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Infrared-active phonons in one-dimensional materials and their
spectroscopic signatures
Norma Rivano1,2✉, Nicola Marzari 1,2,3 and Thibault Sohier4

Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local
dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually breaks down in
two-dimensional materials. Here, we develop the theory for one-dimensional (1D) systems—nanowires, nanotubes, and atomic and
polymeric chains. Combining an analytical model with the implementation of density-functional perturbation theory in 1D
boundary conditions, we show that the dielectric splitting in the dispersion relations collapses as x2 logðxÞ at the zone center. The
dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts, opening infrared and
Raman characterization avenues.
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INTRODUCTION
Phonons and their interactions with electrons and photons are
key ingredients in determining the thermodynamic, transport,
and optical properties of materials1,2. Notably, long-wavelength
optical phonons can give rise to electric fields which strongly
affect not only their dispersion relations3–8, but also the physics
of Fröhlich electron-phonon interactions9–11 and phonon
polaritronics12. In semiconductors and insulators, when atoms
in the lattice have non-vanishing Born effective charges (BECs),
optical phonons can generate a polarization density and couple
with electric fields. Those modes are then termed polar and are
infrared active. In addition, for longitudinal atomic displace-
ment patterns, and in particular for purely longitudinal optical
(LO) modes, a long-range electric field is generated that
becomes macroscopic in the long-wavelength limit13–15. Creat-
ing an additional electric energy density in the material is more
costly, and thus the frequency of the LO mode is blue-shifted.
While the strength of this effect depends on the dielectric
properties of the material (BECs and the high-frequency limit of
the dielectric tensor ϵ∞), its dependency on phonon momenta
and size is ruled solely by dimensionality, and we argue here
that this specific fingerprint on the dispersion relations can be
exploited for spectroscopic characterization or in opto-
electronic devices. In 3D, the energy shift of the LO mode is
constant around the Brillouin zone center as a function of the
norm of the momentum. At variance, in 2D it has been shown to
depend linearly on momentum and to vanish at Γ exactly3,4,16.
This breakdown can be expected in 1D systems as well5,17–20;
nonetheless, its actual behavior remains an open question.
The dielectric contribution to the dispersion of the LO mode is

often described in terms of a deviation from the transverse
optical (TO) mode: LO-TO splitting. This is because in many
materials (e.g., with cubic/tetragonal symmetries or planar
hexagonal) LO and TO modes would be degenerate in the
absence of dielectric effects13,15,21–24. However, the lifting of
these degeneracies ultimately depends on the symmetries and
the dimensionality of the crystal. In 3D, with 3 equivalent

directions at most, optical modes are up to triply degenerate at
the zone center (based on group theory considerations25). In 2D,
these modes are up to doubly degenerate, while a splitting with
respect to the out-of-plane optical (ZO) modes always persists
since in- and out-of-plane displacements are nonequivalent. In
1D, the longitudinal direction is clearly different from the other
two, possibly degenerate with each other. Thus, there is no
degeneracy to recover, even if the polar energy shift vanishes.
Accordingly, we will speak of dielectric or polar shift rather than
LO-TO splitting.
In this work, we investigate infrared-active phonons, devel-

oping for 1D the analysis made22–24 for 3D21 and 2D
materials3,4. We implement density-functional perturbation
theory (DFPT)22 with 1D open-boundary conditions26 (see
Supplementary Methods for further details) to capture the
response of isolated 1D systems; we then derive an analytical
model describing the interplay between the phonon-induced
polarization and electronic screening. Notably, such model
enables to interpret Raman and infrared spectra of 1D systems,
thus greatly aiding material characterization at the nanoscale.
We investigate the dispersion characteristics of prototypical
systems such as BN atomic chains, BN nanotubes, and GaAs
nanowires. Remarkably, we show the collapse of the
dielectric shift at Γ and we derive its logarithmic asymptotic
behavior as a function of phonon wavevector qz and radius t of
the material. This analysis allows to interpret and predict
vibrational properties as a function of dimensionality, provid-
ing insights into the behaviour of nanomaterials (this includes
nanotubes5,17,18,27, nanowires16,19,28–30, atomic chains and the
major case of polymers31–36—systems widely discussed in the
literature and central for nanotechnological applications) and
paving the way to similar developments for optical and
transport properties. As an example, we show how the
radius of a 1D system could be extracted from infrared or
Raman spectra by discussing the experimental results pre-
sented in ref. 28.
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RESULTS AND DISCUSSION
Analytical model
We shall frame the discussion by introducing an electrostatic
model for the electric field generated by LO phonons, and discuss
its consequences on their dispersion relations. Here, the 1D
system is described as a charge distribution periodic along the z-
axis and homogeneous in the radial direction within an effective
radius t, with vacuum outside. Within a dipolar approximation, the
atomic displacement pattern ua

ν associated with a phonon ν of
momentum q ¼ qz ẑ induces a polarization density

PðqzÞ ¼
e2

L

X
a

Za � ua
ν ðqzÞ ; (1)

where e is the unit charge, L is the unit-cell length, and Za is the
BEC tensor for each atom a within the unit cell. The corresponding
charge density q ⋅ P(qz) is the source of the electric field, termed
Fröhlich due to the related electron-phonon interaction, and
vanishes as soon as the phonon propagation (along momentum
q ¼ qz ẑ) and the polarization (along displacements ua

ν ) are
orthogonal. Thus, within this model, only phonons labeled as LO
in the long-wavelength limit generate a sizable electric field and
experience the dielectric shift. In the following, we focus on strictly
in-chain atomic displacements ua

ν ! ua
LO and we assume BECs and

the macroscopic dielectric tensor to be diagonal.
By solving the associated Poisson equation, we derive the new

electrical forces and the resulting change to the phonon
frequencies. The full derivation is reported in Supplementary
Methods. After some manipulation, the general expression for a
material in n-dimensions can be recast in the form

ωLO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ Δω2

max 1� ΔnDðq; tÞ½ �
q

; (2)

where ω0 is the reference value for the LO branch in the absence
of any additional contribution from polarity. To ease the
comparison between dimensionalities, we have highlighted two

main contributions: Δω2
max and ΔnD. The prefactor Δω2

max ¼
4πe2
ϵmi Ω

P
a
Za�eaLOffiffiffiffiffi

Ma
p

� �2
corresponds to the maximum value of the shift

set by the dielectric properties of the nD crystal. Here, Ω is the
volume of material in a cell, i.e., the volume of the unit cell in 3D,
or the cell area times the thickness in 2D, or the cell length times
the section in 1D. ϵmi¼z is the dielectric tensor component for the
propagation direction ẑ and eaLO is the LO eigenvector for an atom
a scaled by its mass Ma. This prefactor is then modulated by ΔnD,
whose expression depends on dimensionality: it is zero in 3D,
while dependent on phonon momenta (in-plane or in-chain) and
size t (thickness or radius) in 2D and 1D. The 1D fingerprint
derived from the model presented here (assuming a diagonal and
isotropic ϵ∞, i.e., ϵm ! ϵ1DI) reads

Δ1Dðqz; tÞ ¼ 2I1ðjqzjtÞK1ðjqzjtÞ 1� 2ϵ1D
ffiffiffi
π

p
qztI1ðjqzjtÞK0ðjqzjtÞ � G22

24ðjqzj2t2Þ
2
ffiffiffi
π

p
qztðϵ1DI1ðjqzjtÞK0ðjqzjtÞ þ I0ðjqzjtÞK1ðjqzjtÞÞ

 !
;

(3)

where In(x), Kn(x) are the nth-order modified cylindrical Bessel

functions, and Gmn
pq

a1; :::; ap
b1; :::; bq

����x
� �

is the Meijer G-function. The

limit behavior of Eq. (3) in the vicinity of Γ is

Δ1Dðqz; tÞ ¼ 1� q2z t
2

2 ðCðϵ1DÞ � ϵ1D logðqztÞÞ, where C(ϵ1D) is a
constant (independent of qzt) and is reported in Supplementary

Methods. Note that the equivalent in 2D would be3 Δ2Dðqp; tÞ ¼
1� ϵ2Dtjqpj

2þϵ2Dtjqp j ; leading in that case to a linear collapse of the

dielectric shift in terms of in-plane phonon momentum qp.
Eqs. (2) and (3) are the central analytical result of this work. In

particular, Δ1D dictates the transition from a momentum-

dependent (1D-like) to a momentum-independent (3D-like) shift,
similar to what is observed in 2D3. In the qzt→ 0 limit, Δ1D→ 1 and
the shift breaks down at Γ with an overbending at small but finite
qz5,17–20. Instead, if considering the opposite qzt→∞ limit, the
modulation typical of low-dimensionality vanishes and one is left
with the well-known constant 3D shift. The reason behind this
transition is intuitive. For small perturbing momenta (real-space
long-range interactions), the electric-field lines associated with the
polarization density spread far away in the surrounding medium,
leading to vanishing dipolar interactions and shift: the material
perceives itself as an infinitely thin 1D system surrounded by
vacuum. As the momentum increases (short range in real space),
these lines get more and more confined within the material and
the dipole-dipole interactions eventually resemble those of a bulk
material, insensitive to the boundaries.
As we will demonstrate, our model is in agreement with ab-

initio results, particularly with respect to the qz and t behaviors.
However, while the splitting and BECs can be divided by the
screening function ϵ(qz), the familiar form of this division3,21 is not
immediately apparent in our model. To complement our
description of the mechanism, we provide a simpler model in
Supplementary Discussion, which is less accurate but easier to
interpret.

Application to chains, wires and tubes
We now combine our analytical findings with first-principles
calculations. In this endeavour, DFPT22 represents a valuable ally,
although some modifications are required when dealing with low
dimensionality3,4,9,37–39. The major one stems from periodic-
boundary conditions (PBCs) leading to spurious long-range
Coulomb interactions between periodic images. When the
electronic charge density is perturbed at momentum q, the reach
of these interactions scales as λ= 2π/q in the out-of-chain (or
plane) directions. It follows that, for long-wavelength perturba-
tions, these cross-talks persist even for very large distances,
turning the response of the isolated 1D system into the one of a
fictitious 3D system of periodic replicas. For a systematic and
physical solution to this issue, we have implemented a 1D
Coulomb cutoff technique, based on the version proposed in
ref. 38, in the relevant packages (PWScf, PHonon) of the Quantum
ESPRESSO distribution22,40,41. This implementation is summarized
in Supplementary Methods while fully detailed in an upcoming
publication26, and restores the physical open-boundary conditions
for the computation of total energies, forces, stress tensors,
phonons, and electron-phonon interactions.
In the following, we focus on BN atomic chains, BN armchair

nanotubes, and GaAs nanowires. The scope is threefold: to show
the relevance of the open-boundary conditions for linear response
in 1D, to validate Eq. (3), and to discuss the underlying physics and
the transition between dimensionalities. The details of the
calculations and model parametrization (also independently
obtained via 1D DFPT) are given in Supplementary Methods. A
crucial parameter in our investigation is the radius t, which
determines the radial extent of both the polarization density and
the electronic charge density. To determine this parameter, we
examine the radial electronic charge density profile, which is
averaged on cross-sectional planes along the 1D-axis, and set a
meaningful threshold for each system. For each material we
compute the phonon dispersions and we plot it in full in the left
panel, zooming around the LO-TO splitting in the right panel (see
Fig. 1). We focus on the modes similar to those of the bulk 3D or
2D parents, identifying the purest longitudinal mode (hLO),
highest in energy and associated to the largest polarization
density, as well as the corresponding tangential or bulk-like
transverse modes. For clarity, colors are meant to highlight these
phonon branches, while the others are left in gray in the
background. Note that these materials are dynamically stable,
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see Supplementary Methods for a discussion concerning the long-
wavelength dispersion of acoustic phonons.
Figure 1 shows the effect of the spurious interactions between

periodic images. In 3D DFPT (i.e., 3D PBCs), we always recover a
rather flat LO branch (red) with a finite dielectric shift at Γ, which
possibly adds up to the splitting with respect to TO phonons
(green) due to crystal symmetries and dimensionality. This is the
3D response of an array of interacting 1D materials. On
the contrary, with 1D DFPT (i.e., 1D open-boundary conditions),
the amount of energy built by LO phonons (blue) is shown to
vanish at the zone center and the branch exhibits a logarithmic
overbending in the long-wavelength limit: this is the response of
the isolated 1D material given by Eq. (3). The correction
introduced by the Coulomb cutoff is shown to be significant for
small qz, where low-dimensionality comes into play. The Brillouin
zone range over which the discrepancy between 3D and 1D DFPT
extends is determined by the amount of vacuum in the simulation
cell. In PBCs, the larger the vacuum, the smaller the region
affected by the stray fields, and the softer the LO branch; this latter
asymptotically converges to the 1D limit. The true physical
behavior is fully recovered only in the presence of the cutoff, since
for momenta smaller than the inverse of the distance between
periodic images there will always be the response of a 3D periodic
system, i.e., a non vanishing polar shift.
In the right panels of Fig. 1 we present the comparison between

1D DFPT and the analytical model we have derived. For all
materials, a good agreement is found at the very least within the
first 10–20% of the Brillouin zone, that is the long-wavelength limit
targeted by the model. The strength of the effect, being the range
of frequencies over which the overbending extends, is material
dependent and ruled by the square of the screened effective

charges, i.e., Z2a
ϵ1D

(see Eq. (2)). By comparing the materials in Fig. 1,
the polar shift is obviously most pronounced in BN: around
200 cm−1 in the case of nanotubes, consistently with 2D and 3D
hexagonal BN3,42,43, and around 400 cm−1 for the chain. In the BN
chain, the larger increase is due to the crystal structure differing
from the hexagonal one common to the other allotropes. The
effect is more subtle in GaAs, of about 10 cm−1, because of the
significantly smaller BECs. The strength of the shift is estimated
based on the blue curve only (1D OBCs) and by considering the
difference between the maximum frequency (i.e., qz ≈ 25% of the
Brillouin zone, where the transition towards a 3D regime happens)

with respect to the Γ value (i.e., 1D null shift). Note that as a
consequence of the pseudopotentials used in this work, the GaAs
frequencies of the nanowire are strongly underestimated. The
actual range of the polar effect should be approximately 20 cm−1.
However, here the focus is mainly on the qualitative trend of the
polar effect more than the exact frequencies. Different pseudo-
potentials are instead used for bulk GaAs to compare with
experiments in the following section and these lead to phonon
frequencies in agreement with the literature.
In low-dimensional materials, as a consequence of the vanishing

polar shift, the remaining LO-TO splitting at the zone center is
purely ‘mechanical’, i.e., due to structurally different atomic
displacements because of symmetry and dimensionality. Among
the selected materials, the chain represents the ultimate 1D
system and exhibits the largest mechanical splitting (i.e., larger
asymmetry between displacement directions). Instead, nanotubes
and nanowires sit in between 1D and 2D and 3D, respectively, as a
function of their diameter. The mechanical splitting at Γ is
expected to decrease as t→∞, converging to the 2D or 3D case.
Similarly, the polar shift asymptotically converges to its higher-
dimensional limit. Here, ‘asymptotically’ is key, since the 1D nature
of the material will always suppress the polarity-induced electric
field at small enough momenta. Thus, the effect of the radius
increase is visible in the long-wavelength regime: the range of
momenta over which the shift vanishes shrinks and the
discontinuity at Γ due to direction-dependent BECs is transferred
from the prefactor of the logarithmic overbending (1D) to the
slope3 (2D) or the value13,15,21–24 (3D) of the polar shift.
Focusing on nanotubes, Fig. 2 compares the first-principles

results for (4,4), (5,5) and (6,6) BN tubes. In the right panel,
decreasing the curvature is shown to stiffen the logarithmic LO
behavior and approach the linear signature of 2D materials3. The
left panel shows instead the absolute values of the optical
frequencies for each tube and focuses on the mechanical size
effects. There, one can observe two trends. On one hand, it is
known throughout the literature that increasing the radius
mechanically blue-shifts both TO and LO phonons at zone
center6,16–19,27,29,30,44–48. On the other hand, the same radius
increase progressively reduces the mechanical splitting, conver-
ging towards a finite or null gap depending on the symmetries of
the 2D parent (as sketched in Fig. 2). Note that the mechanical
shifting is much stronger for the TO mode, which can be
understood by considering that the atoms are displaced in the

Fig. 1 Phonon dispersion of BN atomic-chain, (4,4) nanotube, and wurtzite GaAs nanowire of 24 atoms including the hydrogen atoms
saturating the surface dangling bonds. For each material, left panel compares 3D-PBC and 1D-OBC DFPT calculations, explicit for 1D
(symbols) and interpolated for both (lines). Right panel shows the agreement of our model with 1D DFPT for the LO branch in the long-
wavelength limit.
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non-periodic direction. Furthermore, since the mechanical con-
tribution to the LO shift actually opens the LO-TO gap (pushing LO
up), the closing of the gap can be attributed to the stronger
increase of the TO frequency. A similar analysis holds for
nanowires as well, but in this case the transition is from 1D to
3D. The mechanical effects are shared with nanotubes, depending
only on crystal symmetries. As regards the dielectric shift, the
range of momenta over which the splitting goes from zero to its
constant 3D value progressively shrinks around Γ, the dispersion
becoming progressively steeper and only asymptotically
approaching the well-known discontinuity in the bulk.

Raman and infrared characterization
Once the relevant parameters in Eqs. (2), (3) are known, empirically
or from first-principles, the model unveils a one-to-one relationship
between first-order LO Raman/infrared lines (i.e., frequency) and
radius t. This makes the model a very valuable tool for spectro-
scopic characterization of 1D systems. The phonon probed in
experiments is with small but finite momentum qz, related to the
laser wavelength λ by momentum conservation law (qz= 2π/λ).
Thus, the larger the λ, the closer to Γ is the qz probed. The
evolution with size of the hLO branch is given by Eq. (2), where size
effects are conveyed by the radius explicitly appearing in
the Δ1D(qz, t, ϵ1D). In passing, note that the dielectric properties
and the absolute positions of LO/TO modes may actually change
with size due to mechanical reasons, as well as the q-dependency
of the eigenvectors (see Supplementary Discussion). We empha-
size that the roles of t and qz in Δ1D are symmetric (i.e., Δ1D

depends on the product qzt). Thus, the behavior of the frequency
versus size ωLO(t) at fixed phonon momenta is the same as the
phonon dispersion ωLO(qz) at fixed radii. The polar shift increases
logarithmically at small t, then approaches a maximum set by the
bulk splitting. The increase is sharper for smaller wavelengths,
meaning that a larger λ would instead ease size resolution.
Raman/infrared experiments on single, isolated and semicon-

ducting wires/tubes are mostly missing, and closest to the
conditions discussed here is the work of ref. 28, where the authors
propose a strategy to grow ultrathin GaAs nanoneedles with
atomically sharp tips (t ≈ 10 nm, mostly wurtzite) on top of thicker
bases (t ≈ 100 nm, zincblende). The nanowires are arranged in
regular arrays with a spacing of 1000 nm. This distance, compared
with the laser spot, is large enough to avoid significant inter-wire
cross-talks hindering the response of the single wire. Then, size
effects are investigated with room-temperature Raman spectro-
scopy by pointing a semiconducting laser probe at 785 nm on
either the tip or the base. The observed spectra are composed of

two peaks each. For the base, the TO and LO modes are found at
268 cm−1 and 285 cm−1 (LO-TO splitting ≈ 17 cm−1), respectively.
The tip spectrum, instead, systematically exhibits, besides broad-
ening, a stable TO mode and a down shift of about 3 cm−1 for the
LO mode. The observed change in the LO-TO separation, switching
from the base to the tip, appears to be almost entirely due to the
change in LO position. A mechanical red shift is expected to affect
equally the two modes or mostly the TO, which is instead stable.
This points to the dielectric nature of the phenomenon, i.e., the
vanishing polar shift and its size dependence.
In Fig. 3 the hLO mode for the two nanowires as given by the

present model is compared with the data from ref. 28. We assume
both systems to be large enough that we can parameterize (ab-
initio at T= 0 K) Eq. (2) using the bulk ϵm and BECs, and purely
longitudinal and constant eigenvectors. This results in an upper
limit in terms of frequencies for each qz and t. Shrinking the size
corresponds to a decrease in the branch steepness close to Γ and
to the observed blue shift. The agreement between experiments
and the model is very good for the thicker base of the nanowire
and semiquantitative with respect to the measured blue shift for
the tip. There are multiple reasons behind this, such as
temperature effects and mechanical contributions (not accounted
for in this parametrization), but especially the uncertainty on the
phonon momenta probed experimentally. However, the most
reasonable explanation is that base and tip signals are not fully
decoupled. Thus, experiments probe a mixture of base and tip
phonons and fall in between theoretical predictions for the two
nanowires’ size. In this regards, further comparison with

Fig. 3 Evolution of the LO branch in the long-wavelength limit for
the two GaAs nanowires from ref. 28 (10 and 100 nm in radius)
obtained by the model. The comparison with experiments28 is
reported.

Fig. 2 Size effects (mechanical and polar) on LO and TO modes for BN (6,6), (5,5) and (4,4) armchair nanotubes from 1D-DFPT. Left panel
compares both modes. Right panel focuses on the polar shift for the LO branch by setting as common offset ω0= 0. The sketch represents the
mechanical evolution of tangential TOT vs radial TOR optical modes.

N. Rivano et al.

4

npj Computational Materials (2023)   194 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



experiments on single-wires/tubes with constant radius will serve
to validate the details of the proposed model. We hope this paper
will motivate future work in this direction.
In conclusion, we have argued for a breakdown of the dielectric

shift experienced by LO phonons in 1D systems, and shown its
exact asymptotic behavior in terms of phonon momenta and
material size. This understanding and the accurate first-principles
description provided by the open-boundary conditions imple-
mentation of this work represent a transparent and insightful
advance in the field. First, the model can be exploited by the
experimental community to aid material characterization of 1D
materials. In addition, the proposed computational framework
unlocks the full potential of DFPT for 1D system, paving the way to
further studies which go beyond vibrational properties and may
revolve around electron-phonon coupling, and optical properties.

METHODS
In this section we report the computational details relevant for this
work. Then, we summarize the key assumptions in the derivation
of the analytical model and its parametrization. For more details
on each of these topics, see Supplementary Methods.

Computational details
First-principles calculations of structural properties and phonons
are performed with the Quantum ESPRESSO package22,40,41, by
combining DFT and DFPT. We use the PBE exchange-correlation
functionals for all materials, with the exception of bulk wurtzite
GaAs for which we use norm-conserving pseudopotentials within
the local density approximation from the Original QE PP Library.
For 1D-DFT/DFPT calculations, 1D periodic-boundary conditions
(i.e., the 1D cutoff and the 1D phonon Fourier-interpolation based
on the analytical model) are applied to properly describe linear
response to a phonon perturbation26. The pseudopotentials
(except for the ones used for bulk GaAs) are taken from the
Standard Solid-State Pseudopotentials (SSSP) library (precision
version 1.1)49 and the wave-function and charge density energy
cutoff have been selected accordingly: 110 and 440 Ry for the
chain, 80 and 440 Ry for nanotubes, and 90 and 720 Ry for the
GaAs nanowire. For bulk GaAs, we selected instead a wave-
function cutoff of 80 Ry. We treated all the materials under study as
non-magnetic insulator (i.e., fixed occupations) and a fine electron-
momenta distance of approximately 0.2 Å−1 (unshifted mesh) has
been used to sample the Brillouin zone. The convergence of all the
relevant parameters have been performed aiming to an accuracy
on the final phonon frequencies of few cm−1.

Analytical model and its parametrization
The 1D material is modeled by assuming a distribution of charge
periodic along the z-axis and homogeneous in the radial direction
r⊥ within an effective radius t. We assume vacuum outside, i.e.,
free standing materials, but the generalization to include the
effects from other surrounding dielectric media is straightforward.
The dielectric properties of the 1D system are then modeled as
diagonal BECs and macroscopic dielectric tensors, isotropic only in
the two out-of chain directions:

ϵm ¼
ϵm? 0 0

0 ϵm? 0

0 0 ϵmz

0
B@

1
CAZa ¼

Za;? 0 0

0 Za;? 0

0 0 Za;z

0
B@

1
CA :

The derivation of the phonon frequencies is based on the dipolar
approximation, i.e., the polarization density P(q) is written in terms
of the BECs only, neglecting higher orders contribution in the
effective charges (i.e., quadrupoles, octupoles,...)4,50. Then, we
solve the electrostatic problem associated to this polarization
density, exploiting the periodicity of the system and accounting

for its dimensionality. The solution of the associated Poisson
equation is fully analytical. Once we have the full formula for
ωLO(qz, t), we simplify it using isotropic dielectric tensors, reducing
the tensor to a scalar quantity: ϵm ! ϵ1DI. This approximation
may appear drastic but it is effective for our scopes and for all the
systems discussed in this work. For more details and in-depth
discussion, see Supplementary Methods.
The analytic results in Fig. 1 rely on the ab-initio parameters

obtained independently via DFPT in 1D open-boundary condi-
tions. Equation (2) involves several physical quantities. Masses,
eigenvectors, eigenvalues and BECs are directly obtained from the
underlying DFT and DFPT calculations. The only exceptions are the
effective radius t and the dielectric tensor, that is its in-chain
component ϵ1D within our isotropic assumption. The 1D dielectric
tensor in our model differs from the one computed in QE, ϵQE,
which strongly depends on the size of the simulation cell. They are
related via effective medium theory9,51 and the physical link is the
polarizability. In our parametrization (see Supplementary Meth-
ods) we use:

ϵ1D ¼ c2

πt2
ðϵQEz � 1Þ ; (4)

where c is the out-of-chain length characterizing the supercell
geometry, assumed to be the same in the x and y directions. Finally,
a reasonable choice is to extract t from the radial electronic charge
density profile averaged on the cross-sectional planes along the 1D-
axis. This strategy has been applied to all the materials shown in Fig.
1 to compare with first-principles results. In order to interpret the
experimental results in ref. 28, we adopt similar choices for the
parametrization of the model. In this case, simulating from first-
principles the two nanowires is prohibitively costly from a
computational point of view because of their thickness. At the
same time, thanks to the same thickness, their dielectric properties
and the ω0 are expected to be similar to bulk GaAs. Thus, we extract
all the needed quantities from simulations of bulk wurtzite GaAs,
except for the t which is given directly in ref. 28 and the eigenvectors
which are chosen to be constant and purely longitudinal.

DATA AVAILABILITY
All relevant computational results and data are provided in the Materials Cloud
repository52.

CODE AVAILABILITY
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source code will be released after acceptance of the manuscript.

Received: 23 November 2022; Accepted: 26 September 2023;

REFERENCES
1. Ziman, J. M. Electrons and phonons: the theory of transport phenomena in solids

(Oxford university press, 2001).
2. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston,

New york London, 1976).
3. Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of optical

phonons’ splitting in two-dimensional materials. Nano Lett. 17, 3758–3763 (2017).
4. Royo, M. & Stengel, M. Exact long-range dielectric screening and interatomic

force constants in quasi-two-dimensional crystals. Phys. Rev. X 11, 041027 (2021).
5. Mele, E. & Král, P. Electric polarization of heteropolar nanotubes as a geometric

phase. Phys. Rev. Lett. 88, 056803 (2002).
6. Sánchez-Portal, D. & Hernandez, E. Vibrational properties of single-wall nano-

tubes and monolayers of hexagonal BN. Phys. Rev. B 66, 235415 (2002).

N. Rivano et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   194 

https://github.com/normarivano


7. Michel, K. & Verberck, B. Theory of elastic and piezoelectric effects in two-
dimensional hexagonal boron nitride. Phys. Rev. B 80, 224301 (2009).

8. De Luca, M. et al. Experimental demonstration of the suppression of optical
phonon splitting in 2D materials by Raman spectroscopy. 2D Mater. 7, 035017
(2020).

9. Sohier, T., Calandra, M. & Mauri, F. Two-dimensional Fröhlich interaction in
transition-metal dichalcogenide monolayers: Theoretical modeling and first-
principles calculations. Phys. Rev. B 94, 085415 (2016).

10. Sjakste, J., Vast, N., Calandra, M. & Mauri, F. Wannier interpolation of the electron-
phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs.
Phys. Rev. B 92, 054307 (2015).

11. Verdi, C. & Giustino, F. Fröhlich electron-phonon vertex from first principles. Phys.
Rev. Lett. 115, 176401 (2015).

12. Rivera, N., Christensen, T. & Narang, P. Phonon polaritonics in two-dimensional
materials. Nano Lett. 19, 2653–2660 (2019).

13. Born, M. & Huang, K.Dynamical theory of crystal lattices (Oxford University Press,
1954).

14. Lyddane, R. H., Sachs, R. G. & Teller, E. On the polar vibrations of alkali halides.
Phys. Rev. 59, 673–676 (1941).

15. Pick, R. M., Cohen, M. H. & Martin, R. M. Microscopic theory of force constants in
the adiabatic approximation. Phys. Rev. B 1, 910 (1970).

16. Zardo, I. et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires:
polarization dependence, selection rules, and strain effects. Phys. Rev. B 80,
245324 (2009).

17. Zhang, S. et al. Long-wavelength optical phonons in single-walled boron nitride
nanotubes. Phys. B: Condens. Matter 403, 4196–4201 (2008).

18. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A. C. & Mauri, F. Optical phonons in
carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys.
Rev. B 75, 035427 (2007).

19. Adu, K. W., Xiong, Q., Gutierrez, H., Chen, G. & Eklund, P. Raman scattering as a
probe of phonon confinement and surface optical modes in semiconducting
nanowires. Appl. Phys. A 85, 287–297 (2006).

20. Nemanich, R., Solin, S. & Martin, R. M. Light scattering study of boron nitride
microcrystals. Phys. Rev. B 23, 6348 (1981).

21. Cochran, W. & Cowley, R. Dielectric constants and lattice vibrations. J. Phys. Chem.
Solids 23, 447–450 (1962).

22. Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related
crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73,
515 (2001).

23. Giannozzi, P., De Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of
phonon dispersions in semiconductors. Phys. Rev. B 43, 7231 (1991).

24. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric per-
mittivity tensors, and interatomic force constants from density-functional per-
turbation theory. Phys. Rev. B 55, 10355 (1997).

25. Tinkham, M.Group theory and quantum mechanics (Courier Corporation, 2003).
26. Rivano, N., Marzari, N. & Sohier, T. Density-functional perturbation theory for one-

dimensional systems: implementation and relevance for phonons and electron-
phonon interactions. In preparation (2023).

27. Wirtz, L., Rubio, A., de la Concha, R. A. & Loiseau, A. Ab initio calculations of the
lattice dynamics of boron nitride nanotubes. Phys. Rev. B 68, 045425 (2003).

28. Kim, W. et al. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin
Self-Assisted GaAs nanowires. Nano Lett. 18, 49–57 (2018).

29. Mahan, G., Gupta, R., Xiong, Q., Adu, C. & Eklund, P. Optical phonons in polar
semiconductor nanowires. Phys. Rev. B 68, 073402 (2003).

30. Xiong, Q., Chen, G., Gutierrez, H. & Eklund, P. Raman scattering studies of indi-
vidual polar semiconducting nanowires: phonon splitting and antenna effects.
Appl. Phys. A 85, 299–305 (2006).

31. Kirtman, B., Toto, J. L., Robins, K. A. & Hasan, M. Ab initio finite oligomer method for
nonlinear optical properties of conjugated polymers. Hartree–Fock static long-
itudinal hyperpolarizability of polyacetylene. Chem. Phys. 102, 5350–5356 (1995).

32. Kirtman, B., Champagne, B. & André, J.-M. Role of collective modes in vibrational
polarizabilities and hyperpolarizabilities of polyacetylene and other quasilinear
polymers. Chem. Phys. 104, 4125–4136 (1996).

33. Kirtman, B. & Champagne, B. Nonlinear optical properties of quasilinear con-
jugated oligomers, polymers and organic molecules. Int. J. Chem. Phys. 16,
389–420 (1997).

34. Umari, P. & Marzari, N. Linear and nonlinear susceptibilities from diffusion
quantum Monte Carlo: Application to periodic hydrogen chains. Chem. Phys. 131,
094104 (2009).

35. Kudin, K. N., Car, R. & Resta, R. Longitudinal polarizability of long polymeric chains:
Quasi-one-dimensional electrostatics as the origin of slow convergence. Chem.
Phys. 122, 134907 (2005).

36. Kudin, K. N., Car, R. & Resta, R. Berry phase approach to longitudinal dipole
moments of infinite chains in electronic-structure methods with local basis sets.
Chem. Phys. 126, 234101 (2007).

37. Sohier, T., Calandra, M. & Mauri, F. Density-functional calculation of static
screening in two-dimensional materials: The long-wavelength dielectric function
of graphene. Phys. Rev. B 91, 165428 (2015).

38. Rozzi, C. A., Varsano, D., Marini, A., Gross, E. K. & Rubio, A. Exact Coulomb cutoff
technique for supercell calculations. Phys. Rev. B 73, 205119 (2006).

39. Castro, A., Räsänen, E. & Rozzi, C. A. Exact Coulomb cutoff technique for supercell
calculations in two dimensions. Phys. Rev. B 80, 033102 (2009).

40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software pro-
ject for quantum simulations of materials. J. Condens. Matter Phys. 21, 395502 (2009).

41. Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum
ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).

42. Rokuta, E. et al. Phonon dispersion of an epitaxial monolayer film of hexagonal
boron nitride on Ni (111). Phys. Rev. Lett. 79, 4609 (1997).

43. Geick, R., Perry, C. & Rupprecht, G. Normal modes in hexagonal boron nitride.
Phys. Rev. 146, 543 (1966).

44. Mahan, G. D. Nanoscale dielectric constants: dipole summations and the
dielectric function in nanowires and quantum dots of cubic materials. Phys. Rev. B
74, 033407 (2006).

45. Campbell, I. & Fauchet, P. M. The effects of microcrystal size and shape on the
one phonon Raman spectra of crystalline semiconductors. Solid State Commun.
58, 739–741 (1986).

46. Richter, H., Wang, Z. & Ley, L. The one phonon Raman spectrum in micro-
crystalline silicon. Solid State Commun. 39, 625–629 (1981).

47. Fauchet, P. M. & Campbell, I. H. Raman spectroscopy of low-dimensional semi-
conductors. Crit. Rev. Solid State Mater. Sci. 14, s79–s101 (1988).

48. Popov, V. N. Lattice dynamics of single-walled boron nitride nanotubes. Phys. Rev.
B 67, 085408 (2003).

49. Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and
efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 1–13
(2018).

50. Royo, M. & Stengel, M. First-principles theory of spatial dispersion: dynamical
quadrupoles and flexoelectricity. Phys. Rev. X 9, 021050 (2019).

51. Freysoldt, C., Eggert, P., Rinke, P., Schindlmayr, A. & Scheffler, M. Screening in two
dimensions: GW calculations for surfaces and thin films using the repeated-slab
approach. Phys. Rev. B 77, 235428 (2008).

52. Rivano, N., Marzari, N. & Sohier, T. Infrared-active phonons in one-dimensional
materials and their spectroscopic signatures. Mater. Cloud. Arch. 2023.148,
https://doi.org/10.24435/materialscloud:46-wj (2023).

ACKNOWLEDGEMENTS
This work has been inspired by the experimental results from ref. 28. We acknowledge
funding from the Swiss National Science Foundation (SNSF) and its National Centre of
Competence in Research MARVEL on “Computational Design and Discovery of Novel
Materials” (grant number 182892, N.R., N.M.). We acknowledge computational
support from the Swiss National Supercomputing Centre CSCS under project ID mr24.
Fruitful discussions with Anna Fontcuberta i Morral and Francesco Libbi are also
gratefully acknowledged.

AUTHOR CONTRIBUTIONS
All authors provided the ideas behind this work, contributed to its development,
discussed the findings, contributed to the writing and reviewing of the paper, and to
the final approval of its completed version. N.R. executed the simulations, derived the
analytical model presented and implemented the 1D open-boundary conditions with
guidance from T.S.. N.M. provided general supervision and funding of the project.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-023-01140-2.

Correspondence and requests for materials should be addressed to Norma Rivano.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

N. Rivano et al.

6

npj Computational Materials (2023)   194 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.24435/materialscloud:46-wj
https://doi.org/10.1038/s41524-023-01140-2
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

N. Rivano et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   194 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Infrared-active phonons in one-dimensional materials and their spectroscopic signatures
	Introduction
	Results and discussion
	Analytical model
	Application to chains, wires and tubes
	Raman and infrared characterization

	Methods
	Computational details
	Analytical model and its parametrization

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




