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Abstract
The minimization of a data-fidelity term and an additive regularization functional
gives rise to a powerful framework for supervised learning. In this paper, we present
a unifying regularization functional that depends on an operator L and on a generic
Radon-domain norm.Weestablish the existence of aminimizer and give the parametric
form of the solution(s) under very mild assumptions. When the norm is Hilbertian,
the proposed formulation yields a solution that involves radial-basis functions and
is compatible with the classical methods of machine learning. By contrast, for the
total-variation norm, the solution takes the form of a two-layer neural network with
an activation function that is determined by the regularization operator. In particular,
we retrieve the popular ReLU networks by letting the operator be the Laplacian. We
also characterize the solution for the intermediate regularization norms ‖ · ‖ = ‖ · ‖L p

with p ∈ (1, 2]. Our framework offers guarantees of universal approximation for a
broad family of regularization operators or, equivalently, for a wide variety of shallow
neural networks, including the cases (such as ReLU) where the activation function is
increasing polynomially. It also explains the favorable role of bias and skip connections
in neural architectures.
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1 Introduction

Regularization theory constitutes a powerful framework for the derivation of algo-
rithms for supervised learning [14, 41, 42]. Given a series of data points (xm, ym) ∈
R
d × R, m = 1, . . . , M , the basic problem (regression) is to find a mapping

f : Rd → R such that f (xm) ≈ ym , without overfitting. The standard paradigm
is to let f be the minimizer of a cost that consists of a data-fidelity term and an
additive regularization functional [8]. The minimization proceeds over a prescribed
class H of candidate functions. One usually distinguishes between the parametric
approaches (e.g., neural networks), whereH = HΘ is a family of functions specified
by a finite set of parameters θ ∈ Θ (e.g., the weights of the network), and the nonpara-
metric ones, where the properties of the solution are controlled by the regularization
functional. The focus of this paper is on the nonparametric techniques. They rely on
functional optimization, which means that the minimization proceeds over a space of
functions rather than over a set of parameters. The regularization is usually chosen
to be an increasing function of the norm associated with a particular Banach space,
which results in a well-posed problem [9, 10, 56].

The functional-optimization point of view is often constructive, in that it suggests
or supports explicit learning architectures. For instance, the choice of the Hilbertian
regularization R( f ) = ‖ f ‖2H whereH is a reproducing-kernel Hilbert space (RKHS)
results in a closed-form solution that is a linear combination of kernels positioned on
the data [7, 62]. In fact, the RKHS setting yields a generic class of estimators that
is compatible with the classical kernel-based methods of machine learning, including
support vector machines [1, 41, 49, 50, 56, 62]. Likewise, adaptive kernel methods are
justifiable from the minimization of a generalized total-variation norm, which favors
sparse representations [3, 11, 12]. These latter results actually take their root in spline
theory [18, 28, 60]. Similarly, it has been demonstrated that shallow ReLU networks
are solutions of functional-optimization problems with an appropriate regularization.
Oneway to achieve this is to start from an explicit parameterization of an infinite-width
network [4] (the reverse engineering/synthesis approach). Another way is to consider
a regularization operator that is matched to the neuronal activation with a L1-type
penalty1; for instance, a second-order derivative for d = 1 [36, 48] or, more generally,
the Radon-domain counterpart of the Laplace operator whose Green’s function is
precisely a ReLU ridge [35, 37, 57]. Similar optimality results can be stated within the
framework of reproducing-kernel Banach spaces [6], which is a formal point of view
that bridges the synthesis and analysis approach of [4] and [37], respectively. Also
relevant to the discussion is a variational formulation that links the ridgelet transform
to the training of shallow neural networks with weight-decay regularization [53].

The second important benefit of the functional-optimization approach is that it
gives insight on the approximation capabilities (expressivity) of the resulting learning
architectures. This information is encapsulated in the definition of the native spaceH
(typically, a Sobolev space), which goes hand-in-hand with the regularization func-
tional. Roughly speaking, the native spaceH ought to be “large enough” to allow for

1 The precise formulation involves theM-norm (or total variation), which is theweak formof L1 associated
with the space of bounded Radon measures. In our account, we take it as the default norm for the Lebesgue
exponent p = 1, with a slight abuse of language.
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the approximation of any continuous function with an arbitrary degree of precision.
This universal approximation property is a central theme in the theory of radial-basis
functions (RBFs) [31, 63]. In machine learning, the kernel estimators that meet this
approximation requirement are called universal [32]. When the basis functions are
shifted replicates of a single template h : Rd → R, then the condition is equivalent to
h being strictly positive definite, which means that its Fourier transform is real-valued
symmetric, and (strictly) positive [13]. Similar guarantees of universal approximation
exist for (shallow) neural networks under mild conditions on the activation functions
[5, 16, 25, 30, 39]. Themain differencewith the RKHS framework, however, is that the
universality results for neural nets usually make the assumption that the input domain
is a compact subset of Rd .

The purpose of this paper is to unify and extend these various approaches by
introducing a universal regularization functional. The latter has two components: an
admissible differential operator L, and an L p-type Radon-domain norm. The resulting
regularization operator is LR = KradRL, where R is the Radon transform and Krad the
“filtering” operator of computer tomography [33]. Our main result (Theorem 5) gives
the parametric form of the solution of the corresponding functional-optimization prob-
lems under minimal hypotheses. For p = 2, the outcome is compatible with the type
of kernel expansions (RBFs) of classical machine learning for which there is a vast
literature [24, 52]. For p = 1, the solution set is parameterized by a neural network
with one hidden layer whose activation function is determined by the regularization
operator. In particular, if we take L to be the Laplacian, then one retrieves the popular
ReLU activation. Remarkably, the connection with neural networks also works the
other way round: Parhi et al. [36, 38] could prove that the training of a shallow ReLU
neural network that is sufficiently wide, with weight-decay regularization, converges
to the solution of a functional-optimization problem that is a special instance of the
class considered in this paper.

The foundation for our characterization is an abstract representer theorem for
direct-sum Banach spaces [58]. Thus, the primary effort in this paper consists in
the development of a functional framework that is adapted to the Radon transform
and that fulfills the hypotheses of the abstract theorem. The main contributions can be
summarized as follows.

1. Construction and characterization of an extended family of native Banach spaces
X ′
LR

(Rd) associated with a generic Radon-domain norm ‖ · ‖X ′ and a differen-
tial operator L, under the general admissibility conditions stated in Definition 3
(Theorem 6).

2. Proof that: (i) the sampling functionals δ(· − xm) : X ′
LR

(Rd) → R are
weak*-continuous; and (ii) the adjoint of the regularization operator has a stable
generalized inverse L∗†R (see Theorem 7 and accompanying explanations). These
technical points are essential to the argumentation (existence of solution).

3. Extension and unification of a number of earlier optimality results for RBF expan-
sions and neural networks. While the present setup for p = 2 and L = (−Δ)γ is
reminiscent of thin-plate splines [17, 29], the resulting solution for a fixed γ does
not depend on the dimension d, which makes it easier to deploy. Likewise, our
variational formulation with X ′ =M extends the results of Parhi and Nowak [37]
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by: (i) proving that the neural network parameterization applies to all the extreme
points of the solution set, and (ii) by covering a much broader class of activation
functions, including those with polynomial growth (of degree n0).

4. General guarantees of universality, subject to the admissibility condition in Defi-
nition 3. While the result for p = 2 is consistent with the known criteria for kernel
estimators [32], its counterpart for neural networks (X ′ = M) brings in a new
twist: the addition of a polynomial component. The latter, which is not present in
the traditional theory [5, 39], is necessary to lift the hypothesis of a compact input
domain. The two cases of greatest practical relevance are the sigmoid and the ReLU
activations which, in our formulation, require the addition of a bias (n0 = 0) and
an affine term (n0 = 1), respectively. Interestingly, the ReLU case yields a neural
architecture with a skip connection akin to ResNet [22], which is highly popular
in practice.

The paper is organized as follows:We start with mathematical preliminaries in Sect. 2.
In particular, we state our criteria of admissibility for L and show how to represent
its polynomial null space. In Sect. 3, we review the main properties of the Radon
transform and specify the dual pair (XRad,X ′

Rad) of hyper-spherical Banach spaces
that enter the definition of our native spaces.We also provide formulas for the (filtered)
Radon transform of RBFs and ridges (the elementary constituents of neural networks).
Section4 is devoted to the description and interpretation of our main result (Theorem
5). In particular, we draw a connection with RKHS in Sect. 4.2.We discuss the issue of
universality in Sect. 4.3 and show in Sect. 4.4 how our framework can be extended to
handle anti-symmetric activations, including sigmoids.We complement our exposition
in Sect. 4.5 with a listing of specific configurations, many of which are intimately
connected to splines. The mathematical developments that support our formulation
are presented in Sect. 5. They include the characterization of the kernel of the inverse
operator L∗†R —the enabling ingredient of our formulation— and the construction of
the predual Banach space XLR (Rd).

2 Mathematical Preliminaries

2.1 Notations

We shall consider multidimensional functions f on R
d that are indexed by the

variable x ∈ R
d . To describe their partial derivatives, we use the multi-index

k = (k1, . . . , kd) ∈ N
d (where N includes 0) with the notational conventions

k! = ∏d
i=1 ki !, |k| = k1 + · · · + kd , xk = ∏d

i=1 x
ki
i for any x ∈ R

d , and

∂k f (x) = ∂ |k| f (x1,...,xd )

∂
k1
x1 ···∂

kd
xd

. This allows us to write the multidimensional Taylor expan-

sion around x = x0 of an analytical function f : Rd → R explicitly as

f (x) =
∞∑

n=0

∑

|k|=n

∂k f (x0)(x − x0)k

k! (1)
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where the internal summation is over all multi-indices k such that k1 + · · · + kd = n.
Schwartz’ space of smooth and rapidly decreasing test functions ϕ : Rd → R

equipped with the usual Fréchet-Schwartz topology is denoted by S(Rd). Its contin-
uous dual is the space S ′(Rd) of tempered distributions. In this setting, the Lebesgue
spaces L p(R

d) for p ∈ [1,∞) can be specified as the completion of S(Rd) equipped

with the L p-norm ‖ · ‖L p , denoted as L p(R
d) = (S(Rd), ‖ · ‖L p ). For the endpoint

p = ∞, we have (S(Rd), ‖ · ‖L∞) = C0(R
d) with ‖ϕ‖L∞ = supx∈Rd |ϕ(x)|, which

is the space of continuous functions that vanish at infinity. The continuous dual of
C0(R

d) is the space M(Rd) = { f ∈ S ′(Rd) : ‖ f ‖M < ∞} of bounded Radon
measures with

‖ f ‖M = sup
ϕ∈S(Rd ):‖ϕ‖L∞≤1

〈 f , ϕ〉. (2)

The latter is a superset of L1(R
d), which is isometrically embedded in it, in the sense

that ‖ f ‖L1 = ‖ f ‖M for all f ∈ L1(R
d).

The Fourier transform of a function ϕ ∈ L1(R
d) is defined as

ϕ̂(ω)
�= F{ϕ}(ω) = 1

(2π)d

∫

Rd
ϕ(x)e−i〈ω,x〉dx. (3)

Since the Fourier operatorF continuouslymapsS(Rd) into itself, the transform can be
extended by duality to the whole space S ′(Rd) of tempered distribution. Specifically,
f̂ = F{ f } ∈ S ′(Rd) is the (unique) generalized Fourier transform of f ∈ S ′(Rd)

if and only if 〈 f̂ , ϕ〉 = 〈 f , ϕ̂〉 for all ϕ ∈ S(Rd), where ϕ̂ = F{ϕ} is the “classical”
Fourier transform of ϕ defined by (3).

To control the minimal order α ≥ 0 of decay (resp., the maximal rate of growth) of
functions, we use the dual pair of spaces L1,α(Rd) and L∞,−α(Rd) = (

L1,α(Rd)
)′.

These are the Banach spaces associated with the weighted norms

‖ f ‖L1,α

�=
∫

Rd
(1+ ‖x‖)α| f (x)|dx (4)

‖ f ‖L∞,−α

�= ess supx∈R(1+ ‖x‖)−α| f (x)|, (5)

respectively. Specifically, the inclusion f ∈ L∞,−n0(Rd)with n0 ∈ N indicates that f
cannot grow faster than a polynomial of degree n0, while the condition f ∈ L1,α(Rd)

implies that f (x) must be locally integrable and must decay (slightly) faster than
1/‖x‖α+d as ‖x‖ → ∞.

2.2 Admissible Regularization Operators

The regularization operators L that are of interest to us are linear, shift-invariant (LSI),
and isotropic. For simplicity, we shall first specify the action of L on test functions,
with the understanding that the domain of the operator will be extended to some
corresponding “native space” that will be identified as we progress through the paper.
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Definition 1 The linear operator L : S(Rd) → S ′(Rd) is said to be

– Shift-invariant: If L{ϕ(· − x0)} = L{ϕ}(· − x0) for all ϕ ∈ S(Rd) and x0 ∈ R
d .

– Isotropic (or rotation-invariant): If L{ϕ(Rθ ·)} = L{ϕ}(Rθ ·) for all ϕ ∈ S(Rd)

and any rotation matrix Rθ on R
d .

– Self-adjoint: If the adjoint operator L∗ : S ′′(Rd) = S(Rd) → S ′(Rd) has the
same Schwartz kernel (impulse response) as L.

Since the Schwartz kernel of a linear operator is unique [55], the property of self-
adjointness will be denoted as L = L∗, irrespective of the actual domain and range
of the operator. It is well-known that a LSI operator can always be expressed as the
convolution L{ϕ} = h ∗ ϕ, where h = L{δ} ∈ S ′(Rd) is the impulse response of L.
When L is isotropic, h is a purely radial function. Since all isotropic functions are
symmetric, this also implies that an isotropic LSI operator is necessarily self-adjoint.
All such operators are characterized by a Fourier symbol (a.k.a. frequency response)
L̂ = F{h} that is purely radial, with L̂(ω) = L̂ rad(‖ω‖), under the implicit assumption
that the radial profile L̂ rad is identifiable as a measurable function R→ R.

Our condition for admissibility is that L be invertible in an appropriate sense.

Definition 2 (Spline-admissible operators with trivial null space) An isotropic LSI
operator L has a trivial null space if its radial frequency profile L̂ rad does not
vanish over R. We then say that it is spline-admissible if 1/L̂ rad ∈ L1(R) and
ρrad = F−1{1/L̂ rad} ∈ L1(R) where the operator F−1 : L1(R) → C0(R) is the
classical inverse Fourier transform.

The typical scenario is L̂(ω) = (1 + ‖ω‖2)α/2 with α ≥ 1, which results in a stable
inverse operatorL−1 whose radially symmetric impulse response is theBessel potential
of order α. These operators play a central in the theory of Sobolev spaces [21].

Distribution theory allows us to go further and to invert operators with nontrivial
null spaces, but only if the zeros of the frequency response are located at isolated
points. When the operator is isotropic, this reduces the options to the cases where
L̂(ω) has a (multiple) zero at ω = 0. Specifically, we shall say that L is of order γ0 if
|L̂(ω)|/‖ω‖γ0 = C0 as ‖ω‖ → 0. The second important parameter is the asymptotic
growth exponent of L̂(ω). This is the largest index γ1 such that |L̂(ω)| ≥ C1‖ω‖γ1 ,

for all ‖ω‖ > R. It determines the smoothness of the Green’s function of the operator.

Definition 3 (Spline-admissible operators with nontrivial null space) An isotropic
LSI operator L with radial frequency profile L̂ rad is said to be spline-admissible with
a polynomial null space of degree n0 if the following conditions are satisfied.

1. The profile L̂ rad does not vanish overR, except for a zero of order γ0 ∈ (n0, n0+1]
at the origin; that is, |L̂ rad(ω)|/|ω|γ0 = C0 as ω → 0.

2. There exists an order γ1 > 1, a constant C1 > 0, and a radius R1 > 0 such that
|L̂ rad(ω)| ≥ C1|ω|γ1 for all |ω| > R1 (ellipticity).

3. For all ϕ ∈ S(Rd), L∗{ϕ} ∈ L1,n0(R
d).

The connection between Condition 1 and the null space of L will be explained in
Sect. 2.3. Conditions 1 and 2 with γ1 > 1 ensure that ρrad = F−1{1/L̂ rad}, which is
the generalized inverse Fourier transform of the distribution 1/L̂ rad, is identifiable as
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a continuous function R → R. The order γ1 actually controls the degree of differ-
entiability (Sobolev smoothness) of ρrad. Condition 3 is a mild technical constraint
on the decay of L∗{ϕ}; this constraint has not appeared to be a practical limitation
so far. For instance, if L is an ordinary differential operator (an arbitrary polynomial
of the Laplace operator Δ) then L∗{ϕ} ∈ S(Rd), which is included in L1,m(Rd) for
any m ∈ Z. We use this third condition for the handling of fractional operators whose
impulse response decays slowly.

An attractive class of admissible operators with γ0 = γ1 = α and n0 = α − 1�
are the fractional Laplacians (−Δ)

α
2 with α ∈ (1,∞) whose frequency response

is ‖ω‖α . The inverse of the fractional Laplacian of order α, which corresponds to a

frequency-domain multiplication by ‖ω‖−α , is denoted by (−Δ)
−α
2 . Both operators

are part of the same family (isotropic LSI and scale-invariant), their distributional
impulse response being given by

kα,d(x) = F−1
{

1

‖ω‖α

}

(x) =

⎧
⎪⎨

⎪⎩

Aα,d ‖x‖α−d , α − d,−α /∈ 2N

Bn,d ‖x‖2n log(‖x‖), α − d = 2n ∈ 2N

(−Δ)n{δ}, −α/2 = n ∈ N,

(6)

with constants Ad,α = Γ
( d−α

2

)

2απd/2Γ
(

α
2

) and Bd,n = (−1)1+n
22n+d−1πd/2Γ

(
n+ d

2

)
n!

[19, 47]. The

kernel kα,d can also be interpreted as the Green’s function of (−Δ)
α
2 , with the cor-

responding radial profile in Definition 3 being ρrad(t) = kα,1(t). In view of (6), this

means that (−Δ)
α
2 is admissible for α > 1.

We note that the impulse response of the filtering operator K in Theorem 1
is proportional to k−d+1,d(x), which tells us that it decays asymptotically like
1/‖x‖2d−1 when d is even, or is a power of the Laplacian (local operator) other-
wise. Functionally, this means that K

(S(Rd)
) = S(Rd) for even dimensions, and

K
(S(Rd)

) ⊂ L1,d−1−ε(R
d) otherwise. Likewise, the impulse response of the frac-

tional Laplacians (of non-even order) decays asymptotically like 1/‖x‖α+d , which
implies that (−Δ)

α
2
(S(Rd)

) ⊂ L1,α−ε(R
d) for arbitrarily small ε > 0, so that the

third condition in Definition 3 is met.

2.3 Nontrivial Null Space and Related Projectors

Let L be a LSI operator whose frequency response L̂ satisfies the conditions

∂k L̂(0) = 0, for all k ∈ N
d with |k| ≤ n0, (7)

for some integer n0 ≥ 0. This flatness behavior at the origin implies that L has the
capacity to annihilate all polynomials of degree n0 bymapping them to zero (see [61, p.
131]). The explanation lies in the property that the Fourier transformof any polynomial
is entirely concentrated at the origin. If, in addition, we impose that L̂(ω) �= 0 for
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all ω ∈ R
d\{0}, then we are also making sure that the null space of L is limited to

polynomials.
Next, we recall that the directional derivative of a function along the direction

ξ ∈ S
d−1 (i.e., ξ ∈ R

d with ‖ξ‖ = 1) is given by

Dξ f = ξT∇ f = ξ1∂
e1 f + · · · + ξd∂

ed f . (8)

The operator Dξ is LSI with frequency response D̂ξ (ω) = (iξTω). The nth iterate
of Dξ yields the nth derivative along ξ whose explicit expression in terms of partial
derivatives is

Dn
ξ f (x) = F−1{(iξTω)n f̂ (ω)}(x) =

∑

|k|=n

n!
k!ξ

k∂k f (x), (9)

where the right-hand side follows from the application of the multinomial expansion
to (iξTω)n = (ξ1iω1 + · · · + ξd iωd)

n .
For isotropic operators, the directional derivatives Dn

ξ
L̂(0) do not dependent on the

direction ξ and coincide with the radial derivatives L̂(n)
rad(0). In view of (9), (7) then

has the radial equivalent

L̂(n)
rad(0) =

dn L̂ rad(0)

dωn
= 0, for n = 0, 1, . . . , n0, (10)

which is much simpler to test. It follows that an operator whose radial frequency
profile is such that |L̂ rad(ω)|/|ω|γ0 = C0 as ω → 0 will annihilate all polynomials up
to degree n0 = γ0 − 1�.

Consequently, the null space of a spline-admissible operator L of order γ0 consists
of the polynomials of degree n0 = (γ0 − 1) when γ0 is an integer and n0 = �γ0�
otherwise when γ0 /∈ N. We shall represent these polynomials by expanding them in
the monomial/Taylor basis

mk(x) = xk

k! (11)

with |k| ≤ n0. We also add a topological structure by equipping the space with the �2
norm of the Taylor coefficients, which results in the description

Pn0 =
⎧
⎨

⎩
p0 =

∑

|k|≤n0
bkmk : ‖p0‖P < ∞

⎫
⎬

⎭
with ‖p0‖P �= ‖(bk)|k|≤n0‖2. (12)

To avoid a notational overload, we shall often denote this null space by P , with the
convention that P = Pn0 = {0} when n0 = γ0 − 1� < 0 (for the operators L whose
null space is trivial). The important point here is that (12) specifies a finite-dimensional
Banach subspace of S ′(Rd). Its continuous dual P ′ is finite-dimensional as well,
although it is composed of “abstract” elements p∗0 ∈ P ′ that are, in fact, equivalence
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classes in S ′(Rd). Yet, it is possible to identify every dual element p∗0 ∈ P ′ as a true
function by selecting a particular dual basis {m∗

k}|k|≤n0 such that 〈m∗
k,mk′ 〉 = δk−k′

(Kroneker delta). Our specific choice is

m∗
k = (−1)|k|∂kκiso ∈ S(Rd) (13)

with k ∈ N
d , where κiso is the isotropic function described in Lemma 1.

Lemma 1 (adapted from [57]) There exists an isotropic window κiso ∈ S(Rd) such
that

〈mk, (−1)|n|∂nκiso〉 = δk−n (14)

for all k, n ∈ N
d , subject to the spectral constraints κ̂iso(ω) = 1 for ‖ω‖ < 1

2 ,
1 ≥ κ̂iso(ω) ≥ 0 for 1

2 < ‖ω‖ < 1, and κ̂iso(ω) = 0 for ‖ω‖ ≥ 1.

This allows us to describe the dual space explicitly as

P ′ = P ′
n0 =

⎧
⎨

⎩
p∗0 =

∑

|k|≤n0
b∗km

∗
k : ‖p∗0‖P ′ < ∞

⎫
⎬

⎭
with ‖p∗0‖P ′ �= ‖(b∗k)‖2 (15)

where each elements p∗0 has a unique representation in terms of its coefficients
(b∗k)|k|≤n0 . We use the dual basis {m∗

k} to specify the projection operator ProjP :
S ′(Rd) → Pn0 as

ProjP { f } =
∑

|k|≤n0
〈 f ,m∗

k〉 mk, (16)

which is well-defined for any f ∈ S ′(Rd) since m∗
k ∈ S(Rd). The “transpose” of this

operator is

ProjP ′ {ν} =
∑

|k|≤n0
〈mk, ν〉 m∗

k, (17)

which returns the projection of ν onto P ′
n0 ⊆ S(Rd) under the implicit assumption

that ν has sufficient decay for ν �→ 〈mk, ν〉 to be well-defined—for instance, ν ∈
L1,n0(R

d). Correspondingly, we also have that ProjP ′ {L∗ϕ} = 0 for all ϕ such that
L∗{ϕ} ∈ L1,n0(R

d) since 〈mk,L∗ϕ〉 = 〈Lmk, ϕ〉 = 0 for |k| ≤ n0. The latter
manipulation of the duality product is legitimate in reason of the inclusion Pn0 ⊂
L∞,−n0(Rd) = (

L1,n0(R
d)

)′.
Even though the null space of an admissible operator L may be nontrivial, its

intersection with S(Rd) is always {0}. This implies that L∗ = L is injective on S(Rd)

with L∗−1L∗{ϕ} = ϕ for all ϕ ∈ S(Rd) where L∗−1 = L−1 is the LSI operator whose
frequency response is 1/|L̂|.
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3 Radon Transform

The Radon transform extracts the integrals of a function onRd over all hyperplanes of
dimension (d−1). These hyperplanes are indexed overR×S

d−1, where Sd−1 = {ξ ∈
R
d : ‖ξ‖2 = 1} is the unit sphere in R

d . The coordinates of a hyperplane associated
with an offset t ∈ R and a normal vector ξ ∈ S

d−1 satisfy

ξTx = ξ1x1 + · · · + ξd xd = t .

Here, we first review the classical theory of the Radon transform [27], starting
with the case of test functions (Sect. 3.1), and extending it by duality to tempered
distributions (Sect. 3.2). Then, in Sect. 3.3, we specify the Radon transform and its

inverse on an appropriate class of intermediate Banach spaces Y with S(Rd)
d.

↪−→
Y d.

↪−→ S ′(Rd) (Theorem 3). Finally, in Sect. 3.4, we provide the (filtered) Radon
transforms of the dictionary elements—isotropic kernels and ridges—that are relevant
to our investigation.

3.1 Classical Integral Formulation

The Radon transform of the function f ∈ L1(R
d) ∩ C0(R

d) is defined as

R{ f }(t, ξ) =
∫

Rd
δ(t − ξTx) f (x)dx, (t, ξ) ∈ R× S

d−1. (18)

The adjoint of R is the backprojection operator R∗. Its action on g : R× S
d−1 → R

yields the function

R∗{g}(x) =
∫

Sd−1
g(ξTx

︸︷︷︸
t

, ξ)dξ , x ∈ R
d . (19)

Given the d-dimensional Fourier transform f̂ of f ∈ L1(R
d), one can calculate

R{ f }(·, ξ0) for any fixed ξ0 ∈ S
d−1 through the relation

R{ f }(t, ξ0) =
1

2π

∫

R

f̂ (ωξ0)e
iωtdω = F−1

1D { f̂ (·ξ0)}{t}, (20)

In other words, the restriction of f̂ : Rd → C along the ray {ω = ωξ0 : ω ∈ R}
coincides with the 1D Fourier transform of R{ f }(·, ξ0), a property that is referred to
as the Fourier-slice theorem.

To describe the functional properties of the Radon transform, one needs the
(hyper)spherical (or Radon-domain) counterparts of the spaces described in Sect. 2.1.
There, the Euclidean indexing with x ∈ R

d must be replaced by (t, ξ) ∈ R× S
d−1.

The spherical counterpart of S(Rd) is S(R× S
d−1). Correspondingly, an element

g ∈ S ′(R× S
d−1) is a continuous linear functional on S(R× S

d−1) whose action on
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the test function φ is represented by the duality product g : φ �→ 〈g, φ〉Rad. When g
can be identified as an ordinary function g : (t, ξ) �→ g(t, ξ) ∈ R, one can write that

〈g, φ〉Rad =
∫

Sd−1

∫

R

g(t, ξ)φ(t, ξ)dtdξ (21)

where dξ stands for the surface element on the unit sphere Sd−1.
The key property for analysis is that the Radon transform is continuous on S(Rd)

and invertible [23, 27, 43]. In addition to a backprojection, the inversion involves the
so-called filtering operator.

Definition 4 The filtering operator K : S(Rd) → S ′(Rd) is defined as

K{ϕ} = F−1{K̂ ϕ̂} with K̂ (ω) = cd‖ω‖d−1, (22)

where cd = 1
2(2π)d−1 .

The filtering operator is isotropic LSI and, as such, has a Radon-domain counterpart
(see Definition 5) denoted by Krad that exclusively acts along the radial variable.

Definition 5 (Radon-domain counterpart of an isotropic LSI operator) Let L :
S(Rd) → S ′(Rd) be an isotropic LSI operator with radial frequency profile L̂ rad :
R → R. Then, the Radon-domain counterpart of L is Lrad : S(R × S

d−1) →
S ′(R× S

d−1), which is defined as

Lrad{φ(·, ξ)}(t) = F−1
1D {L̂ radφ̂(·, ξ)}(t), (23)

where φ̂(ω, ξ) = ∫
R

φ(t, ξ)e−iωtdt is the 1D Fourier transform of t �→ φ(t, ξ).

Theorem 1 (Continuity and invertibility of the Radon transform on S(Rd)) The
Radon operator R continuously maps S(Rd) → S(R × S

d−1). Moreover, KR∗R =
R∗KradR = R∗RK = Id on S(Rd).

Based on this result, we can identify the filtering operator as K = (R∗R)−1 =
cd(−Δ)

d−1
2 (fractional Laplacian). Alternatively, one can perform the filtering in

the Radon domain by means of the operator Krad, which implements a 1D convolu-
tion along the radial variable. The connection is that the frequency response of Krad
coincides with the radial frequency profile of K so that K̂ (ω) = K̂rad(‖ω‖) with
K̂rad(ω) = cd |ω|d−1.

While the Radon transform R : S(Rd) → S(R × S
d−1) is invertible, it is not

surjective, which means that not every hyper-spherical test function φ ∈ S(R×S
d−1)

can be written as φ = R{ϕ} with ϕ ∈ S(Rd). A necessary condition is that φ be even,
but this is not sufficient [20, 23, 27]. The good news, however, is that the range of
R on S(Rd) is a closed subspace of S(R × S

d−1) [23, p. 60]. Accordingly, one can
identify the range space SRad

�= R
(S(Rd)

)
equipped with the Fréchet topology of

S(R×S
d−1). Since the domain and range spaces are both Fréchet, we then invoke the

open-mapping theorem [45, Theorem 2.11] to deduce that the transform ϕ �→ R{ϕ}
is a homeomorphism of S(Rd) onto SRad.
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Corollary 1 The operator R : S(Rd) → SRad is a continuous bijection, with a contin-
uous inverse given by R−1 = (R∗Krad) : SRad → S(Rd).

3.2 Distributional Extension

To extend the framework to distributions, one proceeds by duality. By invoking the
property that R∗KradR = Id on S(Rd), we make the manipulation

∀ϕ ∈ S(Rd) 〈 f , ϕ〉 = 〈 f ,R∗KradR{ϕ}〉
= 〈R{ f },KradR{ϕ}〉Rad = 〈R{ f }, φ〉Rad, (24)

with φ = KradR{ϕ} ∈ KradR
(S(Rd)

)
and ϕ = R∗{φ}. Relation (24), which is valid

in the classical sense for f ∈ L1(R
d), is then used as definition to extend the scope

of R for f ∈ S ′(Rd).

Definition 6 The distribution g = R{ f } ∈ (
KradR

(S(Rd))
)′ is the (formal) Radon

transform of f ∈ S ′(Rd) if

∀φ ∈ KradR
(S(Rd)

) : 〈g, φ〉Rad = 〈 f ,R∗{φ}〉. (25)

Likewise, g̃ = KradR{ f } ∈ S ′Rad is the (formal) filtered projection of f ∈ S ′(Rd) if

∀φ ∈ SRad : 〈g̃, φ〉Rad = 〈 f ,R∗Krad{φ}〉. (26)

Finally, f = R∗{g} ∈ S ′(Rd) is the backprojection of g ∈ S ′(R× S
d−1) if

∀ϕ ∈ S(Rd) : 〈R∗{g}, ϕ〉 = 〈g,R{ϕ}〉Rad. (27)

While (27) identifies R∗{g} as a single, unique distribution in S ′(Rd), this is not so
for (26) (resp., (25)), as the members of S ′Rad (resp., of

(
KradR

(S)
)′) are equivalence

classes in S ′(R× S
d−1). To make this explicit, we take advantage of the equivalence

R∗{g} = 0⇔ 〈g, φ〉Rad = 0 to identity the null space of the backprojection operator
as being

NR∗ = {g ∈ S ′(R× S
d−1) : 〈g, φ〉Rad = 0,∀φ ∈ SRad}, (28)

which is a closed subspace of S ′(R×S
d−1). It is then possible to describe S ′Rad as the

abstract quotient spaceS ′(R×S
d−1)/NR∗ . In other words, if we find a hyper-spherical

distribution g0 ∈ S ′(R × S
d−1) such that (26) is met for a given f ∈ S ′(Rd), then,

strictly speaking, KradR{ f } ∈ S ′Rad is the equivalence class (or coset) given by

KradR{ f } = [g0] = {g0 + h : h ∈ NR∗}. (29)

Since [g0] = [g] for any g ∈ KradR{ f }, we refer to the members of KradR{ f } as
“formal” filtered projections of f to remind us of this lack of unicity.
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Based on those definitions, one obtains the classical result on the invertibility of
the (filtered) Radon transform on S ′(Rd) [27], which is the dual of Corollary 1.

Theorem 2 (Invertibility of the Radon transform on S ′(Rd)) It holds that R∗KradR =
Id on S ′(Rd). More precisely, the filtered Radon transformKradR : S ′(Rd) → S ′Rad is
a continuous bijection, with a continuous inverse given by (KradR)−1 = R∗ : S ′Rad →
S ′(Rd).

To illustrate the fact that (26) does not identify a single distribution, we consider
the Dirac ridge δ(ξ0x − t0) ∈ S ′(Rd) and refer to the definition (18) of the Radon
transform to deduce that, for all φ = R{ϕ} ∈ SRad with ϕ ∈ S(Rd),

〈δ(ξT0 · −t0),R∗Krad{φ}〉 = 〈δ(ξT0 · −t0),
Id

︷ ︸︸ ︷
R∗KradR{ϕ}〉

=
∫

Rd
δ(ξT0x − t0)ϕ(x)dx = R{ϕ}(−t0,−ξ0)

= 〈δ( · +(t0, ξ0)
)
,R{ϕ}〉Rad = 〈δ( · +(t0, ξ0)

)
, φ〉Rad,

which shows that δ
( · +z0

)
with z0 = (t0, ξ0) is a formal filtered projection of

δ(ξT0x − t0). Moreover, since δ(ξT0x − t0) = δ(−ξT0x + t0), the same holds true for

δ(·− z0), as well as for δRad,z0
�= 1

2

(
δ(·− z0)+ δ(·+ z0)

)
, which has the advantage of

being symmetric.While the general solution inS ′Rad isKradR{δ(ξT0·−t0)} = [δ(·±z0
)],

we shall see that there also exists a way to specify a representer that is unique (i.e.,
δRad,z0) by restricting the range of KradR to a suitable subspace of measures.

The distributional extension of the Radon transform inherits most of the prop-
erties of the “classical” operator defined in (18). Of special relevance to us is the
quasi-commutativity of R with convolution, also known as the intertwining property.
Specifically, let h, f ∈ S ′(Rd) be two distributions whose convolution h ∗ f is well-
defined in S ′(Rd). Then,

R{h ∗ f } = R{h}� R{ f } (30)

where the symbol “�” denotes the 1D convolution along the radial variable t ∈ Rwith
(u � g)(t, ξ) = 〈u(·, ξ), g(t − ·, ξ)〉. In particular, when h = L{δ} is the (isotropic)
impulse response of an LSI operator whose frequency response L̂(ω) = L̂ rad(‖ω‖) is
purely radial, we get that

R{h ∗ f } = RL{ f } = LradR{ f }, (31)

where Lrad is the corresponding Radon-domain operator of Definition 5. Likewise, by
duality, for g ∈ S ′(R× S

d−1) we have that

LR∗{g} = R∗Lrad{g}, (32)

under the implicit assumption that L{R∗g} and Lrad{g} are well-defined distributions.
By taking inspiration from Theorem 1, we can then use these relations for L = K =

123



Foundations of Computational Mathematics

(R∗R)−1 to show that R∗KradR{ f } = R∗RK{ f } = KR∗R{ f } = f for a broad class
of distributions. The first form is valid for all f ∈ S ′(Rd) (Theorem 2), but there
is a slight restriction with the second form (resp., third form), which requires that
K{ f } (resp., K{g} with g = R∗R{ f } ∈ S ′(Rd)) be well-defined in S ′(Rd). While
the latter condition is always met when d is odd, it may fail2 in even dimensions with
distributions (e.g., polynomials) whose Fourier transform is singular at the origin. The
good news for our regularization framework is that these problematic distributions
are either excluded from the native space or annihilated by L, so that it is legitimate
to write that LR = KradRL = RKL, where the second form has the advantage that
K and L can be pooled into a single augmented operator (KL). An alternative form
is LR = QradR, where Qrad = KradLrad is the radial Radon-domain operator whose
frequency response is Q̂rad(ω) = cd |ω|d−1 L̂ rad(ω).

3.3 Radon-Compatible Banach Spaces

Our formulation requires the identification of Radon-domain Banach spaces over
which the backprojection operator R∗ is invertible. This is a nontrivial point because
the extended operator R∗ : S ′(R × S

d−1) → S ′(Rd) in Definition 6 is not injective.
In fact, it has the highly nontrivial null space ker(R∗) = S⊥Rad, which is a superset of
the odd Radon-domain distributions [20]. Yet, R∗ is invertible on S ′Rad and surjective
on S ′(Rd) (Theorem 2).

To ensure invertibility, we therefore need to restrict ourselves to Banach spaces
that are embedded in S ′Rad. To identify such objects, we consider a generic Banach

space X = (X , ‖ · ‖X ) such that S(R × S
d−1) d.

↪−→ X d.
↪−→ S ′(R × S

d−1). This
dense-embedding hypothesis has several implications:

1. The space X is the completion of S(R× S
d−1) in the ‖ · ‖X norm, i.e.,

X = (S(R× Sd−1), ‖ · ‖X
)
. (33)

2. The dual space X ′ ↪−→ S ′(R× S
d−1) is equipped with the norm

‖g‖X ′ = sup
φ∈X : ‖φ‖X≤1

〈g, φ〉 = sup
φ∈S(R×Sd−1): ‖φ‖X≤1

〈g, φ〉, (34)

where the restriction of φ ∈ S(R×S
d−1) on the right-hand side of (34) is justified

by the denseness of S(R× S
d−1) in X .

3. The definition of ‖g‖X ′ given by the right-hand side of (34) is valid for any dis-
tribution g ∈ S ′(R × S

d−1) with ‖g‖X ′ = ∞ for g /∈ X ′. Accordingly, we can
specify the topological dual of X as

X ′ = {
g ∈ S ′(R× S

d−1) : ‖g‖X ′ < ∞}
. (35)

2 For d = 2n even, K̂ (ω) ∝ ‖ω‖2n−1 which is C∞ everywhere, except at the origin where it is only
C2n−2. This means that K can properly handle (and annihilate) polynomials only up to degree (2n − 2).
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Likewise, based on the pair (SRad,S ′Rad), we specify the Radon-compatible Banach
subspaces

XRad = (SRad, ‖ · ‖X ) (36)

X ′
Rad =

(XRad
)′ = {

g ∈ S ′Rad : ‖g‖X ′
Rad

< ∞}
(37)

where the underlying dual norms have a definition that is analogous to (34) with SRad
and XRad substituting for S(R× S

d−1) and X .

Theorem 3 (adapted from [57]) Let (XRad,X ′
Rad) be the dual pair of spaces specified

by (36) and (37). Then,

1. the map R∗Krad : XRad → Y = R∗Krad
(XRad

)
is an isometric bijection, with

RR∗Krad = Id on XRad;
2. themapR∗ : X ′

Rad → Y ′ = R∗
(X ′

Rad

)
is an isometric bijection, withKradRR∗ = Id

on X ′
Rad.

Moreover, if there exists a complementary Banach space X c
Rad such that X = XRad ⊕

X c
Rad, then X ′ = X ′

Rad ⊕ (X c
Rad)

′ where (X c
Rad)

′ can be identified as the null space of
the backprojection operator R∗ : X ′ → Y ′ ↪−→ S(Rd).

The prototypical examples where those properties are met are (X ,X ′) = (
L p(R ×

S
d−1), Lq(R × S

d−1)
)
with p ∈ (1,∞) and q = p/(p − 1) (conjugate exponent),

as well as (X ,X ′) = (
C0(R× S

d−1),M(R× S
d−1)

)
. In fact, those hyper-spherical

spaces have the convenient feature of admitting a decomposition in their even and odd
components.

Lemma 2 LetZ = R×S
d−1. Then, forX = L p(Z)with p ∈ (1,∞) andX = C0(Z)

for p = ∞, we have that X = XRad ⊕ X c
Rad where

XRad = Xeven = {g ∈ X : g(z) = g(−z),∀z ∈ Z} (38)

X c
Rad = Xodd = {g ∈ X : g(z) = −g(−z),∀z ∈ Z}. (39)

Proof To establish this result directly is tricky because the characterization of SRad
involves somegeneralmoment conditions [20, 23, 27]. Instead,we consider the smaller
space of even Radon-domain Lizorkin test functions [26] described by

SLiz,Rad = {φ ∈ Seven(Z) :
∫

R

tkφ(t, ξ)dt = 0,∀ξ ∈ S
d−1, k ∈ N}, (40)

which is such that SLiz,Rad ⊂ SRad ⊂ Seven(Z). We then invoke a general result
by Samko [46] that implies that (SLiz,Rad, ‖ · ‖L p ) = L p,even(Z) ⊃ (SRad, ‖ · ‖L p )

for p ∈ (1,∞) and (SLiz,Rad, ‖ · ‖L∞) = C0,even(Z) otherwise [34]. The claim
then follows from the observation that L p(Z) = L p,even(Z) ⊕ L p,odd(Z) with
L p,even(Z) = (SRad, ‖ · ‖L p ) (because the completion is unique) and suitable adapta-
tion for p = ∞. ��
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Correspondingly, we get that X ′
Rad = Peven(X ′) = X ′

even and (X c
Rad)

′ = (Id −
Peven)(X ′) = X ′

odd, with the cases of greatest interest to us beingMRad =Meven(R×
S
d−1) and L2,Rad = L2,even(R× S

d−1).

3.4 Specific Radon Transforms

The Fourier-slice theorem expressed by (20) remains valid for tempered distributions
[43] and therefore also yields a characterization of R{ f } that is compatible with the
Banach framework of Theorem 3. It is especially helpful when the underlying function
ρiso is isotropic with a known radial frequency profile ρ̂rad such that F{ρiso}(ω) =
ρ̂rad(‖ω‖).
Proposition 1 (Radon transform of isotropic distributions) Let ρiso be an isotropic
distribution whose radial frequency profile is ρ̂rad : R→ R. Then,

R{ρiso(· − x0)}(t, ξ) = ρrad(t − ξTx0) (41)

KradR{ρiso(· − x0)}(t, ξ) = νrad(t − ξTx0) (42)

with ρrad(t) = F−1{ρ̂rad(ω)}(t) and νrad(t) = 1
2(2π)d−1F−1{|ω|d−1ρ̂rad(ω)}(t).

The other important building blocks for representing functions are ridges. Specifi-
cally, a ridge is a multidimensional function

rξ0 : Rd → R : x �→ r(ξT0x) (43)

that is characterized by a profile r : R → R and a direction ξ0 ∈ S
d−1. In effect, rξ0

varies along the axis specified by ξ0 and is constant within any hyperplane perpen-
dicular to ξ0. The connection between ridges and the Radon transform is given by the
ridge identity

∀ϕ ∈ S(Rd) : 〈rξ0 , ϕ〉 = 〈r ,R{ϕ}(·, ξ0)〉, (44)

where the right-hand side duality product (1D) is well-defined for any r ∈ S ′(R)

because R{ϕ}(·, ξ0) ∈ S(R) (by Theorem 1). When the profile r : R → R is locally
integrable, (44) is a simple consequence of Fubini’s theorem. For more general distri-
butional profiles r ∈ S ′(R), we use the ridge identity as definition, which then leads
to the following characterization [57].

Theorem 4 (Filtered Radon transform of a ridge) The filtered Radon transform of the
(generalized) ridge rξ0 with profile r ∈ S ′(Rd) and direction ξ0 ∈ S

d−1 is given by

KradR{rξ0}(t, ξ) = [r(t)δ(ξ − ξ0)], (45)

where [r(t)δ(ξ − ξ0)] ∈ S ′Rad is the equivalence class of distributions specified by
(29). If r ∈M(R), then the latter has the unique, concrete representer
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KradR{rξ0}(t, ξ) = 1

2

(
r(t)δ(ξ − ξ0)+ r(−t)δ(ξ + ξ0)

)
(46)

inMRad =Meven(R× S
d−1).

An important special case of (46) is the Radon transform of a Dirac ridge: KradR{δ(ξT0 ·−t0)} = δRad,(t0,ξ0) = 1
2

(
δ(· − t0)δ(· − ξ0)+ δ(· + t0)δ(· + ξ0)

)
, which has already

been mentioned in Sect. 3.2 (see also [35, Example 1]).

4 Unifying Variational Formulation

4.1 Representer Theorem for Radon-Domain Regularization

From now on, we shall use the generic symbol X to designate the hyper-spherical
Banach space Lq(R × S

d−1) with q = (1,∞) or C0(R × S
d−1) for q = ∞, which

fall into the category described by (33) with ‖ · ‖X = ‖ · ‖Lq .
The formulation of Theorem5 requires the specification of a native space,X ′

LR
(Rd),

that is tied to a Radon-domain norm ‖ · ‖X ′ and an admissible regularization operator
LR. Informally, our native space is the largest function space over which the proposed
regularization functional f �→ ‖LR{ f }‖X ′ is well-defined. The precise description of
X ′
LR

(Rd), however, is a bit more involved. As first step, we need to restrict the dual
pair (X ,X ′) to the range of the (filtered) Radon transform. This yields the Banach
spaces (XRad,X ′

Rad), as defined by (36) and (37), with the pairs of interest being
(C0,Rad,M0,Rad) and (Lq,Rad, L p,Rad) with 1

p + 1
q = 1 and p ∈ (1,∞). Given some

spline-admissible operator L (Definitions 2 and 3), we then define our regularization
operator and its adjoint as

LR
�= KradRL : X ′

LR (Rd) → X ′
Rad,

L∗R = L∗R∗Krad : XRad → XLR (Rd)

where R is the Radon transform and Krad the (self-adjoint) filtering operator such that
KradRR∗ = Id on X ′

Rad (Theorem 3). In order to establish isometries, one needs to
be able to invert L : X ′

LR
(Rd) → R∗(X ′

Rad) as well as LR, which is feasible if one
factors out the null space P , which is common to both. This motivates us to define the
directed inverse operators

L−1P
�= (Id − ProjP )L−1 : R∗(X ′

Rad

) → X ′
LR (Rd) (Right inverse of L)

L−1∗P = L−1∗(Id − ProjP ′) : XLR (Rd) → KradR(XRad) (Left inverse of L∗)

L†
R

�= L−1P R∗ : X ′
Rad → X ′

LR (Rd) (47)

L∗†R = RL−1∗P : XLR (Rd) → XRad (48)
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where the operators L†
R and L∗†R are generalized inverses3 of LR and L∗R, respectively.

We now have all the ingredients to specify our native space as

X ′
LR (Rd) = L†

R

(X ′
Rad

)⊕ P
= { f ∈ L∞,−n0(Rd) : ‖LR{ f }‖X ′ + ‖ProjP { f }‖P < ∞}
= {L†

R{w} + p0 : (w, p0) ∈ X ′
Rad × P}, (49)

which is isometrically isomorphic toX ′
Rad×P , as expressed by (49). The key property

there is that LRL
†
R = Id on X ′

Rad, while LR{p0} = 0 for all p0 ∈ P (Theorem 6).
Moreover, X ′

LR
(Rd) is the topological dual of the predual space

XLR (Rd) = L∗R
(XRad

)⊕ P ′

= {ν ∈ S ′(Rd) : ‖ν‖XLR
= max(‖L∗†R {ν}‖X , ‖ProjP ′ {ν}‖P ′) < ∞}

= {L∗R{v} + p∗0 : (v, p∗0) ∈ XRad × P ′}, (50)

which is a Banach space, as shown in Theorem 9. The validity of this dual pairing
can be checked formally in the absence of null space components: For any ( f , ν) ∈
X ′
LR

(Rd)× XLR (Rd) with ProjP { f } = 0 and ProjP ′ {ν} = 0, we have that

〈 f , ν〉 = 〈L†
R{w},L∗R{v}〉 = 〈LRL

†
R{w}, v〉Rad = 〈w, v〉Rad

with (w, v) ∈ X ′
Rad × XRad. Finally, since ProjP continuously maps X ′

LR
(Rd) →

P iso.
↪−→ X ′

LR
(Rd), we can identify ProjP ′ as its adjoint (ProjP )∗ = ProjP ′ : XLR (Rd) →

P ′ iso.
↪−→ XLR (Rd).
To ensure that the generic regression problem in Theorem 5 is well-defined, we

also need a mild hypothesis on the structure of the data points.

Definition 7 (Admissible data points) Let N0 = dimP where P = Pn0 is the polyno-
mial null space of LR. Then, the set of data points {x1, . . . , xM } ⊂ R

d with M ≥ N0

is said to be P-admissible if the sampling matrix H = [
v1 · · · vM

]T ∈ R
M×N0 with

vm =
(〈δ(· − xm),mk〉

)
|k|≤n0 ∈ R

N0 is of rank N0.

The rank condition is precisely the condition under which the classical least-squares
polynomial fitting problem

min
f ∈P

M∑

m=1
|ym − f (xm)|2 = min

b∈RN0
‖y−Hb‖2 (51)

is well-posed. Indeed, the formal solution of (51) is p0(x) = ∑
|k|≤n0 bkmk(x) with

b = (bk) = (HTH)−1HTy where the rank condition guarantees the invertibility of the
normal matrix (HTH) ∈ R

N0×N0 .

3 The precise properties of these inverse operators are stated in Theorems 6 and 9.
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We are now ready to formulate our extended representer theorem, which supports
a rich panorama of regression models. A case of direct practical relevance is obtained

by setting L = (−Δ)
α+1
2 (fractional Laplacian) with L̂ rad(ω) = |ω|α+1. Indeed, we

shall see that, for X = L2, this essentially yield the classical thin-plate splines (see
Sect. 4.2), while, for X ′ = M, it results in neural networks with activation functions
(ρrad) labeled as “ridge splines” (including ReLU) and “fractional splines” in Table 1
(Sect. 4.5).

Theorem 5 Let us consider the following setting.

– Aproper, lower-semicontinuous, coercive, and convex loss functional E : R×R→
R
+ ∪ {+∞}.

– An isotropic, spline-admissible operator L with frequency profile L̂ rad and poly-
nomial null space Pn0 of degree n0, possibly trivial with the convention that
P−1 = {0}.

– A convex, increasing function ψ : R+ → R
+.

– A set {x1, . . . , xM } ⊂ R
d of Pn0 -admissible data points.

Then, for any fixed y = (ym) ∈ R
M, the generic functional-optimization problem

S = arg min
f ∈X ′

LR
(Rd )

(
M∑

m=1
E(ym, f (xm))+ ψ(‖LR{ f }‖X ′)

)

, (52)

with LR = KradRL, and ψ , X ′ as stated below, always has a solution.

1. When X = X ′ = L2(R × S
d−1) and ψ is strictly convex, the solution of (52) is

unique and representable by the linear kernel expansion

f (x) = p0(x)+
M∑

m=1
amρiso(x − xm), (53)

where ρiso = 2(2π)d−1F−1{1/(|L̂ rad(‖ω‖)|2‖ω‖d−1)} is a radial-basis function,
(am) ∈ R

M an adequate set of coefficients, and p0 ∈ Pn0 a polynomial that lies in
the null space of LR.

2. When X ′ = L p(R× S
d−1) with p ∈ (1, 2] and ψ is strictly convex, the solution is

unique and admits the parametric representation

f (x) = p0(x)+ L†
R ◦ Jq

{
M∑

m=1
amνxm

}

(x) (54)

withbasis functionsνx1, . . . , νxM ∈ Lq(R×Sd−1) specifiedby (70) andparameters
(am) ∈ R

M, p0 ∈ Pn0 , and where Jq is the pointwise nonlinearity given by (92)
with q = p/(p − 1). (The latter is the duality map JX : X → X ′ with X =
Lq(R× S

d−1)—see Appendix A for explanations).
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3. When X ′ = M(R × S
d−1) and ψ is strictly increasing, the solution set is the

weak∗-closed convex hull of its extreme points, which are all of the form

fext(x) = p0(x)+
K0∑

k=1
akρrad(ξ

T
k x − τk) (55)

with activation function ρrad = F−1{1/L̂ rad}, for some K0 ≤ M − dimPn0 ,
(ak, ξ k, τk) ∈ R × S

d−1 × R for k = 1, . . . , K0, and a null-space component
p0 ∈ Pn0 . The optimal regularization cost associated with (55) is ‖LR fext‖M =
∑K0

k=1 |ak | and is shared by all solutions.

Proof Since L∗R is injective on SRad and, by extension, on the completed space XRad,
the image space U = L∗R

(XRad
)
is complete as well (see proof of Theorem 9 for the

details of the construction of U). Its continuous dual is given by U ′ = L−1P R∗
(X ′

Rad

)
,

in reason of the identities RL−1∗P L∗R = RL−1∗P L∗R∗Krad = RR∗Krad = Id on XRad.
Likewise, P ′, as identified by (15), is a finite-dimensional Banach space. Its dual is
simply (P ′)′ = P (the null space of both L and LR), owing to the property that all
finite-dimensional spaces are reflexive. Using the notation for direct-sum topologies
of [58], we then observe that XLR (Rd) = (U ⊕ P ′)�∞ , whose formal dual (U ⊕
P ′)′�∞ = (U ′ ⊕ P)�1 is precisely the native space X ′

LR
(Rd) described by (49). By

writing f = L−1P R∗{w} + p0 and recalling that LL−1P = Id (right-inverse property),
we then identify the regularization functional as

‖LR f ‖X ′ = ‖KradR{LL−1P R∗w + Lp0}‖X ′

= ‖KradRR
∗{w} + KradR{0}‖X ′

= ‖w‖X ′
Rad

= ‖ProjU ′ f ‖U ′

which, in effect, converts the seminorm overX ′
LR

(Rd) into a norm overU ′ by factoring
out the null space of LR. The other mathematical ingredient for the optimization
problem (52) to be well-posed is the weak∗ continuity of the sampling functionals
δ(·− xm) : f �→ f (xm) in the underlying topology. This is equivalent to δ(·− xm) ∈
XLR (Rd) for any xm ∈ R

d . In the present context, this condition can be reframed as
νxm = L∗†R {δ(· − xm)} ∈ XRad, which is a property that is established in Theorem 7
for the cases X = C0 and X = Lq for any q ≥ 2.

The existence of the solution and the parametric descriptions (53), (54), and (55)
then follows from the three cases of the abstract representer theorem for direct sums
[58, Theorem 3]. The link with the abstract theorem is made by identifyingN p = P ,
U⊕N p∗ = XLR (Rd),U ′⊕N p = X ′

LR
(Rd) and νm = δ(·−xm) form = 1, . . . , M . As

for the required technical assumptions, they directly follow from the weak∗ continuity
of the sampling functionals (i.e., νm ∈ U ⊕N p∗ ) and the P-admissibility hypothesis
in Definition 7, with the vm being the same as in the statement of the abstract theorem.
The duality map that is required for the first and second scenarios is JU = L†

R ◦J◦L∗†R :
U → U ′ (see Appendix A, Proposition 4 with T = L∗R, T−1 = L∗†R = R∗L∗−1P , and

(T∗)−1 = L†
R = L−1P R∗).
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To describe the solution set for the non-reflexive caseX ′ =M, we invoke the third
case of [58, Theorem 3], which tells us that the extreme points of S can all be expressed
as the sum of a null-space component plus a linear combination of K0 ≤ M−dim(P)

atoms ek that are selected adaptively within a dictionary consisting of the extreme
points of the unit ball in U ′: B(U ′) = {u ∈ U ′ : ‖u‖U ′ ≤ 1}. Because of the linear
isomorphismU ′ = L†

R

(MRad
)
, extB(U) = L†

R

(
extB(MRad)

)
. Next, we use the prop-

erty that MRad = Meven(R× S
d−1) whose extreme points are {±δRad,z}z∈Pd . Each

δRad,zk ∈ extB(MRad) then bijectivelymaps into an extreme point ek = L†
R{δRad,zk } ∈

extB(U ′), and vice versa. Finally, by recalling that L†
R = (Id − ProjP )L−1R∗ and by

invoking Theorem 4 to show that L−1R∗{δRad,(tk ,ξ k )} = L−1R∗KradR{δ(ξTk x− tk)} =
L−1{δ(ξTk x − tk)} = ρrad(ξ

T
k x − tk), we find that

ek = ±ρrad(ξ
T
k x − tk)∓p0,k, (56)

where p0,k = ProjP {ρrad(ξTk x − τk)} ∈ P . Since every extreme point of B(U ′) is
necessarily of the form (56), we can substitute this expression in the generic expansion
fext = p̃0 +∑K0

k=1 akek which, upon collection of all null-space components, yields
(55). ��

The two cases inTheorem5 that are of direct practical relevance tomachine learning
are Items 1 and 3. The first scenario yields a learning architecture that is a linear
expansion of RBFs, which also has a classical RKHS interpretation, as explained in
Sect. 4.2.

The formof the solution in Item3 is equivalent to a shallownetworkwith theweights
(ξ k) of the hidden layer being normalized. It actually turns out that this normalization
is inconsequential when the activation is a homogeneous function. This happens for

instance when the regularization operator L = (−Δ)
α+1
2 is a fractional Laplacian

which maps into ρRad(t) ∝ |t |α . Indeed, for any (wk, bk) ∈ R
d × R, we have that

|wT
k x − bk |α = ‖wk‖α|ξTk x − tk |α (57)

with ξ k = wk/‖wk‖ and tk = bk/‖wk‖, which indicates that the normalization (or lack
thereof) can be absorbed in the weights (ak) of the output layer. The case α = 1 with
L = Δ (Laplacian) is particularly attractive, as it nicely maps into a ReLU network
with one hidden layer and a skip connection to implement the affine component [37].

The form of the solution in Item 2 is more involved, but still useful to get insight
into the transition with p from RBFs to neural nets. The equivalence with Item 1 for
p = 2 is demonstrated in Sect. 4.2. As for the behavior as p → 1, we observe that
the effect of the duality map Jq as q →∞ is to pull a few maximal values to infinity,
while attenuating all other (non-supremum) values toward zero. In effect, this means
that Jq{∑M

m=1 amνxm }will exhibit peaks that becomemore and more pronounced, and
eventually converge to a sum of impulses as p → 1, which is consistent with the limit
form given by (55).

123



Foundations of Computational Mathematics

4.2 Connection with RKHSMethods

The scenarioX = L2 in Theorem 5 is compatible with the kernelmodels of “classical”
machine learning [40, 50]. This is because the underlying native space is a reproducing-
kernel Hilbert space whose topological structure is now made explicit.

Proposition 2 (Characterization of RKHS for X = L2) Let L be a spline-admissible
operator with a polynomial null space of degree n0 and consider the self-adjoint
operator A = (L∗KL)−1. Then, the native space H = L ′2,LR (Rd), defined by (49)
with X ′ = X = L2, is the reproducing-kernel Hilbert spaceH = U ′ ⊕ P associated
with the composite inner product

〈 f1, f2〉H = 〈LR{ f1},LR{ f2}〉Rad +
∑

|k|≤n0
〈m∗

k, f1〉〈m∗
k, f2〉

= 〈(L∗KL){ f1}, f2〉 +
∑

|k|≤n0
〈m∗

k, f1〉〈m∗
k, f2〉 (58)

whose leading term can also be written as

〈(L∗KL){ f1}, f2〉 = 〈(L∗KL)ProjU ′ { f1},ProjU ′ { f2}〉
= 〈ProjU ′ { f1},ProjU ′ { f2}〉U ′ , (59)

where ProjU ′ = Id−ProjP : H→ U ′. The topological dual ofH is the Hilbert space
H′ = L2,LR (Rd) = U ⊕ P ′ equipped with the inner product

〈g1, g2〉H′ = 〈L∗†R {g1},L∗†R {g2}〉Rad +
∑

|k|≤n0
〈mk, g1〉〈mk, g2〉

= 〈L†
RL

∗†
R {g1}, g2〉 +

∑

|k|≤n0
〈mk, g1〉〈mk, g2〉

= 〈AProjU {g1},ProjU {g2}〉 +
∑

|k|≤n0
〈mk, g1〉〈mk, g2〉, (60)

where ProjU = Id − ProjP ′ : H′ → U . The corresponding linear isometries (Riesz
maps) that map U → U ′, P ′ → P , and H→ H′ are

JU = A : U → U ′
= (Id − ProjP )A(Id − ProjP ′) : U ⊕ P ′ → U ′,

JP ′ = ProjP : P ′ → P,

= ProjPProjP ′ : U ⊕ P ′ → P,

JH = (
(Id − ProjP )A(Id − ProjP ′)+ ProjPProjP ′

) : H→ H′,

where the second, alternative forms of JU and JP ′ that include projectors are the
proper extension of those operators to the whole space H = U ′ ⊕ P .
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Proposition 2 is obtained as a corollary of Theorems 6 and 9 with X = X ′ = L2,
with the help of the intertwining property LR = KradRL = RKL (see the discussion
at the end of Sect. 3.2). The technical part is to establish the completeness of U (resp.,
H′ = U⊕P ′), which then implies that of U ′ (resp.,H = H′′ = U ′⊕P) by duality. As
for the Hilbert-space property, themaps defined by (58) and (60) are obviously bilinear
and symmetric. To show that (58) is also positive definite, we invoke Theorem 6, which
states that any f ∈ H = U ′⊕P has a unique decomposition as f = L†

R{w}+ p0, with
w = LR{ f } ∈ X ′ and p0 = ProjP { f } =

∑
|k|≤n0 bkmk ∈ P with bk = 〈m∗

k, f 〉.
This then yields that

〈 f , f 〉H = 〈LR{ f },LR{ f }〉 +
∑

|k|≤n0
|bk|2 = 〈w,w〉L2(R×Sd−1)︸ ︷︷ ︸

‖w‖2X ′

+ ‖b‖22︸︷︷︸
‖p0‖2P

≥ 0,

which vanishes if and only if f = 0. Likewise, one readily verifies that the semi-inner
products associatedwith each individual term in (60) induce the two component norms
‖v‖X and ‖p∗0‖P ′ for X = L2 that appear in the definition (50) of the predual space.

The denomination RKHS applies to any Hilbert space H of functions on R
d such

that δ(· − x0) ∈ H′ for any x0 ∈ R
d . In our case, this property is equivalent to

L∗†R {δ(· − x0)} ∈ L2,Rad, which follows from Theorem 7.
To get further insight, we now show that the RBF solution (53) is a particular case

of the L p solution (54) with p = 2. Since L2 = (L2)
′ is its own dual, J = Id, which

allows us to manipulate (54) as

f = p0 + L−1P R∗RL−1∗P

{
M∑

m=1
amδ(· − xm)

}

= p0 + L−1P K−1L−1∗P

{
M∑

m=1
amδ(· − xm)

}

= p0 + (Id − ProjP )A(Id − ProjP ′)

{
M∑

m=1
amδ(· − xm)

}

(61)

= p0 + A

{
M∑

m=1
amδ(· − xm)

}

= p0 +
M∑

m=1
amρiso(x − xm), (62)

where ρiso = (L∗KL)−1{δ} = A{δ} : R
d → R is the Green’s function of

(L∗KL) and p0 ∈ P . The nonobvious simplification from (61) to (62) results
from two crucial observations: (1) the “orthogonality-to-the-null-space” condition∑M

m=1 amδ(· − xm) ∈ U is necessary for optimality; and (2) the availability of the
identity

∀u ∈ U : (Id − ProjP )A(Id − ProjP ′){u} = A{u} = u∗ ∈ U ′,
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which is tightly linked to the specification of the underlying spaces in Proposition 2.
Likewise,wefind that the quadratic regularization cost associatedwith the linearmodel
(62) is aTGa, whereG ∈ R

M×M is a symmetric, conditionally positive-definitematrix
(see [31]) whose entries are calculated as follows:

[G]m,n = 〈LRρiso(· − xm),LRρiso(· − xn)〉Rad
= 〈RKL{ρiso(· − xm)},RKL{ρiso(· − xn)}〉Rad
= 〈KL{ρiso(· − xm)},R∗RKL{ρiso(· − xn)}〉
= 〈ρiso(· − xm),L∗KR∗RK︸ ︷︷ ︸

Id

L{ρiso(· − xn)}〉

= 〈ρiso(· − xm), δ(· − xn)〉 = ρiso(xn − xm) = ρiso(xm − xn).

As variant of the L2 result in Theorem 5, we may also consider the modi-

fied regularization operator L̃ = K− 1
2 L whose frequency response is ̂̃L(ω) =√

2(2π)(d−1)/2 L̂(ω)/‖ω‖(d−1)/2. For this particular setting, L̃R = RK
1
2 L, which

translates into

‖L̃R{ f }‖2L2(R×Sd−1) = ‖RK1
2 L{ f }‖2L2(R×Sd−1) = ‖L{ f }‖2L2(Rd )

,

owing to the property that RK
1
2 is an L2 isometry [27]. The proposed Radon-domain

regularization therefore reduces to the standard energy functional associated with
(semi-)reproducing-kernel Hilbert spaces. The resulting basis function is ρ̃iso(x) =
F−1{1/|L̂|2}(x), which is the same as the one encountered in the classical formulation
that does not involve the Radon transform. While this may suggest that the two for-
mulations are equivalent, there is an important difference that concerns the dimension
of the null space.

As a matter of illustration, we now compare two schemes that utilize the same
“linear” radial-basis ρiso(x) ∝ ‖x‖. Based on (6), we deduce that this corresponds
to the choice |L̂(ω)|2 = ‖ω‖d+1 in the classical formulation, which induces the
regularization norm ‖(−Δ)(d+1)/2{ f }‖L2 with a polynomial null space of degree n0 =
(d + 1)/2� > d/2 [17, 63]. In our proposed Radon-domain variant, the appropriate
regularization norm is ‖RK(−Δ)1/2{ f }‖L2 with a null space of polynomial degree
n0 = 0. This solution is attractive because it does not depend on the dimensionality
of the data.

4.3 Universal Approximation Properties

The universal-approximation properties of the supervised-learning scheme specified
by (52) are supported by Theorem 6, which summarizes the properties of the native
space X ′

LR
in relation to the regularization operator LR and its generalized inverse L†

R.
This result is a direct corollary (dual counterpart) of Theorem 9, whose proof is given
in Sect. 5.2.
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Theorem 6 (Properties of the native space X ′
LR
) Let L be an isotropic LSI operator

that is spline-admissible with a polynomial null space P (possibly trivial) of degree
n0. Then, the operators LR = KradRL : X ′

LR
→ X ′

Rad and L
†
R = (Id−ProjP )L−1R∗ :

X ′
Rad → L∞,−n0(Rd) (the adjoint of L∗†R in Theorem 9) are continuous and have the

properties

∀w ∈ X ′
Rad : LRL

†
R{w} = w (63)

∀p0 ∈ P : LR{p0} = 0 (64)

∀ f ∈ X ′
LR (Rd) : L†

RLR{ f } = (Id − ProjP ){ f } = ProjU ′ { f }, (65)

where X ′
LR

(Rd)
�= L†

R(X ′
Rad) ⊕ P is equipped with the composite norm ‖ f ‖X ′

LR
=

‖LR{ f }‖X ′
Rad
+‖ProjP { f }‖P . The spaceX ′

LR
is complete and isomorphic toX ′

Rad×P
with f = L†

R{w} + p0 �→ (w, p0) = (LR{ f },ProjP { f }). Moreover, S(Rd) ↪−→
X ′
LR

(Rd) ↪−→ L∞,−n0(Rd)
d.

↪−→ S ′(Rd).

To explain how Theorem 6 relates to universality, let us first consider the case
X ′ = L2 for which we have just shown that X ′

LR
= H is a RKHS whose (semi-

)reproducing kernel is ρiso = (L∗KL)−1{δ}. From the general properties of RKHS [2,
63], we know that H (as a set) can be specified as H = span{ρiso(· − y)} y∈Rd + P ,
which tells us that the class of RBF estimators of the form given by (53) is dense
in H. This means that such estimators can yield an approximation of any f ∈ H to
an arbitrary degree of precision. In particular, this applies to any f ∈ S(Rd), due
to the inclusion S(Rd) ⊂ X ′

LR
(Rd), as guaranteed by Theorem 6. Now, the key to

universal approximation is that S(Rd) is dense in most of the classical function spaces
[51], in particular, C0(R

d). We then readily deduce that (53), for M sufficiently large
and a suitable choice of the xm , has the ability to reproduce any continuous function
f : Rd → R. This deduction, of course, is consistentwith the classical theory of kernel
estimators: Our admissibility conditions for L̂ rad in Definition 2 (resp., in Definition 3)
ensure that the function ρiso : Rd → R is strictly positive-definite (resp., strictly
conditionally positive-definite), which is the standard criterion for universality [31,
32, 63].

The same kind of density argument can be made for X ′ = M. The relevant basis
elements there are the atomic Radon-compatible Dirac measures δRad,(tk ,ξ k ) ∈MRad

with (tk, ξ k) ∈ R×S
d−1. These get mapped into ek = L†

R{δRad,(tk ,ξ k )} ∈ U ′, which are
essentially ridges (up to some polynomial) characterized by ek = ρrad(ξ

T
k ·−tk)− p0,k

with p0,k = ProjP {ρrad(ξTk · −tk)}. Thus, by setting w ≈ ∑
k wkδRad,(tk ,ξ k ), we can

interpret the generative formula f = L†
R{w}+p0 inTheorem6as a linear superposition

of ridges plus a global polynomial trend, which is compatible with the form of the
estimator in (55).We then invoke the property thatS(Rd) ⊂MLR (Rd), which implies
that any continuous function can be approximated as closely as desired by amember of
MLR (Rd). As it turns out, the latter is representable by a superposition of ridges plus
a polynomial of degree n0. We emphasize that the presence of the polynomial term—
the guarantor of stability for Theorem 8—is essential to counterbalance the growth
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of the individual atoms at infinity. This is an important aspect where our analysis and
conclusions deviate from those of [54].

4.4 Regularization Operators for Anti-symmetric Activations

While the framework that has been discussed so far is very powerful, it has one short-
coming: it yields canonical activation functions ρrad that are necessarily symmetric. In
some cases such as LR = KradR(−Δ), these can be converted into one-sided functions
such as the ReLU by doctoring the polynomial term. That said, the original scheme
that is described by Theorem 5 does not allow for sigmoids, which are frequently
used for classification [8]. This is the reason why we now introduce a variant that
systematically produces anti-symmetric activations, including sigmoids for n0 = 0.

The idea is to substitute the (symmetric) filtering operatorKrad by its anti-symmetric
counterpart K̃rad, which includes an additional Hilbert transform. Specifically,

K̃rad is the hyper-spherical radial filter whose frequency response is ̂̃K rad(ω) =
−i sign(ω)cp|ω|−d−1 and whose adjoint is K̃∗rad = −K̃rad. Since the action of the
(radial) Hilbert transform H̃rad : φ(·, ξ) �→ φ�1/(π t) is well-defined onS(R×S

d−1)
with H̃∗rad = −H̃rad = H̃−1rad, we have the identity R∗KradR = R∗KradH̃∗radH̃radR =
R∗K̃∗radR̃ = Id with R̃

�= H̃radR. Accordingly, we can essentially replicate the
whole mechanism of construction of spaces in Sect. 3.3 by substituting SRad by
S̃Rad = R̃(S(R × S

d−1) = H̃rad(SRad), which is a space of odd functions that are
smooth (C∞) and included in L p(R×S

d−1) for all p ≥ 1.While the members of S̃Rad

do not necessarily decay rapidly, the mapping R∗K̃∗rad : S̃Rad → S(Rd) is still guar-
anteed to be an isomorphism (see [43, Theorem 3.3.1, p. 83] where similar arguments
are used). Under the assumption that the hyper-spherical norm ‖ · ‖X is continuous on
S̃Rad, we can readily adapt the proof of [57, Theorem 8] to establish the following.

Proposition 3 (Odd Radon-compatible Banach spaces) Consider the Banach space

X̃Rad = (S̃Rad, ‖ · ‖X ) of odd hyper-spherical functions. Then, the following holds.

1. The map R∗K̃∗rad : X̃Rad → Ỹ = R∗K̃∗rad
(X̃Rad

)
is an isometric bijection, with

R̃R∗K̃∗rad = Id on X̃Rad.
2. The map R̃∗ : X̃ ′

Rad → Ỹ ′ = R̃∗
(X̃ ′

Rad

)
is an isometric bijection, with K̃radRR̃∗ =

Id on X̃ ′
Rad.

The underlying definition of the “oddified” backprojection operator R̃∗ : X̃ ′
Rad →

Ỹ ′ for g ∈ X̃ ′
Rad is

〈R̃∗{g}, ϕ〉 = 〈g, R̃{ϕ}〉Rad = 〈H̃∗rad{g},R{ϕ}〉Rad (66)

for all ϕ ∈ Ỹ or, equivalently, ϕ ∈ S(Rd) since S(Rd) is dense in Y by construction.
Likewise, by using the property that the Hilbert transform is a homeomorphism from
SLiz,even onto SLiz,odd [47] with the underlying Lizorkin spaces being included in
SRad and S̃Rad ⊂ L p,odd, respectively, we can adapt the proof of Lemma 2 to show
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that L̃q,Rad = Lq,odd for q ∈ (1,∞), C̃0,Rad = C0,odd for p = ∞, and M̃Rad =
(C̃0,Rad)

′ =Modd.
The bottom line is that thewhole argumentation, including the critical Fourier-based

proofs of Sect. 5, applies in this modified setting as well. Accordingly, all theorems
that mention the regularization operator LR = KradRL and the radial profile ρrad =
F−1{1/L̂ rad} are also valid for the odd setting where these quantifies are substituted
by

L̃R
�= K̃radRL = K̃radLradR, (67)

ρ̃rad(t)
�= F−1

{
i sign(ω)

L̂ rad(ω)

}

(t), (68)

where (68) directly follows from (66) and Theorem 4. The conditions for admissibility
in Definitions 2 and 3, which are all Fourier-based, remain the same, while the adjusted
activation ρ̃rad (the 1D Hilbert transform of ρrad) is real-valued and anti-symmetric
because the original Fourier profile L̂ rad : R→ R is symmetric.

We note that our admissibility condition with γ0 = 1 for odd variant (n0 = 0) is
compatible with the condition used by Barron to prove the universality of neural net-
works with sigmoidal activations [5]. It is also worth mentioning that the substitution
of LR by L̃R has no incidence on the form of the RBF in (53) because of the unitary
nature of the Hilbert transform.

4.5 Specific Configurations

The proposed framework encompasses a wide variety of kernels and activation
functions, with minimal restrictions. For instance, one can start with any strictly
positive-definite function ρrad,0 whose Fourier transform is strictly positive, and con-
struct some higher-order variants by (fractional) integration. The variants are such that
ρrad,γ0(t) = F−1{ ρ̂rad,0(ω)

|ω|γ0 }(t) with suitable γ0 > 0 and are guaranteed to meet the
requirements in Definition 3. The simplest scenario is to set ρrad,0 = δ, which maps
into a Laplacian-type regularization.

In Table 1, we provide examples of admissible operators together with their cor-
responding symmetric and anti-symmetric activations. It is noteworthy that the two
most popular sigmoids (tanh and arctan) are part of the framework. We can determine
the explicit frequency response of their regularization filter and show that it is first-
order-admissible with a null space that consists of the polynomials of degree n0 = 0
(the constants). The symmetric spline activations of odd degree m − 1 and the anti-
symmetric ones of even degree are also known: they coincide with the ridge splines of
Parhi and Novak, which are tied to the Radon-domain operator Lrad = ∂m

∂tm [37]. With
the present formulation, we can seamlessly extend this family to fractional orders, in

direct analogy with [59], by setting L = (−Δ)
α+1
2 .
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Table 1 Examples of admissible symmetric and anti-symmetric activation functions with their correspond-
ing regularization operator

ρrad(t) ρ̃rad(t) L̂rad or ̂̃Lrad n0 (null space)

Exponential

e−|t | N/A 1+ |ω|2 −1 (trivial)
Classical sigmoids

N/A
tanh( t2 )

2 = 1
2 + 1

1+e−t
sinh(πω)

π 0 (bias)

N/A arctan(t)
π ωe|ω| 0

Ridge splines (of degree n ∈ N)
1
2 |t | (or ReLU) t log |t | |ω|2 1 (affine)

∝ t2n log |t | sign(t)|t |2n
(2n)! |ω|2n+1 2n ≥ 2 (even)

1
2
|t |2n+1
(2n+1)! ∝ t2n+1 log |t | |ω|2n+2 2n + 1 ≥ 1 (odd)

Fractional splines (degree α ∈ R
+\N)

|t |α sin( απ
2 )

πΓ (α)

sign(t)|t |α cos( απ
2 )

πΓ (α)
|ω|α+1 α�

The anti-symmetric activation ρ̃rad(t) is given by (68) and requires the use of the modified filter K̃rad in the
statement of Theorem 5

5 SupportingMathematical Results

To answer the fundamental issue of the existence of a solution in Theorem 5, we need
to 1) prove that the “predual” space XL(Rd) is a proper Banach space (Theorem 9);
and 2) establish the weak* continuity of the sampling functionals δ(· − xk). As we
shall see, both aspects largely rest upon the functional characterization of the Schwartz
kernel of the pseudoinverse operator L∗†R provided in Theorem 7.

5.1 Kernel and Stability of Generalized Inverse Operators

Let ν : f �→ 〈ν, f 〉 be a linear functional that is acting on some Banach space X ′.
We recall that ν is weak*-continuous if and only if ν ∈ X , where X is the predual
of X ′ [44]. The condition that X ′ is reflexive (i.e., X ′′ = X ) is equivalent to the
continuity of ν on X , which is the standard condition for analysis. However, when
X ′ is not reflexive (e.g., X ′ = M = (C0)

′), the constraint of weak* continuity is
stronger than continuity, contrary to what could be suggested by the qualifier “weak.”
In that case, the predual spaceX ⊆ X ′′, which is continuously embedded inX ′′, turns
out to be smaller than X ′′. Therefore, in order to establish the weak* continuity of
the Dirac functionals δ(· − x0) for the scenarios in Theorem 5, we need to show that
δ(· − x0) ∈ XLR , which can be reduced to proving that L∗†R {δ(· − x0)} ∈ XRad.

Theorem 7 (Properties of the impulse response of L∗†R = RL−1∗P ) LetL be an isotropic
operator such that L̂(ω) = L̂ rad(‖ω‖) where L̂ rad : R → R is a continuous function
and ρrad(t) = F−1{1/L̂ rad}(t). We consider two cases:
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1. Trivial null space: If L satisfies the admissibility conditions in Definition 2, then
L∗†R = RL−1∗ and

νx0(t, ξ) = RL−1∗{δ(· − x0)}(t, ξ) = ρrad(t − ξTx0) (69)

with x0 ∈ R
d and (t, ξ) ∈ R × S

d−1. Moreover, νx0 ∈ XRad for X = C0 as well
as X = Lq with q ∈ [1,∞].

2. Nontrivial null space: If L satisfies the admissibility conditions in Definition 3 with
a polynomial null space of degree n0, then

νx0(t, ξ) = L∗†R {δ(· − x0)}(t, ξ)

= ρrad(t − ξTx0)−
n0∑

n=0

(−ξTx0)n

n!
(
κrad ∗ ∂nρrad

)
(t) (70)

with νx0 ∈ XRad for the same spaces as in Item 1, but with q ∈ [2,∞]. Moreover,

sup
(x0,ξ)∈Rd×Sd−1

(1+ |ξTx0|)−n0‖νx0(·, ξ)‖Lq (R) < ∞ (71)

for any q ∈ [2,∞].
Proof To show that νx0 ∈ XRad, it is sufficient to prove that νx0 ∈ X (Rd × S

d−1)
since νx0 is in the range of the Radon transform by construction.

When the null space of L is trivial, L has a stable convolution inverse so that it
suffices to show that νx0 ∈ Lq(R× S

d−1) ∩C0(R× S
d−1). To that end, we formally

identify the isotropic distribution ρiso = L−1∗{δ} = L−1{δ} = F−1{1/L̂ rad(‖ω‖)}
and apply Proposition 1, which yields

νx0(t, ξ) = R{ρiso(· − x0)}(t, ξ) = ρrad(t − ξTx0).

Due to our assumptions, this function is such that ‖νx0(·, ξ)‖L1 = ‖ρrad‖L1 < ∞ for
anyfixed ξ ∈ S

d−1.Moreover, since 1/L̂ rad ∈ L1(R),ρrad is bounded, continuous, and
vanishing at infinity (by the Riemann-Lebesgue lemma), which gives ρrad(·−ξTx0) ∈
C0(R) for any x0 ∈ R

d and ξ ∈ S
d−1. Since ρrad ∈ L∞(R) ∩ L1(R), we readily

deduce that ρrad(·− ξTx0) ∈ Lq(R) for all intermediate q ≥ 1, which then also yields
ρrad(t−ξTx0) ∈ Lq(R×S

d−1) because the surface of the unit sphere Sd−1 is bounded.
Finally, since ρrad : R→ R is continuous and vanishing at infinity, νx0(t, ξ) is jointly
continuous in (t, ξ) and vanishing at t → ±∞ for all ξ ∈ S

d−1, which implies that
νx0 ∈ C0(R× S

d−1).
For the more difficult case of a nontrivial null space, we invoke the Fourier-slice

theorem to evaluate the 1D Fourier transform of νx0(·, ξ) with ξ fixed as

ν̂x0(ω, ξ) = F{δ(· − x0)−∑
|k|≤n0〈mk, δ(· − x0)〉 m∗

k}(ωξ)

L̂ rad(ω)
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= e−iωξTx0 −∑
|k|≤n0

xk0
k! m̂

∗
k(ωξ)

L̂ rad(ω)

= e−iωξTx0 −∑
|k|≤n0

xk0
k! (−iωξ)kκ̂rad(ω)

L̂ rad(ω)

= e−iωξTx0 −∑n0
n=0

(−ξTx0)n

n! (iω)n κ̂rad(ω)

L̂ rad(ω)
, (72)

where the simplification of the summation over k results from the multinomial expan-
sion (−iωξTx0)n = (y1 + · · · + yd)n = ∑

|k|=n n!
k! y

k with y = (− iωξi x0,i
)d
i=1.

The delicate point here is that (72) is potentially singular because it has a pole of
multiplicity γ0 at ω =0. Fortunately, the condition γ0 ≤ n0 + 1 ensures that there is a
proper pole-zero cancelation: By recalling that κ̂rad(ω) = 1 for ω ∈ Ω0 = [−R0, R0]
with R0 = 1

2 and setting t0 = ξTx0, we identify the numerator as the remainder of the
Maclaurin series of e−iωt0 , which is bounded by

∣
∣
∣
∣
∣
e−iωt0 −

N∑

n=0

(−it0)n
n! ωn

∣
∣
∣
∣
∣
≤ sup

ω∈R

∣
∣
∣(−it0)N+1e−iωt0

∣
∣
∣
|ω|N+1

(N + 1)!

≤ |t0|N+1
(N + 1)! |ω|

N+1. (73)

This then yields the estimate

|ν̂x0(ω, ξ)| ≤ |ξTx0|n0+1
C0(n0 + 1)! |ω|

ε as ω → 0

with ε = n0 + 1− γ0 =
{
0, γ0 ∈ N

1− (γ0 − �γ0�) ∈ (0, 1), otherwise.
(74)

Since the denominator L̂ rad in (72) is continuous and non-vanishing away from the
origin, ν̂x0(·, ξ) is bounded on Ω0, and, by extension, on any compact subset of R.

Moreover, since |e−iωξTx0 | = 1 and κ̂rad is rapidly decreasing, there exists a constantC
such that |ν̂x0(ω, ξ)| ≤ C |ω|−γ1 for |ω| > R1. This leads to several conclusions. First,
ifγ1 > 1, then ν̂x0(·, ξ) ∈ L1(R) so that νx0 ∈ C0,Rad(R×S

d−1)by the same argument
as in the nonsingular case. Second, if γ1 > α + 1

2 , then νx0(·, ξ) ∈ Wα
2 (R), where

Wα
2 (R) = { f : ∫

R
(1 + |ω|2)α| f̂ (ω)|2dω < ∞} is the Sobolev space of functions

with finite-energy derivatives up to order α. Therefore, νx0 ∈ Lq,Rad(R × S
d−1) for

all q ∈ [2,∞] provided that γ1 > 1. The explicit Radon-domain formula (70) with
κrad(t) = F−1{̂κrad(ω)}(t) is obtained by taking the 1D inverse transform of (72).

To refine our characterization of ν̂x0 , we introduce the function

rN (ω) = e−iω −∑N
n=0

(−iω)n

n!
(iω)N

N !
(75)
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Fig. 1 Functions ω �→ |rN (ω)| for N = 1, . . . , 10. The dilated plot on the right includes the upper bound
specified by (77) as an overlay

whose modulus is plotted in Fig. 1. Some of the remarkable properties of rN are

rN (ω) = −iω
N + 1

as ω → 0 (76)

∀ω ∈ R : |rN (ω)| ≤ min(|ω|/2, 1.27) (77)

lim
ω→∞ |rN (ω)| = 1, (78)

with the global bound (77) being overlaid on the graph to demonstrate its sharpness.
This function will allows us to control the behavior of

ν̂x0(ω, ξ) = e−it0ω −∑
n≤n0

(−it0ω)n

n! κrad(ω)

L̂ rad(ω)

= κ̂rad(ω)rn0(t0ω)
(−it0ω)n0

n0! + (
1− κ̂rad(ω)

)
e−it0ω

L̂ rad(ω)

by splitting the frequency domain in three regions. First, for ω ∈ Ω0 = [0, R0], where
κ̂rad(ω) = 1, we find that

|ν̂x0(ω, ξ)| =
∣
∣
∣
∣
∣

rn0(t0ω)
(−it0ω)n0

n0!
L̂ rad(ω)

∣
∣
∣
∣
∣
≤ |t0|n0 min (|ω|, 2) 2 |ω|

n0

n0!
|L̂ rad(ω)| . (79)

For the transition region ω ∈ Ω01 = [R0, R̃1] with R̃1 = max(2R0, R1), where
0 ≤ κ̂rad(ω) ≤ 1, we bound the numerator by its maximum, which yields

|ν̂x0(ω, ξ)| ≤ 2 |t0 R̃1|n0
n0! + 1

|L̂ rad(ω)| . (80)

Finally, for ω ∈ Ω1 = [R̃1,∞], where κ̂rad(ω) = 0, we get the expected tail behavior

|ν̂x0(ω, ξ)| ≤ 1

|L̂ rad(ω)| ≤
1

C1|ω|γ1 . (81)
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Based on those bounds with t0 = 1, we define the auxiliary function

u(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min (|ω|, 2) 2 |ω|
n0

n0 !
|L̂rad(ω)| , |ω| < R0

2
R̃
n0
1
n0 ! +1

|L̂rad(ω)| , R0 ≤ |ω| ≤ R̃1

1
|L̂rad(ω)| , R̃1 < |ω|

(82)

which, by construction, is such that ‖u‖L p < ∞ for any p ≥ 1. We can now use
(79), (80), and (81) to bound the norm of ν̂x0(·, ξ) by distinguishing between two
cases. For t0 ≤ 1, we have ‖ν̂x0(·, ξ)‖L p ≤ ‖u‖L p , while, for t0 ≥ 1, we get
‖ν̂x0(·, ξ)‖L p ≤ |t0|n0‖u‖L p . By combining these two inequalities, we obtain the
universal norm estimate

‖ν̂x0(·, ξ)‖L p(R) ≤ (1+ |ξTx0|)n0‖u‖L p < +∞, (83)

which holds for all (x0, ξ) ∈ R
d×S

d−1 and p ≥ 1. Finally,we invoke the boundedness
of the (inverse) Fourier transformF−1 : L p(R) → Lq(R) for p ∈ [1, 2] to obtain the
generic bound

sup
(x0,ξ)∈Rd×Sd−1

(1+ |ξTx0|)−n0‖νx0(·, ξ)‖Lq (R) < ∞, (84)

which is the desired result. ��
As complement to the proof of Theorem 7, we make the following remarks.

1. The function ω �→ ν̂x0(ω, ξ) in (72) is ε-Hölder continuous around the origin for
γ0 /∈ 2N and as smooth as L̂ when γ0 = 2n. For instance, the case where L =
(−Δ)n is a non-fractional iterate of the Laplacian corresponds to L̂ rad(ω) = ω2n

and ν̂x0(·, ξ) ∈ C∞(R), which then translates into t �→ νx0(t, ξ) being rapidly
decreasing, butwith a limited order of differentiability controlled byγ0 = γ1 = 2n.

2. The proof can be readily adapted to characterize the partial derivatives of νx0 by
replacing δ(·− x0) by ∂nδ(·− x0)with |n| < n0. These distributions are such that
〈∂nδ(· − x0),mk〉 = (−1)|n|∂nmk(x0) = (−1)|n|mk−n(x0), with the convention
that mk−n = 0 if km < nm for any m ∈ {1, . . . , d}.

3. The leading term in (70) is ρrad(t − τ0) with τ0 = ξTx0, which, in the nontrivial
scenario, typically grows as O(|t |γ0−1). Our analysis shows that the second cor-
rection term in (70), which is unbounded at infinity as well, essentially neutralizes
this growth. It is tempting to call this a miraculous cancelation.

The bottom line is that, for any (x0, ξ0) ∈ R
d × S

d−1, the function t �→ νx0(t, ξ0)
is continuous, bounded with a maximum that is proportional to |ξT0x0|n0 (see (84)
with p = ∞), and vanishing at infinity. This is a remarkable property that also guar-
antees the boundedness of L∗†R : L1,n0(R

d) → XRad, which is not obvious a priori.
The enabling ingredient there is (71), which ensures that the corresponding bounding
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constant in Theorem 8 is finite. Indeed, since ‖x‖ ≥ |ξTx| with equality if and only if
ξ and x are colinear, we have that

‖L∗†R ‖ ≤ sup
x∈Rd , ξ∈Sd−1

(1+ ‖x‖)−n0‖νx(·, ξ)‖X (R)

≤ sup
x∈Rd , ξ∈Sd−1

(1+ |ξTx|)−n0‖νx(·, ξ)‖X (R) < ∞.

Theorem 8 (Stability of Cartesian-to-Radon-domain mappings) Let hx(t, ξ) =
T{δ(· − x)}(t, ξ)} denote the generalized impulse response of the operator T :
L1,α(Rd) → XRad(R× S

d−1) and let

Cp,α = sup
x∈Rd , ξ∈Sd−1

(1+ ‖x‖)−α‖hx(·, ξ)‖L p(R). (85)

1. X = C0: If C∞,α < ∞, then T : L1,α(Rd) → C0,Rad is bounded with ‖T‖ ≤
C∞,α .

2. X = L p with p ∈ (1,∞): If Cp,α < ∞, then T : L1,α(Rd) → L p,Rad is bounded

with ‖T‖ ≤ 2πd/2

Γ (d/2)Cp,α .

The same holds true for the adjoint T∗ : X ′
Rad → L∞,−α(Rd) with ‖T∗‖ = ‖T‖.

Proof The function
(
(t, ξ), x

) �→ hx(t, ξ) is the Schwartz kernel of the operator T,
so that

|g(t, ξ)| = ∣
∣T{ f }(t, ξ)

∣
∣ = ∣

∣
∫

Rd
hx(t, ξ) f (x)dx

∣
∣

≤ sup
x∈Rd , ξ∈Sd−1

(
(1+ ‖x‖)−α‖hx(·, ξ)‖L∞

)
∫

Rd
(1+ ‖x‖)α| f (x)|dx.

Consequently,

‖g‖L∞ = sup
(t,ξ)∈R×Sd−1

|g(t, ξ)| ≤ C∞,α‖ f ‖L1,α ,

which is the desired bound for X = C0.
To handle the reflexive case X = L p, we consider the adjoint operator T∗ whose

Schwartz kernel
(
x, (t, ξ)

) �→ hx(t, ξ) is obtained by transposition. We now show
that T∗ : Lq(R× S

d−1) → L∞,−α(Rd) with q = p
p−1 is bounded which, by duality,

implies that the same holds true for (T∗)∗ = T : L1,α(Rd)
c.−→ L p(R × S

d−1) since
L1,α(Rd) is isometrically embedded in its bidual

(
L1,α(Rd)

)′′ = (
L∞,−α(Rd)

)′. The
action of the adjoint operator is described as

f (x) = T∗{g}(x) =
∫

R

∫

Sd−1
hx(t, ξ) g(t, ξ)dξdt
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which, with the help of Hölder’s inequality, yields the bound

∣
∣(1+ ‖x‖)−α f (x)

∣
∣ ≤ (1+ ‖x‖)−α‖hx‖L p(R×Sd−1) ‖g‖Lq (R×Sd−1)
≤ sup

x∈Rd , ξ∈Sd−1

(
(1+ ‖x‖)−αSd ‖hx(·, ξ)‖L p(R)

) ‖g‖Lq (R×Sd−1)

≤ Sd Cp,α ‖g‖Lq (R×Sd−1),

where Sd = 2πd/2

Γ (d/2) is the surface of the unit hypersphere S
d−1. This proves the desired

result with ‖T‖ = ‖T∗‖ ≤ SdCp,α . ��

5.2 Characterization of the Predual SpaceXLR

The application of the general representer in [58] requires that the native space
X ′
LR
= (XLR )′ be identifiable as the topological dual of some primary Banach space

XLR . The specification of the proper predual space is achieved constructively through
a completion process that ensures thatXLR is a complete normed space (Banach prop-
erty).

Theorem 9 (Construction of the predual Banach spaceXLR) Let L be an isotropic LSI
operator with radial frequency profile L̂ rad that is spline-admissible with a polynomial
null space P of degree n0. Then, L

∗†
R = RL−1∗(Id − ProjP ′) : L1,n0(R

d)
c.−→ XRad is

bounded, and admits the unique extensionL∗†R : XLR (Rd)
c.−→ XRad with the properties

∀v ∈ XRad : L∗†R L∗R{v} = v (86)

∀p∗0 ∈ P ′ : L∗†R {p∗0} = 0 (87)

∀ f ∈ XLR (Rd) : L∗RL
∗†
R { f } = (Id − ProjP ′){ f } = ProjU { f }, (88)

where L∗R = L∗R∗Krad and XLR (Rd) = L∗R(XRad) ⊕ P ′ is equipped with the norm

‖ f ‖XLR

�= max(‖L∗†R { f }‖X , ‖ProjP ′ { f }‖P ′). The space XLR is complete and iso-

morphic to XRad × P ′ with f = L∗R{v} + p∗0 �→ (v, p∗0) = (L∗†R { f },ProjP ′ { f }).
Moreover, S(Rd)

d.
↪−→ L1,n0(R

d)
d.

↪−→ XLR (Rd)
d.

↪−→ S ′(Rd) with the embedding being
continuous and dense.

Theorem 9 obviously also applies to scenarios where the null space is trivial by
setting P ′ = {0} and only retaining (86), in which case XLR (Rd) = L∗R(XRad) and

S(Rd)
d.

↪−→ L1(R
d)

d.
↪−→ XLR (Rd)

d.
↪−→ S ′(Rd).

Proof Since R∗Krad
(SRad

) = S(Rd), the image of SRad under L∗R is a vector space
denoted bySL∗R (Rd) = L∗R

(SRad) = L∗
(S(Rd)

)
. The spline-admissibility ofL implies

that L∗ is injective onS(Rd)which, in turn, translates into the injectivity of L∗R onSRad.

The latter statement is equivalent to the existence of a linear operator L∗−1R

∣
∣
∣SL∗R

= L∗−1R
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(for short) such that, for any u = L∗R{φ} ∈ SL∗R (Rd) with φ ∈ SRad, it holds that

L∗−1R {u} = L∗−1R L∗R{φ} = φ.

Hence, if φ �→ ‖φ‖X is a norm on SRad, then the same holds true for u �→
‖u‖U �= ‖L∗−1R {u}‖X on SL∗R (Rd). This means that the normed spaces (SRad, ‖ · ‖X )

and (SL∗R (Rd), ‖ · ‖U ) are (isometrically) isomorphic. Moreover, since SL∗R (Rd) ⊂
L1,n0(R

d) (Condition 4 in Definition 3) and SRad
d.

↪−→ XRad, the inverse opera-

tor L∗−1R

∣
∣
∣SL∗R

coincides on SL∗R with L∗†R : L1,n0(R
d)

c.−→ XRad whose impulse

response is characterized in Theorem 7. The well-posedness and boundedness of L∗†R
on L1,n0(R

d) for n0 = γ0 − 1� follows from Theorem 8 and (71) in Theorem 7,
which provides the required stability condition. The other fundamental ingredient is
〈mk, u〉 = 〈mk,L∗R{φ}〉 = 〈LR{mk}, φ〉Rad = 0 for all u ∈ SL∗(Rd) and |k| ≤ n0,
which implies that ProjP ′ {u} = 0. Consequently, we have that

L∗†R {u} = L∗−1R (Id − ProjP ′){u} = L∗−1R {u} = L∗−1R L∗R{φ} = φ,

which confirms the equivalence of L∗†R and L∗−1R

∣
∣
∣SL∗R

.

So far, we have shown that the operator L∗†R : (SL∗R , ‖ · ‖U
) → XRad is an isometry.

As next step, we invoke the bounded linear transformation (BLT) theorem [44, Theo-

rem I.7, p 9] to uniquely extend the operator to the completed space U = (SL∗R , ‖ · ‖U
)

which, by construction, is the Banach space equipped with the norm ‖·‖U . This exten-
sion argument also applies the other way around: Since (SL∗(Rd), ‖ · ‖U )

iso.
↪−→ U , the

operator L∗R : (SRad, ‖ · ‖X ) → U has a unique (isometric) extension L∗R : XRad → U
with XRad being the closure XRad = (SRad, ‖ · ‖X ). This proves that the spaces XRad

and U are isometrically isomorphic with U = L∗R
(XRad

)
and XRad = L∗†R

(U)
. In

addition, we have that U ⊥ P , which means that ProjP ′ {u} = 0 for all u ∈ U . Since
U and P ′ are both Banach spaces, the direct-sum space XLR = U ⊕ P ′, equipped
with the composite norm ‖ f ‖XLR

= max(‖ProjU { f }‖U , ‖ProjP ′ { f }‖P ′), is complete
(Banach property) and isomorphic to XRad × P ′. The final element is to recognize
that ‖ProjU { f }‖U = ‖L∗†R ProjU { f }‖X = ‖L∗†R { f }‖X , where ProjU = (Id− ProjP ′).
This direct-sum decomposition has an equivalent description in terms of operators,
which is the form given in the statement of Theorem 9. Specifically, the isomorphism
between U and X is expressed by (86) and (88) for f ∈ U . This is complemented by
the null-space property (87), which ensures that the components of f that are in P ′
are annihilated by L∗R.

Embeddings: The denseness ofS inXLR follows from the observation thatS(Rd) =
(Id−ProjP ′)

(S(Rd)
)⊕P ′. Since, by construction, one has that (Id−ProjP ′)(S)

d.
↪−→ U

and (Id−ProjP ′)(L1,n0)
d.

↪−→ U , one also has that S(Rd)
d.

↪−→ L1,n0(R
d)

d.
↪−→ XLR (Rd).

As for the relation XLR = U ⊕ P ′ d.
↪−→ S ′(Rd), we already have that P ′ ↪−→

S(Rd) ↪−→ S ′(Rd), by construction. To show that U ↪−→ S ′(Rd), we invoke the inter-
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twining relation and express U = L∗R∗Krad(XRad) as U = R∗Qrad(XRad), where
Qrad = LradKrad : XRad → S ′(R × S

d−1). Our hypotheses on L̂ rad ensure that
Qrad{φ} is well-defined for every φ ∈ X , with the operator being continuous in
the weak topology of S ′(R × S

d−1). (As the latter is a complete nuclear space, the
weak (sequential) convergence also ensures continuity in the strong topology [55].)
Since R∗ : S ′(R × S

d−1) c.−→ S ′(Rd), as implied by (27), the composed operator
R∗Qrad : XRad → S ′(Rd) is continuous as well, which proves that U and XLR are
both continuously embedded in S ′(Rd). The latter embedding is also dense by transi-

tivity since S(Rd) ⊂ XLR and S(Rd)
d.

↪−→ S ′(Rd) [19, 51]. ��
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A Appendix: Duality Maps

The generalization of the Cauchy-Schwarz inequality for any dual pair (X ,X ′) of
Banach spaces is the so-called duality inequality

∀( f , x) ∈ X ′ × X : 〈 f , x〉X ′×X ≤ ‖ f ‖X ′ ‖x‖X , (89)

which is tightly linked to the definition of the dual norm given by

‖ f ‖X ′ �= sup
x∈X :‖x‖X≤1

〈 f , x〉X ′×X . (90)

Definition 8 (Strict convexity) A Banach space X is said to be strictly convex if,
for all x1, x2 ∈ X such that ‖x1‖X = ‖x2‖X = 1 and x1 �= x2, one has that
‖θx1 + (1− θ)x2‖X < 1 for all θ ∈ (0, 1).

It is obvious from (90) that (89) is sharp. Moreover, whenX is reflexive and strictly
convex, there is a single element x∗ ∈ X ′ (the Banach conjugate of x) such that
‖x∗‖X ′ = ‖x‖X (isometry) and 〈x∗, x〉X ′×X = ‖x∗‖X ′ ‖x‖X (sharp duality bound)
[15]. This leads to the definition of the corresponding duality map JX : X → X ′ as

JX {x} = x∗. (91)
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Since the dual of X ′ is strictly convex as well, we have that J−1X = JX ′ : X ′ → X
with JX ′ {x∗} = x , where (x∗)∗ = x ∈ X ′′ = X is the unique Banach conjugate of
x∗ ∈ X ′.

A relevant example of reflexive and strictly convex Banach space is X = Lq(R×
S
d−1) for q ∈ (1,∞). Its topological dual isX ′ = L p(R×S

d−1)with p = q/(q−1)
being the conjugate exponent of q. For that particular pair, (89) reduces to the Hölder
inequality for hyper-spherical functions. From [15, Chapter 4], the corresponding
duality map Jq : Lq(R× S

d−1) → L p(R× S
d−1) is

Jq{ν}(z) = ν∗(z) = |ν(z)|q−1
‖ν‖q−2Lq

sign
(
ν(z)

)
, (92)

which establishes a one-to-one isometric mapping between the spaces Lq and L p =
(Lq)

′ with the property that J−1q = Jp.

Proposition 4 (Banach isometries) Let (X ,X ′) be a dual pair of reflexive and strictly
convex Banach spaces with corresponding duality map JX : X → X ′. We consider
two generic types of linear isometries.

(1) One-to-one map: Let T : X → Y = T(X ) be an injective operator whose inverse
is denoted by T−1 with T−1T = Id onX . Then,Y = T(X ) = {y = T{x} : x ∈ X }
equipped with the norm ‖y‖Y �= ‖T−1{y}‖X is a Banach space. Its continuous
dual is the Banach space Y ′ = T−1∗(X ′) with ‖y′‖Y ′ = ‖T∗{y′}‖X ′ , while the
corresponding duality map is JY = (T∗)−1 ◦ JX ◦ T−1 : Y → Y ′.

(2) Projection: Let P : X → U iso.
↪−→ X be a continuous projection operator on X with

‖P‖ = 1. Then,
(
P(X ),P∗(X ′)

) = (U ,U ′) is a dual pair of Banach subspaces
with corresponding duality map JU = P∗ ◦ JX ◦ P : U → U ′.

Proof We first recall that the dual of a reflexive and strictly convex Banach space is
reflexive (by definition) and strictly convex as well.

(1) Injective operator: For the first property, we refer to [58, Proposition 1]. The key
observation is that the operators T : X → Y and T−1 : Y → X , as well as their
adjoints, are isometries with (T∗)−1 = T−1∗. The argument then primarily rests
upon the duality inequality

〈y′, y〉Y ′×Y = 〈y′,TT−1{y}〉Y ′×Y = 〈T∗{y′},T−1{y}〉X ′×X
≤ ‖T∗{y′}‖X ′ ‖T−1{y}‖X , (93)

which is sharp if and only if x = T−1{y} and x ′ = T∗{y′} (resp., y′ and y) are
Banach conjugates, so that x ′ = JX {x}.

(2) Projection operator: The first part is obtained by using a standard argument with

(projected) Cauchy sequences. For the second part, let u ∈ U iso.
↪−→ X with Banach

conjugate u∗ ∈ X ′. Then,

‖u∗‖X ′ ‖u‖X = 〈u∗, u〉X ′×X = 〈u∗,P2u〉X ′×X = 〈P∗u∗,Pu〉U ′×U
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≤ ‖P∗‖‖u∗‖U ′ ‖P‖‖u‖U , (94)

from which we deduce that 〈P∗u∗,Pu〉U ′×U = ‖u∗‖U ′ ‖u‖U ′ . We conclude that
u = Pu and u∗ = P∗u∗ = P∗ ◦ JX {Pu} are (unique) Banach conjugates of each
other.

��
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