pended load (van Rijn, 1984a; Celik and Rodi, 1991; Cheng and Chiew, 
1999; García, 2007; Ma et al., 2020), even though most recent formu-
lations have preferred to express the threshold of transition probabilis-
tically (Cheng and Chiew, 1999; Dey et al., 2018). We return to the 
problem of bedload fluidization in § 4.2.1. 

Bagnold focused on shallow bed slopes and, as a consequence, the 
regime diagram shown in Fig. 1 is ill-adapted to steep slopes. Sloping 
beds induce two major changes. First, the threshold of incipient motion 
increases as slopes steepen (Tsujimoto, 1991; Recking et al., 2008b; 
Lamb et al., 2008). Then, on slopes steeper than 20%, if the flow is 
sufficiently intense, the bed may fail suddenly and release large amounts 
of sediment. The water–sediment mixture then forms immature debris 
flows (also called hyperconcentrated flows) or mature debris flows. 
Prancevic et al. (2014) suggested including an upper bound in the 
Shields diagram related to bed failure. Based on Takahashi’s work 
(Takahashi, 1981), they proposed an equation for predicting bed failure: 

τ*
k = (1 − ζ)(tanϕ − tanθ) −

ϱ
Δϱ

tanθ, (49)  

where ζ denotes bed porosity and ϕ is the internal friction angle. Recking 
et al. (2008b) observed different behaviors depending on slope and 
relative submergence (see § S2.1 in the Supplementary Material). In 
particular, they found that flow resistance depended on the sediment 
transport strength, and they distinguished between intermittent and 
continuous bedload transport regimes (called Domains 2 and 3, 
respectively). Their definition of the critical relative submergence, ξ23, 
delineating Domains 2 and 3, leads to a potential candidate for the 
definition of the critical threshold, τ*

r , for observing the transition from 
the rarefied transport regime to the kinetic regime: 

τ*
r =

i
s
ξ23 = 0.3i0.25. (50) 

We know of no study investigating the dependence of Bagnold’s 
critical bedload stage τ*

x on slope i. Without any information, we assume 
that τ*

x is constant and set it to the value of τ*
1 = 0.40 found by deriving 

Bagnold’s master equation from the respective expressions of Bagnold’s 
model in § 2.7.3. 

Fig. 6 shows the different regimes depending on bed slope. The 
regime studied in detail by Bagnold (1966) was the sheet-flow (or car-
pet) domain, colored yellow. Overall, it extends over the 0.4–0.9 range 
in terms of Shields numbers, and it is observed for slopes shallower than 
approximately 20%, which is consistent with laboratory observations of 
bed failure (Tognacca, 1997; Prancevic et al., 2014). This figure is useful 
to set the stage by defining and delineating distinct regimes of bedload 
transport, but there is much speculation behind it: first, the curves 
plotted in Fig. 6 rely on a limited number of experimental investigations; 
second, we only consider the simplest scenario of straight channels in 
which the material is of a unique size and is fully available. To the best of 
our knowledge, how a wider grain-size distribution and a limited supply 
of bedload material might affect the transport regime identified by 
Bagnold has not attracted any attention. 

4.2. Regime partitioning depending on particle contact type 

4.2.1. From the frictional to the viscous regime 
In his pioneering experiments, Bagnold (1954) used neutrally 

buoyant particles, and thus in his study of the bulk friction coefficient μ 
(see § 2.6), he considered only two types of particle contact: viscous 
contact at low G values and collisional contact at high G values. Yet, 
real-world rivers involve negatively buoyant particles, and thus particles 
can undergo sustained frictional contact. We need to determine the type 
of particle contact depending on flow conditions because particle con-
tact greatly influences how energy imparted by the fluid to the particles 
is dissipated through contact. 

At rest, negatively buoyant particles settle and experience only 
frictional contacts. When they are sheared at a sufficiently high rate γ̇, 
contacts are lubricated by the interstitial fluid, and, thus, there is a 
sudden change in particle stress generation (and energy dissipation). 
Ancey and Coussot (1999) and Ancey (2001) found that this transition 
could be predicted using a dimensionless number (that they called the 
Leighton number) related to the ratio of the lubrication force to the 
frictional force experienced by particles: Le = ϱνγ̇/

(
Δϱghs

)
, where hs is 

the bedload layer thickness and γ̇ denotes the shear rate. A similar 
number, Iv = ηγ̇/σ′

y, was introduced later by Courrech du Pont et al. 
(2003) and Cassar et al. (2005) in their studies of underwater granular 
avalanches, and this has proved to be the main dimensionless number 
controlling the rheological behavior of granular suspensions (Boyer 
et al., 2011; Guazzelli and Pouliquen, 2018). 

By assuming that γ̇ ∝ u*/hs and hs = O(10d) (with d as the mean 
particle diameter), then we can recast the Leighton number as Le =

τ*1/2/(10R). Ancey and Coussot (1999) observed that the transition 
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from the frictional to the lubricated contact regime occurred at 
Le ∼ 10− 1. This leads to the following critical (dimensionless) stress 
related to this transition: 

τ*
fv = R2. (51) 

Put differently, when τ*≪τ*
fv, sediment transport takes the form of a 

particle carpet with sustained frictional contacts between particles, 
whereas when τ*≫τ*

fv, the moving granular layer is fluidized, with 
lubricated contacts between particles. We thus expect a significant 

change in behavior when τ* = O
(

τ*
fv

)
. Although dense granular sus-

pensions do not change appearance at the macroscopic scale during the 
transition from the frictional to the lubricated regime, their microscopic 
behavior changes significantly because lubricated contacts usually 
dissipate much less energy than frictional contacts. This sudden change 
in energy dissipation explains why densely particle-laden currents halt 
when they transition from a lubricated to a frictional regime (Hallworth 
and Huppert, 1998; Amy et al., 2005). 

In their study of fine sediment transport, Ma et al. (2020) also 
observed an abrupt change in the sediment transport rate: fine sediment 
was carried at much higher rates than Engelund and Hansen (1967) had 
predicted, but above a critical threshold of shear stress, observations 
were consistent with Engelund and Hansen’s model. Ma et al. (2020) 
suggested that the threshold was given by 

u*

ws
= 9, (52)  

where ws and u* denote the settling and friction velocities, respectively. 
When u* > 9ws, sediment is carried as suspended load at the rate of Φ =

0.72τ*5/3/f , whereas for u* < 9ws, sediment is carried as bedload at the 
rate of Φ = 0.4τ*5/2/f . Using the analytical approximation (A.3) of the 
settling velocity and Eq. (52), we can express the threshold for the 
frictional to viscous transition as 

τ*
fv = 81

(
F
(
R2
)

R

)2/3

. (53) 

For very fine sediment (R < 10), the settling velocity can be deter-
mined using Stokes drag force, and one then obtains F = R4/5832 

(Dietrich, 1982). In this case, Eq. (53) simplifies into 

τ*
fv =

1
4
R2. (54) 

Although criteria (51) and (53) (or its approximation (54)) do not 
match exactly, they convey the same order of magnitude. Ma et al. 
(2020) found that the transition from high to low transport rates 
occurred for a particle diameter close to 100 μm, that is, for a particle 
Reynolds number around R ∼ 4. Eq. (53) predicts that the transition 
from a viscous to a frictional regime occurs at τ*

fv = 2.5, a value that is 
consistent with what Ma et al. (2020) observed for the Yellow River. We 
also note that when f is set to 0.05 (a reasonable value for a sand-bed 
river involving dunes), the scalings found by Ma et al. (2020) were 
close to what Bagnold’s master eq. (42) predicts. 

4.2.2. From the frictional to the collisional regime 
If the interstitial fluid plays a minor role in stress generation, then 

granular bulks experience frictional and collisional contacts when they 
are sheared at a rate of γ̇. The respective contributions of friction and 
collision to the total stress depend on the shear rate γ̇. Ancey and 
Evesque (2000) defined a dimensionless number, which they called the 
Coulomb number, but which was subsequently renamed the “inertial 
number” (GdR-MiDi, 2004): 

I =
ϱpd2 γ̇2

σ′
y

, (55)  

where σ′
y is the effective normal stress experienced by the particles 

(σ′
y = σy − p where σy and p denote the total normal stress and the fluid 

pressure, respectively). If we assume σ′
y ∝ Δϱgd and γ̇ ∝ u*/d, then 

I =
ϱp

ϱ
τ*. (56) 

The bulk behaves like a frictional material when I≪1, and, 
conversely, it fluidizes and behaves like a Bagnold fluid when I≫1. It has 
been shown that it is possible to relate the shear and normal stresses 
within the bulk using this inertial number (Ancey and Evesque, 2000; 
GdR-MiDi, 2004; Jop et al., 2006; Forterre and Pouliquen, 2008): 

-

Fig. 6. Shields curve in the (i, τ*) coordinate systems. The threshold of incipient motion, τ*
c , is the empirical equation proposed by Recking et al. (2008b): τ*

c =

0.15i0.275. The critical stage of τ*
x = 0.40 is also reported. The bed failure condition is given by Takahashi’s eq. (49) (with ϕ = 55∘ and ζ = 0.35). The separation, 

τ*
r (i), between the rarefied transport and kinetic regimes, is evaluated using eq. (50), as proposed by Recking et al. (2008b). 
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τ = μg(I)σ′
y, (57)  

where μg is a generalized Coulomb friction. To plot the transition from 
the frictional to the collisional regime, we arbitrarily set the inertial 
number to unity and, thus, in terms of Shields number, the transition is 
observed at 

τ*
fc =

ϱ
ϱp

∼ 0.4. (58) 

This value is close to the threshold value of τ0 = 0.40 defined in 
Bagnold’s master equation (see § 2.7.3), marking the limit between the 
transitional and sheet-flow regimes. This proximity suggests that the 
change in the exponent in the scaling law (from Φ ∝ τ*3 to Φ ∝ τ*5/3) is 
associated with a change in the prevalent type of contact (from frictional 
to frictional–collisional) within the bedload layer. 

Armanini et al. (2005) used the rheological model proposed by 
Bagnold (1954) to compute the collisional stresses in rapidly flowing 
granular suspensions. They used the Bagnold number to differentiate the 
so-called macro-viscous (viscous contact) and grain-inertia (collisional 
contact) regimes. Bagnold used neutrally buoyant particles, which thus 
underwent no frictional contact, only viscous forces. In their experi-
ments, Armanini et al. (2005) assumed that viscous contact was replaced 
by frictional contact. If we translate the criterion based on the Bagnold 
number, as proposed by Armanini et al. (2005), into one based on the 
Shields number (see § S3 in the Supplementary Material), we find that 
the transition from the frictional to the collisional regime should occur 
at Shields value 

τ*
fc =

200
R2 . (59) 

Armanini et al. (2005) also introduced the Stokes number, 

St =
1
18

ϱp

ϱ
d2 γ̇
ν , (60)  

which is often interpreted as a reflection of the strength of coupling 
between the solid and fluid phases (Batchelor, 1989). Armanini et al. 

(2005) found that the transition between the frictional and collisional 
regime occurs for St ∼ 7.5. If we estimate the shear rate of γ̇ as γ̇ = u*/hs, 
with the bedload layer thickness of hs = O(10d), we can then recast the 
criterion based on the Stokes number into one based on the Shields 
number: 

τ*
fc =

500
R2 . (61) 

Criteria (59) and (61) are equivalent to each other to within a mul-
tiplicative factor, but, as shown in Fig. 7, they are not consistent with the 
criterion (58) based on the inertial number. 

4.2.3. Summary: contact diagram 
Eqs. (53) and (58) are plotted in Fig. 7 in order to more easily locate 

the frictional, collisional, and viscous regimes in the (R, τ*) diagram. 
Although the positions of these regimes are somewhat arbitrary 
(because they depend on the threshold value for each transition), they 
help to present and delineate four distinct domains. In most circum-
stances, particles interact with each other through frictional contacts. At 
high shear stresses (τ* > 0.4), coarse particles (for R > 2) also undergo 
collisional interactions. Finer particles (R < 2) experience viscous and 
frictional forces at low shear stresses, whereas at high shear stresses 
(τ* > 0.4), their contacts are predominantly viscous and collisional. 
There is a reasonably good match between Fig. 7, based on particle 
contact, and Bagnold’s partitioning in Fig. 1. 

4.3. Microstructural approaches to intense bedload transport 

A great deal of work has been done to investigate intense sediment 
transport. An exhaustive review of these past studies is beyond the scope 
of the present paper. Here, we focus on sufficiently coarse particles. 
Typically, with d = 1 mm and d = 1 cm, we get R = 127 and R = 4023, 
respectively. Table 6 recaps the significant contributions to bedload- 
sheet theory, specifying the features of the flow domains they investi-
gated and the scaling laws Φ(τ*) they obtained. Additional control pa-
rameters, such as interstitial fluid properties (temperature, density, 
viscosity) and bed features (mainly their angle θ) could be important, 

Fig. 7. Contact types in the R, τ* diagram. The solid blue line shows the transition from the frictional to the lubricated contact regime, as predicted by eq. (53). The 
solid red line shows the transition from the frictional to the collisional contact regime, as predicted by eq. (58). The dotted line is criterion (61), as proposed by 
Armanini et al. (2005), initially based on the Stokes number. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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but their effects are as yet poorly documented. 
One particular difficulty with these models is that they involve pa-

rameters whose values are difficult to adjust from independent experi-
ments. Authors may then be tempted to set parameters such that their 
model’s outcomes match well-known bedload transport equations, such 
as the Meyer-Peter–Müller equation. This explains why some authors 
ended up with the same scaling law as the Meyer-Peter–Müller equation. 
Overall, the models best suited to coarse bedload include those of Berzi 
and Fraccarollo (2013) (who obtained Φ ≈ 4τ1.8 in the 0.3–3 range of 
the Shields number) and of Maurin et al. (2018) (who ended up with Φ ≈

0.79
(

τ̂*
− τ̂*

c
)1.6 in the 0.1–0.5 range of the Shields number τ*, and in the 

0.5–6 range for the modified Shields number τ̂*). Both models credited 

Bagnold’s scaling law (8). 
Apart from these two studies corroborating Bagnold’s scaling, the 

other studies do not show results that are consistent with one another. 
For instance, for the frictional–collisional regime (for which Φ ∝ τ*5/3 if 
Bagnold’s scaling is correct), studies lead to scalings of Φ ∝ τ*p, with p in 
the 1.5–2.5 range (see Fig. S17 in the Supplementary Material, where 
the p values are mapped). 

5. Conclusions 

The present paper has thoroughly examined bedload transport 
scaling behavior. We sought to know whether a power-law relationship 

Table 6 
Theoretical approaches to intense bedload transport. Where available, we show each author’s contribution by specifying the flow types addressed, the Reynolds 

number range R =

̅̅̅̅̅̅̅̅̅

sgd3
√

/ν (s = Δϱ/ϱ), the Shields number range τ* = u*2/(sgd), and the ratio of the settling to shear velocities ws/u*. We summarize the model 
components of how the solid and fluid phases are modelled. KT is a shorthand notation for kinetic theory, μ(I) refers to the μ(I) rheology (GdR-MiDi, 2004; Forterre and 
Pouliquen, 2008), Coulomb means that the authors assume a Coulombian behaviour (τ = σ′tanα). DEM means “discrete element methods.” LBM refers to “Lattice 
Boltzmann Method.” For turbulence in the fluid phase, authors used the k − ε model, the mixing length ℓm approximation, or large eddy simulations (LES). Some 
authors considered a viscous shear stress rather than a turbulent one. The interplay between the solid and fluid phases was often modeled using a drag force. Some 
authors also assumed that particle collisions were mediated by viscous forces and, thus, assumed a viscous damping effect. Section S3 in the Supplementary Material 
provides further information about the results reported here.  

Authors flow type R τ* ws/u* Solid phase Fluid phase Scaling 

Amoudry et al. (2008) 
two-phase 
suspension 

20   KT k − ε  

Armanini et al. (2005) 
two-phase 520   KT, 

Coulomb  
Qs = F(θ)Q or Φ ∝ τ*3/2 

Berzi and Jenkins (2008) 
two-phase 520   μ(I) + KT viscous drag Φ ∝ τ*1/2 

Berzi (2011) 
layered flow 50 − 200 < 1.25  KT damping 

effect 
Φ ≈ τ*3 

Berzi and Fraccarollo (2013) 
layered flow 1150 0.3 − 3  KT damping 

effect 
Φ ≈ 4τ1.8 

Berzi (2013) 
layered flow 46 1 − 10  KT  Φ ≈ 10τ1.6 

Berzi and Fraccarollo (2016) 
turbulent 
suspension 

20 0.5 − 10 0.55 −

1.1 
KT  Φ ≈ 30τ2 

Capart and Fraccarollo (2011) 
layered flow 430 0.4 − 2.5 0.8 − 2.2 μ(I) + KT  Φ ≈ 0.4τ2 

Chauchat (2018) 
two-phase flow 220 ∼ 0.5  μ(I) ℓm + drag consistent with Φ = 11.8τ*1.5 

Cheng et al. (2018) 
two-phase 220 ∼ 0.5  KT LES  

Chiodi et al. (2014) 
two-phase 3   μ(I) Φ ∝ 6

(
τ* − τ*

c
)3/2 with τ*

c = 0.037 for τ* <

0.15        
Φ ∝ τ*5 for τ* > 0.15 

Durán et al. (2014) 
two-phase 10   DEM ℓm + drag Φ ≈ 1.3

(
τ* − τ*

c
)3/2 with τ*

c = 0.004 

Gonzalez-Ondina et al. (2018) 
two-phase 15 − 450 0.4 − 5.5 0.3 − 1.7 KT k − ε  

Hanes and Inman (1985) 
one-phase    Bagnold  Φ ≈ 3.5τ*5/2 

Hsu et al. (2004) 
two-phase 230 0.3 − 3.5  KT k − ε + drag Φ ≈ 20

(
τ* − τ*

c
)1.8 with τ*

c = 0.05 

Jenkins and Hanes (1998) 
two-phase 150 0.7 − 2.6  KT ℓm + drag Φ ≈ 9

̅̅̅̅̅̅̅̅̅̅
ρp/ρ

√ (
τ* − τ*

c
)1.53 with τ*

c = 0.05 

Kaczmarek et al. (2019) 
layered flow 10 − 3200 0.7 − 2.6  KT ℓm + drag Φ ≈ 8

(
τ* − τ*

c
)3/2 with τ*

c = 0.05 

Lee et al. (2016) 
two-phase 16 − 235 1 − 2.3  μ(I) k − ε + drag Φ ≈ 3.5τ*5/2 

Longo (2005) 
two-phase 6 − 17 1.1 − 4  KT k − ε Φ ≈ 19.8τ*1.83 

Matoušek and Zrostlík (2020) 
one-phase 410 − 130 0.5 − 1.7  KT  Φ ≈ 8.6τ*1.05 

Maurin et al. (2016) 
two-phase 310 − 2900 0.2 − 0.7  μ(I) or DEM ℓm + drag Φ ≈ 8τ*3/2 

Maurin et al. (2018) 
two-phase 310 − 2900 0.1 − 0.5  μ(I) or DEM ℓm + drag Φ̃ ≈ 0.79

(
τ̂*

− τ̂*
c
)1.6 with τ̂*

c = 0.1 

Pähtz and Durán (2020) 
two-phase 50 − 100 0.1 − 0.5  DEM drag +

viscous 
Φ̃ ∝ τ̃*2

c 

Revil-Baudard and Chauchat 
(2013) 

two-phase 15 − 150 1.25 − 2.3  DEM drag +
viscous 

Φ ≈ 20τ*1.8 

Schmeeckle (2014) 
two-phase 45 0.1 − 1.6  DEM LES Φ ≈ 5τ*2,5 for τ* > 0.8 

Zhang et al. (2022) 
two-phase 1700 −

3400 
0.046 −

0.14  
DEM LBM Φ ≈ 8(τ* − 0.033)3/2  
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of Φ ∝ τ*n, relating the bedload transport rate Φ to the Shield stress τ*, 
could properly describe both laboratory and field data and, if so, what 
value the exponent n might take. Many papers have addressed this 
question, and the fact that they have reached no consensus about that 
value may mean that finding a universal law of bedload transport is a 
pipe dream. One solution to this conundrum could be that there simply 
is no unique value for the exponent n but that the scaling law is defined 
piecewise, implying that n changes value depending on τ*. Exploring this 
idea by defining distinct bedload transport regimes and directly 
adjusting n from the data related to each regime could prove to be a 
perilous fitting exercise in the sense that bedload transport rates are 
noisy and infinite solutions could be found. An alternative would be to 
constrain the form of the bedload transport rate equation using physical 
principles. 

Ralph Bagnold voiced a similar idea nearly 60 years ago (Bagnold, 
1966), and we were curious to see how Bagnold’s model might assist us 
in finding a constrained form for bedload transport rates. In § 2.1, we 
showed that his 1966 model could be cast in the following dimensionless 
form: 

Φ =
eb

μcosθ

̅̅̅
8
f

√

τ*3/2. (62) 

This form differs from the more usual one in which the driving 
variable is the dimensionless stream power (per unit width), Ω =

ω/(ϱgν), instead of the Shield stress, τ*: 

Φ =
eb

μcosθ
Ω
sR

. (63) 

Admittedly, the main reason for using Eq. (62) is that Bagnold used ω 
as the driving variable of bedload transport; however, he also used the 
Shields stress τ* to partition bedload transport into three distinct re-
gimes. For the sake of consistency, we have mainly used τ* as the driving 
variable. In Eq. (62), we assumed that the friction factor μ is given by 
Bagnold’s model (18) fitted to his rheometric data, and we calibrated the 
efficiency factor eb and the Darcy–Weisbach flow resistance coefficient f 
from independent sets of pipe and flume data related to plane-bed flow 
conditions. The extension to more complicated bed structures remains a 
challenge. 

When applied to laboratory flumes, Eq. (62) properly describes 
bedload transport rates over two orders of magnitude of the Shields 
stress τ* (see § 3). We also proposed a simplified variant of Eq. (62), 
which retains only Φ’s dependence on τ*, and that we referred to as 
Bagnold’s master equation: 

Φ = (10τ*)
16

(

1 +

(
τ*

τ*
1

)3/2
)− 8/9(

1 +

(
τ*

τ*
0

)8
)− 13/8

, (64)  

where τ*
0 = 0.078 and τ*

1 = 0.40 are estimates of the lower and upper 
limits of the regime qualified as “transitional” by Bagnold (1966) and 
that we suggest naming the “kinetic regime.” This equation summarizes 
three scalings: Φ ∝ τ*16 in the no-transport regime (or rarefied transport 
regime) for τ* < τ*

0; Φ ∝ τ*3 in the transitional regime (or kinetic regime) 
for τ*

0 ≤ τ* < τ*
1; and Φ ∝ τ*5/3 in the high-transport regime (or sheet- 

flow regime) for τ* ≥ τ*
1. Incidentally, the term of no-transport regime 

may be confusing when working with mountain rivers (the situation is 
different with lowland rivers) since even during low-intensity floods 
(those whose peak discharge does not mobilize the pavement layer), the 
Shields number remains less than τ*

0, and most bedload transport occurs 
under such conditions. Referring to this regime as the rarefied transport 
regime may be preferable, but this designation would also come with 
some risk of confusion, since transport is not necessarily so rarified. 

When applied to field data, Eq. (64) provides the correct trend for the 
majority of rivers. However, for some rivers (about 20% of the sites 
studied in § 3.6), the data show little correlation between water 

discharge and bedload transport rates, and Eq. (63) is unable to capture 
the right order of magnitude of the observed transport rates. 

In his final papers, Bagnold also used regression analysis to deter-
mine Φ’s dependence on stream power, flow depth, and grain size 
(Bagnold, 1980, 1986). We updated his results by using a Markov chain 
Monte Carlo algorithm to determine this dependence. We found that for 
bedload transport, the transport rate scales as 

Φ = 4M, (65)  

where M = Ω3/2ξ− 3/2s− 9/5R− 5/3 is a dimensionless number that we have 
called the Martin number. When the bedload transforms into a sus-
pended load, the exponent remains the same, but the proportionality 
factor increases to Φ = 32M. When trialed on laboratory flume data, Eq. 
(65) correctly describes transport rates over five orders of magnitude in 
M. We refer to Eq. (65) as Bagnold’s scaling equation. 

Overall, Bagnold’s approach has two interesting features. First, the 
partitioning of bedload transport types into three transport regimes is 
corroborated by a variety of laboratory experiments and, to some extent, 
by field surveys. The Shields stress has a markedly different influence on 
each of the three regimes’ transport rates—Φ (Φ ∝ τ*16, Φ ∝ τ*3, and 
Φ ∝ τ*5/3)—whereas scaling behavior with the Martin number remains 
the same in each. Second, the predictive capacity of Bagnold’s master 
eq. (64) and scaling (65) is good for laboratory flume experiments and 
satisfactory for real-world rivers. Many processes may explain why the 
model performs much worse with gravel-bed rivers. Typical examples of 
these processes include the intricate coupling between sediment trans-
port and bedforms, the limited supply of bedload material, and grain 
sorting. 

Bagnold’s approach also raises several important issues that we have 
examined throughout this review paper without providing any defini-
tive answers. First, Eqs. (62) and (63) use two different driving variables 
that are underpinned by two distinct views of what controls bedload 
transport. When using the Shield stress τ*, we emphasize that bedload 
transport is a local process controlled by the shear stress exerted by the 
water stream on its bed. Using the stream power Ω amounts to postu-
lating that bedload transport is controlled at the flow scale. Naturally, 
under steady-state uniform-flow conditions, eqs. (62) and (63) are 
exactly equivalent, but under time-dependent or non-uniform-flow 
conditions, this is no longer the case. A number of studies have 
pointed out the non-local character of bedload transport under non- 
uniform conditions (Charru et al., 2004; Lajeunesse et al., 2010; 
Furbish et al., 2012; Ancey et al., 2015; Furbish et al., 2017), using 
differential operators to account for the diffusive behavior of bedload 
transport. There are still many unanswered questions about which 
driving variable is most relevant (Ω or τ*) when the flow is no longer 
under steady-state uniform-depth conditions. 

A second issue is that Bagnold’s approach assumed that the bedload 
was fully subordinate to the water stream, from which it extracts a small 
amount of energy to set it in motion and carry it. This assumption is 
consistent with the low values for the efficiency factor (eb < 0.2) found 
by Bagnold (1966) and other authors (Gomez, 2022). However, it con-
trasts with the values reported in this review for both laboratory and 
field data (with values of eb reaching and even exceeding unity). These 
high efficiency-factor values suggest that Bagnold’s assumption breaks 
at high transport rates. Laboratory data showed no radical bedload 
transport rate variations with the Shields stress τ*, which may explain 
why Bagnold’s master eq. (62) performs well even though one of its 
working assumptions is no longer valid. Most of the theoretical and 
numerical models reported in Table 6 do not use this assumption and 
instead use a coupling of the solid and fluid phases through interstitial 
pressure and drag forces. Unfortunately, at this time, although these 
phases are better described, we do not have more information or more 
confidence about the scaling behavior of Φ. 

A third issue, implicit in Bagnold’s approach, is that the model 
provides the amount of sediment transported along “a length of channel 
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sufficient to include all repetitive irregularities of slope, cross-section, 
and boundary” (Bagnold, 1966). Bagnold’s assumption implies that (i) 
the model only provides space-averaged estimates of bedload transport, 
and (ii) bedload transport is aligned with the main flow direction. There 
are thus two limitations to keep in mind. First, even when involving 
local Shields stress τ*, the model is not supposed to provide the spatial 
distribution of bedload transport rates. The consequence is that its in-
clusion in morphodynamic models requires further assumptions about 
the cross-section’s spatial evolution due to erosion and deposition 
(Cunge et al., 1980, see Chap. 7.2). Second, extending Bagnold’s model 
to two-directional flows, as Seminara et al. (2002) tried to do, is prob-
lematic. The model is best suited to unidirectional flows. 

A fourth issue raised by Bagnold’s approach was his use of crude 
criteria, based on threshold values of the Shields stress, to delineate the 
transport regimes. Overall, experimental and field observations confirm 
these values, but this good agreement must be tempered by the fact that 
the data’s large scatter makes an exact determination of these thresholds 
illusory. Authors have tried to provide other criteria based on steric 
considerations (e.g. Gao, 2008; Ashley et al., 2021), or on alternative 
dimensionless numbers (Maurin et al., 2016). In recent years, several 
studies have proposed dimensionless numbers to characterize flow re-
gimes in granular suspensions (Savage, 1984; Ancey et al., 1999; Ancey 
and Evesque, 2000; Forterre and Pouliquen, 2008; Delannay et al., 
2017). These numbers were often defined using characteristic times of 
interaction or relaxation between the solid and fluid phases. We found 
that they were not necessarily consistent with each other (see § 4.3). For 
instance, distinguishing between friction-dominated and collision- 
dominated regimes can be done using the Bagnold number (Armanini 
et al., 2005) or the inertial number (Ancey and Evesque, 2000; GdR- 
MiDi, 2004), but outputs are contradictory (see § 4.2). Further work is 
needed to elucidate the nature and limits of bedload transport regimes. 

Lastly, applying Bagnold’s approach to real-world rivers requires 
further work to determine how bedforms affect energy transfer and flow 
resistance (and thus how the efficiency factor and Darcy–Weisbach co-
efficients are changed). Apart from a few studies on material supply 
affects the value of eb (Gomez, 2006;Gomez et al., 2022), there has been 
no investigation of how to update Bagnold’s approach to account for 
bedform’s influence on bedload transport. Bagnold’s model (62) sug-
gests that bedforms lead to reduced energy transfer (thus a reduction in 

eb) and increased flow resistance (thus an increase in f). The next step 
should be a detailed comparison between Bagnold’s model and labora-
tory or field data related to streams with bedforms, in which the effi-
ciency factor eb and friction factor are evaluated independently. 

Returning to the initial question in this review paper’s title, we can 
say that Bagnold’s approach has some decisive advantages and raises 
some interesting questions (highlighted above) about the nature of 
bedload transport. Insofar as we have calibrated the model parameters 
from an independent dataset and tested Bagnold’s equations to a wide 
range of flow conditions, we can state that Bagnold’s ideas undoubtedly 
remain relevant. Bagnold’s main result, Φ ∝ Ω3/2, remains valid for a 
wide range of flow conditions. 
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Appendix A. Shields diagram 

da Silva and Bolisetti (2000) proposed an empirical equation for the Shields curve: 

τ*
c = 0.13ξ− 0.392exp

(
− 0.015ξ2)+ 0.045(1 − exp( − 0.068ξ) ), (A.1)  

where 

ξ =

(ϱp

ϱ
gd3

ν2

)1/3

=
( ϱp

Δϱ
R2
)1/3

. (A.2) 

Dietrich (1982) developed an empirical equation that captures the settling velocity ws of spherical particles: 

ws =
(Δϱ

ϱ
gν
)1/3

F1/3(d*) with d* =
Δϱ
ϱ

gd3

ν2 = R2, (A.3)  

and 

105logF = − 376715+ 192944logd* − 9815log2d* − 575log3d* + 56log4d*, (A.4)  

where log gives the logarithm with base 10. The condition of u* = ws can be cast in a dimensionless form by substituting ws with eq. (68). 

τ* =
ϱ

Δϱ
1

gd

(Δϱ
ϱ

gν
)1/3

F2/3(d*) = R− 2/3F2/3( R2). (A.5)  
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Appendix B. Nomenclature  

Table B.7 
Roman symbols.  

Ba – Bagnold number 
C – bedload concentration 
C̄ – mean bedload concentration 
d m particle diameter 
d50 m mean particle diameter 
d84 m particle diameter quantile related to frequency p = 0.84 
e – coefficient of restitution 
eb – efficiency factor 
f – Darcy–Weisbach friction 
Fr – Froude number 
g m/s2 gravitational acceleration 
G – Bagnold number 
h m flow depth 
hs m bedload layer thickness 
i – bed slope 
I – inertial number 
ks m bed roughness 
ℓm m mixing length 
Ls m saturation length 
L – Leighton number 
M – Martin’s number 
P W/m2 power per unit surface 
q m2/s flow rate per unit width 
qeq m2/s equilibrium flow rate per unit width 
qs m2/s bedload transport rate per unit width 
R – particle Reynolds number 
Rh m hydraulic radius 
s – density ratio 
St – Stokes number 
T K temperature 
Ts s saturation time 
ū m/s depth-averaged velocity 
u* m/s friction velocity 
ūs m/s bedload velocity 
ws m/s settling velocity 
x m streamwise coordinate 
y m cross-stream coordinate  

In this article, log refers to the decimal logarithm (with base 10) whereas ln is the natural logarithm (with base e).  

Table B.8 
Greek symbols.  

α – friction angle 
αrl – correcting factor of roughness size accounting for roughness layer 
αb – correcting factor of roughness size accounting for bedload transport 
Δϱ kg/m3 density difference Δϱ = ϱp − ϱ 
η Pa s water dynamic viscosity 
γ m particle activity 
γ̇ 1/s shear rate 
κ – von Kármán’s constant (κ = 0.41) 
Λ W/m2/K entropy production rate 
μ – Bagnold’s bulk friction coefficient 
μb – Bagnold’s local friction coefficient 
ω W/m2 stream power per unit length 
Ω – scaled stream power Ω = ω/(gνϱ)
ωc W/m2 critical stream power per unit length related to incipient motion 
Φ – dimensionless bedload transport rate 
Π – dimensionless number 
σ′ Pa effective normal stress 
σg – gradation factor σg = d84/d50 

σp Pa particle normal stress 
τ* – Shields number 
τ*

c – critical Shields number related to the onset of sediment motion 
τ*

fv – critical Shields number related to the transition from frictional to viscous regimes 

τ*
0 – Shields stress related to the transition from the no-transport to transitional regimes 

τ*
1 – Shields stress related to the transition from the transitional to sheet-flow regimes 

τb Pa bottom shear stress 
τ*

k – dimensionless critical shear stress related to bed failure 
τp Pa particle shear stress 
τx Pa critical bedload stage 

(continued on next page) 

C. Ancey and A. Recking                                                                                                                                                                                                                      



Earth-Science Reviews 246 (2023) 104571

26

Table B.8 (continued ) 

τ*
x – dimensionless critical bedload stage 

θ – bed angle 
ϱ kg/m3 water density 
ϱp kg/m3 particle density 
ϱs kg/m3 bulk sediment density 
ξ – relative submergence 
ξ12 – relative submergence at the transition between Recking’s Domains 1 and 2 (see Supplementary Material) 
ξ23 – relative submergence at the transition between Recking’s Domains 2 and 3 (see Supplementary Material) 
ζ – bed or bedload porosity  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.earscirev.2023.104571. 
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Matoušek, V., Krupička, J., Picek, T., 2013. Validation of transport and friction formulae 
for upper plane bed by experiments in rectangular pipe. J. Hydrol. Hydromech. 61, 
120–125. 
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