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Abstract— Navigation of drones is predominantly based on
sensor fusion algorithms. Most of these algorithms make use
of some form of Bayesian filtering with a majority employing
an Extended Kalman Filter (EKF), wherein inertial measure-
ments are fused with a Global Navigation Satellite System
(GNSS), and other sensors, in a kinematic framework to yield
a navigation solution (position, velocity, attitude, and time).
However, the long-term accuracy of this solution is exacerbated
during the absence of satellite positioning, especially for small
drones with low-cost MEMS inertial sensors. On the other
hand, a recently proposed vehicle dynamic model (VDM)-
based navigation system has shown significant improvement in
positioning accuracy during the absence of a satellite positioning
solution, although in a mostly offline setting. In this article, we
present the software architecture of its real-time implementa-
tion using Robot Operating System (ROS) that separates and
interfaces its core from a particular hardware. The presented
implementation asynchronously handles different sensor data
in a modular fashion and allows i) adapting the underlying
aerodynamic model, ii) including complementary sensors, and
iii) reducing the dimensionality of the EKF state space at run-
time without compromising the navigation performance. The
real-time performance of the proposed software architecture is
evaluated during long GNSS absences of up to eight minutes
and compared to that of inertial coasting.

• Code: https://gitlab.epfl.ch/laupre/vdm_c
• Data: https://zenodo.org/records/10337559

I. INTRODUCTION

Real-time control and navigation of drones are predomi-
nantly carried out by autopilots. Some examples of commer-
cially available open-source autopilots are as follows: Emlid
NAVIO/RPi3, 3D Robotics APM, Ardupilot, Pixhawk, Intel
Aero Compute Board, and Paparazzi Lisa/M among others.
We refer the readers to [1] to review other available options.
These autopilots provide a platform for running a sensor
fusion algorithm in real-time, wherein inertial measurement
units (IMUs) are fused with GNSS (and other sensors such
as magnetometer, Pitot tube, and barometer) in a state-
space framework modeled using rigid body kinematics. The
advantage of this framework is that it is independent of the
choice of operating drone. However, its performance during
a GNSS outage is mainly dictated by the quality of the IMU.
For small drone with MEMS IMUs, position uncertainty after
a minute of GNSS denial rapidly grows beyond practical use.
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Recently, [2], [3] replaced the kinematic modeling with an
aerodynamic model of the drone, thereby engendering a new
sensor fusion framework, whose effectiveness depends on the
choice of the operating drone and the correct representation
of the underlying aerodynamic model parameters. When
properly accounted for, this significantly enhances navigation
accuracy, especially during GNSS outages [2], [4], [5].
Hereafter, we briefly review the existing work and highlight
the key areas that we address in the proposed work.

A. Related works: review and limitations

In the context of GNSS-denied navigation, existing works
such as [6] and [7] have demonstrated positioning im-
provements on multirotor platforms and manned gliders
respectively. However, the challenges posed by fixed-wing
drones necessitate a more systematic approach, as evidenced
in [8], showcasing considerable enhancements in relative
navigation. Typically, relative navigation relies on an EKF for
front-end estimation relative to the local environment, while
a pose graph-based back-end is optimized with additional
constraints from various sensors, such as camera/lidar, to
yield global estimates. Nevertheless, the reliance on sensors
such as a camera introduces challenges, especially in homo-
geneous terrains or foggy/poor-visibility scenarios. Besides,
carrying lidar on small fixed-wing drones weighing less than
3 kg becomes impractical. Meanwhile, our work focuses
on VDM-based systems, navigating without the dependency
on additional sensors, especially in scenarios where envi-
ronmental conditions or payload constraints could hinder
traditional sensor-based systems.

1) Sensor-fusion libraries: Open source software devel-
opment exploits the distributed intelligence of participants in
internet communities and fosters concurrent design/testing of
software modules [9]. Some of the existing software libraries
that provide a framework to develop state estimators can be
found in [10]–[12]. There has also been considerable work
in developing sensor fusion methods using factor graphs
[13], [14]. We take inspiration from [12] in terms of devel-
oping a software architecture for sensor fusion that allows
the development of modular navigation filters and sensor
integration strategies. However, unlike existing sensor-fusion
libraries, we provide a modular framework to incorporate and
exploit the aerodynamic model of the drone. We envisage that
the proposed model-based navigation software architecture
(so-called VDMNav) shall serve as the basis for future
aerodynamically-guided real-time navigation solutions.

2) Offline VDM-based navigation system: The first
loosely-coupled VDM-based navigation system for small
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fixed-wing drones that showed a considerable gain in per-
formance dates back to 2018 [2], yet in a strictly non-real-
time setting. The same holds true for the first tightly-coupled
implementation in 2020 [15]. There have been several other
significant contributions in terms of identifying a priori val-
ues of aerodynamic model parameters [4] and refinement of
these parameters using photogrammetry [16]. However, none
of these aforementioned works were computing a navigation
solution while being airborne. In accordance with [17], the
correctness of a real-time computation relies not solely on
the logical outcome of the computation but also on the time
at which the result is produced. We, therefore, present a real-
time software architecture that supports in-flight computation
of a navigation solution.

3) Dimension-varying state-space: The existing offline
implementation [2], [4], [16], [18] of the VDM-based naviga-
tion system is based on a 47-dimensional state space. How-
ever, while implementing the same, but in real-time, we show
that similar results can be obtained with only 26 states after a
short period of in-flight state estimation. During this period,
we remove a subset of states, causing the state space to
reduce from 47 to 26 in real-time. This leads to a dimension-
varying system and as noted in [19], there are few proper
tools to handle or even model such systems. In [19], the
authors have rigorously introduced the concept of dimension-
varying linear state space and showcased its employment for
applications in control systems using simulations. Herein, we
exploit the idea (not the mathematical contributions), but for
a state-estimator governed by nonlinear dynamics and using
a real-time environment.

B. Contributions

We have developed and experimentally tested an open-
source real-time software, VDMc, that fuses aerodynamics
with sensor measurements. VDMc allows modularity in i)
adapting aerodynamic models for different fixed-wing drones
and ii) integration of sensors. Furthermore, it allows the
reduction of state-dimension at run-time for a conventional
fixed-wing drone, thus lowering the computational burden.

II. VDM BASED NAVIGATION SYSTEM

We (briefly) review the VDM-based navigation system
with the objective of motivating software development. The
presented material is sufficient for general comprehension,
however, for more details, a reader may refer to [2], [15],
[18]. It is assumed that a reader is familiar with the fun-
damentals of Integrated navigation systems and EKF, which
are discussed, for instance, in [20].

A. Notation

Let i, e, l, b denote inertial, Earth Centered Earth
Fixed (ECEF), local-level, and body frames, respectively.
Let rle = [ϕ, λ, h]T be the drone’s position in ellipsoidal
coordinates (latitude, longitude, and height), vl

e ∈ R3 be its
velocity in local level frame, ql

b = [q0, q1, q2, q3]
T be the

attitude representation using quaternions (body frame with
respect to the local level frame), and ωb

ib ∈ R3 be the angular

velocity with respect to inertial frame, expressed in drone’s
own reference frame. In general, ωc

ab represents the angular
velocity of frame b with respect to a, expressed in c. Also,
Rb

a represent a rotation matrix from frame a to frame b; and
Ωc

ab the skew-symmetric matrix of a vector ωc
ab.

B. State dynamics

Most conventional navigation algorithms implement an
EKF to fuse IMU and GNSS measurements. From a software
point of view, EKF performs two major operations, namely,
i) prediction and ii) update. For a VDM-based system, pre-
diction solves the following system of non-linear differential
equations by using Runge-Kutta method [21]:
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ẋA = 0 (6)

Here, ⊗ denotes quaternion product and [· · · ]q denotes
quaternion equivalent of ωb

lb. D−1 denotes a transformation
matrix from Cartesian to curvilinear coordinates, and gl

represents the local gravity field; both of these are a function
of latitude and height. Most importantly, {fb,Mb}, denote
forces and moments and are obtained as a result of the
aerodynamic model (given by Eq. (7) and Eq. (8)). IMU and
GNSS measurements alongside other sensors (for instance a
barometer) are considered external observations, which play
a role in the update phase of the filter.

Additionally, Ib denotes the Inertia tensor, s denotes the
set of actuators - s ∈ {propeller, aileron, elevator, rudder},
as denotes actuator state, us is the commanded actuator
state whereas τs, bs, cs denote actuator parameters. xA =[
xT
p ,x

T
w,x

T
e

]T
; xp denotes aerodynamic model parameters

- later defined in (16), xl
w = [wN , wE , wD]

T denotes wind
velocity in local-level frame, xe ∈ R6 denotes IMU error
states, here limited to biases.

C. Aerodynamic model of fixed-wing drones

Aerodynamic moments and forces are modeled by means
of the following mathematical relations [22]:
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z
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(7)
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The terms denote the following, F b
T : thrust force, Fw

x : drag
force, Fw

y : side force, Fw
z : lift force; M b

x: roll moment, M b
y :



pitch moment and M b
z : yaw moment with α and β denoting

the angle of attack and side-slip. Here,

F b
T = ρn2D4

(
CFT 1 + CFT 2J + CFT 3J

2
)

(9)
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2 + CFxβ2β
2
)

(10)
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Fw
z = q̄S (CFz1 + CFzαα) (12)

M b
x = q̄Sb (CMxaδa+CMxββ+CMxω̃x ω̃x+CMxω̃z ω̃z)

(13)

M b
y = q̄Sc̄
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M b
z = q̄Sb (CMzδrδr + CMzω̃z
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Here Vb =
[
Vx Vy Vz

]
= Rb

l

(
vl
e − xw

)
denotes relative

air velocity and V = ||Vb|| is the airspeed, α = arctan Vz

Vx

and β = arcsin
Vy

V . ρ denotes air density and q̄ = 1
2ρV

2 is
dynamic pressure. b, S, c̄,D are wing span, wing surface,
mean aerodynamic chord, and propeller diameter, respec-
tively. Note that J = V/(Dπn) with n denoting propeller
speed. δa, δe, δr denote aileron, elevator, and rudder deflec-
tions, respectively. The non-dimensional angular velocity is
given by ω̃x = bωx/(2V ), ω̃y = c̄ωy/(2V ), and ω̃z =

bωz/(2V ), where ωb
lb = [ωx ωy ωz]

T . Altogether, the vector
of aerodynamic model parameters is given as follows:

xp =
[
CT

F CT
M

]T
where, (16)

CF = [CFT 1 CFT 2 CFT 3 CFx1 CFxα CFxα2

CFxβ2 CFy1 CFz1 CFzα

]T
CM =

[
CMxa CMxβ CMxω̃x

CMzω̃z
CMy1 CMye

CMyω̃y
CMxα CMzδr CMzω̃z

CMzβ

]T
D. Observation models

The update phase of EKF is based on the observation (or
measurement) models of IMU and GNSS as provided below:

1) IMU:

Zfimu = f b +
(
Ω̇

b

ib +Ωb
ibΩ

b
ib

)
rbbI + bf + ηf (17)

Zωimu = ωb
ib + bω + ηω (18)

where f b is defined by Eq. (8), Ω̇
b

ib is defined by Eq. (4), rbbI
denotes lever arm between IMU and body frame, {bf ,bω}
denote accelerometer and gyroscope bias respectively; ηf

and ηω denote white noise.
2) GNSS:

ZGr = rle +Re
lR

l
br

b
bG + ηr (19)

ZGv = vl
e +

(
Rl

bΩ
b
ib −Ωl

ieR
l
b

)
rbbG + ηv (20)

where rGbG denotes the lever arm between GNSS antenna and
body frame; ηr and ηv denote white noise.

E. State space summary
The full state vector of the VDM-based navigation filter

consists of 47 elements: position (3), velocity (3), attitude
(4, but its linearized version consists of only 3 parameters),
angular velocity (3), aerodynamic model parameters (21),
actuator dynamics (4), wind (3), IMU biases (6).

Fig. 1. Left: Preparation for takeoff of TP2 (top), developed payload
(bottom). Right: Ground control station

III. HARDWARE

We use an in-house developed conventional fixed-wing
drone referred to as TP2- shown in Fig. 1. This platform
has been used in previous research works [2], [4], [5],
[16] but with other GNSS and IMU sensors for offline
navigation. For this work, TP2 hosts a custom payload,
an open-source autopilot (PX4), a communication interface,
and different sensors for the purposes of data acquisition,
control, and navigation. Fig. 2 illustrates a broad overview
of the connections between various hardware components,
with further elaboration provided later in this section.

A. Payload

The payload, shown in Fig. 1, comprises:
1) IMU, namely STIM 318.
2) Sentiboard [23] - a general board for time-tagging the

IMU data in GPS time.
3) On-board computer [24] and other unused components.

B. Other Sensors

1) GNSS receiver: A multi-constellation, multi-frequency
Topcon B125 GNSS receiver, and 3-frequency antenna,
which gathers both code and phase measurements, and
transmits its real-time position and velocity, the pulse-per-
second (PPS), and other messages related to time to the
Sentiboard (thus to the onboard computer) and autopilot.

2) Pitot tube: A hobby-plane compatible Pitot tube and
pressure sensor [25] is mounted on the TP2. The data stream
from this sensor is connected directly to the autopilot.

C. Autopilot

We use an open-source autopilot called PixHawk [26] (v.2)
with a customized PX4 firmware. The firmware modification
enables synchronization between the autopilot and the GNSS
receiver, allowing accurate tagging of all autopilot data,
particularly control commands (CC), with GPS timestamps.
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Fig. 2. General connection between hardware components, where CC:
control commands, PPS: pulse per second, PVT: position velocity time, Rx:
Receiver, QGC: QGroundControl

D. Communication

Two frequencies are utilized for communication with TP2:
1) 433 MHz: communication with a Ground Control Sta-

tion (see Sec. III-E) for issuing commands to introduce
a GNSS outage, and plotting the navigation solution.

2) 2.4 GHz: communication with the operator’s remote
radio to manually change the flight modes of the drone.
This is used especially during take-off and landing.

E. Ground Control Station

The Ground Control Station (GCS), shown in Fig. 1,
comprises a field computer and antennas to maintain duplex
communication with the drone throughout the mission. The
GCS PC uses QGroundControl [27] (QGC) as it provides a
complete flight control and monitoring setup for the linked
autopilot (PX4) via the MAVLink protocol 1. QGC is used
for i) mission planning, ii) sending additional commands to
the drone to introduce a GNSS outage in real-time, and iii)
monitoring the vehicle position by VDM-based and conven-
tional INS/GNSS systems with respect to the reference.

IV. ARCHITECTURE OF MODEL-BASED NAVIGATION
(VDMC)

This section introduces the proposed software architecture,
the so-called VDMc, for fusing drone aerodynamics with
sensor measurements. A schematic of VDMc is presented
in Fig. 3, showcasing five major elements (classes) in blue,
namely i) EKF, ii) VDM - TP2, iii) resource manager, iv)
IMU model, and v) GNSS model. In most general terms,
VDMc receives the sensor data (for example, IMU, GNSS
position, and velocity) and flight control commands (CC)
via ROS topics and yields a navigation solution as the
output (noted as VDMc output in the figure). As VDMc
uses aerodynamic forces/moments that are only experienced
while being airborne, the EKF has to be initialized in the
air [2] and this is done via a conventional sensor fusion
algorithm denoted as Init (GiiNav) in the figure. The IMU,
GNSS, and CC data are managed by the class resource
manager, which places the asynchronously received data and
associated GPS timestamp in a circular buffer. The buffered
data is subsequently processed by a dedicated class that rests
in the resource manager, namely the timer, which ensures

1https://mavlink.io/en/
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Fig. 3. VDMc node

the correct sequence of prediction and update steps by the
EKF. More information on this asynchronous processing of
sensor data is provided in Sec. IV-C. To continue, the im-
plementation of EKF-prediction and -update equations [20]
involve matrix operations, however, the computation of these
matrices depends on the i) process model or state dynamics
- Eq. (1)-(6), ii) observation models - Eq. (17)-(20) and
iii) the Jacobians of the above models, which are altogether
platform-specific. Thus, we have separated the implementa-
tion into i) platform-independent code, for instance, Eq. 1-6
in addition to other prediction and update operations, and
ii) platform-dependent code encapsulated in the VDM-TP2
class that carries the structure of the model (Eq. 7-15).
Furthermore, each sensor that leads to an EKF update is
defined as a class, for instance, IMU model and GNSS model
in the figure. Each such class consists of the code to compute
the Jacobian and other entities as required by the update step.

A. Automated generation of linearized models

We generate C++ code for linearizing the state dynamics
(Eq. (1) to (15)) and observation models (Eq. (17) to (20)), as
required by the EKF in VDMc, via the following steps [28]:

1) Symbolic representation: The state dynamics involving
47 states and the observation models, described by 3
nonlinear equations for GNSS position and velocity
respectively, and 6 nonlinear equations for the IMU are
symbolically written using Mathematica2.

2) Jacobian computation: Analytical partial derivatives (Ja-
cobian) of the state dynamics and observation models
are computed using Mathematica for linearization.

3) Code transformation: The computed models and their
respective Jacobians are transformed into C++ code
using Python and Mathematica.

2https://www.wolfram.com/mathematica/



The C++ code is generated on a PC with an Intel i7 processor
using the above steps; this code is then transferred to the
onboard computer, where it is subsequently compiled.

B. Modular adaptation of aerodynamic models

The implementation uses an aerodynamic model of a
fixed-wing drone (Eq. (9) to (15)) to derive state dynamics,
observation models, and Jacobians. However, different drone
platforms, like delta wings [29], require specific aerodynamic
models due to different actuators, parameters, and func-
tional structures. For instance, delta wings have two control
surfaces as opposed to three on a conventional fixed-wing
drone (see Appendix A). The above Mathematica workflow
handles this by i) employing modular blocks for variable
dimensionality of the actuators and model parameters (xp),
and ii) a separate block for aerodynamics (Eq. (9)-(15));
with this and the platform-specific class (see Sec. IV), the
developed architecture can be adapted to a different drone,
as explained in [28].

C. Handling asynchronous sensor measurements

As sensor measurements are asynchronously received over
ROS, the occurrence of delays or packet drops cannot be
ignored and the real-time software needs to handle such
situations efficiently. One naive solution is to ignore any
data that is not received at the expected time or wait for
the required data to perform predictions or updates, leading
to idle time for the filter. This is undesirable in real-time
applications. To address this concern, the filter states and
covariance are saved at prediction and update times (i.e.
when sensor data is expected), and later when the data
arrives with a delay, a delayed filter update is performed
using the stored states and covariance. This approach requires
the onboard computer to perform filter computations faster
than in real-time to catch up with the current time. This
method is called back-propagation of state and covariance.
It is implemented in the timer class (part of the resource
manager - as discussed earlier in Sec. IV), thereby ensuring a
continuous flow of the navigation solution even if sensor data
are missing. The timer implementation acts as a heartbeat,
defining the waiting time for expected data arrival and the
maximum time for which the saved states and covariance are
kept in memory, altogether specified in a configuration file.

D. Dimension varying sensor fusion - DVSF

The existing-offline implementation of VDM-based sys-
tem [2], [4], [5], [16] for a conventional fixed-wing drone is
based on 47 states (see Sec. II-E), of which 21 represent the
aerodynamic model parameters. Although these parameters
are coarsely constant, with the changes in payload placement,
wearing of the airframe, changes in flight conditions, wind,
and other external factors, their values can change [5].
Therefore, if the drone is sufficiently maneuvered for a
reasonably long duration after the takeoff, these parameters
need not be refined (re-estimated) further than a given time
duration and thus can be removed from the state vector. To
implement this, a parameter in the configuration file is set to

PX4

   control commands  

clock sync parameters +
GCS commands

MAVROS IMU + GNSS

GNSS +
PPS

Sentiboard

time tagged
control commands

Time sync node clock sync param.

GNSS outage

onboard data
to GCS

Broadcast node

    

   IMU + GNSS + outage   

Navserver

GiiNav output

GiiNav
(INS/GNSS)

VDMc output

VDMc

MAVLINK

Onboard
computer

(ROS)

GiiNav / VDMc
output

Fig. 4. Architecture of VDMNav highlighting the placement of VDMc

a duration-post-initialization, after which the state reduction
is carried out during flight. From a software standpoint,
invoking such a subroutine involves the following steps:
1) Blocking the critical section to pause EKF prediction
and update operations. 2) Initializing the new state vector
and covariance matrix with lower dimension using the old
state vector and covariance matrix with higher dimension.
3) Initializing the saved states and covariance matrix buffer
accordingly. 4) Notifying the a) sensor model and the b)
VDM platform class about the state change. 5) Unblocking
the critical section and returning to normal operation with a
low-dimensional state and covariance.

E. Inclusion of complementary sensors

From a software perspective, sensor functionality is en-
capsulated through the resource manager (described earlier
in Sec. IV) and a sensor model class. Currently, three sub-
classes exist for the TP2 platform: IMU, GNSS position, and
GNSS velocity. To implement a new sensor, the following
steps should be followed [28]: 1) Create a subclass in the
resource manager to buffer the data along with its timestamp.
2) Generate C++ code for the observation model and its
Jacobian (Sec. IV-A). 3) Integrate this code with the sensor
model class of the new sensor. 4) Create a timer for the
sensor to handle EKF update synchronization and enable
saving states and covariances in case of missing or delayed
measurements. 5) Link the class representing the sensor
definitions and methods to the specific platform type.

F. ROS Nodes

Real-time navigation, in a holistic sense, is carried out
by interfacing VDMc with other software modules or ROS
nodes (see Fig. 4), details of which are presented here.



1) MAVROS: MAVROS [30] provides a communication
interface between PX4 autopilot and general MAVLink com-
munication protocol. MAVROS decodes incoming MAVLink
data stream and publishes it on equivalent ROS topics.

2) Broadcast node: It is responsible for i) streaming the
navigation solution from VDMc carried by the on-board
computer to the GCS ii) reception of custom commands
from the GCS to introduce GNSS outage in real-time and
iii) reception of autopilot time and clock synchronization
parameters and passing it to Time Sync node (see below).

3) Time Sync node: This node re-tags the autopilot data,
such as control commands, in GPS time. It combines re-
ceived topics with information from the broadcast node to
associate a GPS timestamp with the control commands.
Mathematically, this involves continuously computing a bias
and scale factor between the GPS time and autopilot time.

4) NavServer: NavServer retrieves IMU and GNSS data
from Sentiboard and publishes it on ROS topics. It also
invokes the GPS message publisher to simulate a GPS outage
upon receiving a custom command from the GCS.

5) GiiNav: Originally a software utilizing an Extended
Kalman Filter, GiiNav [31], [32], has been adapted for ROS
compatibility. It subscribes to ROS topics for GNSS and IMU
data and publishes the navigation solution on another topic.
GiiNav also plays a crucial role in initializing the VDM-
based navigation system while TP2 is airborne.

6) VDMc: VDMc is the ROS node running the VDM-
based navigation estimator (detailed in Sec. IV) wherein the
different sensor measurements are fused with the platform
aerodynamics to yield a navigation solution.

V. RESULTS

A. Pseudo-real time navigation solution

For offline testing, VDMc and GiiNav are evaluated us-
ing recorded flight (ROSbag) data from OFF STIM13 in
a pseudo-real-time environment. This recording is carried
out by the on-board computer. To simulate a GNSS outage,
the ROSbag API is utilized to remove GNSS-related ROS
topics for a duration of two minutes. The accuracy of
trajectory estimation during this outage is compared between
the conventional INS/GNSS (GiiNav) solution (red) and
VDMc with 47 states (cyan) in Fig. 5. The trajectory of
the VDMc implementation closely follows the reference
trajectory, while the free INS solution drifts rapidly. Next, a
change in state space dimension (from 47 to 26) is triggered
after 10 minutes of flight (setting in the configuration file). It
should be noted that this 10-minute duration was empirically

TABLE I
VDMC PERFORMANCE SUMMARY

Flight
Duration Outage

RMS error [m] Max error [m]
Transition

[min] [min] INS VDMc INS VDMc time [s]

RTF STIM14 28
5 680 117 2684 210

5.5
5 551 280 2016 767

RTF STIM15 16 8 3057 448 12745 943 6.3

OFF STIM13 23 2 189 68 117 621 1.0
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Fig. 5. Pseudo real-time implementation of VDMc for flight OFF STIM13

found after testing on multiple outages for the conventional
fixed-wing drone. The trajectory estimated by VDMc with
the dimension-varying feature (in purple) closely resembles
the trajectory obtained with the full 47 states. As the ROSbag
replays the recorded flight data in the order they were
received, this test validates the correct functioning of other
ROS modules.

B. Real-time airborne navigation solution

The two real-time flights, referred to as RTF STIM14 and
RTF STIM15, are used to validate the presented VDMc im-
plementation. The configuration of VDMc is set to introduce
a state-space dimension variation from 47 to 26 after 10
minutes of flight. A real-time GNSS outage is introduced by
the operator via the GCS. We then examine the positioning
accuracy of VDMc and inertial coasting (GiiNav) in com-
parison to the autopilot (PX4) that uses uninterrupted GNSS
reception, thus providing the reference. VDMc, GiiNav, and
PX4 log their respective navigation solution to a file in addi-
tion to broadcasting them to the GCS where it is displayed.
Here, we plot the logged solution by these modules without
any additional processing for RTF STIM14 and RTF STIM15
flights in Fig. 6(a)(b)(c). RTF STIM14 is a 28-minute long
flight, where a GNSS outage is introduced after 9 minutes
of flight time for a duration of 5 minutes. The performance
of VDMc (with automatic state reduction feature) during
this outage is shown in Fig. 6(a). Subsequently, the GNSS
position/velocity reception is restored. Thereafter, another
outage of 5 minutes after 18 minutes of flight time is
introduced. The performance of VDMc during this outage
is shown in Fig. 6(b). A similar test is carried out for a
manually controlled flight RTF STIM15, lasting 16 minutes,
with a longer outage of ∼ 8 minutes after 6 minutes of
being airborne; the estimated trajectory is shown in Fig. 6(c).
Additionally, the evolution of the horizontal positioning error
for the three test scenarios is depicted in Fig. 6(d).

The duration of outages introduced in this study is consid-



erably longer than prior ones [2], [4], [15], [16]. A statistical
summary, based on i) RMS of the absolute trajectory error
(ATE) [33] and ii) maximum error in the horizontal direction
for the three flights is presented in Tab. I; the tabulated
results show significant mitigation of the positioning drift.
Furthermore, a summary of the computational burden of the
VDMc operations are tabulated in Tab. II. Also, it took 5 ms
and 6 ms to switch from 47 to 26 states for RTF STIM14
and RTF STIM15 respectively. All the above time-values are
less than 10 ms - nominal operating period of the EKF.

TABLE II
COMPUTATIONAL BURDEN OF VDMC

Operation 47-states 26-states
[ms] [ms]

Prediction 2.5 0.8

Update - IMU 0.8 0.4

Update - GNSS pos.+vel. 1.5 0.6

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a modular software architecture for fus-
ing flight aerodynamics with sensor measurements via EKF
in real-time. This architecture can i) asynchronously handle
data from different sensors, ii) compute a navigation solution,
iii) introduce a GNSS outage on a request from the GCS,
and iv) change the dimensionality of state space from 47 to
26 states at run-time for the conventional fixed-wing drone.
The proposed framework has been tested on the field under
extended GNSS outages of up to 8 minutes to assess the real-
time performance. The results show excellent mitigation of
positioning drift of around an order of magnitude compared
to inertial coasting. To show the framework’s modularity,
we have also presented its usage for a delta-wing drone. In
the future, integration of VDM with visual-inertial odometry,
and relative navigation frameworks could be carried out. On
the other hand, a focus on finding a VDM for quadcopters
would be of prime importance, followed by its incorporation
into the VDMc framework. We envisage that the presented
software architecture shall be a starting point for spreading
the benefit of aerodynamically guided navigation strategies
on small drones. Furthermore, the authors can assist readers
in using this framework for their applications.

REFERENCES

[1] O. D. Dantsker and R. Mancuso, “Flight data acquisition platform
development, integration, and operation on small-to medium-sized
unmanned aircraft,” in AIAA Scitech 2019 Forum, p. 1262, 2019.

[2] M. Khaghani and J. Skaloud, “Assessment of vdm-based autonomous
navigation of a uav under operational conditions,” Robotics and
Autonomous Systems, vol. 106, pp. 152–164, 2018.

[3] M. Khaghani and J. Skaloud, “Autonomous and non-autonomous
dynamic model based navigation system for unmanned vehicles,”
2016. Patent US20160364990A1.

[4] A. Sharma, G. Laupre, and J. Skaloud, “Identifying aerodynamics
of small fixed-wing drones using inertial measurements for model-
based navigation,” Navigation: Journal of The Institute of Navigation,
vol. 70, no. 4, 2023.

46°33'30"N

46°34'N

46°34'30"N

6°31'E 6°31'30"E 6°32'E 6°32'30"E 6°33'E

Esri, HERE, Garmin, INCREMENT P, NGA, USGS
1000 ft 

500 m

46°33'30"N

46°34'N

46°34'30"N

6°31'E 6°31'30"E 6°32'E 6°32'30"E 6°33'E

Esri, HERE, Garmin, INCREMENT P, NGA, USGS
1000 ft 

500 m

STIM 14 Flight

46°34'N

46°34'10"N

46°34'20"N

6°32'15"E 6°32'30"E 6°32'45"E 6°33'E

Esri, HERE, Garmin, INCREMENT P, NGA, USGS
500 ft 

100 m

STIM 15 Flight

(a)

(b)

(d)

(c)

12000 m away

Fig. 6. Trajectory estimation for (a) RT STIM14 during GNSS outage -1
(b) RTF STIM14 during GNSS outage - 2 (c) RTF STIM15 during a GNSS
outage (d) Positioning error curve for the above outages
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APPENDIX

A. VDMc for Delta-wing drone

The modularity of VDMc [28] is shown by adapting it
to a delta-wing drone, ConcordeS (Fig. 7), with two control
surfaces, the elevons, as opposed to three on a conventional
drone. A VDM of such a drone is characterized as:

Fw
x = q̄S

(
CFx0 + CFxα2α

2
)

(21)

Fw
y = q̄S

(
CFy0 + CFyββ

)
(22)

Fw
z = q̄S (Cz0 + CFzαα) (23)

M b
x = q̄Sb (CMx0 + CMxδaδa) (24)

M b
y = q̄Sc̄ (CMy0 + CMxδeδe) (25)

M b
z = q̄Sb (CMzββ) , (26)

Here, δa = δL−δR
2 , δe = δL+δR

2 with δL, δR denoting the

Fig. 7. Delta-wing drone

deflections of left and right control surfaces respectively. The
software implementation has been done similarly to TP-2.
Here, we contrast the performance of VDMc against INS
for a 2-minute outage in Fig. 8; the result shows a similar
performance as that of a conventional drone.
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Fig. 8. VDMc vs INS for a delta-wing drone: 2-minute GNSS outage


