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ABSTRACT

Over the past years, image generation and manipulation have
achieved remarkable progress due to the rapid development
of generative AI based on deep learning. Recent studies have
devoted significant efforts to address the problem of face im-
age manipulation caused by deepfake techniques. However,
the problem of detecting purely synthesized face images has
been explored to a lesser extent. In particular, the recent pop-
ular Diffusion Models (DMs) have shown remarkable success
in image synthesis. Existing detectors struggle to generalize
between synthesized images created by different generative
models. In this work, a comprehensive benchmark includ-
ing human face images produced by Generative Adversarial
Networks (GANs) and a variety of DMs has been established
to evaluate both the generalization ability and robustness of
state-of-the-art detectors. Then, the forgery traces introduced
by different generative models have been analyzed in the fre-
quency domain to draw various insights. The paper further
demonstrates that a detector trained with frequency represen-
tation can generalize well to other unseen generative models.

Index Terms— Synthetic face image, detection, GANs,
diffusion models, frequency analysis

1. INTRODUCTION

In recent years, rapid advances have been made in image ma-
nipulation and synthesis techniques, such as generative adver-
sarial networks (GANs) [1, 2, 3, 4, 5] and variational autoen-
coders (VAE) [6]. In practice, these deep learning-based tech-
niques facilitate the creation of counterfeit images or video by
manipulating the face of a person, which refers to the popular
term “Deepfake”. The generated human face images are of-
ten too realistic to be distinguished by human observers, rais-
ing social trust concerns due to their potential exploitation for
malicious purposes. Consequently, considerable efforts have
been dedicated to detecting face manipulations and promising
progress has been demonstrated [7, 8, 9].

Nevertheless, another source of deepfake, i.e. entire face
synthesis, has not received adequate attention so far. Various
GAN-based models [1, 4, 5] have been designed to create face
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Fig. 1: Realistic synthetic human face images generated
by ProGAN [1], StyleGAN2 [4], DDPM [10], DDIM [11],
PNDM [12], and LDM [13] respectively.

images that do not exist in the world and produce surprisingly
realistic results. More recently, the surge of Diffusion Mod-
els (DMs) has started a new paradigm in photorealistic image
synthesis and an increasing number of researchers have been
using them to further improve the quality of produced results.
With a publicly available model in the open-source commu-
nity, one can easily create tons of fake human face images
with little effort. Although this type of deepfake holds poten-
tial utility for applications such as video game character mod-
eling, it can also be abused to create fake profiles for fraud or
assist in spreading misinformation. Due to the diversity of
different generative models, it remains a big challenge to de-
velop a universal detection method that can identify synthetic
face images created by arbitrary models.

Fortunately, a growing number of detection methods [14,
15, 16, 17, 18, 19, 20] have been developed for purely AI-
synthesized images. Some rely on simple training of convolu-
tional neural network (CNN) classifiers with various data pre-
processing or augmentation strategies [14, 18], while others
exploit specific fingerprints left by the generation techniques
[15, 16, 20]. Despite these advances, several concerns still
persist in current studies. First, most of the detection methods
only focus on images produced by a specific type of gener-
ative model. The generalization ability of such detectors to



images created by different GAN models or recent diffusion
models is not sufficiently studied. Although recent studies
[21, 22] have made preliminary progress in the right direc-
tion, their focus has predominantly centered on general cate-
gories of synthetic images with rich contextual information,
such as bedrooms, outdoor churches, etc. This brings a sec-
ond concern, i.e. whether detectors for generic fake images
can perform well for synthetic human face images. Third,
the resistance of a detector against common image perturba-
tions, particularly on DM-generated face images, remains un-
explored.

This paper addresses the challenges in detecting entirely
AI-synthesized human face images. The primary contribu-
tion lies in the establishment of a new benchmark for this task,
achieved by systematically generating a substantial volume of
synthetic human face images using seven popular generative
models. Subsequently, the generalization ability and robust-
ness of various learning-based detectors have been evaluated
with the benchmark. The paper also aims to draw new in-
sights for developing more generalizable detectors. To that
end, a frequency domain analysis on the synthetic face images
is carried out, examining the deviation of their spectra from
that of real images. Consequently, our experimental results
demonstrate that training a learning-based detector using fre-
quency representations yields outstanding performance and
generalization ability in the benchmark.

2. RELATED WORK

2.1. Generative Models for Image Synthesis

Generative adversarial networks (GANs) have long stood as
the prevailing approach for numerous image synthesis tasks.
In general, a GAN [23] is trained through a competing game
between two models, i.e., a generator and a discriminator. The
generator aims to fool the discriminator by producing images
resembling those in the training data, while the latter seeks
to distinguish between real and generated images. In prac-
tice, some GAN models [1, 3] take noise as input and are
able to generate high-resolution images with good perceptual
quality, while others [2, 24] are conditioned on additional in-
formation, such as a semantic map or another image, often
employed for translation between two images. This paper
focuses on unconditional face image generation and adopts
three GAN models that are pre-trained on high-quality face
image datasets, namely ProGAN [1], StyleGAN2 [4], and
VQGAN [5].

More recently, initially inspired by non-equilibrium ther-
modynamics [25], diffusion models have become a new
paradigm for image generation. Ho et al. [10] proposed de-
noising diffusion probability models (DDPM) and showed an
impressive ability in image synthesis in comparison to GAN-
based counterparts. Song et al. [11] explored the use of the
denoising diffusion implicit model (DDIM) to improve sam-

pling speed while maintaining good image quality. ADM [26]
introduced a more effective architecture incorporating classi-
fier guidance and demonstrated superior performance when
compared to GANs. Liu et al. [12] proposed PNDM and fur-
ther enhanced the sampling efficiency and generation quality.
A later work LDM [13] integrated text and image inputs in
latent space via a cross-attention mechanism. When these dif-
fusion models are trained on large-scale human face datasets,
they are capable of generating realistic and high-quality face
images. This paper includes four diffusion models in the
benchmark, namely DDPM, DDIM, PNDM, and LDM.

2.2. Detection of AI-Synthesized Images

The need for fake image detectors has existed ever since
the appearance of various generative models. Some detec-
tion methods leveraged hand-crafted features, such as color
cues [27], saturation cues [28], blending artifacts [29], and
gradients [20], while other studies relied on CNN-based
classifiers to detect fake images. Several researchers have
leveraged various advanced neural network architectures as
primary solutions. For example, Rössler et al. [7] retrained
XceptionNet [30] with a large-scale deepfake dataset. Coz-
zolino et al. [31] learned a forensic embedding through an
autoencoder-based architecture to distinguish between real
and fake images and performed well on StyleGAN-generated
images. Marra et al. [32] tested multiple CNN-based archi-
tectures for detecting GAN-generated images.

However, most of the detection methods above only show
good performance when the fake images share the same dis-
tribution as the training data. This is why, more attention has
been recently devoted to the detector’s generalization ability.
Wang et al. [14] proposed to train a basic detection network
with data preprocessed by JPEG compression and Gaussian
Blur, and surprisingly generalized well on other unseen GAN-
generated images. Grag et al. [33] improved based on [14] by
updating the network architecture. Shiohara et al. [8] fine-
tuned a pre-trained EfficientNetB4 [34] to detect blending
boundary artifacts and achieved promising results in cross-
data evaluation on several deepfake benchmarks. Mandelli
et al. [18] leveraged an ensemble of multiple EfficientNetB4
that were trained under different conditions and achieved the
state-of-the-art.

An increasing number of studies have been carried out to
counteract the emerging realistic fake images created by dif-
fusion models. DIRE [35] developed an effective method to
detect DM-generated images by reconstructing an input im-
age through a pre-trained diffusion model. Lorenz et al. [36]
exhibited the superiority of multi-local intrinsic dimension-
ality in diffusion detection. Ojha [19] proposed a universal
fake image detector by leveraging a pre-trained large vision-
language model and achieved excellent generalization ability
across GAN and DM-based fake images.



Table 1: Generative models used in this work, including three
GAN models and four diffusion models. The quality of a face
dataset produced by each model is reported with FID scores.
10k images are randomly sampled for each model to calculate
FID score. A lower FID refers to higher quality.

Model Family Method Publication FID

GANs
ProGAN Karras et al. (2018) [1] 12.39

StyleGAN2 Karras et al. (2019) [4] 15.17
VQGAN Esser et al. (2021) [5] 12.99

DMs

DDPM Ho et al. (2020) [10] 16.64
DDIM Song et al. (2020) [11] 14.36
PNDM Liu et al. (2022) [12] 13.97
LDM Rombach et al.(2022) [13] 7.28

3. DETECTION BENCHMARK FOR SYNTHETIC
HUMAN FACE IMAGES

This paper contributes a comprehensive benchmark for syn-
thetic face image detection. This section first introduces the
collected dataset along with the detectors incorporated into
the benchmark. Then, two major objectives of the bench-
mark, i.e., evaluating the generalizability and robustness of
a detector, and how to achieve them are elaborated.

3.1. A Dataset of Synthetic Face Images

This work first collects a dataset that comprises real images
from the CelebA-HQ [1] dataset and synthetic human face
images created by seven cutting-edge generative models. As
shown in Table 1, the fake face images are synthesized by
GANs, including ProGAN [1], StyleGAN2 [4], and VQGAN
[5], and DMs, including DDPM [10], DDIM [11], PNDM
[12], and LDM [13]. For LDM, the unconditional mode is
employed because bimodal inputs (e.g. incorporating texts)
will result in unnatural face images. More specifically, Style-
GAN2 is pre-trained on the FFHQ [3] dataset and all other
models are pre-trained on CelebA-HQ [1] dataset. The default
resolution for the entire dataset is set to 256×256 because it is
the most common output size among the selected generative
models. Higher-resolution images generated by certain mod-
els are downscaled to 256×256 using bilinear interpolation.
Under these settings, all models are capable of generating re-
alistic human face images, see examples in Figure 1. The
Fréchet inception distances (FID) reported in Table 1 further
show that all models produce images of comparable quality.

For each generation technique, 40k images are collected
in total and they are by default split into 38k, 1k, and 1k for
training, validation, and testing purposes.

3.2. Detectors

Several learning-based methods for synthetic image detection
are selected for experiments in the benchmark. All meth-

ods report satisfactory performance in prior studies on gen-
eral fake image detection tasks. However, their performance
specifically concerning synthetic human face images, their
adaptability to DM-generated images, and their robustness
against common perturbations have not been investigated un-
til this paper. The selected detectors are outlined as follows.

Wang2020 [14] employed a ResNet-50 architecture and
trained with JPEG compression and Gaussian blurring as aug-
mentation, obtaining fair generalization ability among GAN-
synthesized images. Grag2021 [33] built upon this approach
by further exploring different variations of ResNet-50 to en-
hance performance in real-world scenarios. Mandelli2022
[18] used an ensemble of five orthogonal EfficientNetB4 [34]
networks to detect fake images. Each model was trained on
different datasets created by various GAN models and aug-
mented using different techniques. This strategy significantly
improved the overall performance and generalization ability.
Ojha2023 [19] leveraged a large pre-trained vision-language
model and exhibited exceptional generalization ability in de-
tecting fake images across a variety of generative models.

3.3. Generalizability

One of the main objectives of the proposed benchmark is to
assess the generalization ability of a detector in the presence
of synthetic human face images. This can be interpreted in
one of the following two ways: (i) whether a detector trained
with other categories of fake images can effectively gener-
alize to synthetic human face images; (ii) whether a detec-
tor trained on images created by a specific generative model
can still obtain satisfactory performance on unseen GANs and
DMs. To address the first way, this work employs open-
source detection methods pre-trained on various categories of
synthetic images, such as bridge, church, etc., sourced from
the LSUN dataset [37]. They are directly evaluated by the
synthetic face images from the benchmark. For the latter,
training data is selected from one GAN model and one diffu-
sion model in the benchmark and used to train detectors from
scratch. Then, they are tested using the out-of-distribution
fake face images synthesized by other GANs and DMs.

3.4. Robustness against Image Perturbation

Synthetic face images often undergo various processing op-
erations before dissemination, such as compression, resizing,
etc. Therefore, in addition to the generalization ability, the
proposed benchmark further measures the robustness of de-
tectors against common image perturbations. Specifically, the
impact of the following perturbations is analyzed:

• JPEG compression is performed and the impact of differ-
ent quality factors are measured individually, i.e., {10, 20,
. . . , 90}.

• Blurry effect is applied via a Gaussian Blur kernel. The
kernel size is selected from {3, 5, . . . , 15}.



Fig. 2: Mean frequency spectra of real images from CelebA-HQ [1] and synthetic human face images created by three GAN
models, namely ProGAN [1], StyleGAN2 [4], and VQGAN [5].

Fig. 3: Mean frequency spectra of real images from CelebA-HQ [1] and synthetic human face images created by four diffusion
models, namely DDPM [10], DDIM [11], PNDM [12], and LDM [13].

• Gaussian noise with zero mean is added and the standard
deviation is selected from {5, 10, . . . , 30}.

• Resizing operation is employed by first downsampling the
image to lower resolutions by a scale of {2, 4, . . . , 12},
with bicubic interpolation and then upscaling to 256×256.

Notably, only one type of perturbation of a fixed intensity is
applied to the entire test set in each evaluation to avoid ran-
domness.

4. FREQUENCY ARTIFACTS ANALYSIS

As the generation tools become more advanced, their results
become indistinguishable from real images when observed by
human subjects in the spatial domain and even some CNN-
based detectors. Studies [38, 14, 21, 22] have identified char-
acteristic fingerprints present in GAN-generated images via
frequency analysis and observed grid-like artifacts in general
categories of synthetic images.

This section analyzes forgery traces in the frequency do-
main, particularly for synthetic human face images created by
various generative models. As suggested by prior work [14],
each image is first converted to gray-scale by averaging over
color channels and then high-pass filtered by subtracting
a median-filtered version of itself. Subsequently, the Fast
Fourier Transform (FFT) is applied to the processed image
to extract the frequency spectrum, with magnitude values
log-scaled for better visualization. Figure 2 and 3 depict the

average frequency spectrum of 1,000 images randomly sam-
pled from the real CelebA-HQ dataset and seven fake face
image datasets created generative models listed in Table 1.

As shown in Figure 2, the common grid-like artifacts
found in previous studies [14, 38] are notably absent in our
GAN-generated face datasets. However, datasets created
by ProGAN and VQGAN exhibit numerous high-frequency
noises. The more advanced StyleGAN2 contains relatively
fewer such artifacts but remains distinguishable from real
image spectra. On the other hand, Figure 3 shows that the
FFT spectra of DM-created face images closely resemble
the real spectrum, except for LDM which contains both
high-frequency noise and grid-form artifacts. While images
produced by DDPM, DDIM, and PNDM exhibit fewer visible
artifacts in the frequency domain, they tend to have higher
spectra density and contain low-frequency artifacts along the
vertical and horizontal impulse sequence, deviating from that
of real image spectra.

Observing notable discrepancies between real and syn-
thetic face images in their frequency representations, this pa-
per further explores the potential utility of these differences
in training a more generic detector that can identify fake face
images generated by various GANs and DMs. Specifically,
the detection task is framed as a binary classification process
and three basic classification networks are selected, namely
ResNet-50 [39], XceptionNet [30], and EfficientNetB4 [34].
These networks are trained with only frequency representa-



Table 2: Detection performance of four pre-trained detectors. The weights released by the original authors are utilized.

AUC/AP (%)
GANs DMs

Average
ProGAN StyleGAN2 VQGAN DDIM DDPM PNDM LDM

Wang2020 [14] 78.31/78.09 88.39/88.34 79.80/79.84 74.51/70.94 65.09/60.58 76.38/73.40 77.10/76.51 77.08/75.39
Grag2021 [33] 99.96/99.96 99.27/99.29 99.32/99.35 68.85/62.45 59.22/52.93 66.82/61.84 99.67/99.69 84.73/82.22

Mandelli2022 [18] 100.00/100.00 100.00/100.00 99.43/99.36 99.99/99.99 97.87/97.70 98.16/98.02 98.76/99.00 99.17/99.15
Ojha2023 [19] 96.38/96.52 73.24/69.57 96.20/96.27 97.78/97.97 93.31/93.57 96.37/96.55 98.18/98.19 93.42/92.66

Table 3: Generalization analysis of various detection techniques. All methods are trained on face images generated by ProGAN
and DDIM, and tested on images created by all seven generative models. To distinguish from prior experiments, ∗ here refers
to the retrained version of Wang2020 and Ojha2023 using our training set. The best result is denoted by underscore.

AUC/AP (%)
GANs DMs

AverageProGAN StyleGAN2 VQGAN DDIM DDPM PNDM LDM

ResNet-50 100.00/100.00 52.95/50.52 100.00/100.00 61.60/61.07 73.32/71.25 60.02/60.93 37.97/43.86 69.41/69.66
XceptionNet 100.00/100.00 57.65/57.21 100.00/100.00 53.59/59.16 52.26/51.30 57.51/59.16 39.94/44.65 65.85/67.35

EfficientNetB4 100.00/100.00 52.26/50.70 100.00/99.99 77.69/78.22 71.20/70.91 81.46/81.83 61.19/62.42 77.69/77.72
Wang2020∗ [14] 100.00/100.00 52.41/52.98 100.00/100.00 90.28/90.34 85.17/84.42 86.97/87.27 64.77/65.52 82.80/82.93
Ojha2023∗ [19] 99.97/99.97 94.80/94.58 99.97/99.97 99.72/99.74 98.60/98.68 99.56/99.58 99.94/99.94 98.94/98.92

ResNet-50+FreqSpec 99.79/99.78 93.60/92.96 99.84/99.83 98.38/98.37 98.77/98.59 99.30/99.43 99.55/99.49 98.46/98.35
XceptionNet+FreqSpec 99.45/99.53 95.26/95.03 99.64/99.66 99.24/99.16 99.03/98.89 99.66/99.71 99.64/99.66 98.85/98.81

EfficientNetB4+FreqSpec 99.87/99.89 98.72/98.68 99.95/99.95 99.53/99.53 99.54/99.53 99.97/99.97 99.94/99.94 99.65/99.64

tions of both real and synthetic face images. Further details
about experimental setups and results are presented in the next
section.

5. DETECTION PERFORMANCE

5.1. Experimental Setup

Experiments are structured into three phases. In phase
one, four popular detection methods are first evaluated on
our benchmark, namely Wang2020 [14], Grag2021 [33],
Ojha2023 [19], Mandelli2022 [18]. The pre-trained weights
directly released by the authors are used. The former three
detectors were originally trained on general categories of
synthetic images sourced from the LSUN dataset [37], while
the latter was trained on a synthetic face dataset [40] for com-
parative analysis. The four detectors are tested with all seven
test sets provided by the benchmark.

In the second phase, Wang2020 and Ojha2023 are se-
lected to evaluate their generalization ability across vari-
ous generative models. Additionally, three CNN classifiers
(ResNet-50, XceptionNet, EfficientNetB4) and their counter-
parts trained with frequency representations are also evalu-
ated under the same setting. In detail, all the detectors are
trained on real images sourced from CelebA-HQ, and fake
images created by one GAN model (ProGAN) and one diffu-
sion model (DDIM). The number of real images is upsampled
accordingly to ensure a balanced training set. Then, tests are
performed under the same configuration as in phase one.

In phase three, the robustness of detectors against four
common image perturbations is assessed. The evaluation in-

volves four pre-trained detectors from phase one, tested on
distorted face images generated by ProGAN and DDIM. Fur-
thermore, Wang2020 and Ojha2023 retrained on the corre-
sponding training set are also incorporated and tested under
the same conditions.

5.2. Evaluation Metrics

Following previous work about synthetic image detection and
benchmarking, the average precision (AP) and Area Under
Receiver Operating Characteristic Curve (AUC) scores are
used to evaluate the detectors.

5.3. Experimental Results

This section presents the results of the three-phase evalua-
tion. First of all, the performance of four pre-trained de-
tectors is reported in Table 2. Wang2020 shows poor per-
formance on both GAN and DM-generated face images, al-
though in previous study it reported fair adaptability among
general categories of fake images. Grag2021 is able to gen-
eralize among face images created by different GAN mod-
els but fails to achieve good performance on three diffusion
models, i.e., DDPM, DDIM, and PNDM. Ojha2023 demon-
strates good transferability across face images synthesized by
most GANs and DMs, except for StyleGAN2. In compar-
ison, the Mandelli2022 detector that has been trained on a
GAN-created face dataset shows exceptional performance in
our benchmark. To sum up, detectors only trained on general
fake images struggle to adapt to synthetic face images.
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(a) Evaluation performance on test set created by ProGAN.
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(b) Evaluation performance on test set created by DDIM.

Fig. 4: Performance of various detectors under the perturbation of JPEG compression, Gaussian blur, Gaussian noise, and
resizing operation (from left to right). The evaluation is conducted on two test sets created by ProGAN and DDIM respectively.

Secondly, Table 3 summarizes detectors’ performance
after being trained with fake face images from the bench-
mark. As a result, the retrained version of Wang2020 shows
the potential to generalize to images created by VQGAN,
DDPM, and PNDM, yet struggles to adapt to StyleGAN2 and
LDM. Conversely, Ojha2023 achieves nearly flawless detec-
tion across all the GANs and DMs. Notably, after training
with frequency representations of these face images, the three
CNN detectors achieve much better generalization ability
when compared to their counterparts that are directly trained
with RGB images. The combination of EfficientNetB4 and
frequency representation even surpasses the state-of-the-art
performance on certain GAN models and most DMs.

Thirdly, Figure 4 illustrates the robustness of various de-
tectors under four common image perturbations. The four
solid lines represent the performance of the four pre-trained
detectors from phase one. Although both Wang2020 and
Grag2021 incorporate data augmentation techniques, they are
notably affected by compression artifacts and noise. Simi-
larly, the performance of Ojha2023 deteriorates as the per-
turbation intensity increases. Mandelli2022 remains the most
robust among the four, particularly in handling data subjected
to JPEG compression and Gaussian blur effect. However,
its performance inevitably declines in the presence of heavy
noise or low-resolution effects. The two dashed lines addi-
tionally depict the performance of the retrained version of
Wang2020 and Ojha2023 using the training set generated
by ProGAN and DDIM. While the overall evaluation results

improve, Figure 4b reveals that they are not resilient enough
to compression artifacts and low-resolution effects.

6. CONCLUSION

This paper addressed detection of entirely AI-synthesized hu-
man face images. A comprehensive benchmark was devised
to assess fake image detectors in terms of adaptability and ro-
bustness. Results show that detectors only trained on general
categories of fake images have difficulty generalizing to syn-
thetic face images. The generalization across various GANs
and DMs and robustness against perturbations also remain
two important challenges in most detection methods. Fur-
thermore, the paper examined forgery traces of synthetic face
images in the frequency domain and demonstrated that train-
ing a detector with frequency representation can significantly
enhance its performance and generalization ability.
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