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Abstract 

Detecting digital face manipulation in images and video has attracted extensive atten-
tion due to the potential risk to public trust. To counteract the malicious usage of such 
techniques, deep learning-based deepfake detection methods have been employed 
and have exhibited remarkable performance. However, the performance of such detec-
tors is often assessed on related benchmarks that hardly reflect real-world situations. 
For example, the impact of various image and video processing operations and typical 
workflow distortions on detection accuracy has not been systematically measured. 
In this paper, a more reliable assessment framework is proposed to evaluate the per-
formance of learning-based deepfake detectors in more realistic settings. To the best 
of our acknowledgment, it is the first systematic assessment approach for deepfake 
detectors that not only reports the general performance under real-world conditions 
but also quantitatively measures their robustness toward different processing opera-
tions. To demonstrate the effectiveness and usage of the framework, extensive experi-
ments and detailed analysis of four popular deepfake detection methods are further 
presented in this paper. In addition, a stochastic degradation-based data augmenta-
tion method driven by realistic processing operations is designed, which significantly 
improves the robustness of deepfake detectors.

Keywords: Assessment framework, Deepfake detection, Data augmentation

1 Introduction
In recent years, the rapid development of deep convolutional neural networks 
(DCNNs) and ease of access to large-scale datasets have led to significant progress 
on a broad range of computer vision tasks and meanwhile created a surge of new 
applications. For example, the recent advancement of generative adversarial networks 
(GANs) [1–3] has made it possible to generate realistic forged contents that are dif-
ficult for humans to distinguish from their authentic counterparts. In particular, cur-
rent deep learning-based face manipulation techniques [4–7] are capable of changing 
the expression, attributes, and even identity of a human face image, the outcome of 
which refers to the popular term ‘Deepfake’. The recent development of such technol-
ogies and the wide availability of open-source software has simplified the creation of 
deepfakes, increasingly damaging our trust in online media and raising serious pub-
lic concerns. To counteract the misuse of these deepfake techniques and malicious 
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attacks, detecting manipulations in facial images and video has become a hot topic 
in the media forensics community and has received increasing attention from both 
academia and businesses.

Nowadays, multiple grand challenges, competitions, and public benchmarks [8–10] 
are organized to assist the progress of deepfake detection. At the same time, with 
the advanced deep learning techniques and large-scale datasets, numerous detection 
methods [4, 11–16] have been published and have reported promising results on dif-
ferent datasets. But some studies [17, 18] have shown that the detection performance 
significantly drops in the cross-dataset scenario, where the fake samples are forged 
by other unknown manipulation methods. Therefore, cross-dataset evaluation has 
become an important step in recent studies to better show the advantages of deepfake 
detection methods, encouraging researchers [19–21] to propose detection methods 
with better generalization ability to different types of manipulations.

Nevertheless, another scenario that commonly exists in the real world has received 
little attention from researchers. In fact, it has long been shown that DCNN-based 
methods are vulnerable to real-world perturbations and processing operations [22–
24] in different vision tasks. In more realistic conditions, images and video can face 
unpredictable distortions from the extrinsic environment, such as noise and poor 
illumination conditions, or constantly undergo various processing operations to ease 
their distribution. In the context of this paper, a deployed deepfake detector could 
mistakenly block a pristine yet heavily compressed image. On the other hand, a mali-
cious agent could also fool the detector by simply adding imperceptible noise to 
fake media content. To the best of our acknowledgment, most of the current deep 
learning-based deepfake detection methods are developed based on constrained and 
less realistic face manipulation datasets, and therefore, they are not robust enough in 
real-world situations. Similarly, the conventional assessment approach, which exists 
in various benchmarks, often directly samples test data from the same distribution 
as training data and can hardly reflect model performance in more complex situa-
tions. In fact, most of the existing deepfake detection methods only report their per-
formance on some well-known benchmarks in the community.

Therefore, a more reliable and systematic approach is desired firsthand to assess 
the performance of a deepfake detector in more realistic scenarios and further moti-
vate researchers to develop robust detection methods. In this paper, a comprehen-
sive assessment framework for deepfake detection in real-world conditions has been 
conceived for both image and video deepfakes. Notably, the realistic situations are 
simulated by applying common image and video processing operations to the test 
data. The performance of multiple deepfake detectors is measured under the impact 
of various real-world processing operations. At the same time, a generic approach to 
improve the robustness of the detectors has been proposed.

In summary, the following contributions have been made.

• A realistic assessment framework is proposed to evaluate and benchmark the per-
formance of learning-based deepfake detection systems. To the best of our knowl-
edge, this is the first framework that systematically evaluates deepfake detectors in 
realistic situations.
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• The performance of several popular deepfake detection methods has been evaluated 
and analyzed with the proposed performance evaluation framework. The extensive 
results demonstrate the necessity and effectiveness of the assessment approach.

• Inspired by the real-world data degradation process, a stochastic degradation-based 
augmentation (SDAug) method driven by typical image and video processing opera-
tions is designed for deepfake detection tasks. It brings remarkable improvement in 
the robustness of different detectors.

• A flexible Python toolbox is developed and the source code of the proposed assess-
ment framework is released to facilitate relevant research activities.

This article is an extended version of our recent publication [25]. The additional contents 
of this paper are summarized as follows.

• More recent deepfake detection methods have been summarized and introduced in 
the related work section.

• The proposed assessment framework has been extended to support the evaluation of 
video deepfake detectors.

• The performance of two current state-of-the-art deepfake detection methods has 
been additionally evaluated using the assessment framework.

• More substantial experimental results have been presented to better demonstrate the 
necessity and usage of the assessment framework. The performance and characteris-
tics of four popular deepfake detection methods are analyzed in depth based on the 
assessment results.

• The impact of different image compression operations on the performance of deep-
fake detectors is additionally studied in detail.

• More experiments, comparisons, and cross-manipulation evaluations have been 
conducted for the proposed stochastic degradation-based augmentation method. Its 
effectiveness and limitations are further analyzed.

2  Related work
2.1  Deepfake detection

Deepfake detection is often treated as a binary classification problem in computer 
vision. Early on, solutions based on facial expressions [26], head movements [27] 
and eye blinking [28] were proposed to address such detection problems. In recent 
years, the primary solution to this problem is by leveraging advanced neural network 
architectures. Zhou et al. [29] proposed to detect deepfakes with a two-stream neu-
ral network. Rössler et al. [4] retrained an XceptionNet [30] with manipulated face 
dataset which outperforms their proposed benchmark. Nguyen et al. [11] combined 
traditional CNN and Capsule networks [31], which require fewer parameters. Some 
video deepfake detectors [32–34] leveraged recurrent convolutional neural networks 
to track forgery clues from the temporal sequences. Other creative attempts in net-
work architectures include, but are not limited to, multi-task autoencoders [35, 36], 
efficient networks [21, 37] and vision transformers [38, 39]. In addition, the atten-
tion mechanism, a well-known technique to highlight the informative regions, has 
also been applied to further improve the training process of the detection system. 
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Dang et.al [40] proposed a detection system based on an attention mechanism. Zhao 
et al. [12] designed multi-attention heads to predict multiple spatial attention maps. 
Their proposed attention map can be easily implemented and inserted into existing 
backbone networks. Besides focusing on the spatial domain, recent work [13–16, 41] 
attempts to resolve the problem in the frequency domain. The theory behind them 
is based on the fact that current popular GAN-based image manipulation meth-
ods often introduce low-frequency clues due to the built-in up-sampling operation. 
These methods transform the image to the frequency domain via DCT transforma-
tion and separate information according to different frequency bands. As a result, 
the forgery traces are more effectively captured.

To tackle the generalization problem, one important branch of work directly trains 
models with fully synthetic data, which forces the models to learn more generic rep-
resentations for deepfake detection. For example, Xray [42] and SBIs [21] methods 
manually generate blended faces during the training process as fake samples, which 
reproduce the blending artifacts existing in real-world GAN-synthesized deepfakes. 
Both methods have achieved remarkable performance and notable generalization 
ability to certain types of manipulation methods. But as explained by the authors, 
these methods are susceptible to many common perturbations, such as low-resolu-
tion and heavy compression. In this paper, four different types of deepfake detectors 
[4, 11, 21, 39] are adopted for experiments.

2.2  Deepfake detection competitions review

To assist in faster progress and better advancement of deepfake detection tasks, 
numerous large-scale benchmarks, competitions, and challenges [4, 8–10] have been 
organized, the results of which have been made publicly available. Meta partnered 
with some academic experts and industry leaders and created the Deepfake Detec-
tion Challenge (DFDC) [8] in 2019. The competition provided a large incentive, i.e. 
1 million USD, for experts in computer vision and deepfake detection to dedicate 
time and computational resources to train models for benchmarking. More recently, 
the Trusted Media Challenge (TMC) [10] was organized by AI Singapore with a 
total prize pool of up to 500k USD to explore how artificial intelligence technolo-
gies could be leveraged to combat fake media. Nevertheless, after a thorough inves-
tigation of the benchmarking results, a new question emerges: Can the assessment 
approach adopted by the competitions reflect their performance in realistic scenarios? 
Although both challenges tried to simulate real-world conditions by preprocessing 
part of the testing data with some common video processing techniques, they do not 
really differentiate the detectors. As shown in Table 1, the final results of the top-5 
prize winners from DFDC [8] are extremely close and the ranking seems to be easily 
affected by some random noise, for example simply taking out a few fake samples or 
adding slightly more severe blurriness effect.

The current ranking approach in these competitions is not reliable. A more rigor-
ous framework is introduced in this work, which is able to differentiate the detectors 
in multiple dimensions, i.e. general performance, general robustness in realistic con-
ditions, and robustness to specific impacting factors.
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2.3  Robustness benchmark

In recent years, research has been conducted to explore the robustness of CNN-based 
methods toward real-world image corruption. Dodge and Karam [22] measured the per-
formance of image classification models with data disturbed by noise, blurring, and con-
trast changes. In [48], Hendrycks et al. presented a corrupted version of ImageNet [49] to 
benchmark the robustness of image recognition models against common image manipu-
lations. [50–52] focused on a safety-critical task, autonomous driving, and provided a 
robustness benchmark for various relevant vision tasks, such as object detection and 
semantic segmentation. Similar work has been done for face recognition tasks, [23, 24, 
53, 54] analyzed the robustness of CNN-based face recognition models toward face vari-
ations caused by illumination change, occlusion, and standard image processing opera-
tions. In the media forensics community, StirMark [55] tested the robustness of image 
watermarking algorithms. The ALASKA#2 dataset [56] was created following a careful 
evaluation of ISO parameters, JPEG compression, and noise level on FlickR images, etc., 
to help researchers in designing way more general and robust steganographic and stega-
nalysis methods. It is worth noting that two popular deepfake detection benchmarks, 
DFDC [8] and Deeperforensics−1.0 [9] also adopted standard processing operations to 
part of the testing data. They randomly applied distortions to a small portion of test data 
and considered only one severity level for each processing operation. However, the way 
they evaluate a detector’s robustness is not systematic enough. The assessment results 
cannot rigorously show to which extent the detector is affected by the distorted data, 
nor help identify which factors show more significant influence on the detector’s perfor-
mance. There is a lack of a fair and flexible methodology that systematically compares 
the performance of deepfake detectors in realistic situations. In this work, a new assess-
ment framework is introduced to solve this problem.

3  Proposed assessment framework
Nowadays, deepfakes are distributed on the internet in both image and video formats. 
Some of the detection methods are targeted for both cases, while others are specially 
designed for one type of deepfakes. The proposed assessment framework is designed 
in a way that the performance of a deepfake detector can be evaluated under either 
image or video scenarios.

In the context of this paper, the main difference between the two scenarios resides 
in the real-world processing operations applied to the test data. In specific, in image 

Table 1 Deepfake Detection Challenge (DFDC) [8] top-5 prize winners and their corresponding 
results

Team name Overall log loss

Selim Seferbekov [43] 0.4279

WM [44] 0.4284

NTechLab [45] 0.4345

Eighteen Years Old [46] 0.4347

The Medics [47] 0.4371
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scenarios, we first extract frames from video and treat them as image deepfakes. The 
image processing operations are then applied to the forgery images. In video scenar-
ios, we treat them as video deepfakes and directly apply video processing operations 
to the fake video.

In this section, the common realistic influencing factors and processing operations 
for image and video deepfakes are first introduced respectively. Then, the proposed 
assessment framework is described to provide a fair comparison for deepfake detec-
tors under more realistic situations.

3.1  Realistic influencing factors for image deepfakes

In a real-world situation, the images are often processed by various digital image pro-
cessing operations before being distributed. In more adverse cases, malicious deep-
fakes can be slightly corrupted to fool the detector while maintaining good perceptual 
quality. It is still unknown to which extent the popular deepfake detectors are able to 
make correct predictions. In this context, the most prominent factors have been con-
sidered in the assessment framework.

In general, the framework contains six categories of image processing operations or 
corruptions with more than ten minor types. Each type consists of multiple severity 
levels. The details of all operations used in evaluations are described below with the 

Fig. 1 Example of a typical image in the FFpp test set after applying various image processing operations. 
Some notations are explained as follows. DL-Comp: Deep learning-based compression. GB: Gaussian blur. GN: 
Gaussian noise. Po-Gau-Noise: Poissonian-Gaussian noise. GammaCorr: Gamma correction. Resize: Reduce 
resolution. + : Combination of two operations
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illustration of a typical example in Fig. 1. In specific, the following factors are consid-
ered in the assessment framework.

Noise: Noise is a typical distortion especially when images are captured in a low-
illumination condition. To simulate the noise, an Additive White Gaussian Noise 
(AWGN) is applied to the data and the pixel values are clipped to [0, 255]. In this 
paper, the variance value σ is selected in a range from 5 to 50. In addition, Poisso-
nian–Gaussian noise [57] is also included to better reflect the realistic noise levels, 
whose parameters are learned from a group of real noisy pictures.

Resizing: Resizing is one of the most commonly used image processing operations. 
It refers to changing the dimensions of the media content to fit the display or other 
purposes. On the other hand, the resizing operation, more specifically the down-sam-
pling operation, can significantly reduce the performance of modern deep learning-
based detectors [58, 59] due to a loss of discriminative information. This is often the 
case for those earlier image contents that are of poor quality. In this framework, the 
impact of resizing operation is simulated by first downscaling the images and then 
upscaling back using bicubic interpolation.

Image compression: Lossy compression refers to the class of data encoding meth-
ods that remove unnecessary or less important information and only use partial data 
to represent the content. These techniques are used to reduce data size for efficient 
storage and transmission of content and are widely applied to image processing. In 
this framework, the JPEG compression artifacts are applied and the impact of differ-
ent quality factors, i.e. from 30 to 95, on the deepfake detection system is evaluated. 
As deep learning-based compression techniques are becoming increasingly popular 
in this community, two AI-based image compression techniques [60, 61] are also con-
sidered in this framework with multiple compression qualities to choose from.

Denoising: A typical way to reduce noise is by smoothing, which is a low-pass fil-
tering applied to the image. The denoising operation is often applied to image con-
tents after being acquired by the camera but at the same time, it tends to blur the 
media content and results in a reduction of details, which is harmful to the detec-
tion system. To measure the impact of the denoising operation, the blurriness effect 
is simulated in our framework by applying Gaussian filters with kernel size σ ranging 
from 3 to 11. Meanwhile, learning-based denoising techniques are gradually deployed 
in practice. They recover a noisy image with higher quality but often bring unpredict-
able artifacts. The impact of applying the DnCNN technique [62] is assessed in the 
framework.

Enhancement: In realistic conditions, the image data captured in the wild can suf-
fer from poor illumination. Image enhancement is frequently used to adjust the media 
content for better display. In this assessment framework, the contrast and bright-
ness of the test data are modified by both linear and nonlinear adjustments. The for-
mer simply adds or reduces a constant pixel value while the latter applies gamma 
correction.

Combinations: It is even more common that the media content suffers from multiple 
types of distortions and processing operations. Therefore, the mixture of two or three 
operations above is also considered, such as combining JPEG compression and Gaussian 
noise, making the test data better reflect more complex real-world scenarios.
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3.2  Realistic influencing factors for video deepfakes

Face forgeries by deepfake technology are spread over the Internet not only in the 
form of images but also as video. The processing operations and various video effects 
are very common on different social media, smartphone applications, and stream-
ing platforms. Their impact on the accuracy of detection methods should not be 
neglected.

The framework includes seven categories of video processing operations with com-
monly used parameters. The illustrative example of testing data is shown in Fig. 2. The 
factors are also described in detail as follows.

Video compression: Similar to images, uncompressed raw video requires a large 
amount of storage space. Although lossless video compression codecs can perform at 
a compression factor of 5 to 12, a typical lossy compression video can achieve a much 
lower data rate while maintaining high visual quality. In fact, compression technolo-
gies for video provide the basis for the distribution of video worldwide. The potential 
deepfake video propagates among social networks after being compressed several times. 
However, the possible side effect of lossy compression artifacts on deep learning-based 
detectors has not been sufficiently studied. It is necessary to test the robustness of a 
deepfake detector on compressed authentic and deepfake video. In this context, the pro-
posed assessment framework consists of test data compressed by H.264 codec using the 
FFMPEG toolbox with two constant rate factors, namely 23 and 40.

Fig. 2 Example of a typical video frame in the FFpp test set after applying different video processing 
operations. Some notations are explained as follows. C23 and C40: Video compression using H.264 codec 
with factors of 23 and 40. Light and Dark: Increase and decrease brightness. Resolution: Reduce video 
resolution. Hflip and Vflip: Horizontal and Vertical flip



Page 9 of 27Lu and Ebrahimi  EURASIP Journal on Image and Video Processing          (2024) 2024:6  

Flip: Flipping a video horizontally describes the creation of a mirror video of the origi-
nal footage. It is a very common video editing method that prevents video cuts from dis-
orienting the viewer. But whether and to which extent the flipping operation can affect a 
deepfake detector has not been evaluated before. On the other hand, the vertical flipping 
operation is one of the easiest ways to fool a detector. In fact, most current detectors will 
not adjust or correct the face pose during preprocessing step. Hence, one can simply 
upload a flipped video to avoid being detected while it is still readable to a human.

Video filters: In recent years, video filters have become popular on social media. They 
are preset treatments included in many video editing apps, software, and social media 
platforms, providing easy access for users to alter the look of a video clip. Some common 
types of video filters include color filters, beauty filters, stylization filters, etc. The overall 
color palette of a deepfake video can be changed by a video filter on social media, mak-
ing it an out-of-distribution sample from common deepfake databases. In the proposed 
assessment framework, two typical filters, ‘Vintage’ and ‘Grayscale’, are considered.

Brightness: Brightness is a measure of the overall lightness or darkness of a video. 
Adjusting the brightness of a video can affect the way that colors are perceived, as well 
as the visibility of details and textures. For example, increasing the brightness can make 
it easier to see details in shadows, while decreasing the brightness can obscure details in 
highlights. In real-world conditions, the brightness of a video is often adjusted to create 
a different sense of style of a video. The assessment framework takes this situation into 
consideration and measures the performance of a detector under different brightness 
conditions. More specifically, the ‘Lighten’ and ‘Darken’ commands in the FFMPEG tool-
box are applied to the testing video, respectively.

Contrast: Contrast refers to the difference between the lightest and darkest areas of a 
video. Similar to brightness, adjusting contrast is one of the most common operations to 
change the visual appearance of a video. The ‘Contrast’ command in the FFMPEG tool-
box is employed to increase the contrast of the testing video.

Noise: Similar to images, video noise is a common problem in video clips shot in low-
light conditions or with small-sensor devices such as mobile phones. It often appears as 
annoying grains and artifacts in the video. Gaussian noise with a temporal variance but 
fixed strength is applied to the video data.

Resolution: Resolution refers to the number of pixels in a video. There is an important 
trade-off between the resolution and file size. Decreasing the resolution of a video will 
generally result in a low-quality video with fewer details to be displayed on the screen. 
But it can also reduce the file size, which makes it easier to store and share. On the other 
hand, the resolution change can also affect the ratio of width to height of the video. The 
performance of the deepfake detector when facing low-resolution or stretched video will 
be evaluated by the proposed framework.

3.3  Assessment methodology

Current deepfake detection algorithms are based on deep learning and rely heavily on 
the distribution of the training data. These methods are typically evaluated using a test 
dataset that is similar to the training sets. Some benchmarks, such as [8, 9], attempt to 
measure the performance of deepfake detectors under more realistic conditions by add-
ing random perturbations to partial test data and mixing up with others. However, there 
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is no standard approach for determining the proportion or strength of these perturba-
tions, which makes the results of these benchmarks more stochastic and less reliable. 
The assessment methodology proposed in this paper aims to more thoroughly measure 
the impact of various influencing factors, at different severity levels, on the performance 
of deepfake detection algorithms.

In this section, the principle and usage of our assessment framework are introduced 
in detail. First, the deepfake detector is trained on its original target datasets, such as 
FaceForensics++ [4]. The processing operations and corruptions in the framework are 
not applied to the training data. Then, as illustrated in Fig. 3, multiple copies of the test 
set are created, and each type of distortion at one specific severity level is applied to the 
copies independently. The standard test data together with different distorted data are 
fed to the deepfake detector respectively. Finally, the detector generates “real or fake” 
predictions. During the entire evaluation, the true positive rate (TPR) and false posi-
tive rate (FPR) are measured by constantly comparing the detector’s predictions and the 
binary ground-truth labels. The ROC curve is plotted and the Area Under the Curve 
(AUC) score is reported as the final metric. An overall evaluation score can be obtained 
by averaging the scores from each distortion style and strength level to report the general 
performance of a tested detector. Besides, the computed metrics can also be grouped by 
each operation category to further analyze the robustness of one deepfake detector on a 
specific processing operation.

In addition, to relieve the burden on storage caused by the multiple copies of the test 
set, a Python toolbox is developed to address this problem in an online manner, which 
hard-codes the digital processing operations and makes the strength level a parameter. It 
operates in the same format as the famous Transforms module in the TorchVison tool-
box and can be easily integrated into the evaluation process.

Fig. 3 Workflow of the proposed assessment framework. Distortions caused by processing operations are 
first applied to test data separately. The corresponding predictions by the deepfake detector are compared 
with the ground-truth label (“real or fake”)
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4  Stochastic degradation‑based augmentation
To improve the ability of deepfake detection methods to handle realistic distortions 
and pre-processing operations, an effective data augmentation approach is proposed 
which leads to a robustness improvement.

Standard data augmentation methods often introduce geometric and color space 
transformation to enrich training data and improve the model generalization ability. 
But according to our experiments, this type of augmentation technique is less effec-
tive for deepfake detection under realistic conditions.

Motivated by a typical data acquisition and transmission pipeline in the real world, 
the stochastic degradation-based augmentation (SDAug) method is proposed. The 
main novelty of the proposed augmentation technique resides in the fact that it is 
driven by the typical operations that images and video are subject to in realistic condi-
tions. Based on the observation of the data degradation process, a carefully designed 
augmentation chain is conceived, which allows the training data to better resemble 
real-world conditions and further boosts the performance of deepfake detection 
methods.

Generally, the brightness and contrast of input image x are first modified by image 
enhancement operator enh. Afterward, the image is convoluted with an image blur-
ring kernel f, followed by additive Gaussian noise n. In the end, JPEG compression 
is applied to obtain the augmented training data xaug . The augmentation chain is 
described by the following formula.

In addition, unlike the common data augmentation process, the SDAug method is 
implemented in a stochastic manner. The term ‘stochastic’ can be interpreted in the fol-
lowing two aspects. First, each aforementioned augmentation operation will occur with 
a certain probability in the augmentation chain. Second, each operation will use a ran-
dom severity level for every frame. The realistic scenario is rather complex and does 
not necessarily consist of multiple types of distortions and processing operations. A 
random mixture of several distortions and severity levels can create more diversity in 
the augmented training data. Moreover, stochastic augmentation helps preserve more 
information from the original training data and therefore prevents accuracy loss on the 
high-quality data. In detail, the augmentation operations are explained in sequence as 
follows.

Enhancement: The augmentation chain begins with an image enhancement oper-
ation. A probability of 50% is adopted to apply either a brightness or a contrast 
operation on the training data which will be then non-linearly modified by a factor 
randomly selected from [0.5, 1.5].

Smoothing: Image blurring operation is then applied with a selected probability of 
50%. Either Gaussian blur or Average blur filter is used with a kernel size varying in 
the range [3, 15].

Additive Gaussian noise: For each batch of training data, a probability of 30% is 
adopted to add a Gaussian noise. The standard deviation of the Gaussian noise varies 
randomly in the interval [0, 50].

(1)xaug = JPEG[(enh(x)⊛ f )+ n]
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JPEG compression: Finally, JPEG compression is applied with a selected probability 
of 70%. The quality factor corresponding to the compression is randomly chosen in the 
range [10, 95].

5  Experimental results
In this work, numerous experiments have been conducted to demonstrate the effective-
ness and usage of the proposed assessment framework. The experimental setup will be 
described at the beginning of this section, followed by the substantial assessment results 
and analysis for both image and video scenarios. Then, the impact of three image com-
pression technologies on deepfake detectors is further discussed as an example of the 
multiple applications of the framework. In the end, the effectiveness of the proposed 
augmentation technique is reported and analyzed.

5.1  Implementation details

5.1.1  Datasets

Two widely used face manipulation datasets are selected in this paper for extensive 
experimentation. For both datasets, there is a strict split up in the dataset suggested by 
the dataset provider and the video used for training will not appear in the validation and 
testing stages.

FaceForensics++ [4], denoted by FFpp, contains 1000 pristine and 4000 manipu-
lated video generated by four different deepfake creation algorithms. In addition, raw 
video contents are compressed with two quality parameters using the AVC/H.264 codec, 
denoted as C23 and C40. In the experiments, the training set is denoted as FFpp-Raw, 
FFpp-C23, and FFpp-C40 when the model is trained on single-quality-level data, while 
it is denoted as FFpp-Full when data of all three quality levels are involved for training. 
On the contrary, to provide a fair baseline, only uncompressed data are used for the final 
assessment.

Celeb-DFv2 [63] is another high-quality dataset, with 590 pristine celebrity video and 
5639 fake video. The test data are selected as recommended by [63] while the rest are left 
for training purposes, where the training and validation sets were split into 80% and 20% 
accordingly.

5.1.2  Detection methods

Experiments have been conducted with the following learning-based deepfake detec-
tors, all of which have reported excellent performance on popular benchmarks.

Capsule-Forensics is a deepfake detection method based on a combination of cap-
sule networks and CNNs. The capsule network was initially proposed by [31] to address 
some limitations of CNNs and it used a rather smaller amount of parameters than tra-
ditional CNN to train very deep neural networks. [11] employed the capsule network 
as a component in a deepfake detection pipeline for detecting manipulated images and 
video. This method achieved the best performance at that time in the FaceForensics++ 
dataset compared to its competing methods.

XceptionNet [30] is a popular CNN architecture in many computer vision tasks and 
has been used to detect face manipulations when it works as a classification network. 
Rössler et al. [4] first adopted it as a baseline in the FaceForensics++ benchmark along 
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with three other approaches. The detection system based on XceptionNet architec-
ture was first pre-trained using ImageNet database [49] and then re-trained on a spe-
cific dataset for the deepfake detection task. It achieved excellent performance in the 
FaceForensics++ benchmark on both compressed and uncompressed contents and has 
become a popular baseline method for recent deepfake detection approaches.

SBIs [21] refers to a data synthetic method, Self-blended Images, which is specially 
designed for deepfake detection tasks. This method aims to generate hardly recognizable 
fake samples that contain common face forgery traces to encourage the model to learn 
more general and robust representations for face forgery detection. The overall detection 
system is based on a pre-trained deep classification network, EfficientNet-b4 [64]. After 
retraining with the SBIs technique, the detector demonstrates an impressive generaliza-
tion ability to different unseen face manipulations and achieves the current state-of-the-
art in cross-dataset settings. But its robustness to common image and video processing 
operations has not been measured.

UIA-VIT [39] detects face forgery using vision transformer technique. This approach 
jointly trains an end-to-end pipeline that both classifies the deepfake images and esti-
mates the modification areas in an unsupervised manner. Overall, the UIA-VIT method 
focuses on intra-frame inconsistency without pixel-level annotations and achieves state-
of-the-art performance regarding generalization ability.

5.1.3  Training details

The Capsule-Forensics, XceptionNet, and UIA-VIT methods are trained with Adam 
optimizer with β1 = 0.9 , β2 = 0.999 . Following the hyper-parameters suggested in the 
original paper, the Capsule-Forensics model is trained from scratch for 25 epochs with a 
learning rate of 5× 10−4 , the XceptionNet model is trained for 10 epochs with a learn-
ing rate of 1× 10−3 , and the UIA-VIT model is trained for 8 epochs with a learning rate 
of 3× 10−5 . During training, 100 frames are randomly sampled from each video in the 
training set. For evaluation and testing, 32 frames are extracted from the video in the 
validation and test set. Extracted frames are pre-processed and cropped around the face 
regions using the dlib toolbox [65]. The face regions are finally resized into 300x300 pix-
els before feeding to the network.

The SBIs method has a different experimental setting from the previous three meth-
ods. It is retrained with SAM [66] optimizer for 100 epochs. The batch size and learning 
rate are set to 32 and 1× 10−3, respectively. During the training phase, only authentic 
high-quality video is used and the corresponding fake samples are created by their pro-
posed self-blending method.

5.1.4  Performance metrics

During the evaluation, the Area Under Receiver Operating Characteristic Curve (AUC) 
is used as a metric in all experiments.

5.2  Assessment results on realistic image deepfakes

In this section, the performance of the Capsule-Forensics, XceptionNet, and UIA-
VIT methods is measured when facing more realistic image deepfakes produced by 
the assessment framework. The three deepfake detectors are trained on the original 
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unaltered training sets of FFpp and Celeb-DFv2, respectively. The assessment frame-
work further evaluates the performance of these detectors and summarizes the results as 
shown in Table 2 and Fig. 4.

In general, our findings draw the following conclusions. First, even mild real-world 
processing operations can have a noticeable negative impact on detection accuracy. The 
first two detectors present exceptional performance on unaltered FFpp and CelebDFv2 
testing data as expected, but then show severe performance deterioration on all kinds 
of modified data from the assessment framework, which indicates a lack of robustness. 
Although UIA-VIT is known for outstanding generalization ability, it also suffers from 
performance degradation in front of processing operations.

Second, the Capsule-Forensics and XceptionNet methods are prone to be affected 
by different types of perturbation. When trained on the same high-quality dataset, the 
Capsule-Forensics method is generally more robust toward JPEG compression, synthetic 
noise, and gamma correction operation, while XceptionNet at times presents slightly 
better results that could be of statistical nature. The results from the assessment frame-
work provide valuable guidance toward improving a specific deepfake detector. Moreo-
ver, among the considered influencing factors, noise and blurriness effects on images are 
the most prominent for deepfake detectors. The performance of both detectors deterio-
rates rapidly after increasing the severity levels of the two distortions.

Finally, the impact of quality variants of training data on learning-based detectors 
has been analyzed based on the assessment results. When trained only with very high-
quality data (FFpp-Raw), both the Capsule-Forensics and XceptionNet models will be 
extremely sensitive to nearly all kinds of realistic processing operations. On the con-
trary, training the model with relatively low-quality data slightly improves the robust-
ness toward low-intensity processing operations and distortions, but with a cost on the 
original high-quality testing set. For example, both models trained with compressed data 
(FFpp-C23, FFpp-Full) show a higher AUC score on our realistic benchmark, but their 
performance on original unaltered data decreases by 0.5–1%. However, although train-
ing with compressed data slightly improves the robustness of UIA-VIT against compres-
sion and noise, it brings more negative impact when facing other processing operations.

5.3  Assessment results on realistic video deepfakes

In addition to images, the framework provides a comprehensive evaluation for the four 
detection methods, i.e. Capsule-Forensics, XceptionNet, SBIs, and UIA-VIT on video 
deepfakes under real-world conditions. Table 3 summarizes the performance of the four 
deepfake detection methods using the proposed realistic benchmark.

As a result, when trained with high-quality data, both the Capsule-Forensics and 
XceptionNet methods show a similar trend as in the previous image deepfake detection 
benchmark and perform poorly when facing pre-processed video deepfakes. The SBIs 
and UIA-VIT methods outperform the other two detectors and present relatively stable 
scores in front of most video processing operations, particularly those artifacts intro-
duced by changing brightness or assigning video filters.

However, when the previous two methods are trained directly on compressed data, 
they maintain higher robustness toward multiple processing operations and even out-
perform the SBIs method, whose overall score even decreases by 0.66% instead. On the 
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other hand, none of the three methods can properly classify video deepfakes processed 
by heavy compression, resolution reduction, or video noise.

In addition to benchmarking overall performance, the assessment framework also pro-
vides the means to analyze the behavior of a method under one specific realistic situa-
tion and help reveal the mechanism behind it. For instance, it is interesting to observe 
that, regardless of the training data, the SBIs method is more robust to geometric trans-
formation than the other two and retains a good ability to accurately classify a vertically 
flipped video. It is because the SBIs method is based on local forgery traces instead of 
the global inconsistency on the face.

While the generalization problem is well-explored by synthetic data-based methods, 
how to improve robustness toward processing operations and distortions which exist in 
the real world is still an open question. This paper provides a systematic benchmarking 
approach that helps reveal the drawbacks of general deepfake detectors. For instance, 

Fig. 4 Assessment results of two models trained on FFpp dataset. The suffixes of legends refer to the 
qualities of the training data. Full means using all available quality data for training
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although the SBIs method demonstrates a good generalization ability in cross-dataset 
experiments in their paper [21], our assessment framework shows that it is suscepti-
ble to some common perturbations in the real world, such as video compression, video 
noise, and low resolution.

5.4  Impact of different image coding algorithms

The assessment framework additionally provides means to measure the impact of a 
specific type of processing operation on the performance of a deepfake detector. For 
instance, image compression operation is almost inevitable during the distribution of a 
fake image. Meanwhile, AI-based compression technologies have become increasingly 
popular and are often capable of obtaining relatively smaller bitstreams. However, it 
is unknown to which extent the learning-based compression algorithms will affect the 
deepfake detection methods comparonventional JPEG compression.

In this section, a detailed comparison has been made between JPEG compression and 
two popular AI-based image compression methods, denoted by bmshj [60] and hific [61], 
respectively. In detail, the Capsule-Forensics and XceptionNet methods are first trained 
on uncompressed data. Afterward, their performance on different compressed data is 
evaluated using the framework and is then reported in Fig. 5. As a result, the image com-
pression operation generally brings more negative impact to XceptionNet than to the 
Capsule-Forensics method. The latter obtains relatively high AUC scores when the test 
data are compressed by JPEG with high compression factors. Although the bmshj-based 
compression method is capable of achieving lower bitrates than JPEG, it brings signifi-
cant negative impact to both detectors, whose predictions are close to random guess 
regardless of the select compression factor. On the contrary, both tested detectors are 
more robust to test data compressed using hific codec than using JPEG operation or 
bmshj codec, even with extremely low bitrates. The results reported in this section imply 
that hific codec introduces fewer adversarial artifacts, which can interrupt the function-
ality of other AI-based detectors.

5.5  Experimental results with augmentation

Table 4 shows the evaluation results of the Capsule-Forensics and XceptionNet meth-
ods trained on the unaltered FFpp dataset together with the proposed augmentation 

Fig. 5 Detection performance on data compressed by conventional and AI-based coding algorithms
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strategy. The information regarding the models trained with the proposed stochastic 
degradation augmentation methods is denoted as +SDAug.

In comparison, it is evident that training with the stochastic degradation-based aug-
mentation technique on the same dataset remarkably improves the performance on 
nearly all kinds of processed data even with intense severity. For example, previous 
experiments show that the detectors are more vulnerable to synthetic noises and blurry 
effects. The sub-figures in Figs.  6 and 7 further illustrate the impact of increasing the 
severity of these distortions on the two detection methods. The data augmentation 
scheme significantly improves the robustness and meanwhile still maintains high perfor-
mance on original unaltered data.

It is worth noting that the performance improves not only on the four types of process-
ing operations that appear during data augmentation but also on other different kinds of 
distortions. As shown in Table 4 and the last two sub-figures in Figs. 6 and 7, both detec-
tors are much more robust toward learning-based compression, low-resolution effects, 
and other mixed distortions. A similar observation is obtained from the video deepfake 
assessment framework, see Tables 5 and 6. Although these video processing operations 
are not present in the proposed augmentation chain, the SDAug technique brings per-
formance improvement to the Capsule-Forensics and XceptionNet methods on nearly 
all kinds of processed video deepfakes.

To compare with conventional augmentation methods based on geometric and color 
space transformation, the well-known Augmix [67] augmentation technique is evalu-
ated under the same realistic assessment framework. This method generates multiple 
augmentation chains that work in parallel by randomly applying transformations to the 
training data. As a result, Augmix brings limited improvements to the robustness of the 
detector compared to SDAug, see Table 4. Its overall performance is even worse than 
simply training with low-quality data, which implies that the traditional data augmenta-
tion method is less practical when facing real-world distortions.

To show the effectiveness of the stochastic mechanism, an extra model has been 
trained using the same degradation-based augmentation chain but without randomness, 
which means the input data will be processed by all the augmentation operations with a 
fixed strength level. The corresponding experiment results are also reported in Table 4 
and Figs. 6, 7, denoted as +DAug. As a result, the models trained with DAug are able 
to improve the performance on multiple processed data but the AUC scores degrade 
heavily on the original unmodified data. In comparison, the model trained with SDAug 
shows more significant robustness improvement and meanwhile maintains high perfor-
mance on original high-quality data.

Finally, cross-dataset evaluations have been conducted for the Capsule-Forensics and 
XceptionNet methods to evaluate the generalization ability of those models trained 
with the proposed augmentation technique. First, the two detectors are trained on the 
FFpp dataset but tested on the Celeb-DFv1 and Celeb-DFv2 test sets for frame-level 
AUC scores. The two methods obtain very low scores on the new dataset. In compari-
son, the proposed augmentation scheme brings a noticeable performance improvement 
for both detectors on new datasets, showing its capability to improve the generalization 
ability on unseen forensic face contents. Moreover, we conduct more cross-manipula-
tion experiments on FaceForensics++ which consists of four types of manipulations, 
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namely DeepFakes, Face2Face, FaceSwap, and NeuralTextures. In specific, the Xception-
Net model is trained on one type of manipulation and is tested on the remaining three. 
The results demonstrated in Fig. 8 show that the model trained with SDAug consistently 
achieves superior generalization performance.

5.6  Limitations and Future Work

The experiments carried out in this paper are mainly limited to video deepfakes or stand-
ard-quality image deepfakes. The detection of HD single-image deepfakes created by 
completely different methods, such as GANs, has not been evaluated with the proposed 
assessment framework. Although preliminary explorations have been done by previ-
ous work [68], there have been more advanced techniques recently to create HD single-
image deepfakes, not only by GANs but also by Diffusion Models, and corresponding 

Fig. 6 Performance comparison between models trained on FFpp-Raw only and trained with the proposed 
augmentation method
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Fig. 7 Performance comparison between models trained on FFpp-Raw only and trained with the proposed 
augmentation method

Table 6 Cross-manipulation evaluation on Celeb-DFv1 and Celeb-DFv2 (AUC(%)) after training on 
FFpp dataset

Deepfake Detector Augmentation 
Method

FFpp Celeb-DFv1 Celeb-DFv2

Capsule No Aug 99.20 43.36 54.39

Augmix 98.66 53.45 58.65

DAug 93.51 71.35 68.39

SDAug 97.82 74.84 71.86
XceptionNet No Aug 99.56 39.35 50.00

Augmix 99.15 50.27 53.04

DAug 78.64 64.79 62.81

SDAug 98.44 80.67 73.88
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detection methods. It would be interesting to extend the assessment framework to be 
able to study the robustness of state-of-the-art HD image deepfake detectors.

On the other hand, although the proposed augmentation technique is in general very 
helpful in improving the robustness of deepfake detectors when facing various real-
world image and video processing operations, some limitations have been observed from 
the previous results report. First of all, the augmentation chain is hand-designed and the 
selection of hyperparameters might not be optimal. The proposed augmentation chain 
could be improved by conducting a parameter search with AutoML technology. Second, 
according to Table 5, the augmentation method generally provides limited help for SBIs 
method, because SBIs is entirely based on synthetic data and the augmentation can pos-
sibly corrupt the manually designed forgery traces. It could be promising to incorporate 
our proposed augmentation operations into the forgery data synthesis process to further 
improve the robustness of detectors based on synthetic forgery data.

6  Conclusion
Most of the current deepfake detection methods are designed to be as high performing 
as possible on specific benchmarks. But it has been shown that current assessment and 
ranking approaches employed in related benchmarks are less reliable and insightful. In 
this work, a more systematic performance assessment approach is proposed for deep-
fake detectors in realistic situations. To show the necessity and usage of the assessment 
framework, extensive experiments have been performed, where the robustness of four 
popular deepfake detectors is reported and analyzed. Furthermore, motivated by the 
assessment results, a new data augmentation chain based on a natural data degradation 
process has been conceived and shown to significantly improve the model’s robustness 

Fig. 8 Cross-manipulation experiments on FaceForensice++ (Raw) dataset with XceptionNet trained on four 
different types of manipulated dataset separately, namely Deepfake, Face2Face, FaceSwap, NeuralTextures. 
AUC (%) scores are compared between the XceptionNet model trained with or without the SDAug technique
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against distortions from various image and video processing operations. The effective-
ness and limitations of the proposed augmentation method have been also discussed in 
detail.

Abbreviations
AUC   Area under receiver operating characteristic curve
DAug  Degradation-based augmentation
DCNNs  Deep convolutional neural networks
DFDC  Deepfake detection challenge
FFpp  FaceForensicsplusplus
GANs  Generative adversarial networks
SDAug  Stochastic degradation-based augmentation
TMC  Trusted media challenge
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