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Abstract—A frequency scaling governor is critical for the
performance management of cloud servers, as it enhances energy
efficiency and helps to control operational temperatures, thereby
ensuring system reliability. However, our in-depth analysis of the
application’s performance and Dynamic Voltage and Frequency
Scaling (DVFS) actions, alongside assessments of server power
consumption and operating temperature, indicates that existing
Linux scaling governors often fall into non-optimal DVFS strate-
gies, especially for cloud applications with varying workloads
and requests. This shortfall comes from the misleading CPU
load metrics, which fail to accurately capture the applications’
true performance requirements and demands. In this context,
we introduce a novel scaling governor named GreenDVFS.
First, it identifies the optimal frequencies for the application
in a range of workload scenarios. Optimal frequencies are
used to maintain application performance, reduce server power
consumption, and maintain a balanced operating temperature
in different workload scenarios. Furthermore, we design a long
short-term memory (LSTM)-based time series methodology to
detect the real-time workloads of cloud applications accurately
and timely. Building on these foundations, the proposed method
takes optimal DVFS actions, tailored for cloud applications under
different workload conditions, to optimize performance, energy
efficiency, and temperature. The experimental results highlight
the effectiveness of the proposed GreenDVFS, with up to 18%
savings in energy consumption and a 30% decrease in operational
temperature by comparing against the default Linux governor,
all while not compromising the application’s performance. Such
improvements help to optimize cloud computing operations for
enhanced efficiency and sustainability.

I. INTRODUCTION

Data centers have experienced remarkable growth in recent
decades, thanks to their substantial advantages in security,
flexibility, and cost-effectiveness. Thus fueling the migration
of more end-users and applications to the cloud. With such a
trend, the global expenditure on cloud services is projected to
increase by more than 20% in 2023, reaching approximately
$600 billion [1]. Data center energy consumption is skyrock-
eting along with its rapid growth. A recent study [2] estimates
that by 2030, data centers will contribute to approximately
3 to 13% of the total electricity consumption of the world.
Consequently, improving the energy efficiency of data centers
has been a critical concern for both industry and academia.

An approximate power breakdown of a computing server
shows that multi-core processors consume more than 56%
of the total energy [3] of the whole system. Therefore, one
effective means of controlling server energy consumption is
to reduce the microprocessor’s power consumption. It is well
known that CPU power consumption increases at a cubic rate
or higher when boosting server performance by increasing
the operation frequency [4]. This is why the CPU frequency

Fig. 1: Profiling results for the Data Serving benchmark under
two different workload levels across different DVFS points.

scaling has been integrated into the modern operating system,
enabling the automatic adjustment of the CPU frequency
in response to system load, thereby conserving power and
enhancing performance.

CPU frequency scaling is achieved through various strate-
gies, commonly known as scaling governors in Linux [5]. For
instance, the powersave governor enforces to run the CPU at
the minimum available frequency. The performance governor,
on the contrary, maintains a constant maximum frequency.
Additionally, there are governors that can dynamically adjust
the frequency based on system load. One such governor is
schedutil. It uses the per-entity load tracking technique [6]
to estimate CPU utilization and compute the optimal CPU
frequency to apply in accordance with this metric.

Despite the availability of these governors, we have ob-
served that emerging cloud applications often do not run opti-
mally on the servers in terms of energy efficiency. To show this
fact, we perform a profiling of the Data Serving benchmark
from the CloudSuite benchmark suite [7], a benchmark that
loads one of the most popular NoSQL databases, Cassandra,
using Yahoo! Cloud Serving Benchmark (YCSB) to simulate
a representative NoSQL database application in the cloud.

We begin by profiling the benchmark under a medium work-
load, covering all available frequencies by manually fixing
the DVFS level of the server. Subsequently, we present both
application and server statistics, namely performance, nor-
malized power, temperature, and energy consumption, across



various frequency levels in Fig. 1 as the orange line with
diamond markers. Initially, the performance increases with
frequency level, but it reaches a plateau at around 3000MHz.
However, the power and temperature continue to rise with the
frequency increase as the application utilizes the server’s full
capacity. Consequently, we can conclude that one “optimal”
scaling governor would maintain the frequency at 3000MHz to
minimize power consumption without sacrificing performance.
Then, we evaluate the scaling governors available in the Linux
kernel, marking their runtime CPU frequency selections in the
figure. The powersave and performance governors operate at
the minimum and maximum CPU frequencies, as expected.
The default Linux governor, schedutil, also runs the application
at the maximum frequency as the performance governor. In
conclusion, none of the Linux kernel’s scaling governors are
optimal for this scenario to minimize power consumption
without sacrificing performance. This is highlighted by the
energy consumption analysis in the figure’s final subplot,
showing that existing governors fail to achieve minimum
energy consumption. In particular, the powersave governor,
despite its name, is the most energy-intensive option. Further-
more, as the workload level decreases to a light level, depicted
by the blue line with circle markers in Fig. 1, the optimal
frequency of the application shifts to a lower range, approxi-
mately 1500MHz, to meet its decreasing demands. However,
the default Linux governor, schedutil, consistently sets the
maximum CPU frequency, regardless of fluctuations in the
runtime workload. This leads us to conclude that the current
scaling governors fall short in selecting the optimal operating
frequency for cloud applications and lack sensitivity to the
dynamic workload variations inherent in these applications.

Therefore, in this work, we focus on developing an opti-
mal governor, called GreenDVFS. It is capable of detecting
various levels of workload experienced by the application and
subsequently setting the optimal frequency for its operation.
The primary contributions of this research encompass:

• The development of an automatic optimization method-
ology to choose the ideal operating frequency corre-
sponding to the workload level of the application. Thus,
optimizing the energy efficiency of the server without
compromising its performance.

• The proposal of a time-series workload detection method
for earlier detection of the runtime workload level for the
application.

• A comprehensive analysis of improvements achieved by
the proposed workload-driven scaling governor, GreenD-
VFS, in comparison to the state-of-the-art Linux scal-
ing governors. The results demonstrate that GreenDVFS
achieves up to an 18% saving in energy consumption and
a 30% decrease in operational temperature by comparing
against the default Linux governor, all while not compro-
mising the application’s performance.

The rest of this paper is organized as follows. Section
II discusses the related work and background of this study.
Section III describes the general design of the workload-

driven scaling governor. The experimental setup and results are
presented in Sections IV and V, respectively. Finally, Section
VI concludes this study.

II. RELATED WORK AND BACKGROUND

Frequency scaling techniques have played a crucial role
in contemporary computing systems, ranging from mobile
devices [8] to high-performance cloud servers [9]. Given that
modern microprocessors contribute substantially to overall
system power consumption [3], scaling governor stands out
as an effective means to control microprocessor power con-
sumption and improve its performance. This motivates us to
investigate these frequency scaling techniques, both in cutting-
edge industry practices and in academic research.

A. State-Of-The-Art Frequency Scaling Techniques

Linux scaling governors primarily rely on CPU utilization
as a key metric to determine the appropriate frequency level. In
the case of the ondemand governor [10], it calculates the CPU
load by assessing the portion of time during which the CPU
remains active rather than idle, thereby establishing the ratio
of active time to total CPU time as an estimation of the load.
With the introduction of the per-entity load tracking (PELT)
mechanism in Linux 3.8 [11], a new approach to estimating
CPU utilization emerged, enhancing the scheduler design and
the efficiency of scaling governors. Consequently, the schedutil
governor [5] strives for a more seamless integration with the
Linux kernel scheduler, deriving its load estimation through
the PELT mechanism.

However, the CPU utilization metric can be inaccurate and
misleading, as demonstrated in [12]. Consequently, Linux
governors can fall short in setting optimal frequency for cloud
applications to optimize energy efficiency, as highlighted in
the case study of the Introduction. To address this issue,
researchers have proposed DVFS techniques that leverage
metrics such as cycles per instruction and various hardware
events to govern CPU frequency [12]–[14].

For high-performance computing, Ali et al. introduced an
automated method that can bring the temperature of an over-
heated CPU back within the normal range by scaling down its
CPU frequency [9]. Akram et al. offered a performance pre-
diction method for multithreaded applications and optimized
their energy efficiency while keeping performance within user-
defined thresholds [15]. Additionally, Liu et al. introduced
power capping techniques based on CPU and memory DVFS
to improve system energy efficiency [16].

For specific applications such as transactional database
systems in the cloud, Korkmaz et al. proposed a workload-
aware CPU frequency scaling method [17]. On a different
note, Liu et al. proposed an innovative approach by embedding
DVFS control within a Java virtual machine, allowing the
application to take the frequency for itself [18]. However, this
requires deep reengineering within the application itself, which
is not feasible in most cases.

With the emerging of machine learning (ML) techniques,
several ML-based DVFS schemes have been proposed in



[19]–[21]. Despite these diverse approaches trying to address
challenges on frequency scaling of cloud servers and appli-
cations, it remains challenging to optimize the server to its
best energy efficiency state without comprising performance.
This difficulty largely stems from inadequate knowledge of
cloud application workloads. Consequently, this situation un-
derscores the importance of workload detection in the cloud.

B. Workload Detection

Numerous works have focused on workload detection,
proposing different prediction approaches. For example, a
linear regression model is proposed in [22] to estimate the
incoming workload and then scale the cloud configuration to
adapt to the requirements of future workloads. In addition
to regression-based methods, random forest-based workload
detection methods are presented in [23], [24]. In [25], a
support vector machine-based workload detection method is
implemented to predict the workloads of the cloud server.

To improve prediction accuracy, more recent efforts have
focused on machine learning (ML)-based approaches. For
example, a cluster-based workload detection method is pro-
posed in [26]. This method initially clusters tasks into several
categories before predicting CPU and memory usage for task
scheduling. Another contribution is the use of the long-short-
term-memory (LSTM) technique for workload detection, as
explored in [27]. Despite these advances, the dynamic nature
of client requests presents a tremendous challenge in predict-
ing cloud server workloads. According to [27], the lowest error
rate in predictions remains at 18%. This highlights the need for
an effective, application-focused, workload detection method
in real-time cloud environments.

In summary, to the best of our knowledge, cloud applica-
tions continue to grapple with the low accuracy workload de-
tection methods and the non-optimal DVFS actions from state-
of-the-art frequency scaling governors. Consequently, in this
study, our motivation is to introduce a novel workload-driven
DVFS technique, named GreenDVFS, to enhance the energy
efficiency of cloud servers while maintaining optimal applica-
tion performance.

III. GREENDVFS: WORKLOAD-DRIVEN DYNAMIC
VOLTAGE FREQUENCY SCALING

The proposed GreenDVFS workflow comprises three stages,
as depicted in Fig. 2. In the initial stage, we perform profil-
ing of cloud applications running on the server to identify
the optimal workload-frequency pairs for a selected set of
workload levels from its continuous workload space. This
phase involves the profiling of application performance data,
server’s power consumption, and temperature under varying
CPU frequencies. By integrating this data with the proposed
optimizer, we can determine the optimal runtime frequency
based on the proposed cost function, thus establishing the
“best workload level-frequency pairs” for a set representative
workload levels of the application.

The second stage involves training a neural network for
workload detection. We propose to use the server metrics,
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Fig. 2: The workflow of proposed GreenDVFS methodology.

which include data from hardware performance monitoring
units (PMUs), network statistics, and memory usage informa-
tion. Then, we employ a long short-term memory (LSTM)
network for accurate time-series workload detection.

Upon completion of the two offline stages, we transition
to the online workload-driven DVFS phase. At runtime, we
can utilize the monitored server metrics and trained LSTM to
predict the current workload status and generate a probability
distribution for the current workload level. Combining this in-
formation with the knowledge of the best workload-frequency
pairs obtained in the initial stage, our method performs DVFS
for the server, aiming to achieve optimal energy efficiency
without sacrificing application performance.

We discuss the GreenDVFS in detail below.

A. Optimizer for The Best Workload-Frequency Pairs

As demonstrated in the Introduction, there is an ideal
operational frequency point for the application at a given
workload level, a point that state-of-the-art solutions struggle
to locate. Hence, we propose an optimizer to identify this
optimal frequency for a determined workload wkli as follows:

max
f

L(f) = α · Perf (f)− β · Power(f)− γ · Temp(f)

α, β, γ ∈ [0, 1], α+ β + γ = 1
(1)

where Perf , Power , and Temp represent the performance
of the application, the power consumption, and the operat-
ing temperature, respectively, at a specific workload wkli.
These metrics are dynamic variables influenced by changes
in CPU frequency at runtime f . In addition, we introduce
three coefficient factors, denoted as α, β, and γ. Thanks
to these coefficient factors, we can adjust the impact of
different aspects, such as performance, power consumption,
and temperature, on the loss function L(f). So, given the
profiling results for the application under a particular workload
level, wkli, the optimal frequency fwkli can be derived as
maxL(f)|wkli → fwkli .

Subsequently, for a selected set of workload levels, we can
formulate the optimal frequency pairs fwkls as follows:max L(f)|wkl1

max L(f)|wkl2

· · ·
max L(f)|wklN

 →

fwkl1

fwkl2

· · ·
fwklN

 (2)

Please note that the application’s workload space is con-
tinuous and covers a broad range, while the CPU frequency
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Fig. 3: The workflow of time-series workload detection. The
neural network, denoted as “A”, takes the sampled metrics and
its own hidden state from the previous time step as the input
and outputs yt, representing the probabilities of the application
operating under different workloads.
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Fig. 4: The diagram of the LSTM cell used in this study.

space is discrete. As a result, one only needs to select a finite
number of workloads, denoted N in the above equation, for
each application, covering all of the frequency spectrum.

B. Workload Detection with LSTM

The absence of real-time workload and performance data
for the frequency scaling governor leads to non-optimal oper-
ational CPU frequencies during runtime [12]. This can result in
higher power consumption and increased server temperatures,
as demonstrated in the Introduction. To tackle this challenge,
we propose a machine learning-based method for workload
detection in cloud applications without necessitating any mod-
ifications to the system or applications. The illustration of this
approach is shown in Fig. 3.

In the figure, the application operates on the server under a
specific workload. System profiling allows us to acquire real-
time metrics from the system and application, like instructions
per second (IPS), network packages, etc. To illustrate our
proposal more easily, the blue trace in the figure represents one
metric of all metrics sampled over time. Initially, we use the
sampled metric data as input for a neural network (denoted “A”
in the figure) to estimate the probabilities of the application
operating under different workloads, denoted yt−3. As time
progresses, the neural network continuously incorporates new
hardware metrics as input, also utilizing its previous state to
make updated predictions.

To achieve this, we propose to use the long short-term
memory (LSTM) neural network [28] to detect the workload
of time series. The structure of the LSTM cell used in this
work is presented in Fig. 4. At a given time t, the LSTM cell
receives the measured metrics xt. Since LSTMs are designed

to handle time series data with their recurrent structure, these
inputs also encompass cell memory Ct−1 and the hidden state
ht−1 of the preceding LSTM cell. The processing is defined
as follows:

ft = σ(Wf · [ht−1, xt] + bf ) Ct = ft · Ct−1 + it · gt
it = σ(Wi · [ht−1, xt] + bi) ot = σ(Wo · [ht−1, xt] + bo)

gt = tanh(Wg · [ht−1, xt] + bg) ht = ot · tanh(Ct)
(3)

where σ and tanh denote the activation functions of the
sigmoid and hyperbolic tangent for the layers. The symbols W
and b represent the weights and biases associated with these
layers. Specifically, the layer σ1 is referred to as the “forget
gate” because its output, ft, enables the LSTM to keep or erase
information from Ct−1. On the other hand, the layers σ2 and
tanh, along with their outputs it and gt decide the amount
of new information added to Ct−1 to form the new memory
Ct. Finally, the hidden state ht is produced, incorporating the
information from the layer σ3 and the updated memory Ct.

Then, the output layer takes the current hidden state ht

as input and outputs the probability distribution of different
workloads as yt by applying a softmax activation function, as
specified in Eq. 4.

yt = softmax (Ws · ht + bs) (4)

where yt ∈ RN represents a vector containing the probabilities
assigned to various workload levels at time t. More precisely,
we can express it as yt = [Pwkl1 , Pwkl2 , · · · , PwklN ], where
Pwkli denotes the probability associated with the current
workload level labeled as wkli. As yt represents a probability
distribution, it satisfies

∑N
i=1 Pwkli = 1. By employing

LSTM, we are able to perform time-series workload detection.
However, a limitation in the current LSTM design lies in its
training scheme, which primarily emphasizes accuracy only at
the end of the trace, neglecting earlier stage accuracy. Indeed,
if the LSTM only provides accurate results in the final phase
of the application execution, it would not be useful in any way
for the scaling governor.

To show this fact, Fig. 5(a) displays the results of a
traditional LSTM trained for sequence workload detection. In
the figure, the correct workload level is wkl6, and the LSTM
tries to predict the workload by giving the probabilities of
each possible workload level per second. Ideally, the wkl6
trace, depicted as a black line with circle markers, should have
the maximum probability to indicate that the LSTM gives the
correct prediction. However, with the existing training scheme,
which emphasizes accuracy only at the end of the trace, it
struggles to predict the correct workload before the end of
execution, as demonstrated. The LSTM only provides accurate
results around 200 seconds, i.e., at the end of the execution.

On the contrary, our objective is to attain accurate workload
detections as early as possible to take frequency scaling via
DVFS. Therefore, in this work, we introduce a training scheme
specifically designed to address this issue and enable LSTM
to provide accurate workload detections at the earliest possible



(a) Traditional LSTM (b) LSTM trained with proposed training scheme

Fig. 5: Prediction results of trained LSTMs: (a) Detection of workloads from a traditional LSTM model trained for sequence
classification. (b) Detection of workloads by an LSTM trained using the earlier proposed workload detection training scheme.

stage. The details of this training scheme are described in
Algorithm 1. The first two lines represent standard initial
procedures in machine learning training: model initialization
and data splitting. Then, on line 3, the maximum trace length
is saved as the variable len for the training data set. The
algorithm then enters a training loop that continues as long as
the current len is larger than the predefined threshold lenth.
Inside this loop, the algorithm begins by pre-processing the
data, truncating the samples in each trace with indices greater
than len. Following this, the LSTM model is trained using the
modified training dataset. After the first training iteration, the
algorithm reduces the current trace length len by half (line
9), preparing it for the next iteration. This training enables the
model to recognize patterns and relationships within truncated
traces, enabling it to predict workload based on earlier, shorter
data. Due to the proposed training scheme for early workload
detection, the LSTM is trained to provide accurate workload
detections in the early execution stages of the application, as
illustrated in Fig. 5(b). After 18 seconds (less than 10% of the
total execution time of the application), the proposed LSTM
consistently provides precise workload-level predictions. This
capability enables us to perform accurate and timely workload-
driven DVFS actions.

C. Workload-Driven DVFS

With the optimal workload-frequency pairs chosen for the
application and the LSTM model trained for early workload
detection, we can introduce the workload-driven DVFS in this
section. During runtime, while the application is running on
the server, profiling tools continuously monitor the server and
application metrics. Subsequently, these metrics are input into
the LSTM for workload detection.

As previously introduced, the output of the LSTM, denoted
as yt, is a vector containing probabilities associated with
various workload levels: yt = [Pwkl1 , Pwkl2 , · · · , PwklN ].
Given this information, we can calculate the optimal frequency
at runtime as:

fs(t) = yt × fwkls =


Pwkl1

Pwkl2

· · ·
PwklN


′

×


fwkl1

fwkl2

· · ·
fwklN

 (5)

where fs(t) is a scalar value representing the suggested
frequency resulting from the proposed workload-driven DVFS
technique. This value can be seen as an expectation of the
operating frequency. Finally, we can configure the system to
operate at the suggested frequency through DVFS actions.

Algorithm 1: Proposed training scheme for earlier
workload detection.
Data: Dataset of sampled application traces
Result: Trained LSTM model for workload detection

1 Initialize an LSTM model;
2 Split the dataset into training and testing sets;
3 len← maximum length of traces in the training

dataset;
4 lenth ← the specified length threshold for stopping;
5 while len > lenth do

/* Discard samples in each trace
with index exceeding len */

6 for each trace in the dataset do
7 remove samples trace[len : end];

8 Train the LSTM model on the training dataset;
9 len = len/2;

TABLE I: Server Configuration

Model HPE ProLiant DL380 Gen11
CPU 2x Intel Xeon Gold 6448Y
Core count 128 (64 logical cores)
Max turbo freq. 4100MHz
Min freq. 800MHz
Number of P-States 34
RAM 256 GB DDR5

OS Ubuntu 23.04 (Linux 6.2.0-26-generic)

Virtualization KVM, QEMU, libvirt, Open vSwitch

IV. EXPERIMENTAL SETUP

This section describes the implementation and evaluation
of the proposed GreenDVFS, including server configuration,
benchmarks, profiling metrics, and comparison methods.

A. Server Configuration

In this work, we employ an HPE ProLiant DL380 Gen11
server, equipped with two Intel Xeon Gold 6448Y CPUs
and 256 GB RAM memory. This configuration aligns with
the standard specifications commonly found in cloud servers.
The server’s operating system is Ubuntu 23.04, running on
the Linux 6.2.0-26-generic kernel. For a complete breakdown
of this server’s specifications, please refer to Table I. To
imitate real-world scenarios, and with the purpose of better
isolation and to facilitate the profiling stage in this work, each
application was run on a virtual machine. The virtualization
solution is also included in the table.



TABLE II: Workload levels for different applications

wkl1 wkl2 wkl3 wkl4 wkl5 wkl6

DS (Throughput) 2K 7K 12K 17K 22K 27K
RS (Connections) 1 6 15 30 60 -
WS (Clients) 20 50 100 200 300 350

TABLE III: Representative profiled metrics

Linux perf

IPS instructions per second
ctx context switches
tpd retiring retire bound from top-down analysis
tpd fe bound Top-down analysis, frontend bound
page faults page faults per second

turbostat

avg mhz average CPU frequency
busy% % of time the core is active
coretmp core temperature
pkgtmp pakage temperature
pkgwatt watts consumed by the pakage

libvirt

rx bytes received network bytes
tx bytes sent network bytes
rd bytes read bytes from block device
wr bytes write bytes to block device
flush number of flush operations

B. Benchmarks

To comprehensively evaluate the system performance and
align with the cloud scenarios investigated in this study, we
have selected a range of representative cloud benchmarks.
These benchmarks can be summarized as follows:

Data Serving (DS): The Data Serving benchmark, from
CloudSuite [7], is based on Yahoo! Cloud Serving Benchmark
(YCSB). This benchmark leverages YCSB to load and stress
Cassandra, a widely used NoSQL database. This mimics the
behavior of a representative database system in the cloud.

Redis (RS): Redis [29], an open-source in-memory data
structure store system, serves multiple roles as a database,
cache, message broker, and streaming engine. We employ
the Redis benchmark utility, which came along with the
Redis installation, to simulate the execution of commands by
multiple clients concurrently generating queries.

Web Search (WS): The Web Search benchmark from
CloudSuite [7] relies on the Apache Solr search engine
framework. It emulates real-world clients sending requests to
the index server, which maintains indexes of text and fields
extracted from crawled websites.

In this work, we carefully selected the workload to compre-
hensively stress the system across a broad spectrum, ranging
from low to high workloads that exceed the system’s capac-
ity. Following this rule, the specific workload levels for the
benchmarks are detailed in Table II.

C. Profiling Metrics

We employ a combination of Linux perf, turbostat, and
the libvirt API to gather and monitor server and application

metrics. We sample a total of 73 metrics per second. Rep-
resentative examples are included in Table III. For instance,
one of the evaluation metrics used in this work is the CPU’s
energy consumption, which is obtained by integrating the
total watts consumed by the package (pkgwatt) during the
application’s execution time. Additionally, temperature, an-
other important metric, is determined by using the package
temperature (pkgtmp) while the application is in operation.

D. Comparison Methods

In our study, we examine six state-of-the-art governors in
the Linux kernel [5], each with distinct behaviors:

powersave: This governor consistently operates the CPU at
its minimum frequency, prioritizing power consumption and
operating temperature over performance.

performance: In contrast to powersave, this governor runs
the CPU with the maximum frequency, aiming for perfor-
mance.

ondemand: This dynamic governor adjusts the frequency
based on the current CPU load, it rapidly scales to the highest
frequency and reduces it as idle time increases, balancing both
performance and energy efficiency.

conservative: Similarly to ondemand in its dynamic scaling
based on CPU load, the conservative governor, however,
increases frequency more gradually, offering a more cautious
approach to frequency scaling.

schedutil: Utilizing the per-entity load tracking (PELT)
mechanism, this scheduler-driven governor aligns CPU fre-
quency with the Linux kernel scheduler’s demands, often
considered an advanced replacement for the ondemand and
conservative governors. This governor is loaded by default
for Linux 4.9.5.

intel: The internal scaling governor for Intel CPUs when
using the intel pstate driver. It is similar to schedutil. However,
it has the highest priority and is default loaded in servers
with Intel CPUs. Therefore, we consider this governor as the
baseline comparison method.

V. EXPERIMENTAL RESULTS

The results of this study are described in four subsections.
First, we introduce the effectiveness of the best frequency-
workload pairs for different applications and workloads. Sec-
ond, we evaluate the proposed LSTM-based technique for
accurate and earlier workload detection. The following sec-
tion assesses the proposed techniques, considering multiple
aspects, including frequency, power consumption, temperature,
and overall system performance. Lastly, we show that GreenD-
VFS is effective not only with known (trained) workloads,
but also with unknown workloads that have not been seen or
trained with previously.

A. DVFS Impact Analysis and Optimal Frequency-Workload
Pairs

In the initial phase of our study, we performed an ex-
tensive profiling of applications under different workloads
and frequencies. Our profiling efforts focus on assessing



(a) Data Serving (b) Redis (c) Web Search

Fig. 6: Normalized L(f) values for three applications with dynamic workload configurations. The best frequency-workload
pairs for each application are illustrated as a black dotted line with circle markers, in each subfigure. The DVFS decision of
the intel governor is illustrated in the red line with triangle markers.

performance metrics such as application performance, server
temperature, and power consumption. Subsequently, we collect
the profiling data and feed them into our proposed optimizer,
denoted as L(f) in Eq. 1. Fig. 6 illustrates the 3D L(f)
plot for three different applications, where the X and Y
axes represent workload and frequency, respectively, while
the Z-axis indicates the normalized value of the loss func-
tion L(f). The coefficient factors, specifically α, β, and γ,
are set to 0.5, 0.3, and 0.2, respectively. These values are
chosen through a heuristic approach to optimize application
performance while reducing energy consumption and server
operation temperature. Adjusting these parameters can result
in varied optimization outcomes. For instance, decreasing the
value of α while increasing the value of β and γ may lead
to greater power and temperature reduction, however, at the
expense of the application’s performance level. The objective
of this analysis is to maximize L(f), thereby identifying the
optimal frequencies for different workloads. We present the
best frequency-workload pairs using black dashed lines with
circles. The red line with triangle markers represents the DVFS
decision from the intel governor, which demonstrates that the
intel governor falls short in selecting optimal frequency in
most cases.

Fig. 6 also provides valuable insights into the diverse
characteristics of the different applications. For instance, in
the case of Data Serving (Fig. 6(a)), higher frequencies are re-
quired as the workload increases. In contrast, Redis (Fig. 6(b))
consistently demands a stable CPU frequency to maintain
its operations. The behavior of the Web Search application
(Fig. 6(c)) is particularly complicated. When the workload is
low, a higher frequency is optimal. However, as the workload
increases, the optimal frequency initially decreases before
again rising. This peculiar behavior can be explained by
considering the P and C states of the CPU [30]. In scenarios
of low workload and sparse requests, the CPU can operate at a
higher frequency to complete tasks quickly and then transition
into a longer power-saving sleep mode. As the workload
increases, it becomes more efficient to maintain the CPU
at a moderate frequency instead of frequently transitioning
between active and sleep modes. Finally, when the workload
reaches high levels, increasing the CPU frequency to meet the
expected demands becomes necessary.

TABLE IV: Results of earlier workload detection

App MisPre. (#) Accuracy (%)

Data Serving 16.3 94.1
Redis 4.2 97.7
Web Search 30.0 90.0

B. Evaluation of LSTM-Based Workload Detection

In this work, we train the LSTM model using 80% of the
profiling data, allocate the remaining 20% for the test set.
Fig. 7 illustrates the effectiveness of LSTM trained for each
application in three distinct workloads, namely light, medium
and heavy workloads.

More specifically, Fig. 7(a) demonstrates the behavior of
our proposed LSTM-based method during the execution of
the Data Serving under a light workload (wkl1). Within a
few seconds, our LSTM-based approach provides accurate
and consistent workload detection results, offering precise
guidance for DVFS actions. When the workload reaches its
maximum level (wkl6), the LSTM model still maintains its
accuracy from the beginning. A similar trend is observed for
the Redis, as depicted in Figs. 7(d-f).

In the case of Data Serving, at medium workload level
(wkl3 in Fig. 7(b)), the LSTM occasionally predicts either
wkl3 or wkl4 before converging to wkl3. This behavior arises
because wkl3 and wkl4 initially exhibit similar characteristics,
which requires additional data to decisively determine the
actual workload, whether it is wkl3 or wkl4. This similarity
in behavior is also observed in the Web Search. In the initial
phase of this application, different workloads often display
similar behaviors for initialization, making workload detection
more challenging. However, it is important to note that the
impact of such mispredictions between similar workload levels
is demonstrated to be negligible in the subsequent overall
results comparison section. The reason is that if two workloads
share similar behavior within the same time slot, the same
frequency level also optimizes for both during that time.

In different applications, we calculated the average number
of mispredictions generated by our earlier workload detection
method and collected the results in Table IV. In summary,
our proposed method exhibits an average of fewer than 30
mispredictions, accounting for less than 10% of the total pre-
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Fig. 7: The proposed LSTM-based method demonstrates effective workload detection across multiple application and workload
scenarios, offering both accuracy and consistency in earlier workload detection.

dictions. Consequently, the accuracy of our workload detection
consistently surpasses 90% for all applications.

C. Overall Evaluation of GreenDVFS

In this section, we evaluate the proposed GreenDVFS ap-
proach. These evaluation results are derived from the inter-
action among the various techniques proposed in this study,
including the best frequency-workload pairs, the LSTM-based
workload detection, and the collective impact of the workload-
driven DVFS method. To facilitate the comparison, we first
compare the proposed method with the baseline intel scaling
governor across various aspects, as illustrated in Fig. 8.
Subsequently, we present a comprehensive comparison with
other Linux scaling governors in Table V.

In the case of Data Serving (Figs. 8(a)-(c)), intel consistently
operates the CPU at the highest frequency level, leading
to unnecessary high power consumption and temperatures.
On the contrary, the proposed method adjusts the DVFS
level according to workload detection results, offering a more
adaptive and efficient control strategy.

In the context of Redis (from Figs. 8(d)-(f)), intel fre-
quently fluctuates the CPU frequency, resulting in less stable
performance. Conversely, our proposed method adapts the
DVFS level based on workload detection results, ensuring a
more consistent and reliable control approach. Therefore, the
proposed method achieves both lower power consumption and
operational temperature.

When it comes to Web Search (from Figs. 8(g)-(i)), our
proposed method exhibits flexible adaptability in handling
complex workload scenarios, enabling it to select the optimal
DVFS level for the application under different workload levels,
i.e., higher frequency for both light and heavy workloads,
lower frequency for medium workload. In contrast, intel fails
to provide such tailored optimization.

Moreover, the proposed workload-driven method offers a
significant advantage in enhancing the energy efficiency of

cloud servers without sacrificing application performance. This
is evidenced by the comparative analysis detailed in Ta-
ble V, which includes the proposed method and the other five
Linux scaling governors: powersave, ondemand, conservative,
schedutil, and performance. The improvement (%) of each
different scaling governor is compared against the default intel
governor of our test server.

In terms of performance, as expected, the powersave gov-
ernor can lead to a significant performance degradation, up to
156%, while the performance governor can enhance perfor-
mance by up to 4.9% compared to intel. The other governors
exhibit similar trends, but do not exceed the performance of
the intel governor. In contrast. the proposed workload-driven
DVFS technique consistently outperforms the intel governor
thanks to its ability to find the optimal frequency point for
the application. Regarding power consumption, powersave has
the lowest consumption, with reductions of up to 22.8%. Close
behind is our proposed method, which can reduce power usage
by up to 16.7%.

The energy metric, which represents the cumulative power
consumption over time, reveals that powersave can unexpect-
edly increase energy usage by over 65.9% due to extended
CPU run times at slower speeds. Consequently, the powersave
governor does not necessarily translate to energy savings. On
the contrary, the performance governor shows little energy
savings in certain scenarios by completing tasks more quickly,
allowing the CPU to enter a low-power state earlier. However,
our proposed method stands out as the best, demonstrating
substantial CPU energy savings of up to 18.3% due to the
optimized DVFS action.

Temperature control is another forte of the proposed
method. By implementing more steady control and power
reduction strategies, GreenDVFS can maintain temperatures
up to 30% lower than the default intel governor.

In conclusion, the proposed method not only preserves ap-
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Fig. 8: The comparison between the proposed workload-driven DVFS (in blue line with circle markers) and the default Linux
intel scaling governor (in orange line with triangle markers) reveals advantages of the proposed method across various aspects.

plication performance, but also significantly improves energy
efficiency and lowers operating temperatures compared to ex-
isting Linux scaling governors. This demonstrates its potential
to operate servers in a more sustainable and environmentally
friendly manner.

D. Evaluation of GreenDVFS on Unknown Workloads

The analysis presented so far has been conducted using
known workloads of the application, which has been seen by
the LSTM and the proposed method. However, in real-world
scenarios, the application may encounter workloads that the
LSTM has not been trained to handle. In this context, we
investigate the LSTM’s performance in scenarios involving
unknown workloads in this section. The configurations for
these unknown workloads are outlined in Table VI. Our
approach involved selecting application workloads that are not

included in the LSTM’s training set. As a result, the unknown
workload levels vary considerably from those listed in Table II.

Thanks to the proposed LSTM-based workload detection’s
ability to output the probability distributions of possible
workload levels. It classifies unknown workloads as similar
to known and trained workload levels. Then, the proposed
workload-driven DVFS technique calculates the optimal fre-
quency, taking into account these probability distributions for
unknown workloads. As a result, GreenDVFS demonstrates
remarkable robustness when faced with untrained workload.

The final experimental results demonstrate the advantages
of the proposed method compared to the intel governor are
illustrated in Fig. 9. In summary, it takes optimal DVFS actions
for unknown workloads to improve energy efficiency by up to
19% and lower operating temperature by up to 35% without



TABLE V: Improvements (%) of different scaling governors against intel

Method powersave ondemand conservative schedutil performance proposed

App. WS RS DS WS RS DS WS RS DS WS RS DS WS RS DS WS RS DS

Perf -156.4 -70.5 -38.5 0.3 -3.6 0.0 -1.1 -6.9 0.0 -0.5 -3.5 0.1 0.9 4.9 -0.1 0.9 1.3 1.3
Power 7.9 15.6 22.8 -0.4 4.0 0.4 0.0 3.2 0.0 -3.0 1.0 0.1 1.6 -1.6 -0.1 3.6 5.2 16.7
Energy -42.1 -65.9 -24.5 0.0 0.1 0.4 -1.0 -4.0 0.0 -3.3 -2.6 0.2 2.5 3.2 -0.3 4.6 6.5 18.3
Temp 21.6 18.2 32.4 0.7 4.5 0.0 5.4 3.3 -0.1 1.8 1.1 0.0 0.9 -3.8 -1.1 12.9 12.0 30.1

TABLE VI: Unknown workloads setting for different applica-
tions

wklu1 wklu2 wklu3 wklu4 wklu5 wklu6

DS (Throughput) 4.5K 9.5K 10K 14.5K 19.5K 24.5K
RS (Connections) 3 10 20 25 42 -
WS (Clients) 35 75 125 150 250 325
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Fig. 9: The improvements of proposed workload-driven DVFS
over the intel governor when facing with unknown and un-
trained workloads.

compromising application’s performance.

VI. CONCLUSIONS

With the absence of process and application’s real demands
information, existing Linux scaling governors need to use in-
accurate CPU load information for frequency scaling, leading
to non-optimal DVFS actions. To address this challenge, in
this work, we have proposed an LSTM-based, time series,
workload-driven DVFS methodology, called GreenDVFS. Our
approach has been designed to detect the runtime workload
characteristics with high accuracy, thus facilitating the selec-
tion of an optimal runtime frequency. This enables us to boost
energy efficiency and reduce the operational temperature for
cloud servers and applications.

Our experimental results indicate that by incorporating
detailed application profiling and real-time workload detection,
we have achieved energy savings of up to 18% and reduction
in operational temperature of 30% without compromising the
performance of the applications. We believe that this proposed
methodology demonstrates a way for more eco-friendly and
sustainable cloud server and application management prac-
tices, contributing to the broader goal of fostering a more
sustainable society.
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