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Institute of Bioinformatics, Lausanne, Switzerland
5Lead contact

*Correspondence: ikuo.masuho@sanfordhealth.org (I.M.), kmartemyanov@ufl.edu (K.A.M.)
https://doi.org/10.1016/j.celrep.2023.113173
SUMMARY
G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to
heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, andG12/13. However, our understanding of theGprotein
selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living
cells and reveal the G protein selectivity of 124 GPCRswith the exact rank order of their G protein preference.
Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence
of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and
Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We
further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent
GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.
INTRODUCTION

G protein-coupled receptors (GPCRs) comprise the largest gene

family in the human genome with more than 800 members.1–3

GPCRs are critically involved in a wide range of physiological

functions including development, immunity, hormonal regula-

tion, and neuronal activity.4–10

Canonically, GPCRs transduce the extracellular stimuli into

intracellular reactions by activating heterotrimeric G proteins

consisting of Ga, Gb, and Gg subunits.11 Ligand-bound

GPCRs act as guanine nucleotide exchange factors (GEFs),

catalyzing the exchange of GDP to GTP on Ga subunits,11 trig-

gering the dissociation of GTP-bound Ga from Gbg dimer.

Both Ga-GTP and free Gbg are active forms of G proteins that

can bind to and regulate the activity of various effector

molecules.

GPCRs respond to a broad range of extracellular stimuli

evoking complex intracellular reactions.12 This diversity of

signaling reactions initiated by GPCRs is underscored by the

diversity of G proteins they activate. The human genome en-

codes 16 Ga subunits grouped into four subfamilies, Gai/o,

Gaq, Gas, and Ga12/13.
13 Importantly, individual G proteins

initiate qualitatively different signaling cascades. Thus, the iden-

tity of G proteins activated by GPCRs determines downstream

signaling events and, in turn, cellular responses. The issue of

Gprotein selectivity of GPCRs is therefore central to understand-

ing the biology of these signaling systems.
C
This is an open access article und
Historically, the majority of GPCRs were thought to couple

only to a single type of G protein.14 However, this picture is

rapidly changing, and most GPCRs have been documented to

engage multiple G proteins.15–20 This multi-valent G protein

coupling is likely responsible for the vast capacity of GPCRs

to program complex cellular responses. Signaling via different

G proteins may also occur with different timing, further

endowing GPCRs with the ability to activate various cascades

in waves.15,21 However, temporal aspects of G protein selec-

tivity, relative efficiencies of different GPCR-G protein pairings,

and their physiological relevance are not well understood.

It is pervasive in the field to define GPCRs by the single

preferred G protein they activate, so-called primary coupling,

functionally classifying GPCRs as Gai/o-, Gaq-, Gas-, or

Ga12/13-coupled receptors. However, given that GPCRs

couple to multiple G proteins, establishing primary coupling

with certainty may not be straightforward. Accordingly, recent

attempts to systematically compare G protein coupling

specificity of GPCRs15–18,20,22 resulted in low agreement across

individual studies.23

In this study, we employed a fundamentally different approach

from prior efforts to evaluate the G protein selectivity of a large

number of GPCRs. We quantitatively determined the GEF activ-

ity of GPCRs toward G proteins using kinetic measurements with

a bioluminescence resonance energy transfer (BRET) strategy

that allows parallel comparison of unmodified Ga in real

time.15,24 This resulted in a fine-grained view of G protein
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Figure 1. Characterization of Ga-selectivity of 124 GPCRs with in cellulo biochemical assay

(A) Schematic representation of the BRET-based kinetic assay for real-time monitoring of G protein activity.

(B–D) Examples of data obtained by the BRET assay.

(E) Phylogenetic tree of human Ga subunits.

(F) The number and percentage of GPCRs used in this study.

(legend continued on next page)
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selectivity for 124 mammalian GPCRs, allowing us to classify

them according to rank order of G protein preferences. With

this information, we developed an algorithm for predicting the

G protein selectivity of GPCRs, interrogated the structural basis

of the selectivity, designed synthetic GPCRs with novel speci-

ficity, and analyzed the impact of genetic variants on GPCR-G

protein selectivity.

RESULTS

A quantitative kinetic approach to establish rank order
selectivity of G protein activation by GPCRs
To quantitatively examine the G protein selectivity of GPCRs,

we employed the BRET strategy that measures G protein activa-

tion by fast kinetic monitoring in living cells (Figure 1A). In this

assay, stoichiometric trimer formation, subcellular localization,

and equivalent expression levels of exogenous G proteins

were extensively optimized to ensure the specificity of signal

detection.15

The first key advantage of this assay is the ability to compare

the behavior of native Ga subunits by a common readout: the

release of Gbg subunits upon G protein activation. The second

critical feature lies in the direct measurement of G protein activa-

tion rates upon GPCR stimulation. From an enzymological

perspective, enhanced catalytic efficiency, due to better sub-

strate recognition, increases the reaction rate, making onset

kinetics (kON) of G protein activation a truemeasure of selectivity.

Importantly, in this assay, increasing concentrations of ago-

nists or GPCR expression levels have been shown to correlate

with activation rates,25 indicating that the G protein activation

rate observed in this assay is primarily determined by the GEF

activity of GPCRs. Moreover, we confirmed that even if the

agonist concentration (Figures S1A–S1C) or the expression level

(Figures S1D and S1E) of GPCR is different, the rank order of its

G protein selectivity evaluated kinetically remains invariable,

indicating that, as long as G proteins can be activated, agonist

concentrations and receptor expression levels do not alter the

rank order of G protein selectivity. Nevertheless, to ensure the

detection of all potential G protein activations, all GPCRs were

stimulated with saturated concentrations of endogenous ago-

nists (see Table S1 for details).

G protein selectivity profiles for 124 GPCRs
To test our strategy, we examined the G protein-coupling profile

of the promiscuous cholecystokinin 2 receptor (CCK2R)

(CCKBR) (Figure 1B). Analysis of the response amplitudes shows

that CCK2R can activate several G proteins belonging to four G

protein groups: Gai/o, Gaq, Ga15, and Ga12/13 with relatively mi-

nor differences but not Gs (Figure 1C). In contrast, analysis of

the activation rates clearly delineated the rank order of G protein

activation with Gaq coupling being the best, followed by Gai/o,
(G–J) Comprehensive analysis of G protein selectivity of GPCRs induced by satur

100%, the G protein activation rates that can be activated by each GPCR were c

and concentrations.

(K) Schematic representation of the BRET-based kinetic assay for real-time mon

(L) Coupling of TBXA2R to endogenous G12/13. A minimum of three independent

graphs and reported in Table S1.
Ga15, and Ga12/13 (Figure 1D). Thus, kinetic measurements allow

detecting substantial differences in activation of individual G pro-

teins (Figures 1B and 1D), while the amplitude-based estimates

often obscure these differences (Figures 1B and 1C).

While the assay is capable of monitoring individual behavior of

all Ga subunits,15,26 in this study, we focused on examining the

inter-class differences by selecting one representative Ga from

each of the four classes of G proteins (GaoA, Gaq, GasS, and

Ga13) and an outlier Ga15 (Figure 1E). Since Gb and Gg subunits

do not significantly affect G protein selectivity,27 Gb1 and Gg2
were chosen as a ubiquitously used model.

With these five Ga subunits, we examined G protein-coupling

profiles of 124 GPCRs across three major classes, A (94), B (15),

and C (9) as well as six synthetic GPCRs (Figures 1G–1J). Exper-

imental conditions were optimized; e.g., serotonin receptors

were assessed under serum starvation conditions, which signif-

icantly enhanced the response (Figures S1F–S1H). All experi-

mental conditions for the evaluation of individual receptors are

listed in Table S1. Our strategy was to first measure maximal

response amplitude to establish whether coupling occurs in prin-

ciple. In case statistically significant activation was detected in

comparison with control experiments without GPCR or Ga, we

determined kON to quantify the G protein selectivity of GPCRs

and established a rank order (Figures 1G–1J; Table S1).

Insights from the analysis of primary coupling of GPCRs
G protein coupling of many GPCRs has been extensively studied

in the past using a variety of methods. This knowledge has been

cataloged by two databases: the IUPHAR/BPS Guide to Phar-

macology (GtoPdb) (https://www.guidetopharmacology.org/)28

and the G protein database (Gproteindb; https://GproteinDb.

org).23 The GtoPdb inventories manually curated information

on the G protein selectivity of GPCRs, and the Gproteindb logs

information on GPCR-G protein coupling obtained from GtoPdb

and two large-scale screening efforts.23 Thus, before in-depth

analysis of the patterns we observed, we first compared our da-

taset with the information in these databases.

When overall GPCR coupling across all G protein classes was

considered, we found relatively modest agreement of our data-

set with GProteindb and GtoPdb, which did not exceed 50%

(Figure 2A). To understand the reasons for this disagreement,

we segregated the most preferred Ga substrate, designating it

as ‘‘primary’’ from the other G proteins activated by a given

GPCR, collectively binning the other G proteins as secondary

substrates (Figure 2B).

Considering only the primary coupling of GPCRs dramatically

improved agreement between datasets: 84% match compared

to GtoPdb (Figure 2A). This observation highlights that the

data we obtained accurately capture the G protein coupling

of GPCRs and further reinforces the consensus about the

main signaling modality for many GPCRs. Interestingly, most
ating concentrations of endogenous agonists. By taking the fastest reaction as

ompared. All agonists used in this study are listed in Table S1 with their names

itoring of RhoA activity.

experiments were performed. The mean and SEM values are shown in the bar
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disagreements in the primary coupling were with GPCRs that

promiscuously couple to several G proteins (Table S1).

Our analysis of primary coupling preferences revealed several

interesting patterns of GPCR selectivity (Figures 2C, 2D, S2A,

and S2B). For instance, we found that the majority of class A

receptors preferred Gai/o, although they also exhibited the great-

est G protein coupling diversity (Figure 2C). Class B receptors

were the most homogeneous, being represented exclusively

by Gas-coupled receptors. Class C receptors were predomi-

nantly Gi/o coupled but also contained a minor fraction of

Gaq-coupled receptors.

Unexpected primary couplings of GPCRs
Mining our dataset revealed several notable observations not

documented before. First, we found the receptor that primarily

couples to Ga12/13. While many receptors (22%) can couple to

Ga13, only the thromboxane receptor (TBXA2R) showed a

preference for it as a primary substrate, making it the only

Ga12/13-coupled receptor currently known. This observation

was confirmed with a BRET-based RhoA sensor as a readout

to G12/13 coupling of TBXA2R (Figure 1L).

Second, we found a group of receptors primarily coupled to

Ga15, which was not previously known to exist. These are repre-

sented by adenosine A2B (ADORA2B) and A3 (ADORA3) recep-

tors, previously classified as Gas- and Gai/o-coupled receptors,

respectively. Because of unexpected G protein selectivity, we

confirmed their G15 coupling by expressing PTX and by treating

cells with YM-25489029 (Figures S1I–S1M). Melanocortin 3

(MC3R) and 5 (MC5R) receptors also couple primarily to Ga15,

although they also show comparable activity on Gas. These

G15 couplings were further confirmed by a-MSH-induced

intracellular Ca2+ elevation in the presence of YM-254890 and

pertussis toxin (PTX) (Figures S1N and S1O).

Interestingly, with the exception of MC5R, these receptors do

not couple to Gaq despite the homology of Ga15 to Gaq proteins

(Figure 1G; Table S1). Furthermore, the majority of GPCRs that

can couple to Ga15 did not activate Gaq (Figure 1G; Table S1).

These observations indicate that Ga15 has distinct GPCR recog-

nition principles and, given its unique biology,30,31 needs to be

treated separately.

Third, our analysis significantly revises the G protein selectivity

of synthetic receptors designed for chemogenetic manipulations

(Figure 1J; Table S1). We have confirmed that hM4R(Gi) and

hM3D(Gq) indeed primarily couple to Gai/o and Gaq, as de-

signed. However, the rM3D(Gs), which was designed to activate

Gs, had weak but reliable activity on this G protein, which did not

reach the statistical significance threshold we set for positively
Figure 2. Characterization and classification of GPCRs by Ga selectiv

(A) Comparison of G protein selectivity reported in GtoPdb, GProteindb, and our

(B) The rank order of Ga selectivity by the strength of GEF activity determined fr

(C) The primary G protein coupling selectivity of GPCRs by class.

(D) Promiscuity of all class GPCRs examined.

(E) The rank order of integrated G protein coupling of all GPCRs tested. The wid

(F) Percentage of GPCRs coupled with each of the five G proteins.

(G) Secondary coupling of GPCRs by Gi/o-, Gq-, and Gs-coupled receptors. Des

(H) Schematic representation of the FRET-based cAMP assay using primary me

(I and J) mGluR5-selective agonist (1 mMCHPG)-induced cAMP dynamics in the p

The traces are the average values. The mean and SEM are shown in the bar gra
identifying coupling activity even after optimizations (FigureS1P).

Instead, rM3D(Gs) produced strong activation of Ga15, which

essentially classifies it as a Ga15-coupled receptor (Figure S1Q).

We were further unable to confirm the primary G protein selec-

tivity of G12D receptors designed to activate Ga12 exclusively.
16

We did not detect significant activation of either Ga12 or Ga13 by

any of the three versions of G12D (Figure S1R). Instead, this re-

ceptor powerfully activated only Ga15.

Thus, the classification of GPCRs according to their primary G

protein coupling obtained through the relative ranking of all

possible substrates generates significant insights filling informa-

tion gaps and correcting existing knowledge.

Rank ordering the G protein preferences of GPCRs
establishes patterns and rules of engagement
Our dataset revealed that as many as 73% of tested GPCRs can

activate multiple Ga across different classes (Figure 2D), indi-

cating that the majority of GPCRs have secondary coupling.

However, with traditional indirect methods, determining these

secondary couplings with accuracy has been a challenge, as

evident from the 27% agreement of our data with GtoPdb

(Figure 2A).

To reveal the rules in the G protein-coupling preferences of

GPCRs, we took advantage of the precise quantitative data

that our approach generates and carefully analyzed the entire

G protein couplings within our dataset (Figure 2E). In particular,

we paid special attention to the rank order between individual

Ga subfamilies coupling to a given GPCR. Overall, Gai/o was

the most common substrate coupling to the vast majority of

GPCRs, followed by Ga15 (Figure 2F), suggesting that it may

be structurally hard for the GPCRs to avoid Gai/o and Ga15
coupling. On the other hand, the activation of Gas, Gaq, and

Ga12/13 is less common. In particular, as many as 78% of

GPCRs were found not to be coupled to Ga12/13, suggesting

specific constraints for the activation of these G proteins.

Interestingly, the rank order of the secondary couplings also

followed a specific pattern (Figure 2G). Ga15 was the second-

best universal substrate for Gai/o-, Gaq-, and Gas-coupled

receptors. For the receptors that primarily couple to Gai/o, sec-

ondary coupling dropped precipitously from Ga15 to �6% for

Gaq and Ga12/13. Strikingly, Gai/o-coupled receptors never acti-

vated Gas, at least in the repertoire of GPCRs we have studied,

suggesting that there is a mechanism that excludes Gas from

being activated by Gai/o-coupled receptors. Gaq-coupled

receptors were markedly more promiscuous: nearly 80% of

them readily activated Ga15 and Gai/o, and many coupled to

Ga12/13 and a few to Gas. A similar pattern was observed for
ity and promiscuity

study.

om the G protein activation rates.

th of the lines and nodes indicates the number of couplings.

igner GPCRs were excluded from the analysis in this figure (A and C–G).

dium spiny neurons cultured from cAMP Encoder Reporter (CAMPER) mice.59

resence or absence of PTX (I) (n = 6 neurons) or 10 mMMTEP (J) (n = 6 neurons).

phs.
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Figure 3. Unsupervised machine learning of predicting G protein coupling

(A) Conceptual representation of the machine learning task. For training and constructing predictors based on amplitude and activation rate, we used the G

protein selectivity, amino acid sequences of 50 orthologs, and structural models of 94 class A GPCRs examined in this study.

(legend continued on next page)
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Gas-coupled receptors with robust coupling to Ga15 followed by

Gai/o, Ga12/13, and Gaq.

Careful quantitative binning also allowed us to obtain several

significant insights into the relationships between primary and

secondary couplings while revising several dogmas (Figure 2G).

First, we found that the coupling of GPCRs to both Gaq and Gas
is disfavored. Only 7% of the Gaq-coupled receptors activated

Gas. Conversely, only 21% of the Gas-coupled receptors could

activate Gaq. Therefore, there seems to be a mechanism that

prevents Gaq and Gas from being activated by the same recep-

tors. Second, we found that Gas and Gaq play a major role in the

primary coupling, whereas Ga15 and Ga12/13 are mainly involved

in secondary coupling (Figure 2E). In addition, Gai/o appears to

contribute equally to both primary and secondary coupling.

Reclassification of group I mGluRs
Analyzing the rank order of G protein selectivity revealed an un-

expected result. We noted a strong preference for Gai/o in the

majority of class C GPCRs (Figure 2C). In particular, metabo-

tropic glutamate receptor 5 (mGluR5) (GRM5), which is historical-

ly classified as a Gaq-coupled receptor, showed the strongest

activity on Gao, making it essentially a Gai/o-coupled receptor

with secondary coupling to Gaq and Ga15 (Figure 1I). Further-

more, we also detected a very strong Gai/o activity on mGluR1,

which was comparable to Gaq, although this receptor still acti-

vated Gaq statistically better than Gao (Figure 1I).

Because Gi/o coupling of group I mGluRs is not generally

considered in the biological context, we next confirmed its phys-

iological relevance in native neurons (Figure 2H). Using cultured

striatal neurons that endogenously express mGluR5,32,33 we

indeed observed that stimulation of mGluR5 with a specific

agonist (CHPG) inhibits cAMP production in a PTX-sensitive

manner (Figure 2I), and this effect can be inhibited by a

mGluR5-specific antagonist (MTEP) (Figure 2J). These results

demonstrate that mGluR5 indeed couples to Gai/o to propagate

cellular response in the endogenous system. We further

confirmed the Gi/o coupling of mGluR5 with an orthogonal assay

(Figures S2C and S2D).

GPCR classification based on rank order of G protein
preferences
On the basis of our findings, we propose a taxonomy for the clas-

sification of GPCRs that takes into consideration not only pri-

mary and secondary but also the rank order of G protein prefer-

ences. Given the unique coupling property of Ga15 observed in

this study, we propose to treat it separately for functional classi-

fication. Accordingly, GPCRs are classified based on the rank or-

der of preferences for Ga subunits across five groups: Gai/o,

Gaq, Ga15, Gas, and Ga12/13. For example, ETBR can be classi-

fied as a Gai/o>Gaq,Ga12/13>Ga15-coupled receptor, separating

significant differences by ‘‘>’’ and insignificant ones by commas.

Therefore, our quantitative kinetic measurements have revealed
(B) The framework of 10-fold cross-validation to develop machine learning mode

(C and D) ROC AUC values for the amplitude (C) and activation (D) predictors pe

(E) Deep learning model predictions of G protein selectivity of Drosophila GPCRs

(F and G) Experimental data of G protein coupling of the Drosophila GPCRs.

(H) Comparison of prediction and actual results. Three independent experiments
many previously undiscovered rules and patterns governing the

G protein selectivity of GPCRs and have formed a basis for the

functional classification of GPCRs.

Machine learning predicts G protein preferences of
GPCRs
Encouraged by quantitative kinetic information that discrimi-

nates ranking of G protein preferences for over a hundred

GPCRs, we developed a set of machine learning-based predic-

tors of class A GPCR-G protein couplings. We approached this

by splitting the task into two binary classification problems: pre-

dicting whether a GPCR is coupled in principle to a G protein

(amplitude >0%) and whether coupling leads to fast activation

(activation rate >30%) (Figure 3A). Amplitude-based predictors

cover entire coupling profiles, while activation-rate-based pre-

dictors narrow down to their preferential G proteins.

We focused specifically on class A GPCRs and their amino

acid residues in the interface with the Ga subunit, according

to the D1R/Gs complex (PDB: 7jvq) as a reference structure.

We first aligned structural models of 94 class A GPCRs, which

were functionally examined in this study, to the D1R model and

mapped corresponding residues to the reference. In order to

increase the power of the relatively limited training dataset,

we included up to 50 ortholog sequences for each of the

GPCRs, assuming the evolutionary conservation of sequences

involved in determining G protein selectivity. We further de-

ployed a sequence ‘‘embedding’’ protocol34,35 that uses unsu-

pervised deep learning models to describe the properties of

each residue in its unique environment and used a series of

neural networks as binary classifiers to extrapolate this infor-

mation on query interfaces.

To evaluate the performance of our predictors, we performed

10-fold cross-validation (Figure 3B) and obtained the area under

the receiver operating characteristic curve (ROC AUC)

(Figures 3C, 3D, and S3), which measures the performance of

a binary classifier. For the metric, a value of 0.5 represents a

random classifier, while a value of 1.0 reflects a perfect classifier.

For amplitude prediction, our method achieves a micro-aver-

aged ROC AUC of 0.85 and for activation rate, a micro-averaged

ROC AUC of 0.85 (Figure S3A), indicating the high performance

of our two predictors.

EvaluatingeachGproteinclassseparately (Figures3C,3D,S3B,

andS3C),we found that for both amplitude and activation rate, the

prediction was the best for the Gs class (ROC AUCs of 0.89 and

0.95, respectively) followed by Gaq and Gai/o with ROC AUCs

0.81 and 0.76, respectively, for amplitude prediction and 0.71

and 0.88 for activation rate prediction. In contrast, we observed

no significant learning in either amplitude or activation rate for

the Ga12/13 or Ga15 classes. These results suggest the existence

of clearly discernable rules that govern the selectivity of GPCRs

coupling to Gai/o, Gaq, and Gas based on our characterization of

kinetic properties of class A GPCRs.
ls to predict the G protein selectivity of class A GPCRs.

r G protein.

.

were performed, and the mean and SEM values are provided in Table S1.
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Finally, to confirm the accuracy of our prediction algorithm, we

predicted the G protein selectivity of acetylcholine, dopamine,

and serotonin receptors from Drosophila and performed experi-

ments in parallel (Figures 3E–3H). Since ROC AUC was better

when predicted by amplitude (Figures 3C and 3D), the predictor

established by amplitude was used. As a result, the prediction of

G15 coupling, which had the lowest ROC AUC, failed in three

cases (Figure 3H). The prediction and experimental results

differed for Dop1R1 and 5HT2A for secondaryGo coupling. How-

ever, the prediction was successful, with a probability of 87.5%,

arguing that even evolutionarily distant GPCRs can be predicted.

Deciphering structural determinants of Ga selectivity of
class A GPCRs
Our experimental analysis of the G protein-coupling patterns of

GPCRs and the successful in silico prediction of GPCR-Gprotein

selectivities prompted the investigation of the structural under-

pinnings underlying the selectivity. To tackle this unsolved

crucial issue, we took advantage of many available structures

of GPCR/G protein complexes36,37 and analyzed all 33 struc-

tures of class A receptors available while conducting this

research (Table S2). We did not include class B and C GPCRs

for their differences in residue-residue networks involved in the

GPCR activation38 and distinct Ga-binding mechanisms.39–42

We hypothesized that Ga selectivity is predominantly deter-

mined by the Ga-binding surface of GPCRs. To test this, we first

identified the amino acid residues within 5 Å from each other at

the GPCR-Ga interaction interface (Figure 4A; Table S2). The

amino acid residues found in this analysis encompassed all

structural elements of GPCR facing cytoplasm, including seven

transmembrane helices (TM), three intracellular loops (ICL),

and C-terminal a-helix 8 (H8) containing 106 individual amino

acid positions in GPCR (Figure 4B) and 74 amino acid positions

inGa (Figure S4). These residueswere differentially distributed to

accommodate differences in the Ga-binding surface across

GPCRs, which varied from 811 to 1565 Å depending on the

structure and the identity of Ga bound (Figure 4C). These

differences in the size of the Ga-binding pocket were largely

driven by the smaller number of amino acids in TM5 and ICL3

in Gai/o-coupled receptors (Figure 4D), possibly contributing to

Ga selectivity of these receptors.

In order to probe the contributions of these elements to G

protein selectivity, we scrutinized the residue-residue net-

works between GPCRs and Ga (Figures 4E–4I). We relied on

the common Ga numbering system in GProteindb (Figure S4)43

and the common GPCR numbering system44 for residue

attributions while modifying the numbering of the three intra-
Figure 4. Ga-binding mechanism of class A GPCRs

(A) Identification of the residue-residue contacts underling GPCR-G protein inter

(B) The amino acids that bind Ga in the TMs and ICLs (Ga-binding residues) are

(C) The area of interface involved in binding of GPCR and Ga.

(D) The presence and absence of amino acid residues in the Ga-binding residue

(E–I) The interaction networks between structural elements in GPCR and Ga: all c

subunits (F), and specific for Gi/o (G), Gq (H), and Gs interaction (I). The width of the

total number of residue-residue contacts for each structural element.

(J and K) The interaction networks of Gi/o-coupled GPCRs that couple with only

(L and M) The interaction networks of Gs-coupled GPCRs without (L) or with (M)

(N) Relationship between Ga selectivity and amino acid sequence of Ga-binding
cellular loops of GPCRs (Table S3). Using these numbering

systems, we built and integrated an interaction network map

of all GPCRs-Ga contacts (Figure 4E). This analysis indicates

that all the structural elements of GPCR facing the cytoplasm

are used for binding to Ga, although the degree of involve-

ment is different. Conversely, the Ga proteins also rely on as

many as 13 structural elements for GPCR binding, with the

C-terminal a-helix 5 (H5) responsible for approximately half

of the interactions.

From this integrated map, we next extracted a network com-

mon across all GPCRs and G proteins (Figure 4F) as well as net-

works that are specific to individual Ga types (Figures 4G–4I).

Interestingly, for common interactions with the Ga, GPCRs

utilized ICL2 and H8, as well as TM domains other than TM1

and TM4 (Figure 4F). All of these structural elements except

ICL2 are bound mainly to H5, but ICL2 much broadly interacted

with hns1, S1, and S3 as well as to H5 in Ga. In contrast, the con-

tacts with individual Ga types showed a wider range of elements

engaged on both GPCRs and Ga sides (Figures 4G–4I). Interest-

ingly, interactions with Gai/o and Gaq followed the same pattern,

with the major difference being that GPCRs heavily used TM6 for

Gi/o interaction but not for the interaction with Gaq. Interestingly,

coupling to Gas involved a more complex mechanism. A unique

feature of Gas coupling is a significantly higher reliance on TM3

and TM5 amid the scarce contribution of ICL2 and ICL3 of

GPCRs for interaction. The most distinctive feature of GPCR-

Gas interaction is the binding of Gas to TM5 and ICL3 of

GPCRs through a long hgh4 loop that is not found in other Ga.

These observations suggest that multiple structural elements

are differentially engaged in determining the selectivity of

GPCR-Ga recognition.

In order to determine how identified elements shape the sec-

ondary G protein coupling selectivity, we further considered

the rank order of G protein selectivity. First, we compared the

residue-residue networks for Gai/o-coupled receptors that can

or cannot couple to Ga15 (Figures 4J and 4K). The receptors

with the ability to couple to Ga15 abrogated contacts between

ICL3 and H4, weakened ICL2-H5 interaction, and strengthened

TM4-HN and ICL2-s2s3 contacts. Remodeling of ICL2 interac-

tions is perhaps themost prominent determinant defining the dif-

ference between these two types of GPCRs.

Similar remodeling of the interaction network was also evident

for Gs-coupled receptors that allow or do not allow additional

Gai/o coupling (Figures 4L and 4M). Here, marked differences

in the involvement of ICL1 and TM5 were notable. Although

more structures need to be elucidated for a more detailed anal-

ysis on the secondary coupling, these analyses strongly suggest
action.

indicated by red.

s in class A GPCRs.

lass A GPCRs (E), common to all interactions between class A GPCRs and Ga

lines indicates the number of non-covalent contacts. The nodes represent the

Gi/o (J) or both Gi/o and G15 (K).

Gi/o coupling.

residues.
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that the mode of primary coupling is significantly influenced by

their secondary coupling.

To see whether different GPCRs utilize the same set of amino

acids in their Ga-binding regions to discriminate between

various Ga, we conducted a phylogenetic analysis of the Ga

binding residues from all class A GPCRs functionally examined

in this study (Figure 4N). The resultant phylogenic tree revealed

that individual receptors clustered together based on their type

of ligand to be bound rather than the similarity of their G protein

coupling profiles. This result suggests that the selectivity deter-

minants for G proteins in GPCRsmay have convergently evolved

independently from the elements necessary for ligand binding

and the structural changes associated with activation.45 As

such, we concluded that the Ga selectivity of GPCRs depends

on the similar three-dimensional structures created by different

arrangements of amino acid sequences.

Engineering GPCRs to alter their G protein selectivity
Identification of the determinants in theGPCRs involved in selec-

tive Ga recognition prompted us to address their sufficiency in

dictating the G protein coupling properties of GPCRs. Since

amino acids of GPCRs involved in Ga selectivity are widely

distributed with limited coordination of their positions, we adop-

ted a swapping transplantation approach where the three loops

were included as part of the ‘‘Ga-binding surface’’ (Figure 5A).

For the initial experiments, we chose muscarinic acetylcholine

receptors ((M3R) (CHRM3) and (M4R) (CHRM4)). According to

our analysis, M3R is a Gaq>Ga15>Gai/o-coupled receptor (Fig-

ure 5B), whereas M4R is a Gai/o>Ga15-coupled GPCR (Fig-

ure 5C). Transplanting the Ga-binding surface from M4R onto

M3R resulted in the perfect conversion of the G protein-coupling

profile of M3R to that of M4R (Figure 5D). Conversely, replacing

the Ga-binding site of M4R with that of M3R also transformed

its coupling profile to Gaq>Ga15>Gao, a nearly identical pattern

seen for parental M3R (Figure 5E).

In the next set of experiments, we chose less related GPCRs

by increasing the evolutionary distance between the pair. For

this, we used the human D2 dopamine receptor (D2R) (DRD2),

which is strictly Gai/o selective (Figure 5F), and the Drosophila

dopamine receptor (DAMB) (Dop1R2), which has an unusually

ubiquitous profile Gaq>Ga15>Gas,Gao (Figure 5G).46 Strikingly,

replacing the Ga-binding surface in D2R for that from DAMB

converted its primary selectivity to the intended Gaq>Ga15 (Fig-

ure 5H). However, the chimeric receptor was unable to couple to

either Gas or Gao, presumably because of its low expression

level, which is evident from the slow activation rates from Gaq
and Ga15. Thus, we conclude that major G protein selectivity

determinants of GPCRs are indeed contained within the Ga-

binding surface that we defined based on our structural analysis,

even in evolutionarily distant GPCRs.
Figure 5. Experimental validation of GPCR-Ga selectivity determinants

(A) The Ga-binding surface and the strategy of making chimeras.

(B–E) The G protein-coupling profiles of wild-type M3R and M4R, and M3/4R and

surface of M4R into the backbone of M3R, while M4/3R is the opposite.

(F–H) G protein-coupling profiles of wild-type D2R and DAMB and D2R/DAMB ch

activation rate constants were plotted as bar graphs (B–H). A minimum of three in

the bar graphs. N.D., not determined.
Natural genetic variants in the Ga-binding residues
impact the Ga selectivity of GPCRs
Knowing the functionally important sites of a protein at the amino

acid level has direct implications for predicting the impact of

mutations on protein function. Recently, there has been an

explosion of genomic information identifying many missense

variations (MVs) in GPCRs associated with diseases7 and non-

disease traits.47 However, the functional implications of these

polymorphisms are far from being completely understood.

Leveraging our analysis of structural determinants underlying

G protein selectivity of GPCRs, we first surveyed natural

genomic variations in the human population. For 284 non-olfac-

tory class A GPCRs in the genome aggregation database (gno-

mAD) from 141,456 human subjects,48 we found 13,422 unique

MVs with a mean of 50 rare (frequency <2%) and 0.1 common

(frequency >2%) variants per GPCR (Figures 6A and S5A;

Table S4). Remarkably, every position except 4.34 and 5.83 con-

tained at least one MV (Figure S5B). Considering the number of

cohorts and the number of unique mutations together with the

frequency of mutations, 99.88% of people have some mutations

in their Ga-binding residue (Figure S5C), indicating the impor-

tance of characterizing their impact on function.

We next looked at individual GPCRs and determined the num-

ber of different mutations (Figure 6B), the number of sites where

the mutations were introduced (Figure 6C), and the densities of

mutations (Figure 6D). The highest number of missense mutants

were observed in the a2B adrenergic receptor (a2BAR) (ADRA2B)

(Figure 6B), suggesting that this receptor is actively undergoing

changes in its G protein recognition properties. The b3-adren-

ergic receptor (ADRB3) and vasopressin 1A receptor (AVPR1A)

were also themost widelymutated (Figure 6C), whichmay reflect

greater heterogeneity in their Ga selectivity. The highest

mutation burden was found in P2Y purinoceptor 11 (P2RY11)

(Figure 6D), in which �70% of the Ga-binding residues were

polymorphic. On the other side of the spectrum, we found

several receptors with very low mutation incidence, including

P2Y purinoceptor 10 (P2Y10) (P2RY10), chemokine receptor

CXCR3 (CXCR3), chemokine receptor CXCR4 (CXCR4), G pro-

tein-coupled receptor 183 (GPR183), and G protein-coupled

receptor 34 (GPR34) (Figures 6B–6D).

The identification of a large number of mutations in the

Ga-binding residues of GPCRs begs the question about their

functional relevance. Applying Z score analysis to determine

the frequency of MVs variation for each position (Figure 6E) re-

vealed that two positions, 8.50 and 7.53, were clear outliers (Fig-

ure S5E) with the lowest scores suggesting the conservation of

these amino acid residues making their alterations incompatible

with general functional activities of GPCRs.

Unexpectedly, we found many mutations in conserved posi-

tions well known for their functional importance. For example,
M4/3R chimera. M3/4R is the chimera with a transplantation of the Ga-binding

imera. The Ga-binding surface of DAMB was transplanted into D2R. G protein

dependent experiments were performed, and the mean and SEM are shown in
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positions 3.50 and 8.51 had a large number of mutations.

The arginine residue in the 3.50 position is particularly well

conserved among GPCRs and is a part of the functionally impor-

tant DRY motif that directly binds to the C terminus of Ga

(Table S2).49 The MVs in this residue are heterozygous and

rare with <1% minor allele frequency.

To test implications of the variations, we performed functional

analysis of missense mutants found in 3.50 in several GPCRs:

D5R (DRD5), V2R (AVPR2), H1R (HRH1), OX1R (HCRTR1), NK2R

(TACR2), NK3R (TACR3), CCK2R (CCKBR), and B2R (BDKRB2).

As expected, mutating this residue was not tolerated, with a

vast majority of receptors completely losing their function

(Figures S6A–S6E). However, variants in three receptors retained

a readily measurable activity (Figures 6F–6H) and showed sub-

stantial alteration in the rank order of G proteins coupling spec-

ificity. Thus, 3.50 residue, in addition to being important for the

interactions with Ga in general, also specifies their selectivity.

To understand the broader implications of non-synonymous

variants across different positions in GPCRs, we studied the

CCK1R receptor, which can activate nearly all types of G pro-

teins.47 A total of 57 missense mutations were found within the

Ga-binding residues in CCK1R, and 21 of those were functionally

tested (Figures 6I–6K, S6F, and S6G). All mutants affected the

coupling to at least one of the five G proteins we tested (Fig-

ure 6K). Three of these mutants, in particular, were found to

affect their primary coupling (Figure S6G). In some cases, exem-

plified by the R139I mutant, the preference of the receptor for

Gaq vanished, and it activated its secondary substrate Gai/o
equally well. In other cases, e.g., A142V and S301F mutants,

the selectivity was reversed for the receptors to prefer Gai/o as

a primary substrate. Overall, these results suggest that most

amino acid alterations in Ga-binding residues of GPCRs alter

their Ga selectivity with likely physiological implications.

DISCUSSION

Identifying which G proteins are activated by GPCRs is essential

for understanding their physiological functions.12,50 In this study,

we define G protein coupling profiles of over a hundred of non-

sensory GPCRs across three main classes. We observed that

themajority of GPCRs that we studied coupled tomultiple G pro-

tein subfamilies with varying efficiency and kinetics. Thus,

GPCRs are endowed with the capacity to initiate waves of

multimodal signals. We think that this coupling diversity is the

essential property of GPCRs, allowing them to control a broad

range of physiological functions underpinning their evolutionary

success. Thus, the currently used functional classification of
Figure 6. Impact of natural genetic variations on Ga selectivity

(A) The number of unique MVs in Ga-binding residues.

(B–D) The ranking of the number of distinct MVs in the Ga-binding residues. (C) Th

(D) The density of MVs in the Ga-binding residues. The density of MVs as calcu

Ga-binding residues of each GPCR.

(E) Z score of MVs. The regions (notated in light blue) with fewer than 19 GPCRs

(F–H) Characterization of the 3.50 mutants of CCK2R, H1R, and NK3R.

(I and J) The response of wild-type CCK1R to 1 mM CCK-8. Time course (I) and a

(K) Impact of mutations on activation rates. A minimum of three independent expe

The traces are the average values from three independent experiments.
GPCR according to their primary G protein coupling may inade-

quately describe their actions. Instead, we propose a more

fine-grained, rank-order-based GPCR classification based on

quantitative analysis of their temporal G protein coupling diver-

sity to capture their physiological functions better.

Non-invasive approach to unveiling G protein coupling
selectivity of GPCRs
Understanding the G protein coupling selectivity of GPCRs has

beenamajor goal in the field since their discovery.12 Traditionally,

these investigations have relied on downstream signaling path-

ways as readouts,51,52 which complicates the interpretations

due to the inability to distinguish between individual G proteins

with similar activities, signaling crosstalk, and the need to employ

multiple experimental systems with different sensitivities.

The advent of biosensors circumvented this issue and pro-

vided the opportunity to monitor signaling events directly.53–55

However, these approaches are faced with limitations that

stem from the need to modify Ga and/or GPCRs. In contrast,

our study employs a completely different strategy for monitoring

G protein activation by GPCRs that does not require any modifi-

cation of GPCRs and Ga whose interaction is being studied. We

monitor the interaction of the Gbg and effector molecules, which

is a common denominator in the activation of all G proteins. This

approach allows straightforward comparison and quantification

of relative Ga engagement by a given GPCR in a single platform.

Deciphering the rules and patterns of GPCR-G protein
coupling: Insights into selectivity and functional
diversity
Our analysis of G protein selectivities of GPCRs revealed previ-

ously unknown patterns offering significant insights into possible

rules that govern GPCR-G protein recognition. Overall, we found

thevastmajorityofGPCRs (�73%) tobepromiscuous, suggesting

the physiological importance ofmulti-G protein coupling acrossG

protein subfamilies. The degree of promiscuity varied across

groups of GPCRs. For instance, more than half of the GPCRs

with primary Gai/o coupling only couple to Gai/o, and none of

them activated all five G proteins. On the other hand, about 90%

of the Gaq- and Gas-coupled receptors were found to be promis-

cuous.Theseobservationsareconsistentwith the largersizeof the

Ga-binding pocket in Gas- and Gaq-coupled receptors. Thus, the

degreeofpromiscuitymaybedetermined, at least inpart, bystruc-

tural constraints to accommodate specific types of Ga.

Interestingly, the secondary coupling of GPCRs follows certain

patterns. While GPCRs mainly use Gas and Gaq as primary

couplingpartners,Gai/o isengagedasbothprimaryandsecondary
e ranking of the number of positions containingMVs in the Ga-binding residues.

lated by the number of MVs divided by the number of amino acid residues in

were not used in the calculation of the Z score.

ctivation rates (J) of CCK1R-induced G protein activation are shown.

riments were performed, and the mean and SEM are shown in the bar graphs.
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partners, suggesting the importanceofGai/o signaling notonlyasa

primary modality but also as a modifier of Gaq- and Gas-coupled

receptors. We have also revealed the existence of receptors that

are primarily coupled to Ga12/13 and Ga15. These examples are,

however, exceedingly rare, as most GPCRs use Ga12/13 or Ga15
as secondary coupling partners, suggesting that the cellular

signaling logic dictates that these G proteins may need to work

in concert with other G proteins. Nevertheless, we find GPCRs

that do not couple to Ga15, indicating that there are situations

where activating this G protein needs to be avoided. Although

there are notable exceptions, another rather common pattern is

mutual exclusivity in the activation of Gaq and Gas.

Despite generalization of patterns gleaned from the behavior

of many GPCRs, there are also outliers that break these rules,

suggesting that any G protein coupling combinations are

possible in principle.

Implications from machine-learning-based predictions
Despite the complexity in observed patterns of G protein selec-

tivity and high promiscuity of GPCRs, we were able to develop a

machine learning algorithm that could predict the G protein

preferences of GPCRs. Its success rate was the highest for

Gas-coupled receptors with moderate success for Gq- and

Gi/o-coupled receptors. However, it showed poor performance

in predicting Ga12/13 andGa15 coupling.While its limited success

with Ga12/13 could be explained by the small number of exam-

ples of GPCRs activating these G proteins in our dataset, poor

performance on Ga15 despite the ample amount of Ga15 activa-

tion by GPCRs suggests that there is no conserved mechanism

for GPCR-Ga15 coupling. The latter might be the explanation for

the ubiquitous Ga15 coupling to many GPCRs.30 The absence of

a rule also appears to involve the Ga15 coupling of all of the

designer GPCRs, suggesting the difficulty of avoiding Ga15
coupling by artificially designed GPCRs.

Integrating structural analysis for functional
manipulation of GPCRs
Our analysis yielded significant insights regarding the GPCR-G

protein coupling mechanism, revealing a higher level of

complexity than previously believed. Contrary to the notion

that simple determinants of G protein selectivity exist,56 our

study revealed intricate interconnections between various

structural elements of GPCRs and Ga subunits. Despite exten-

sive experimental investigations with chimeric GPCRs57 and

comprehensive big data analyses,45,58 no definitive rules gov-

erning G protein selectivity have been identified, impeding our

ability to manipulate it.

Our study demonstrates that G protein selectivity can be

modified by altering GPCR sequences based on theoretical pre-

dictions derived from structural analysis. By exchanging the G

protein-binding surface, we are able to alter not only primary

but also secondary coupling of G proteins. The identification of

the selectivity determinants was made possible by combining

comprehensive structural analysis of all GPCR/G protein com-

plexes with an exhaustive functional dataset acquired using

the principles developed in this work. This contrasts with a tradi-

tional sequence homology-based approach45 or analyzing the

structures of individual complexes36 attempted before.
14 Cell Reports 42, 113173, October 31, 2023
The goal of earlier studies has been to identify the minimum

unit involved in dictating the G protein selectivity. However, at-

tempts to alter the selectivity by designing chimeric GPCRs

swapping limited sequence elements have not yielded satisfying

outcomes.56 Our study provides an explanation for this difficulty

by showing that structural elements involved in discriminating G

proteins are distributed even broader than appreciated before.45

Thus, leveraging advances in structural analysis and the func-

tional evaluation strategies employed in our study now allows

obtaining further insights into the intricacies of GPCR-G protein

selectivity. This knowledge can be utilized for protein engineer-

ing, enabling design of GPCRs with new functionalities, as well

as for understanding how natural genetic variations may under-

pin signaling deficiencies.

Limitations of the study
Our experimental systemmeasures the most upstream signaling

event that is likely minimally affected by variations in cell types.

However, the reported data may not exhaustively capture all

possible couplingmodalities that could be realized in specialized

native cells, a limitation common to all studies using reconsti-

tuted systems.

This study examined the rank order of G protein coupling

selectivity of GPCRs by selecting five representative G proteins.

However, the human genome encodes 16 Ga subunits with

distinct biochemical properties. Subsequent studies could

extend our findings by expanding all 16 Ga members.

The physiological significance of the promiscuous G protein

coupling profiles that we observe for many GPCRs remains un-

defined. Nevertheless, the discovery of previously unknown

rank orders of G protein selectivity reported in this manuscript

is expected to make a significant contribution to future research

in elucidating the physiological functions of GPCRs and in drug

discovery.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Dulbecco’s modified Eagle’s medium Thermo Fisher Scientific 11965–092

Fetal bovine serum Genesee Scientific 25–550

Sodium pyruvate Thermo Fisher Scientific 11360–070

MEM non-essential amino acids Thermo Fisher Scientific 11140–050

Penicillin-streptomycin Thermo Fisher Scientific 15140–122

Matrigel Corning 356230

Lipofectamine LTX and Plus reagent Thermo Fisher Scientific 15338–100

Dulbecco’s phosphate-buffered saline MilliporeSigma D5652

Neurobasal-A Medium Thermo Fisher Scientific 10888–022

GlutaMAX Thermo Fisher Scientific 35050–061

B-27 Supplement Thermo Fisher Scientific 17504–044

DNAse I Thermo Fisher Scientific 18047019

Poly-D-lysine hydrobromide MilliporeSigma P6407

Papain Worthington Biochemical LS003126

Critical commercial assays

Nano-Glo Luciferase Assay Substrate (furimazine) Promega N1120

Experimental models: Cell lines

HEK293T/17 ATCC CRL-11268

Recombinant DNA

GPR52 cDNA Resource Center GPR0520000

HTR1A cDNA Resource Center HTR01A0000

HTR1B cDNA Resource Center HTR01BTN00

HTR1D cDNA Resource Center HTR01D0000

HTR1E cDNA Resource Center HTR01E0000

HTR1F cDNA Resource Center HTR01F0000

HTR2A cDNA Resource Center HTR02A0001

HTR2B cDNA Resource Center HTR02B0000

HTR2C cDNA Resource Center HTR02C0000

HTR4 cDNA Resource Center HTR040000B

HTR5A cDNA Resource Center HTR05A0000

HTR6 cDNA Resource Center HTR0600000

HTR7 cDNA Resource Center HTR07A0000

HTR7 cDNA Resource Center HTR07B0000

CHRM1 cDNA Resource Center MAR0100000

CHRM2 cDNA Resource Center MAR0200000

CHRM3 cDNA Resource Center MAR0300000

CHRM4 cDNA Resource Center MAR0400000

CHRM5 cDNA Resource Center MAR0500000

ADRA1A cDNA Resource Center AR0A1A0001

ADRA1B cDNA Resource Center AR0A1B0000

ADRA1D This study N/A

ADRA2A cDNA Resource Center AR0A2A0000

ADRA2B cDNA Resource Center AR0A2B0000

ADRA2C cDNA Resource Center AR0A2C0000

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

ADRB1 This study N/A

ADRB2 cDNA Resource Center AR0B200000

ADRB3 cDNA Resource Center AR0B300000

DRD1 cDNA Resource Center DRD0100000

DRD2 cDNA Resource Center DRD0200001

DRD3 cDNA Resource Center DRD03A0000

DRD4 cDNA Resource Center DRD0400000

DRD5 cDNA Resource Center DRD0500000

HRH1 cDNA Resource Center HRH0100000

HRH2 cDNA Resource Center HRH0200000

HRH3 cDNA Resource Center HRH0300000

MTNR1A cDNA Resource Center MTNR1A0000

MTNR1B cDNA Resource Center MTNR1B0000

ADORA1 cDNA Resource Center ADRA100000

ADORA2A cDNA Resource Center ADRA2A0000

ADORA2B cDNA Resource Center ADRA2B0000

ADORA3 cDNA Resource Center ADRA300000

GALR1 cDNA Resource Center GALR100000

GALR2 cDNA Resource Center GALR200000

GALR3 cDNA Resource Center GALR300000

OPRM1 cDNA Resource Center OPRM100000

OPRD1 cDNA Resource Center OPRD100000

OPRK1 cDNA Resource Center OPRK100000

OPRL1 cDNA Resource Center OPRL100000

EDNRA cDNA Resource Center EDNRA00000

EDNRB cDNA Resource Center EDNRB00000

GRPR cDNA Resource Center GRPR000000

BRS3 cDNA Resource Center BRS0300000

APLNR cDNA Resource Center AGTL100000

AVPR1A cDNA Resource Center AVR01A0000

AVPR1B cDNA Resource Center AVR01B0000

AVPR2 cDNA Resource Center AVR0200000

BDKRB2 cDNA Resource Center BDKB200000

MC1R cDNA Resource Center MCR0100000

MC3R cDNA Resource Center MCR0300000

MC4R cDNA Resource Center MCR0400000

MC5R cDNA Resource Center MCR0500000

NPY1R cDNA Resource Center NPYR100000

NPY2R cDNA Resource Center NPYR200000

NPY4R cDNA Resource Center NPYR400000

NPY5R cDNA Resource Center NPYR500000

TACR1 cDNA Resource Center TACR100000

TACR2 cDNA Resource Center TACR200000

TACR3 cDNA Resource Center TACR300000

NTSR1 cDNA Resource Center NTSR100000

HCRTR1 cDNA Resource Center HCR0100000

HCRTR2 This study N/A

OXTR cDNA Resource Center OXTR000000

CCKAR cDNA Resource Center CCKAR00000

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CCKBR cDNA Resource Center CCKBR00000

NPFFR1 cDNA Resource Center NPFFR10000

SSTR1 cDNA Resource Center SSTR100000

SSTR2 cDNA Resource Center SSTR200000

SSTR3 cDNA Resource Center SSTR300000

SSTR4 cDNA Resource Center SSTR400000

SSTR5 cDNA Resource Center SSTR500000

KISS1R cDNA Resource Center KISS1R0000

CXCR4 cDNA Resource Center CXCR400000

PTGER1 cDNA Resource Center PER0100000

PTGER2 cDNA Resource Center PER0200000

PTGER3 This study N/A

PTGER4 cDNA Resource Center PER0400000

PTGDR cDNA Resource Center PTGDR00000

PTGDR2 cDNA Resource Center CRTH200000

TBXA2R cDNA Resource Center TXA2R00000

CNR1 cDNA Resource Center CNR0100001

GPBAR1 This study N/A

SUCNR1 cDNA Resource Center SUCNR10000

OXGR1 cDNA Resource Center OXGR100000

GCGR cDNA Resource Center GCGR000000

GIPR This study N/A

GHRHR cDNA Resource Center GHRHR00000

GLP1R This study N/A

GLP2R cDNA Resource Center GLP2R00000

SCTR cDNA Resource Center SCTR000000

CALCR cDNA Resource Center CALCR00000

CALCRL cDNA Resource Center CALCRL0000

PTH1R cDNA Resource Center PTHR100000

PTH2R cDNA Resource Center PTHR200000

VIPR1 cDNA Resource Center VIPR100000

VIPR2 cDNA Resource Center VIPR200000

PACAPR cDNA Resource Center ACP1R10000

CRHR1 cDNA Resource Center CRHR100000

CRHR2 cDNA Resource Center CRHR200000

GRM1 This study N/A

GRM2 cDNA Resource Center GRM2000000

GRM3 cDNA Resource Center GRM3000000

GRM4 cDNA Resource Center GRM4000000

GRM5 This study N/A

GRM6 cDNA Resource Center GRM6000000

GRM7 cDNA Resource Center GRM7000001

GRM8 cDNA Resource Center GRM8000000

GABBR1 This study N/A

GABBR2 cDNA Resource Center GABBR20000

hM4D(Gi) Addgene 45548

hM3D(Gq) Addgene 45547

rM3D(Gs) Addgene 45549

G12D 1.0 Dr. Asuka Inoue N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

G12D 2.0 Dr. Asuka Inoue N/A

G12D 2.1 Dr. Asuka Inoue N/A

mAChR-A (Drosophila) This study N/A

mAChR-B (Drosophila) This study N/A

Dop1R1 (Drosophila) This study N/A

Dop2R (Drosophila) This study N/A

DAMB (Drosophila) Dr. Ronald L. Davis N/A

5HT1A (Drosophila) This study N/A

5HT1B (Drosophila) This study N/A

5HT2A (Drosophila) This study N/A

5HT2B (Drosophila) This study N/A

MRAP This study N/A

RAMP1 cDNA Resource Center RAMP100000

GaoA cDNA Resource Center GNA0OA0000

Gaq Dr. Hiroshi Itoh N/A

Ga15 cDNA Resource Center GNA1500000

Gas short isoform Dr. Hiroshi Itoh N/A

Ga13 cDNA Resource Center GNA1300001

Venus-156-239-Gb1 Dr. Nevin A. Lambert N/A

Venus-1-155-Gg2 Dr. Nevin A. Lambert N/A

masGRK3ct-Nluc-HA Masuho et al.27 N/A

Flag-Ric-8A Dr. Jean-Pierre Montmayeur N/A

Flag-Ric-8B Dr. Bettina Malnic N/A

PTX-S1 Raveh et al.61 N/A

DORA-RhoA (BRET) This study N/A

CalfluxVTX Yang et al.62 N/A

GaoA-Nluc Masuho et al.27 N/A

p115RH-AU5-CAAX This study N/A

pENN.AAV.hSyn.Cre.WPRE.hGH Addgene 105553

Software and algorithms

GraphPad Prism 9 GraphPad Software https://www.graphpad.com/

SigmaPlot 14.5 SYSTAT Software https://systatsoftware.com/

Clampfit 10.3 Molecular Devices http://www.moleculardevices.com/

products/software/pclamp.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kirill Mar-

temyanov (kmartemyanov@ufl.edu).

Materials availability
Plasmids generated in this study will be made available upon request.

Data and code availability
The raw data derived from the BRET assay has been documented in Table S1. This reported original code and available at https://

zenodo.org/record/8271720 (https://doi.org/10.5281/zenodo.8271720). Any additional information required to reanalyze the data re-

ported in this work paper is available from the lead contact upon request.
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METHOD DETAILS

Precise details of all the procedures in the paper were provided in STAR Methods.

cDNA constructs
GaoA (NM_020988), Ga15 (AF493904), and Ga13 (NM_006572) in pcDNA3.1(+) were purchased from cDNA Resource Center (www.

cDNA.org). The pCMV5 plasmids encoding humanGaq and bovine Gas short isoformwere gifts fromDr. Hiroshi Itoh. Venus 156-239-

Gb1 (amino acids 156–239 of Venus fused to aGGSGGG linker at theN terminus of Gb1without the firstmethionine (NM_002074)) and

Venus 1-155-Gg2 (amino acids 1–155 of Venus fused to a GGSGGG linker at the N terminus of Gg2 (NM_053064)) were gifts from

Dr. Nevin A. Lambert.24 Flag-tagged Ric-8A (NM_053194) in pcDNA3.1 was a gift from Dr. Jean-Pierre Montmayeur.60 Flag-tagged

Ric-8B (NM_183172 with one missense mutation (A1586G)) in pcDNA3.1 was a gift from Dr. Bettina Malnic (Von Dannecker et al.,

2006). The masGRK3ct-Nluc-HA constructs were constructed by introducing HA tag at the C terminus of masGRK3ct-Nluc reported

previously.15 PTX-S1 constructs were reported previously.61 The GPCRs used in this study was listed in Table S1. GenBank acces-

sion number for each sequence is given in parentheses. DORA-RhoA (BRET), CalfluxVTX,62 GaoA-Nluc,
27 and p115RH-AU5-CAAX in

pcDNA3.1(+) were synthesized byGenScript. pENN.AAV.hSyn.Cre.WPRE.hGHwas a gift from JamesM.Wilson (Addgene plasmid #

105553).

Transfection
HEK293T/17 cells were grown in DMEM supplemented with 10% FBS, minimum Eagle’s medium non-essential amino acids, 1 mM

sodium pyruvate, and antibiotics (100 units/mL penicillin and 100 mg/mL streptomycin) at 37�C in a humidified incubator containing

5% CO2. For transfection, cells were seeded into 3.5-cm dishes at a density of 2 3 106 cells/dish. After 2 h, expression constructs

(total 5 mg/dish) were transfected into the cells using PLUS (5 mL/dish) and Lipofectamine LTX (6 mL/dish) reagents. The Ga (GaoA (2),

Gaq (2), Ga15 (2), Gas short (6), or Ga13 (4)), Venus 156-239-Gb1 (1), Venus 1-155-Gg2 (1), masGRK3ct-Nluc-HA (1) were transfected.

Ga15 was transfected with Ric-8A (1). A construct carrying catalytic subunit of pertussis toxin PTX-S1 (1) were transfected with Gaq,

Ga15, Gas, or Ga13 to inhibit the possible coupling of endogenous Gi/o to GPCRs. In order tomonitor the dissociation of GaoA andGbg

upon the activation of mGluR5, mGluR5 (2), GaoA-Nluc (0.1), Venus 156-239-Gb1 (1), and Venus 1-155-Gg2 (1) with or without PTX-S1

(1) were transfected. To examine the G12/13 coupling of TBXA2R, TBX2AR (2) and DORA-RhoA (BRET) (1) with or without PTX-S1 (1)

and p115RH-AU5-CAAX (1) were transfected. An empty vector (pcDNA3.1(+)) was used to normalize the amount of transfected DNA.

The number in parentheses indicates the ratio of transfected DNA (ratio 1 = 0.21 mg).

In cellulo GEF assay
Cellular measurements of agonist-induced BRET responses between Venus-Gbg and GRK3ct-Nluc-HA sensors were per-

formed in living cells (described in detail in15,63). Sixteen to 24 h post-transfection, HEK293T/17 cells were washed once

with BRET buffer (Dulbecco’s Phosphate-Buffered Saline (PBS) containing 0.5 mM MgCl2 and 0.1% glucose) and detached

by gentle pipetting over the monolayer. Cells were harvested with centrifugation at 500g for 5 min and resuspended in

BRET buffer. Approximately 50,000 to 100,000 cells per well were distributed in 96-well flat-bottomed white microplates

(Greiner Bio-One). The Nluc substrate, furimazine, was purchased from Promega and used according to the manufacturer’s in-

struction. BRET measurements were made using a microplate reader (POLARstar Omega or PHERAstar FSX; BMG Labtech)

equipped with two emission photomultiplier tubes, allowing us to detect two emissions simultaneously with the highest possible

resolution of 20 ms per data point. All measurements were performed at room temperature. The BRET signal is determined by

calculating the ration of the light emitted by the Venus- Gbg (535 nm with a 30 nm band path width) over the light emitted by the

Nluc (475 nm with a 30 nm band path width). The average baseline value (basal BRET ratio) recorded prior to agonist stimulation

was subtracted from the experimental BRET signal values to obtain the resulting difference (DBRET ratio). The largest DBRET

ratio was plotted as maximum BRET amplitude. The rate constants (1/t) of the activation phase were obtained by fitting a single

exponential curve to the traces with Clampfit 10.3.

Primary cultures of striatal neurons
The animal studies were carried out in accordance with the National Institutes of Health guidelines and were granted formal approval

by the Institutional Animal Care and Use Committee of The Scripps Research Institute (approved protocol #16–032).Striatal neuronal

culture was done as previously described.59 Briefly, striatum was dissected from homozygous CAMPER pups at P0 age in ice-cold

HBSS supplemented with 20% FBS. Striatal tissue was washed twice in HBSS before digestion at 37�C for 15min in a buffer (pH 7.2)

containing 137 mMNaCl, 5 mM KCl, 7 mM Na2HPO4, 25 mM HEPES, and 0.3 mg/mL papain. Then Striatal tissue was washed three

times with HBSS (20% FBS), three times with HBSS, and three times with growth media (Neurobasal-A containing 2 mM GlutaMAX,

2% B27 Supplement serum-free, and 1% Penicillin-Streptomycin). Striatal tissue was then dissociated through pipetting 15 times

with a standard P1000 pipette in the presence of DNase I (0.05 U/mL) and plated on poly-D-lysine coated glass coverslips. The cells

were maintained in a humidified incubator at 37�C and 5% CO2. Half of the growth media was changed every three days. For cAMP

imaging, AAV-Cre, under the control of synapsin promoter, was added to theCAMPER striatal neuronal culture at DIV3 and incubated

for 10–15 days. When required, striatal neuron culture was treated overnight with 1 mg/mL pertussis toxin (PTX, Tocris) before
22 Cell Reports 42, 113173, October 31, 2023
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imaging. Since overnight incubation with 1 mg/mL PTX decreased the basal concentration of cAMP, 50 mM forskolin was used to

elevate the basal cAMP concentration.

Live imaging of cAMP dynamics in primary medium spiny neurons
Primary neuronal cultures were imaged by a Leica TCS SP8 confocal microscope through a 253 objective lens. Briefly, excitation of

mTurquoise FRET donor with a 442 nm laser was paired with simultaneous acquisition of XYZ image stacks at 10 s intervals. Fluo-

rescence signal was collected through two HyD detectors tuned to 465–505 nm (mTurquoise FRET donor) and 525–600 nm (Venus

FRET acceptor). FRET or donor/receptor ratio was calculated by using ImageJ to quantify the fluorescence intensity of the neuronal

cell body. The FRET ratio was converted to the concentration of cAMP using a dose-response curve to cAMP standards in permea-

bilized neurons.59 Metabotropic glutamate receptor 5 (mGluR5) selective agonist CHPG (Tocris) and selective antagonist MTEP

hydrochloride (Tocris) were bath applied to neurons during continuous perfusion at 2 mL/min in a pH 7.3 buffer consisting of

1.3 mM CaCl2, 0.5 mM MgCl2, 0.4 mM MgSO4, 0.4 mM KH2PO4, 4.2 mM NaHCO3, 138 mM NaCl, 0.3 mM Na2HPO4, 5.6 mM

D-Glucose, and 20 mM HEPES.

Machine learning prediction of GPCR-G protein coupling
Defining a conserved reference interface for GPCRs

The structure of D1R/Gs complex (PDB: 7jvq) was used as a template. All D1R residueswithin 4Å of any residue of theGa subunit were

labeled as interface residues. A model or structure of each GPCR in its active state was obtained from either the GPCR database,64

RosettaFoldmodels,65 or the Protein DataBank (https://www.rcsb.org/). Eachmodel was then aligned to the structure of D1R and the

closest residue after alignment to each interface residue in D1R (up to a maximum distance of 5Å) was labeled as the corresponding

interface residue.

Database of GPCR orthologs

A total of 94 Class A GPCRs were selected as the dataset. The sequence of each Class A GPCR was downloaded from UniPort

(https://www.uniprot.org/),66 and then the corresponding cluster of sequences at 50%homology to the GPCR (Uniref. 50) was down-

loaded from Uniref (https://www.uniprot.org/uniref)67. Every sequence from the cluster was then aligned to the human protein, and

corresponding interface residues were labeled according to those in the human structure model.

Embedding GPCR sequences using a protein language model

The pretrained protein BERT model from the ProtTrans suite68 was installed using the Transformers library (https://huggingface.co/

docs/transformers/index). Briefly, ProtTrans exploited state-of-the-art tools from the natural language processing field, to train an

auto-encoder model (BERT) on nearly 400 billion amino acids, producing a pretrained representation of protein sequences.

ProtTrans has been shown to outperform existing methods across a wide variety of tasks. Using the prot_bert model, every residue

from every GPCR sequence from the 94 uniref clusters was converted to a numerical representation of 1024 real values. This

representation has been shown to embed structural and biophysical features of the residue in the context of its sequence

(https://huggingface.co/docs/transformers/index) and to perform well in tasks with a small number of training examples.

Input to the machine learning predictor

The input to the neural network was a tensor of size Bx30x1024, the first dimension being the batch size (B = 32), the second dimen-

sion being the number of residues in the consensus interface (30), and the third dimension (1024) being the size of the pretrained

sequence embedding for each amino acid residue. In cases where a residue resulted in a gap in the alignment, a value of 0 was as-

signed for the input.

Neural network architecture of the machine learning predictor

We divided the prediction problem into two binary classification tasks, activation kinetics and amplitude. In addition, each task could

be devised as five binary classification problems, with the coupling to each G protein by itself a separate classification problem.

Although this could be tackled with a multi-label neural network classificatory, our experiments showed no benefit from a single

network and instead ran 5 neural networks for each task (one per G protein), for a total of 10 neural network classifiers. The neural

network architecture consisted of two fully connected layers, (128 and 16 neurons, respectively), followed by a flattening layer, and

three fully connected layers (128, 32, 4 neurons, respectively), and an output layer (1 neuron). Every inner layer was activated by a

rectified linear unit (ReLU) function, and followed by batch normalization and dropout. The output layer was activated by a sigmoid

function, and we used a binary cross entropy loss. The neural network was implemented in Keras (https://keras.io/).

Training and testing the machine learning predictor with 10-fold cross-validation

The dataset of 94 class A GPCRs was randomly divided into a training set (60% of the set), a validation set (20% of the set), and a

testing set (20% of the set). Given the small size of the datasets, the exact distribution of training and testing sets can have a sub-

stantial effect on the performance of learning algorithms. Therefore, the learning procedure was repeated ten times with different

random selections of testing and training sets (known as 10-fold cross-validation). Afterward, all testing sets were collated to

compute performance metrics.

Metrics used to assess the performance of the machine learning predictor

The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was used as the performance metrics. The ROC

measures the performance of a binary classifier under different thresholds, and the ROC curve plots the behavior of the true positive

rate vs. the false positive rate. The AUC of the ROC curve is a value between 0 and 1, with 0.5 being the AUC of a random predictor
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and 1.0 being the AUC of a perfect predictor. Since each of the two classification tasks contained a maximum of five labels (e.g., a

binary predictor for each of the five G proteins), we used two metrics to measure the performance of the predictor across all classes:

micro-averaged ROCAUC andmacro-averaged ROCAUC. Briefly, themacro average is calculated by summing the ROCAUCs of all

classes (in this case the ROC AUC of each G-protein predictor) and dividing by the number of classes. The micro average is calcu-

lated by aggregating all individual predictions/ground truth labels from all predictors and computing the ROCAUC on the aggregated

set, as if they were a single task.

Validating the design choices in the machine learning method

Our machine learning method incorporates the use of orthologs to augment the training set of pre-trained sequence embeddings

from ProTrans and the subsequent neural networks (NN). In order to validate the effect of the data augmentation on the performance

of the method, we attempted a number of variants to evaluate their effect on performance (Figure S3). Specifically, we tested our

method (termed NN+pretrained+orthologs) vs. a variant with no orthologs during training (NN + pretrained), vs. a variant with no pre-

trained embeddings (NN + orthologs), and a variant using a simpler machine learning technique, logistic regression, instead of an NN

(logistic+orthologs).

Deep learning model predictions of G protein selectivity
To test our hypothesis that ourmethod could predict theG protein coupling selectivity of GPCRs in Class AGPCRs, we selected a set

of 8 previously uncharacterized Class AGPCRs fromDrosophila. These served as our prospective prediction set. Simultaneously, we

selected 94 already characterized Class A GPCRs (Figure 1) to act as our learning set.

The learning process in deep learning operates in cycles, commonly known as epochs. Training continues until a satisfactory level

of progress has been achieved, with the optimal neural network saved at the conclusion of each epoch. Thus, to assess the network’s

performance and select the best network, it is necessary to partition our learning set into a training set (containing 84 GPCRs) and a

validation set (containing 10 GPCRs). The training set aids the machine learning algorithm in learning the target function, while the

validation set serves to confirm the learning process after each epoch.

It’s essential to note that themethod in which the learning set is split into training and validation sets can influence the performance

of the model because the algorithm is learning from a different set of GPCRs in each partition. Consequently, we carried out 10 runs

using randomly sampled training and validation sets for the prediction of our 8 Class A prospective GPCRs.

For eachClass AGPCR,we computed a confidence score for our prediction using a technique calledMonte Carlo Dropout (https://

proceedings.mlr.press/v48/gal16.html?trk=public_post_comment-text). This method allowed us to estimate the predictive uncer-

tainty in our deep learning model. In simple terms, Monte Carlo Dropout works by randomly ’dropping out’ or deactivating certain

neurons during training, creating a ’forest’ of different neural networks. During prediction, we run our model many times, each

time with a different ’drop out’ configuration, which gives us a range of different predictions. The variance in these predictions gives

us an estimate of the uncertainty or confidence in our predictions.

After performing this Monte Carlo Dropout, we assigned to each prospective prediction the value in the neural network with the

highest computed confidence, thus finalizing our predictive model for the coupling preferences of G proteins to our set of 8 GPCRs.

Common numbering systems of GPCRs and Ga proteins
Each amino acid of GPCRs and Ga subunits was assigned a number according to the common numbering systems used in GPCRdb

(https://gpcrdb.org/) so that its arrangement in the protein structure would be reflected (Figure S3). It is important to note, however,

that a slight modification wasmade to the intracellular loops of the GPCR. The amino acids in ICL1 and ICL2weremanually corrected

according to the sequence conservation. A common numbering has not been established for ICL3 because of its wildly diverse length

and lack of sequence homology. Because the regions of ICL3 that bind Ga are confined to the region near TM5 and TM6, ICL3 has

been divided in half and numbered, so that the numbers can be counted from the N- and C-termini inward (Table S3). In this study,

only TMs and ICLs involved in Ga binding were analyzed using the common numbering system, and extracellular domains not

involved in Ga binding were not considered.

Residue-residue networks of GPCR-Ga interactions
Structural data for 33 GPCR/Ga complexes, including 19 GPCR/Gi/o complexes, 3 GPCR/Gq complexes, and 11 GPCR/Gs com-

plexes, were retrieved from the Protein DataBank (https://www.rcsb.org/). Of note, if there was more than one structure available

for a given GPCRs, the one with the highest resolution was used for our analysis. The PDB numbers of the structures used in the

structural analysis can be found in Table S2. Meanwhile, the structural data of the GPCR/Gq complexes (6WHA, 7L1U, and

7MBY) using mini-Gqsi instead of Gaq was excluded from the analysis because the protein sequence of mini-Gqsi is heavily modified

with amino acids derived from non-Gaq sequences.

GPCR-Ga interactions were analyzed using bioCOmplexes COntact MAPS (COCOMAPS, http://www.molnac.unisa.it/BioTools/

cocomaps/) with a cutoff value of 5Å for identifying interacting residues in bothmolecules.69 The amino acid interactionmaps for each

complex weremapped (Table S2) using the common numbering systems. A total of 106 positions were involved in Ga binding at least

once in the complexes used for this analysis (Figure 4B). These residueswere referred as theGa-binding residueswith one exception.

Because it was a highly specific interaction only found in rhodopsin with highly specific photoreceptor function, the residues of rho-

dopsin’s C-terminal tail that interact with Ga were excluded from the Ga-binding residues.
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From the integrated residue-residue contacts between class A GPCRs and Ga subunits identified by our analysis (Figure 4E), we

further extracted contacts common to all GPCRs andGa subunits and contacts used by each type of Ga subfamily. As a first step, we

divided the GPCR/G protein complexes by interacting G protein subfamilies (Gi/o, Gq, vs. Gs). Then, we defined a common residue-

residue network as residue-residue contacts that occur at least once in each three classes of GPCR/G protein complexes (GPCR/

Gi/o, GPCR/Gq, and GPCR/Gs complexes) (Figure 4F). The specific residue-residue contacts for Gi/o, Gq, or Gs interactions are

defined by residue-residue interaction pairs present only with Gi/o, Gq, or Gs (Figures 4G–4I).

Sankey diagram
Using a web-based drawing tool (https://sankeymatic.com/), Sankey diagrams were created to visualize the interactions between

different segments of GPCRs and G proteins (Figures 4E–4M), as well as the rank order of G protein selectivity (Figure 2E).

Protein sequence alignment and phylogenetic tree
The alignment of the protein sequences of Ga subunits (Figure S4) was performed using the multiple sequence alignment tool,

ClustalW (https://www.genome.jp/tools-bin/clustalw). The phylogenetic tree was drawn using FigTree v1.4.4. software. The

branches of the phylogenetic tree were color-coded based on the Ga subfamily (Figure 1E) or the type of ligand (Figures 4N and S5).

Analysis of natural genetic variants
Natural genetic variants for 284 genes of class A GPCR are retrieved from the Genome Aggregation Database (gnomAD) v2.1.1

(https://gnomad.broadinstitute.org/),48 which consists of genome and exome sequence data for 141,456 human subjects in seven

ethnic groups. After converting the amino acid numbers of the GPCRs to the common numbering, the missense variants in the

Ga-binding residues were extracted and analyzed. The number of distinct missense variants, number of positions with missense

variants, and density of missense variants were calculated for each gene. Based on the Z score, each position was analyzed to deter-

mine whether it contained more or fewer MVs in comparison to the average number of MVs present in the Ga-binding residues (Fig-

ure 6E). Figure S5D shows that accurate Z score cannot be obtained if there are fewer than 19GPCRs in each position, such positions

are not included for this analysis. Since the number of GPCRs with each position is different, we first normalized the number of

mutants in each position by dividing it by the number of receptors. Z score is calculated using the formula z = (x-m)/s, where x is

the raw score, m is the population mean, and s is the population standard deviation.

QUANTIFICATION AND STATISTICAL ANALYSIS

two-way ANOVAwith correction for multiple comparison using the Sidak method was conducted to determine if GPCRs can activate

G proteins and the rank order of G protein selectivity with GraphPad Prism Ver. 6. Only statistically significant values are reported.

Values represent means ± SEM from three independent experiments each performed with at least three replicates.
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